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Abstract—In this paper, a new direction of arrival (DOA)
estimation approach is addressed for the case of more sources
than physical receiving antennas by considering a novel non-
uniform array design. The new design utilizes the concept of
minimum sparse rulers which are rulers having incomplete
marks. The differences between marks in a sparse ruler cover
all lags of the autocorrelation. In array processing, this set
of differences can be used as a basis to construct a virtual
uniform linear array having a higher number of antennas than
the actual linear array. In order to attain the required rank
condition of the observation matrix, the most recent spatial
smoothing method is used. The MUSIC algorithm can then be
applied leading to the desired high resolution result. It is also
possible to compromise the resolution for a lower complexity
level by exploiting the least-squares approach to generate the
angular spectrum.

Index Terms—direction of arrival (DOA) estimation, non-
uniform array, sparse rulers, MUSIC algorithm, spatial smooth-
ing

I. INTRODUCTION

In recent years, high resolution direction of arrival estima-

tion is one of the main topics in the research field of antenna

arrays. Many methods have been proposed for the case of

uniform linear arrays (ULAs). It is generally impossible to

locate the DOAs of all sources if the total number of sources

is larger than the number of receiving antennas. For instance,

a ULA having N receiving antennas can only detect up to

N − 1 sources.

This issue has spurred researchers to construct non-uniform

arrays for DOA estimation when we have more sources than

actual physical antennas. One of these approaches is [1] which

uses the Khatri-Rao subspace based algorithm for the case of

quasi-stationary signals. In [2], the authors use an array struc-

ture called nested array and also propose a spatial smoothing

method to generate a positive semi-definite spatial covariance

matrix. In contrast to [1], this method does not require quasi-

stationarity of the received signals. In [3], a new array design

is proposed based on the coprime sampling scheme, which

employs two ULAs with different antenna spacings. By using

the correlation sequence between the resulting samples, a

steering vector matrix for a longer ULA can be generated.

As in [2], the spatial smoothing is also employed in [3] to

generate a spatial covariance matrix having a suitable rank

and this covariance matrix is later used for DOA estimation

based on the MUSIC algorithm.

The idea of using numerical theories for designing non-

uniform linear arrays was first utilized in minimum redun-

dancy arrays which was introduced by Moffet in [4]. Consider

an N−element uniform linear array in which the antennas are

positioned at {di}
N
i=1. The co-array set of this linear array can

then be defined by all possible pairwise antenna separations.

Therefore, it can be defined by D = {di−dj}
N
i,j=1. Each num-

ber in the co-array set corresponds to the spatial correlation

lag between an antenna pair with the same antenna separation

value. Therefore, the members of the set D can be interpreted

as the lags of the spatial correlation matrix. For an N−element

ULA, the set D has N(N −1)/2 possible pairs of separation.

However, there are some repeated values (lags) in this set.

Therefore, it is said that the co-array has some redundancies

and the array is called a redundancy array. By reducing these

redundant values from the co-array, it is possible to increase

the array aperture and also get a higher spatial resolution as

shown in [4]. This goal can be achieved by designing a non-

uniform linear array with specific inter-element separation.

Zero redundancy arrays can only be achieved for arrays with

less than or equal to 4 elements. For more than 4 elements, the

goal is to reduce the redundancies to the lowest possible value.

If there is any missing lag in the co-array set, then that missing

lag is considered as a hole or gap [5][6]. Minimum redundancy

arrays (MRAs) are arrays with the lowest possible redundancy

and without any holes in their co-array set and therefore

they have the highest possible aperture. Minimum hole arrays

(MHAs) are arrays with a minimum number of holes and

zero redundancy. By using difference bases as mentioned

in number theory, MRAs and MHAs can consequently be

designed by restricted difference bases and Golomb rulers,

which are related to the ruler framework [5]. Non-uniform

linear arrays which are designed according to the concept of

Golomb rulers are called Golomb arrays [6][7]. In these arrays,

the antennas are positioned according to the marks of the

Golomb ruler. In [8], a non-uniform array design is proposed

for active sensing based on Singer’s theorem. Singer’s theorem

basically allows us to form large aperture arrays for the case

of MIMO radars with few receiving and transmitting antennas.

In this paper, we introduce a special antenna array design

based on the sparse ruler concept for the case of passive

sensing. A sparse ruler is a ruler that is able to measure

all integer distances from 0 to N − 1 with only M < N
marks. This ruler with M marks is considered as a minimal



sparse ruler if there is no ruler with M − 1 marks that is

also able to measure all integer distances from 0 to N − 1.

With the minimal sparse ruler, it is possible to generate the

same set of differences mentioned in [3] but with fewer

number of antennas. The structure of the paper is given as

follows. First, some preliminary information related to the

formulation of uniform linear arrays and the sparse ruler

concept is presented in Section II. In Section III, the antenna

array design is proposed and the spatial autocorrelation of

this array is constructed to demonstrate that a virtual uniform

linear array can be achieved with this configuration. In Section

IV, the spatial smoothing method proposed in [2] is used to

construct a spatial covariance matrix for a ULA with a higher

number of antennas which is produced by the difference set

derived in Section III. The derived covariance matrix is then

used as an input for the MUSIC algorithm in order to estimate

the DOAs of the impinging sources. In Section V, we use

the same minimal sparse ruler based antenna array design to

generate the so-called angular spectrum by using least-squares.

This least-squares approach offers less complexity though the

resulting angular spectrum might not have sufficient resolution

to separate two signals having extremely small differences in

their angle of arrival.

II. PRELIMINARIES

A. Antenna Array Model

Consider a uniform linear array (ULA) consisting of N

antennas/sensors for receiving the impinging signal of K

narrowband planar wavefront sources. The delay along the

array can be defined as a phase shift due to the narrowband

assumption. In addition, the separation between the antennas

should be less than half of the wavelength of the impinging

signal to avoid spatial aliasing. Therefore, the array output can

be written as:

x(t) =

K
∑

k=1

a(θk)sk(t) + n(t) (1)

where t = 1, ..., T is the time index, x(t) is the N × 1
received vector, sk(t) is the signal from direction θk, n(t) is

the N×1 additive noise vector, and a(θk) is the N×1 steering

vector whose elements are the phase shifts experienced by the

received signal at the elements of the array. If the first element

of the array is considered as a reference point, the steering

vector can be written as:

a(θi) = [1, φi, . . . , φ
N−1

i ]T (2)

where

φi = exp(j2π
d

λ
sin(θi)) (3)

with d the distance between the antennas. The output equation

(1) can also be written as

x(t) = As(t) + n(t) (4)

where A = [a(θ1) ,a(θ2) , . . . ,a(θK)] is the N ×
K matrix containing the steering vectors and s(t) =

[s1(t), s2(t), ...., sK(t)]T is the K×1 source signal. The spatial

correlation can be defined as Rx = E[x(t)xH(t)], where E[.]
is the expectation operator, which can be estimated by taking

an average over T time instances (total number of snapshots).

B. Minimal Length Sparse Rulers

In general, a length-(N −1) ruler contains all the N integer

marks starting from 0 to N−1. However, it is actually possible

to measure all integer distances from 0 to N−1 without having

the complete ruler. A length-(N−1) sparse ruler is a ruler that

is able to measure all integer distances between 0 and N − 1
with only M marks {dn}

M−1

n=0 where M < N and

0 = d0 < d1 < ... < dM−1 = N − 1.

In other words, all the differences measured by the marks in a

length-(N−1) sparse ruler can be used to generate all integers

between 0 and N − 1. The length-(N − 1) sparse ruler with

M marks is considered a minimum sparse ruler if there is no

length-(N − 1) sparse ruler having M − 1 marks. For further

information about the minimal sparse ruler problem and how

to solve it, see [9].

III. SPARSE RULER ARRAY APPROACH

In this section, we define a non-uniform linear array by

considering a length-(N − 1) sparse ruler with marks S =
{dn}

M−1

n=0
. The cardinality of the set S defines the number of

antennas and the value of the marks illustrates the distance

between every antenna element and the reference antenna

element as shown in Fig. 1.
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Fig. 1. Non-uniform linear array with the antenna position arranged according
to the marks of the sparse ruler.

Let us assume that the narrowband source impinging on

the antenna array from direction θi has power σ2
i where i =

1, 2, . . . ,K. The output of the array will be similar to (4),

namely:

xs(t) = Ass(t) + ns(t) (5)

where the steering vector matrix is given by As =
[as(θ1),as(θ2), . . . ,as(θK)]. The steering vector for the i-th
source can be written as

as(θi) = [1, ψi
d1 , ψi

d2 , . . . , ψi
dM−1 ]T (6)

where



ψi = exp( j
2π

λ
sin(θi) ).

The spatial correlation matrix for this sparse ruler can be

written as

Rxs
= E{xs(t)x

H
s (t)}

= E{
K
∑

i=1

K
∑

j=1

as(θi)si(t)s
∗

j (t)a
H
s (θj)+ (7)

K
∑

i=1

ns(t)s
∗

i (t)a
H
s (θi) +

K
∑

i=1

as(θi)si(t)n
H
s (t)+

+ns(t)n
H
s (t)}.

In this equation, the expectation operator can be estimated by

taking an average over the total number of time snapshots. Let

us assume that the sources are uncorrelated from each other

and that the i-th source has variance σ2
i . Let us also assume

that the noises on the different antennas are mutually uncor-

related with variance σ2
n. In this case, the spatial correlation

matrix can be written as:

Rxs
=

K
∑

i=1

as(θi)a
H
s (θi)σ

2
i + σ2

nI (8)

where I is an M ×M identity matrix. Similar to [1] and [2],

we vectorize Rxs
to get the following equation

y = vec(Rxs
) = Bp+ σ2

nê (9)

where B has size M2 ×K and each column of B is the

Kronecker product between the steering vector in a certain

direction with its conjugate. Therefore, B can be written as

B = [a∗s(θ1)⊗as(θ1),a
∗

s(θ2)⊗as(θ2), ...,a
∗

s(θK)⊗as(θK)].

Further, p is given by

p = [σ2
1 , σ

2
2 , ....σ

2
K ]T

and ê is given by ê = [eT1 , e
T
2 , ..., e

T
M ]T with ei a vector of

all zeros having a one in the i-th position.

Each column of B contains all the differences between

the ruler markers given by {di − dj}
M−1

i,j=0
. As a result of the

properties of the sparse ruler, these differences can be used to

develop a new ruler having a complete set of integer marks

from 0 to N − 1. Therefore, each column of B has 2N − 1
distinct values. By comparing (9) with (4), we can find that

the distinct rows of B provide an array manifold matrix for a

longer uniform linear array with 2N − 1 sensors. In order to

exploit the obtained differences, spatial smoothing is proposed

in Section IV, which constructs a covariance matrix having

rank N − 1. As a consequence, it is possible to identify the

DOAs of at most N − 1 sources by applying the MUSIC

algorithm on this covariance matrix. This also means that it

is actually possible to identify the DOAs of all sources when

the number of physical antennas (M ) in an array is less than

the number of sources (K).

IV. SPATIAL SMOOTHING METHOD

In this section, the spatial smoothing method is used for

the rank enhancement of the observation matrix. This rank

enhancement using spatial smoothing is actually proposed in

[2]. In Section III, a longer uniform linear array is constructed

based on the differences between the ruler markers. Note

that p can be considered as a source vector and spatial

smoothing can be applied on the signals to construct a proper

covariance matrix. Because the spatial smoothing method can

only be applied to uniform linear arrays, there should not

be any missing distance in the resulting difference set. This

is one of the essential conditions for applying the spatial

smoothing method and a sparse ruler can be used to achieve

this condition.

This method starts by extracting all the distinct differences

from the rows of B. Then we construct a new (2N − 1)×K
matrix B1 whose columns consist of 2N − 1 distinct differ-

ences sorted from−N+1 to N−1. This is equal to considering

an array with 2N − 1 antennas where the N -th antenna is

considered as a reference point. Therefore, the received signals

by the other antennas can be modelled using a phase shift

related to this element. Hence, we can write it as

y1 = B1p+ σ2
nè (10)

where è is a vector of all zeros except for the N -th element

where the zero difference occurs and the entry is one. Let

us assume a subarray with N antennas, then it is possible

to consider N overlapping subarrays. The positions of the

antennas in the i-th subarray is given by :

{(−i+ 1 + n)d}N−1

n=0 .

The i-th subarray extracts the (N + 1 − i)-th to (2N − i)-th
element of y1. We can define it as :

y1i = B1ip+ σ2
nèi (11)

where B1i is a N×K matrix for the i-th subarray. èi is again

a vector of all zeros except for the i-th entry which is one.

For each subarray, we can define

Ri = y1iy
H
1i . (12)

If we average over the total number of subarrays, we get

Rsx =
1

N

N
∑

i=1

Ri (13)

where Rsx is a spatially smoothed matrix. By using Theorem

1, which is mentioned in [3], it can be verified that Rsx has

the same form as the covariance matrix of a ULA with N
antennas. By applying the MUSIC algorithm to it, it is possible

to identify up to N −1 sources. For further information about

the proof of the theorem, see [2].



V. LEAST-SQUARES SOLUTION

Observe that the (2N − 1) × 1 vector y1 in (10) contains

all the spatial correlation values between lag −N + 1 and

N − 1. For clarity, we can write the elements of B1 in (10)

as B1 = [b(θ1) ,b(θ2) , . . . ,b(θK)] where b(θi) is given by

b(θi) = [φ−N+1

i , . . . , φ−1

i , 1, φi, . . . , φ
N−1

i ]T (14)

with φi defined in (3). Based on (10) and (14), we can express

our DOA estimation problem as a least-squares problem by

writing the known observation y1 as

y1 = B̂p̂+ σ2
nè (15)

where B̂ = [b(θ̂1) ,b(θ̂2) , .... ,b(θ̂L)] and
{

θ̂i

}L

i=1

is

an arbitrary set of angles to be investigated. We want to

emphasize here that
{

θ̂i

}L

i=1

is not necessarily the same as

the set of actual DOAs {θi}
K

i=1
in (14), which are basically

unknown from the receiver point of view. The p̂ in (15) can

be written as:

p̂ = [σ̂1
2, σ̂2

2, ....σ̂L
2]T

where σ̂i
2 is the unknown received power at the investigated

direction θ̂i. In order to be able to solve (15) using least-

squares, the number of investigated directions L should satisfy

L ≤ 2N−1 and the system matrix B̂ should have full column

rank. In other words, although we can compute the received

power at up to 2N − 1 investigated angles θ̂i, the selection

of the investigated angles θ̂i is not arbitrary due to the need

to guarantee the full rank condition of B̂. When B̂ has full

column rank, we can solve (15) as:

p̂ = (B̂HB̂)−1B̂Hy1. (16)

Assuming d in (3) equals 0.5λ, the easiest way is to divide

a range from -1 to 1 uniformly into 2N − 1 grid points, that

is
{

−2N+2

2N−1
, . . . , −2

2N−1
, 0, 2

2N−1
, . . . , 2N−2

2N−1

}

. Computing the

sin−1 at those 2N − 1 grid points will result in 2N − 1
investigated angles. When this is the case, it can be easily

found that the B̂ is a permuted version of the Inverse Fast

Fourier Transform (IFFT) matrix and thus the resulting p̂ can

be regarded as the angular spectrum. In this case, the estimates

of the actual DOAs can be found by locating the peaks of this

angular spectrum.

Observe how the LS approach can simplify the DOA

estimation process. Since spatial smoothing and MUSIC are

not employed here, the complexity can thus be reduced at the

price of a reduced estimation accuracy.

VI. SIMULATION RESULTS

In this section, some numerical results are shown and

the results are compared to the coprime sampling method

in [3]. In addition, the two proposed methods are com-

pared and their results are evaluated. Let us assume that

we have a length-35 sparse ruler with 10 marks S =
{0, 1, 4, 10, 16, 22, 28, 30, 33, 35}. Therefore the inter-element

separation is {1, 3, 6, 6, 6, 6, 2, 3, 2}.

First, we compare the performance of the coprime sampling

and that of the sparse ruler. In this first simulation, both of

them employ MUSIC algorithm and spatial smoothing. We

generate 17 sources with a 10 degrees separation from -80

to 80 degrees while temporally and spatially white noise are

considered. 1600 time snapshots are collected and a 0 dB

signal to noise ratio is chosen. The result is illustrated in Fig. 2.

Observe how the 17 sources can be detected by the coprime

sampling method employing two uniform linear arrays with

7 and 9 antennas. However, the same performance can be

achieved by a sparse ruler based non-uniform linear array

having only 10 antennas.
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Fig. 2. MUSIC spectrum versus direction of arrival with 17 sources, 10 ruler
marks and SNR = 0 dB for the coprime sampling and sparse ruler methods

Next, we evaluate the performance of the least-squares (LS)

method by considering the same sparse ruler configuration

and number of sources. Recall that the main requirement for

the LS method is the full column rank condition of the B̂

matrix in (15). One possible way to satisfy this requirement

is to divide a range from -1 to 1 into 71 grid points and

investigate the 71 angles θ̂is, which are given by the sin−1 of

the 71 grid values. The received power at those 71 θ̂is can be

obtained by solving (16). Fig. 3 illustrates the DOA estimates

produced by the LS method and MUSIC. Observe how the

LS method performs worse due to the higher sidelobes at the

direction where there is no active source. On the other hand,

the MUSIC algorithm offers better resolution leading to better

DOA separation. Note however that this performance of LS is

achieved with lower complexity since in LS, we do not need

to perform spatial smoothing during the estimation process.

To further compare the performance of the LS method

with that of the MUSIC method, we consider a continuous

source from 30 to 40 degrees. This is done by generating

finite number of sources between 30 and 40 degrees with very

small degree of separation. The result is illustrated by Fig. 4.

Observe how the MUSIC method generally performs better.

The MUSIC algorithm generally introduces lower power level

at the direction where no source exists. However, we are also

able to locate the range of DOAs with LS method although

its resolution is worse than that of MUSIC. Again, this LS



performance is achieved with lower complexity. Therefore,

the trade off in these two methods is between resolution and

complexity.
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Fig. 3. Spectrum in dB versus direction of arrival with 17 sources, 10 ruler
marks and SNR = 0 dB for the MUSIC method and LS method
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Fig. 4. Comparison between the two proposed methods (LS and MUSIC)
with a continuous source from 30 to 40 degrees

VII. CONCLUSION

In this paper, a new non-uniform linear array design is

proposed based on the concept of minimum sparse rulers.

With a length-(N − 1) sparse ruler, whose distance marks

define the inter-element separation, it is possible to create

a virtual uniform linear array with 2N − 1 antennas. With

the spatial smoothing method, a spatial covariance matrix of

suitable rank is constructed. By applying the MUSIC algorithm

to this covariance matrix, it is possible to detect N−1 sources

even when the actual number of physical receiving antennas

is less than the number of sources. In the second method,

we generate the same virtual ULA by solving a least-squares

problem. By finding the angular power spectrum, it is possible

to find the DOAs with lower complexity. Simulation results

have proven the performance of the proposed methods. The

comparison between the two proposed methods has shown

the trade off between resolution and complexity. Extending

this method to the case of colored source signals is currently

under investigation.
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