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Chapter

Introduction

Wireless communications has become an essential part cérmdite and indus-
try, covering a great variety of applications ranging froetedlite communications
and cellular networks to the networks of wireless sensoosis€quently, there are
various communication links with different ranges, dat@saand latencies which
are designed for diverse applications and specificationgpedceful coexistence
of all these wireless devices which share the same mediuratipossible with-
out careful accessibility regulations. The standarduratf wireless technologies
provides a map to the existing products and illustrates tnddss and boundaries
of the telecommunications industry. A summary of thesedsteas indicates the
edges and highlights the research areas of the wirelessdiedy.

1.1 Trends in Wireless Communications

Wireless standards are often categorized according tortdrgge and data rates for
different applications. A map for a number of wireless stadd in terms of their
operational range and data rates is shown in[Fig.[1.1 [1].eM&s personal area
network (WPAN) technologies target low-cost and low-poapplications within
a short range up to tens of meters, while a wireless local reesork (WLAN)
covers greater distances up to hundreds of meters, butresguiore expensive
hardware and has a higher power consumption [2].

Indeed, short-range wireless communication (up to 10 nésas the evolving
areas among current wireless applications to provide aiioms between various
wireless devices at close distances. Home appliancesstimeliand even medical
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Figure 1.1: Conventional data rates and operational rafogegreless standards.

devices are shifting towards the use of wireless connextionthe sake of easing
the mobility, installation and maintenance. Some starglardi technologies have
specifically been developed to cover such short-distanpicagions with limited
throughput such as Bluetooth and ZigBee. Accordingly, lgg USB which oper-
ates in the frequency range of 3.1 to 10.6 GHz, is built uptma-wideband (UWB)
technology and it is capable of sending up to 0.5 Gbps, to@tppmpressed video
streaming. Further improvements will not be seen in the fgare for wireless
USB, due to the restrictions on the transmit power levelsosed by regulatory
bodies.

To cover the real-time streaming of data such as video andcmie IEEE
802.15.3 (WPAN) standard was established for a high dataamd high quality
of service. Particularly, the 802.15.3c sub-group wasdhad to design a WPAN
standard for a multi-gigabyte transmission on a millimevexe carrier which op-
erates in the unlicensed band of 57-64 GHz defined by the &e@emmunica-
tions Commission (FCC). The choice of millimeter-wave dealhe simple coex-
istence with other microwave WPAN standards. This is thestdEEE standard on
WPAN and it enables the streaming of high-quality video atigeocontents be-
tween servers and portable devices. This includes applisasuch as high speed
internet access, streaming content download (video on agn#DTV, home the-
ater, etc.), real time streaming, and wireless data busatoleaeplacement [3].

Modulating the signal at millimeter-wave frequencies litates the positioning
of many antennas in a small area [4, 5], which enables medtigut multiple-
output (MIMO) systems with very large antenna arrays andsequently higher
data rates. The availability of broadband spectrum in thguency band around
60 GHz provides a great opportunity for ultra-high data stert-range wireless
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communications. This frequency band was quite recentlygsed for outdoor
cellular communications in the emerging 5G standard (lgsim the right top of
the wireless standards map in Hig.11.1]) [6]. The growingdrewards 60 GHz
transmission motivates a great deal of study and reseathfsiarea from hardware
and integrated circuit (IC) design to signal processing @gdrithm development
and standardization. However, the huge data throughputhendltra-high carrier
frequency give rise to serious challenges for the low-codtraliable radio design.
Challenges involve aspects of channel propagation ishasessgband modulation
schemes, antennas and IC technologiés [7].

This classification leads us to spot the challenges in wasdiechnology and to
proactively shift towards modern telecommunications eyst which are capable
of delivering superior data rates reliably and fast. Thigitine with the actual
consumer urge which is the main motivation engine behinddéweelopment of
new technologies and underlying research activities, hisdrésearch work is no
exception in this regard.

1.2 Research Motivation

Inside mechatronic and industrial machinery, the requw&thg is an increasing
concern, as it comes with issues like reliability, spaceieificy, and flexibility. It
thus becomes interesting to replace the wires by wirelessemions. On the one
hand, using multiple cables inside a dense area to conneghgnparts within a
confined space can significantly complicate the design amdtemance of the sys-
tem. A wired connection to a moving part affects the dynaraicsmay cause cable
jams and frequent damage to such machineries. On the othey tirent wireless
technology does not meet the data rates and latency offgredtéd standards like
gigabit Ethernet. In fact, the required specifications f@ngnindustrial applica-
tions, including gigabit rate and low latency plus highabllity, are nowhere near
the existing wireless standards as discussed in Séctibn 1.1

Specifically, wireless sensor networks (WSN) are curreotlgrowing inter-
est for industrial usage and they are mainly categorizechad-sange wireless
technologies due to battery limitations. Generally, thesesors are distributed
to observe environmental and ambient conditions includamgperature, sound,
vibration, pressure, motion, etc., and they are widely wegigltin mechatronic sys-
tems where human interaction is limited if not impossiblg [8 wide range of
WSNs demand high data rates and extremely reliable commsclietween sensor
nodes and possible control units.



This thesis is based on a collaboration between Delft Usityeof Technology
and industrial partners and poses real and demanding cbasgaestions related
to the design and development of a wireless link inside @ditaphy machine.
Lithography systems play a critical role in the developmand manufacturing
of ICs. The lithography process requires extremely aceunadésk and substrate
positioning. This task is performed via several sensorsamtgators on a moving
platform, which are typically connected to the control aniia flat-cable wires. The
moving platform experience a very high acceleration. Tifness of the cables
causes undesired disturbances to the system, which leadsturate positioning.
Also, the trend towards increasing numbers of moving sens@kes the design of
the wiring system prohibitively complex, therefore thelamement of the cables is
of interest.

The lithography system of interest consists of sev@@}- 30) moving sensors
and one fixed central unit within a closed metal environmeesitlie the lithography
machine. The operating distance varies betw@&nr- 300 cm and the maximum
velocity of the moving sensors i$)T. The sensors collect the data and send them
over the wireless channel within the enclosed environneetiitd central processing
unit to be used in a wideband control loop. A data block is seety50 s seconds,
but only a small portion of time is dedicated to transmissi@hile most of the time
is reserved for control processing. The main specificat@irthe system include
high (peak) data rates (Gbps) and a very low lateps).(

Accordingly, the initial problem statement and the mainiwadion behind this
thesis can be formulated in one questiétow to design a highly reliable short-
range gigabit wireless link within a confined metal environnent subject to a
rigid latency requirement.

Obviously, for delivering a comprehensive working modelany intercon-
nected design levels have to be considered which clearbstaiore than one PhD
thesis to be accomplished. During the progress of the theéasinitial research
guestion has been generalized and diversified which is sieclin the next sec-
tion.

1.3 Thesis Contributions and Outline

The central research question is partitioned into subtmreswhich are addressed
in this thesis.
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Research Question 1 What limitations are imposed on the wireless link perfor-
mance and therefore the design criteria, when the commtioicaystem is con-
fined to a closed metal environment which is the common casediostrial ma-
chineries?

A fundamental difference between typical indoor and outdeioeless appli-
cations with industrial systems arises in terms of veryimystished propagation
environments. Accurate and viable wireless channel moalelsof vital impor-
tance to design a realistic and functioning wireless systdinerefore, to move
towards a reliable and fast wireless connection for indalstsage, many efforts
have been made to provide suitable and inclusive channetisioor very small-
scale applications such as inter chip connections [9] ordstaboard commu-
nications [10,/ 11], a noticeable difference, in terms ofrote properties, has
been reported in the literature compared to the typical ondmmd UWB chan-
nels [12,/13[ 14, 15, 16]. Also, Ohira et al. studied propagatharacteristics
inside information communication technology (ICT) equgmhsuch as a printer,
vending and automated teller machine (ATM)I[17]. Howevkeré seems to be
no literature on channel models for closed metal envirorisagparticularly for
the millimeter-wave band which is chosen to be the most Isigittequency band
for very high-rate wireless applications as motivated ict®a[1.1. Therefore,
a channel measurement campaign has been conducted togpstatistics on the
radio frequency (RF) behavior in a metal enclosure whichlates the environ-
ment within a lithography machine. The measurement rekalie been processed
carefully to establish the foundations for further systegsign. The results and a
comprehensive channel model for a wideband 60 GHz wireledsr is presented
in Chapter[2. A frequency domain channel sounding technique is usedd@im
ing channel impulse responses for multiple locations ofrdoeive antennas on a
fine grid map within metal closets of several dimensions. rEselts indicate that
the channel impulse response within a closed metal calsrsgnificantly longer
in time compared to the reported channels in the literatieehaving an extremely
dispersive environment to conduct a wireless connection.

Research Question 2 Long and fading-prone channels require fading resistant
modulation and equalization techniqu¥ghat are competitive equalization options
which are capable of taming the extremely dispersive wsgetdhannel and will the
available techniques admit the high data rate, great religband low latency
requirements of industrial applications?

A review on existing equalization techniques for dispergitiannels is given in



Chapter[3 This includes time domain and frequency domain technigqsesell
as block processing and serial equalization algorithmsexgiicit comparison for
different equalization techniques with latency and coxipfeevaluations provides
a clear measure for choosing the most proper equalizatabmigue for particular
specifications.

Wideband transmission techniques are briefly reviewedmitte system model
of interest, inChapter[4. Interestingly, almost all wideband wireless standards us
a multi-carrier technology known as Orthogonal-frequedysion-multiplexing
(OFDM), where the band is divided into many narrowband ckésjri.e., one of
the prime candidates for transmission in highly dispersivennels. A key benefit
of OFDM is that it can be efficiently implemented using thet fesurier trans-
form (FFT), and that the receiver structure becomes simptes®ach channel or
sub-carrier can be treated as narrowband instead of a momglicated wideband
channel|[18]. A detailed OFDM system design is sketched fardeband appli-
cation based on the measured channel impulse response<frapief 2 and the
BER performance and latencies are simulated and illustifatedifferent possible
settings. This gives an initial hint on the achievable datas and latency of an
OFDM system in such a dispersive and hostile environment.

This is the end of the first part of this thesis, which consdersingle-input
single-output (SISO) communication system, and more 8palty is dedicated to
the channel characterization and system design for theglitphy device of in-
terest. The second part of the thesis, which covers a morergleproblem than
the “proposed system in metal box”, starts withapter[B This chapter, is ded-
icated to review material on multiple-input multiple-outp(MIMO) system and
the associated capacity boost with respect to a SISO sySitbensystem model is
also renewed here to accommodate the MIMO setting considetbe subsequent
chapters.

Research Question 3 Although OFDM has impressive fading-resistance proper-
ties, a well known drawback is the high peak-to-averagequeaatio (PAPR). If the
maximum amplitude of the time domain signal is large, it magtpthe transmit
amplifier into a non-linear region which leads to an errorsedatection and de-
grades the overall performance of the system dramaticBlig. major challenge is
how to reduce the PAPR efficiently and effectively in OFDMesys, particularly
for multiple antenna systems which have been less studibe iiterature.

PAPR reduction techniques have been developed over thadpeatle to ad-
dress this important problem of OFDM systems, however thseatwvays a notice-
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able trade-off between reducing the PAPR metric and thefisact bandwidth or
complexity even in popular techniques. We propose a nowtlediiective signal
processing technique i€@hapter [@ which can be implemented at the transmit-
ter side of MIMO-OFDM systems with minimal complexity ovedd. A major
competence of the proposed algorithm is its transparenttyetceceiver which en-
ables the independent implementation in current workinghss systems without
a concern to modify the (mobile) receivers.

Research Question 4 To push the boundaries on throughput and performance
of wireless systems, MIMO systems have widely been resedrover the past
decade. The emerging 60 GHz technology sheds new light onByistems
by enabling a large number of antennas in a limited sp&tmy to optimally use
multiple antennas and transceivers with respect to themdWare constraintsis
the subject of the last research question that is coverdusrittesis.

It is no secret that the capacity of the wireless channel edndyeased linearly
with the minimum number of the transmitters and receivera MIMO system
[19]. However, the hardware complexity of the system iseéased respectively as
there are more RF chains including expensive non-lineampcoents. The online
complexity of the system can even grow combinatorially asnugd detection is
required to be performed on a vector of the received data frautiple antennas
rather than a single output. An increased signal processinden such as higher
order equalization, beamforming etc. are other aspectsibf/systems and this
leads to a more complex and susceptible system due to hadaal software
imperfections. We aim to limit the complexity and yet bené&fim the diversity
and multiplexing gains offered by a MIMO systenChapter [/ of this thesis is
dedicated to formulate and solve for an optimal precodejestilto complexity
constraints such as a limitation on the number of RF chaiaspar antenna power
limit, in this context. This is achieved by jointly defininggaecoding and antenna
selection pre-processor. The original problem is showretexiremely difficult to
solve and an alternative sub-optimal approach is propassalte a relaxed version
of the problem.

Besides the revisited and proposed techniques and theatpthi-oriented re-
search questions that were summarized here, the signadgsiaog tools to formu-
late the problems and the solution mappings are of high itapoe and are con-
sidered as thesis contributions. Optimization theory aetitiques are among the
most used signal processing tools that have been consittett@d work. In partic-
ular, we have developed non convex optimization algorithrnsconvex relaxation



techniques for the problems involving quadratic power egpions that appear fre-
quently in communications, motivated by the common powestraints that are
posed in order to avoid unstable systems or to protect haedeeanponents. Also,
most of the quantitative measures for performance evalusitare linear or non-
linear functions of power, such as channel capacity orfietence measures. Some
interesting examples, are presented throughout thissthe€ihapter 6 andChap-
ter [l and many are left for further investigatiol€hapter [8 concludes the thesis
by reviewing the presented topics and introducing the edlaroblems and future
directions for continuation of this work.

The general notations throughout this thesis are as follbwisl upper case and
bold lower case symbols indicate matrices and vectorseosisely andl ;y denotes
an identity matrix of sizéV. The conjugate transpose, conjugate, and transpose of
a matrix A are denoted ad”, A* and A”. Statistical expectation of vectar
is denoted byE{a}. More specific notations are explained in time. Each chapter
follows its own notation, in the sense that the symbols ateghabally defined
throughout the thesis. In turn, the abbreviations are dhiced at each chapter.
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Chapter

60 GHz Channel Measurements and
Modeling Within a Metal Cabinet

This chapter presents the channel measurements perforitied & closed metal
cabinet at 60 GHz covering the frequency range 57- 62 GHz. dwferent vol-
umes of an empty metal cupboard are considered to emulatenti@nment of
interest (an industrial machine). Furthermore, we havesidened a number of
scenarios like line-of-sight (LOS), non LOS (NLOS), andgotg absorbers. A
statistical channel model is provided to aid short-rangeless link design within
such a reflective and confined environment. Based on the mezasats, the large
scale and small scale parameters are extracted and fittegl th& standard log-
normal and Saleh-Valenzuela (SV) models, respectivelye diftained results are
characterized by a very small path loss exponent, a singé&erlphenomenon, and
a significantly large root-mean-square (RMS) delay spr@dmb results show that
covering a wall with absorber material dramatically reduitee RMS delay spread.
Finally, the proposed channel model is validated by cormgathe measured chan-
nel with a simulated channel, where the simulated channgéierated from the
extracted parameters.

This chapter is published as “Channel Measurements and IMgder a 60 GHz
Wireless Link Within a Metal Cabinet,” Wireless Communioas, IEEE Transac-
tions on, vol.PP, n0.99, pp.1-1, doi: 10.1109/TWC.20152755.
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2.1 Introduction

2.1.1 Problem Context

Inside mechatronic and industrial machinery, the requiéthg is an increasing
concern, as it comes with issues like reliability, spaceieificy, and flexibility. It
thus becomes interesting to replace the wires by wirelessemtions. Literature
refers to a so-called “wireless harness” for the commuiundietween components
inside machinery devices where the propagation distarreeis ¢he order of a few
meters or lesd [20]. On the one hand, using multiple cablgislena dense area
to connect moving parts within a confined space can significaomplicate the
design and maintenance of the system. A wired connectiomtovng part affects
the dynamics and may cause cable jams and frequent damagghtmschineries.
On the other hand, current wireless technology does not theelata rates offered
by wired standards like gigabit Ethernet. To move towarddiable and fast wire-
less connection for industrial use, many efforts have beateno provide suitable
channel models for the wireless harness applications. nsmall-scale applica-
tions such as inter chip connectiohs [9] or board-to-boardraunications [10, 11],
a noticeable difference, in terms of channel properties bden reported in the lit-
erature compared with the typical indoor and UWB channe®;[18,[14] 15, 16].
Furthermore, Ohira et al. studied the propagation chaiatiteinside the informa-
tion communication technology (ICT) equipments such asirstgr vending and
automated teller machine (ATM) [17] which is the most retf@vaork in spirit to
this chapter as the channel is measured inside a metal anelo8lso, a simple
communication system is tested for ICT devices and assutiatults are reported
in [21]].

The unlicensed multi-GHz spectrum available around 60 Ghtzdained a lot
of interest in the past decade for both indoor and outdooliGgtpns [22] 23, 24].
Specifically, this millimeter-wave band has the ability tgoport short-range high
data rates in the order of Gbps. Both 802.11ad and 802.1%vahgng standards
based on this alternative bandwidth (BW) [[2, 3]. As a resuliny measurements
have been conducted to model the propagation environmé& @Hz. While the
literature is mostly concentrated on indoor channel chiaraation at this band
[25,26,27] 28], channel models for outdoor implementatbmireless systems
based on millimeter-wave have also been investigated [PRjwever, there are
numerous issues for long-distance communications in sl lolue to the large at-
tenuation of radio waves because of oxygen absorption. A gaovey on channel
measurements in 60 GHz can be found_in [30].
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Channel characterization results for short-range wiseledks in the 60 GHz
band, have been reported in[31] B2, 3], however, the chairaghcterization for
the so-called wireless harness applica@o'm not yet reported. The physically
available BW (at least 5 GHz) and small antenna size makedQtiagHz band very
appealing for wireless harness applications. Furtherptbesintegration of anten-
nas on small chips_[33] can facilitate the deployment of #eently introduced
large-MIMO systems [34] which could be a milestone in baustihe data rate in
wireless systems.

The main contribution of this chapter is to provide a staitchannel model
for applications in the 60 GHz band that operates inside alreatlosure.

2.1.2 Applications and Motivations

Lithography systems play a critical role in the developmantl manufacturing
of integrated circuits (ICs). The lithography process rezgiextremely accurate
mask and substrate positioning. This task is performed e¥@ral sensors and
actuators, which are typically connected to the controtsuwia flat-cable wires.
In this chapter, we investigate the propagation envirorini@nmillimeter-waves
inside a lithography system for developing a very high data (peak data rate up
to a few tens of Gbps) wireless link between the positiongmgssrs and the control
unit. This is fundamental for replacing the wired connawiavith wireless links.

The sensors and actuators are mounted on moving platformexiperience
very high accelerations. The stiffness of the cables causdssired disturbances to
the system which leads to inaccurate positioning. Alsoiréed towards increasing
numbers of moving sensors makes the design of the wiringsygirohibitively
complex, therefore the replacement of the cables is oféster

As we had limited access to an actual lithography machireptbasurements
have been conducted inside a metal cabinet that was emppteior some cables,
antennas and stand holders. The reproducible setup esti@teropagation en-
vironment in a wafer stage section within the lithographychiae. This can be
described as a metal drawer which is placed in the lithogralgwice and includes
two moving wafer stages as illustrated in Fig.]2.1.

This environment contains rather large amounts of openespacontrast to
the compact scenarios found in ICT devices, as investigatéak literature[[17].
The initial experiments for establishing the wireless limikthin the metal enclo-

!Kawasaki et al. studied the millimeter propagation envinent for internal I/O connections in

.
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Figure 2.1: An illustration of two moving wafer stages witteir cables in a lithography
system. The considered measurement scenarios emulatétsaghaphy machines.

sure show an extremely fading environment due to the raflestirom the walls,
which limits the data rate. Thus, the lack of proper channedefs for such hollow
and confined environments motivates the considered measntecampaign and
modeling.

Apart from lithography machines, there are other systeriscdin benefit from
this work, e.g., scenarios with wireless connections fasfie sensors or devices
inside an empty elevator or telecabine shaft. The empty@anpbcan be viewed
as an extreme case of a general metal enclosure. With abgoobijects inside
the confined space, one can expect fewer reflections anceslobidnnel impulse
responses.

2.1.3 Outline

In the context of this chapter, we have made extensive measnts of channel
frequency responses using a channel frequency domain isgueghnique within
the 57-62 GHz band. This has been done by placing the recaivaipre-designed
spatial grid, step by step, while the transmitter is fixede pbwer delay profile and
multipath components are extracted by post processing.diif@ent volumes of
the metal cupboard are used and the measurements are prémid®th the LOS
and NLOS scenarios. The results indicate that the enviratsngithin metal en-
closures are highly reflective, and the resulting “long”eléss channels will make
wireless communications very challenging. Also, the fgdinoperties change de-
pending on the volume of the cupboard rather than the LOS dr@S\situations.
We have also used absorbers to cover a metal wall for onerscevtasich resulted
in a significant reduction in the root-mean-square (RMSaylspread (RDS) and
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this consequently affects the fading properties of the shhn

Both small-scale and large-scale channel model paramatemsxtracted from
the measurements, based on the well-known Saleh-Valen{8¥®1) [35] and log-
normal model[[38, 19], respectively. Accordingly, a conmssive statistical chan-
nel model is provided to simulate similar fading channelan#m channel in-
stances are generated based on the extracted parametari/aditime, time decay
constant, and number of paths. Next, the RDS propertieedfithulated and mea-
sured channels are compared. The purpose of this verificatitovo fold. Firstly,
it assures whether the number of measurements is sufficieaxtracting the para-
metric statistical channel model. Secondly, it validates accuracy of the model
itself. Together with the Doppler frequency change (timgarece property), the
proper channel instances can be simulated via the Matlainehenodeling toolbox
[37] or other off-the-shelf simulation software based on@¢tochastic tap-delay-
line models|[[13], 38].

The remainder of this chapter is organized as follows. IriSe@.2.1, we de-
scribe the measurement set-up and explain the measurementipre. In Section
[2.2.2, we provide details regarding data processing t@eixfrarameters required
for channel modeling. Based on these parameters, lard¢e{pedh loss) and small-
scale channel models (RDS) are presented in Se¢tions 2Z34neéspectively. The
proposed statistical channel parameters based on the S¥lfimde decay con-
stant and arrival rates) are given in Secfion 2.5. The pegb@hannel model is
validated together with the coherence time and bandwidthe$ystem in Section
[2.8. Also, we compare the statistical parameters for thesored channels with
the SV channel model suggested for the IEEE 802.15 stanaatather related
measurements in the literature. Final remarks are madecio8&.7.

2.2 Measurement Set-up and Procedure

In this section, the channel measurement procedure anidsdettdhe equipment
used for the measurements are explained.

Channel characterization can be performed in either tinmeagio or frequency
domain [39]. In the measurements provided in this chaptéreguency domain
sounding technique is used. The scattering parametersS(i;©.512, So1, andSys)
are measured using a vector network analyzer (VNA) by trétisgn sinusoidal
waves at discrete frequencies. The frequency spacirfg, and the scanned BW,
B,,, determines the maximum measurable excess delay,, and the resolution
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of the captured multipaths,.., respectively, and they are given as

B, 1 1
T = — T, = —
Ns _ 17 max Afs7 res Bw I

Afs= (2.1)

where N, is the number of transmitted sinusoidal waves.

The frequency domaityy; parameter is generally referred to as channel fre-
guency response. The channel impulse response (CIR) imetthom the mea-
sured channel frequency response by taking the inversedasier transform (IFFT).
A Hann window is applied to reduce the effect of side lobes.

2.2.1 Measurement Set-up

The measurement BW is set 1§y, = 5 GHz, and the channel is sampled from
57 GHz t062 GHz at Ny, = 12001 frequency points. This results in a frequency
spacing ofA f, = 0.416 MHz, so that the time resolution i§.; = B—lw =0.2ns
and the maximum measurable excess delay,is. = 2400 ns. The channel fre-
guency response is measured using a PNA-E series microwd&eE8361A from
Agilent. An intermediate frequency BW dB;r = 50 Hz is chosen to reduce
the noise power within the measurement band, which imprtheedynamic range.
This is the receiver BW for single sinusoid in a VNA; the sraalintermediate
frequency BW leads to a larger signal to noise ratio. Alscheaeasurement is
repeated 50 times to further average out the noise.

Due to the losses inside the VNA a6l GHz co-axial cables, the measured
signal at the receiver is weak. &0 GHz solid state power amplifier (PA) from
QuinStar Inc. (QGW-50662030-P1) is used to compensatehtidsses and to
further improve the dynamic range. An illustration of theaserement set-up is
provided in Fig[Z.2. For the transmit and receive antennashave used two
identical open waveguide antennas operating in 50-75 Geétiugncy band with
aperture sizé.759 x 1.880 mm?. The beam pattern of the antennas is shown in
Fig.[2.3. The gain of the open waveguide antenna is ab@utBi (see [4] for
details on computing the gain).

The near field distance for the antenna is calculated base¢keoRraunhofer
distance and it is found to be less than 3 mm from the antenmidump. Therefore,
all the measurements are taken in the far field, and hences ithe&o near field
effect considered here. Two holders are used to fix and el@ath antenna to
avoid coupling between the antenna and metal surface of ¢tal enclosure.

To investigate the channel behavior within the empty medbiret, we have
considered the following four scenarioScenario lis an LOS scenario where we
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Figure 2.2: Measurement setup for channel sounding inbielenetal cabinet. The solid
parallelogram just above the first level shows the metaleptliaat has been used in the
NLOS scenario. The top right wall is covered with absorberstenario 4(small size
cabinet).
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Figure 2.3: Field radiated by the TEmode in open waveguide antenna with respeé to
angle.

Table 2.1: Receive antenna co-ordinates

r-axis y-axis z-axis

Scenario 1| 15-85 cm; 8 steps 5-30 cm; 6 steps 150,165 cm; 2 step
Scenario 2| 15-85 cm; 8 steps 5-30 cm; 6 steps 40,145 cm; 2 steps
Scenario 3| 15-40 cm; 6 steps 5-30 cm; 6 steps 40,145 cm; 2 steps
Scenario 4| 15-35 cm; 5 steps 5-30 cm; 6 steps 150,165 cm; 2 step

UJ

U7




20

use a metal enclosure of dimensid@) x 45 x 45 cm®. Scenario 2is an LOS
scenario with a metal enclosure of a larger dimension, i#,x 45 x 180 cm?.
Scenario 3s a NLOS scenario with the dimensioh®0 x 45 x 180 cm?®. Scenario 4

is an LOS scenario as iBcenario lexcept that one of the side walls is covered
with an absorber (see the illustration in Hig.12.2). Absosbare an alternative
physical solution to reduce the channel length which withgglfy the required
channel equalization. Note that the volume of the metalcsucke inscenario 2
andscenario 3is four times larger than the volume of the metal enclosuesl tier
scenario landscenario 4 To block the LOS path, and create the NLOS scenario,
a50 x 45 cm metal separation plate is usedstenario 3as illustrated in Fid. 2]2.

The transmit and receive antennas were placed on a styrafpalystyrene)
sheet, which acts as vacuum for radio waves and has a négligitect on the
channel behavior. The transmit and receive antennas wppogad using clamps
(stand holders) with sufficient clearance from the metdiager The co-axial ca-
bles were drawn into the metal cabinet by means of small hskish are just
sufficiently large to pass the cable.

For all scenarios, the location of the transmit antenna vegg kxed. The
channel was measured at various location8 mimensions, i.e.x,y, z-axes, as
specified in Tablé 2]1. This produced 96, 96, 72 and 60 recédeations for
scenario 1, 2, 3 and 4, respectively. Two elevation steps wsed in z-axis, 6 steps
in y-axis and 8, 6 and 5 steps in x-axis for different scersaai®shown in Table 2.1.

In scenario land scenario 4the transmit antenna was fixed at co-ordinate
(z¢,yt, 2¢) = (65,15,135) cm, and inscenario 2andscenario 3the transmit an-
tenna was located dtr;, y:,2:) = (15,15,130) cm. The position of the metal
plate was at ~ 60 cm andz = 140 cm for the first and second stepsiraxis
in scenario 3 In scenario 4 the bulky absorbers were limiting the space so less
measurements were taken in this scenario and only the R[Zadproperty has
been extracted. The minimum and maximum distances betweamd Rx are in
the range of 1.5 m to 15 cm.

2.2.2 Data Processing

Post-processing of the data is required to extract the GiR the measured fre-
guency domain signals. In principle, this involves an iseediscrete Fourier trans-
form (IDFT). The IDFT includes a window; the resulting impel response is
thresholded to remove paths with small amplitudes. Prich&IDFT, we can-
cel the antenna and instrument responses by using an infikkesieg technique
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Figure 2.4: Sample channel frequency response fsoenmario 1before (lower channel
frequency response) and after inverse filtering (uppermdlgnequency response) and ref-
erence channel frequency response with= 25 cm (line in the middle).

[40,41] which is briefly explained in Appendix 2.A.

Fig.[2.4 shows the original frequency domain response ofrgpameasure-
ment fromscenario 1 the frequency domain response after inverse filtering and
the frequency domain signal of the truncated reference uneament. The effect
of inverse filtering can be observed after calibration plbeve the sample chan-
nel frequency response is normalized By, (f) which is the channel frequency
response for free space without reflections or obstructionsists of a single LOS
path. Ry (f) is parametrized by an attenuation and a simple delay equthleto
time- of-flight of the signal between the transmit and reeeantenna. We can
make a recording of the received signal at a known refereistante in free space,
and after time gating we obtaity;(f) which is the CIR corresponding &y, (f).
The change in the power levels after inverse filtering is dudé compensation of
antenna and instrument responses.

For model parameters that do not depend on the absolute giosvahe small-
scale channel model considered in Section. 2.4), we havealized the received
signal to have a maximum value@tB. The dynamic range of the received signal
is in the order of70 dB, where we assume that the noise level is-@ dB after
normalization.

For estimating statistics of the individual link paramsetetis useful to truncate
the duration of the channel. We compute the threshold takilegaccount the noise
level, amount of total received power and relevant multipgimponents [42, 43].
By setting a threshold at 30 dB below the strongest path, ri@e98% of the
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Figure 2.5: Sample CIR with 30 dB threshold and receivedgfaihscenario 1

total power is captured. This threshold is still well abolie hoise level. As an
illustration, Fig[2.b shows a normalized received CIR vatthreshold at-30 dB.
The duration of this channel is still about 800 ns.

2.3 Path Loss Model

The large-scale channel model, specifically the path losdeias essential for
any wireless system design to calculate its link budget.aFmnventional channel
(outdoor or indoor), the path loss model suggests that theage received power
decreases exponentially with increasing distance betwletransmitter and re-
ceiver. This is generally expressed in logarithmic scale as

d
Pr(d)ap = Pr(do)ap + 10 10g1o(d—0) + Xo. (2.2)

where Py (d)4p is the signal power loss at a distantém) relative to an arbitrary
reference distancé, (m), o represents the path loss exponent, aidis a zero-
mean Gaussian random variable with standard deviati@flecting the attenuation
(in dB) caused by shadowing [36,/19]. In fact, the first twarteiin (2.2) together
represent the expected path loss and the last term reppabertandom variations
of this model. Based on the measurements, first the parasnafi¢ne statistical
model are identified for the average received power and ttielpss exponent and
later the shadowing parameters are determind.

Using the measurements of the received power for differstamnces between
the transmit and receive antennas, we can estimate thegsstlexponend. Ac-
cordingly, for each measurement the distance related pssiiérm in dB P, — F,.)
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Figure 2.6: Path-loss model parameter estimation.



24

is calculated, based on the known transmit power (-68 dB3hawn in Fig[2.6a
which shows that the path loss exponeris very small (around.02-0.002). The
reference distance is taken as 1 meter similar to commoroineovironments.
This suggests that in such a closed metal environment tiemedrly no loss in
the received power as function of distance. The same phemwmis reported in
[10] for the environment inside a computer case. Other nreasents for NLOS
wireless personal area network (WPAN) reportedh the range 0f0.04 — 0.09
[44,[42], while« in the rangel.6 — 6 is common for typical indoor systems [36].
According to the Friis formula, the path loss for convenéibimdoor environments
should be larger for transmissions @ GHz compared to lower carrier frequen-
cies. However, this is not the case for highly reflective mmnents such as metal
enclosures.

An ideal metal enclosed environment acts as a semi-coriserydysical sys-
tem where the only sources of absorption are the antenrtales@nd stand holders.
The waves keep bouncing back and forth, and when the disteteeen the anten-
nas is increased, the received power does not fluctuate $ecaost of the energy
reaches the receive antenna either directly or as multifgléction in the metal
cabinet.

Fig.[2.6B shows the probability density function (PDF)f, i.e., the fluctua-
tion of the path loss around the regression line in [Fig.]26a.seen that the PDF
approximately follows a normal distribution, with a stardideviation 0f0.16-0.39
dB. Among the considered scenarios, the NLOS casen@ario 3 shows the small-
est variation, and this is due to the larger distances (ve)uamd the obstructed
LOS path. In general there is no noticeable shadowing eifettte environment
even in NLOS case, since the reflected paths are almost ag stsathe LOS path
in the metal enclosure.

Accordingly, the large scale properties of the channel heenMitted to the
well-known log-normal model i (212), and can be used for wheeless system
design within empty (not-dense) metal enclosures.

2.4 RMS Delay Spread (RDS)

Besides path-loss, the channel can be further charaadrizés small-scale prop-
erties caused by reflections in the environment, which ardefed as multipath
components[[36, 19]. We do not consider fading on individiglay paths since
the measurements show that there are few multipath compoireeach resolv-
able time bin (over the measurement grids), and hence, tteeypa considered
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Figure 2.7: Number of received paths and RDS for differerggholds.

directly in our model. Instead, we consider the statistichie model parameters
for the (normalized) power delay profiles (power delay pesfilobtained over all
the spatial grids i.e. power delay profl§r) = |h(9)(7)[2, whereg denotes the
grid (position) point([16]. For examplg,= 1,2,--- ,G = 96, for scenario land
scenario 2 Thenth multipath component denoted byh entry ofh(9) (1), and it
is described by its power? and arrival timef,,.

Multipath leads to small-scale fading (variations overrsitistances due to
constructive and destructive additions). The most impontaodel parameters that
describe a multipath channel variations are the RDS anddaatioperties that can
be modeled as the time decay constant and the multipattakatirves in the SV
model. These aspects are studied next.

Delay spread describes the time dispersion effect of tharehai.e., the dis-
tribution of the received power in time. A large delay spreadses severe inter-
symbol interference (ISI) and can deteriorate the systaopeance. The RDS is
a commonly used parameter to characterize this effect [[9¢ RDS is obtained
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Figure 2.8: Cumulative distribution function for RDS of nseieed channels.

by first estimating the individual path parameté(a2,t,)} for each observation,
and then computing

wheret, 2 andi¢ are the first, second andmoment of the delay spread, respec-
tively.

Fig.[2.7& shows the number of received paths for differemtigodhresholds.
As expected, the number of received pathg {ncreases with increasing thresh-
old level. The received paths are saturated more quickcénario 4due to the
absorbers. In the same way, the RDS increases as the numbelieated paths
increases (Fid. 2.7b). At a threshold of 30 dB, the curvasratt and we used the
corresponding value as the estimated RDS.[Fig. 2.8 showsuthalative distribu-
tion function (CDF) of the estimated RDS values for all tharfgcenarios. The
figure also shows the fit to a normal distribution. The meane&lof the normal
distribution, obtained after fitting, reveals the averagiegth of the channel, and
they arel13.4 ns (scenario }, 159.1 ns (scenario 2, 158.3 ns (scenario 3, and
30.6 ns (scenario 4. These mean RDS values for empty metal enclosures are sig-
nificantly larger than the conventional indoor channeldciiare typically between
4 —21ns.

These large values will impact the system design and sigoakgsing within
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such environments, e.g., the channel equalization anduasinter block interfer-
ence (IBI) after equalization, and hence, the achievaliie rddes.

Note that the estimated mean RDS is almost the samsctmario 2andsce-
nario 3, which shows that there is a clear relation between the velofhsuch metal
enclosures and RDS, independent of LOS and NLOS cases. iAkstenario 4the
RDS is reduced by more than 3.5 times as compared to the erapboard in
Scenario 1 These are very interesting results and indicates that @wegring one
wall with the absorber can reduce the channel length anddeaalimost to that of a
typical indoor environment.

2.5 Saleh-Valenzuela (SV) Model Parameters

Most current IEEE standard channel models [45, 2] and MIM@nciel character-
izations [28] for millimeter-wave are based on the exten8¥dnodel [46] 47]. In
this model, the multipaths are considered as a number ofaiaiyéng within dif-
ferent clusters, and separate power decay constants amedl&i the rays and the
clusters. This is a very well-known and well-validated middewireless channels
with multipath which was proposed to cover the shortcomnognfthe traditional
Rayleigh (Nakagami) models to describe the statisticalgraielay profile. For in-
stance in UWB channel when only the superposition of few ipailh components
falls within each resolvable delay, the central limit tresardoes not hold anymore.
This also is the case in our measurements as the high resolattime makes it
less probable to find many multipath component within eacle tin (channel tap)
to derive the fading parametefs [16] over each path. Acogtdi we use the SV
model by extracting the corresponding statistical paramsdtom the measurement
data.

Furthermore, these parameters can be used to generateethetances with
identical statistical properties by defining the averagegyalelay profile based on
the extracted parameters together with the Doppler freqyuefiormation. We only
derive the SV model parameters for the empty cupboastémarios 1-3and not
for scenario 4as the focus of the work is on the empty metal enclosure.

2.5.1 Time Decay Constant

A cluster is defined as a group of arrival paths that are reiteftom the objects
with the same angular profile. One of the common and basicadstto identify
the clusters in the channel impulse response (CIR) is byalishiservation. We
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carefully observed the CIRs that were obtained at diffeparsitions. Our obser-
vation do not show that the multipath components come forriphel clusters i.e.
the power in CIRs is exponentially decaying over the chalemgth time. This has
been observed visually over the measured CIR and verifieddoggtimated decay
parameters. A physical justification comes from the fact thaltipath reflections
are coming from the (same) walls. Note that if paths fromedéht clusters arrive
with the same delay, then the observation technique caresolve this ambiguity.

In this case, the average power delay profile is defined by eamtydecay pa-
rametery rather than the common SV model with two decay parametersetare,
the proposed model can be given as:

a;, = ag exp (—tn/7) (2.3)

wherea? anda? are the (statistical) average power of the first atid multipath
component, respectively, over all different positions arigl the power decay time
constant for arriving rays, assumed as a random variablefindiahe decay pa-
rameters first we compute the normalized logarithmic poveéydprofiles for each
measurement. We estimatg for each measurement (each position indicated by
index k) in every scenario using a least-squares curve fittingpgtu2 )/ log(a2),

as shown by the examples in Fig.]12.9. Time delay instanceber-axis indicate
the arrival time for multipath component with respect to fingt path.

Based on these estimates for ths which are different realizations for random
variabley, the PDF fory is plotted and fitted to Gaussian, Gamma, and Weibull dis-
tributions for each considered scenarios, as shown i EI§. X hese distributions
are commonly used to statistically modej44,/42].

The best fitted model is chosen as the argument which mingnize Akaike
Information Criterion (AIC) i.e., the distribution that miaizes the log likelihood
function in the estimation problem. Accordingly, a Gammstrithution has been
chosen as the best fit for the distribution in scenario 1and scenario 2while
Weibull distribution is the best candidate sgenario 3in the sense that we loose
less information by using these models rather than real data

We use the statistically estimatedin the rest of the chapter. The Gamma
distribution is given by

335_1

f(x]0,B) = m eXP(—%)> (2.4)

where&(d) is a Gamma function, and the paramet&end s are computed for all
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scenarios from the empirical data. The Weibull distributie expressed as

%xk_l exp (— (%)%) ifz>0

f(myc’k):{o if 2 <0

(2.5)
where the scale and shape parameterg aredk, respectively.

There are more accurate techniques to estimate the clustey dvhich are
specially developed for mm-wave channels when the dynaamge of the system
is limited due to the high path-loss, that are not applicébieour measurements
[28].

2.5.2 Multipath Arrival Times

Next we consider a statistical model on the multipath aktivaes (¢,,) in order to
offer a complete channel model. This gives insight about Hemse or sparse the
channel is in terms of multipath components and is calcdlagsed on the time
difference between two consecutive multipath componérits. inter arrival times
t, — tn—1 gives the time between the events of multipath arrivals. Miadipath
arrival timest,, would be typically modeled as a single Poisson process mvithi
each cluster. Having one extended cluster as we observerimeasurements
cannot be suitably expressed with a single Poisson prodéss.is due to the fact
that the Poisson parameters are considered unrelated teldnes and are treated
independently, which does not reflect the reality, so we iffereint Poisson models
for different delay areas.

For a single Poisson process, the inter arrival times ¢,,_; are modeled by
an exponential PDF as

p(tn|tn—1) = /\eXP ( - >\(tn - tn—l))a (26)

where \ is the mean arrival rate of the multipath components. It isivated in
[48,[42] that when the measured arrival times deviate toohritmm the single
Poisson model, a mixture of two Poisson processes is mat@suifor modeling
their arrival times. The mixture of two Poisson processeshmaexpressed as

p(tn’tn—l) = bAexp ( - A1 (tn - tn—l))
+ (1 - b) >\2 €xXp ( - /\2(tn - tn—l))v (27)

where \; and Ay are the arrival rates and parameter< b < 1 is the mixing
probability.
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(b) Scenario 2\ = 1.037,
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(c) Scenario 3\ = 1.094,
(A1, Az, b) = (0.084, 1.235,0.009).

Figure 2.11: Logarithm of the complementary CDF of the iateival times.
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Fig.[2.11 shows the corresponding estimated parameteesiniér arrival times
are indicated on the x-axis while the logarithmic completagnCDF is shown on
the y-axis as it is more informative due to the exponentialirgaof the Poisson
process. As seen, the mixed Poisson process provides a rasgr it to the
measured data than the conventional single Poisson proted$act, parameters
b, A1 and\,, that are estimated and stated in [Fig. .11, are used fudhynerate
random arrival time values to be used in the production otttenel instances via
simulations.

Similar results are reported in IEEE 802.15.41[48] for devio device com-
munication for ranges less than 10 m (WPAN). Apparentlyhé& RDS or channel
length is large, the arriving paths appear over a wide rarigene differences
which makes it difficult to be represented by only one Poissarameter. The
results indicate that the inter arrival times are smaltegéneral, compared to con-
ventional indoor channels reported in [48, 3]. This indésathe richer scattering
environments of the examined metal enclosure.

2.6 Validation and Evaluation

In this section, we validate our proposed statistical megelMatlab simulations
and subsequently we study the behavior of the channel wabe to time. The
coherence bandwidth of the measured channel is calculatsetion the RDS pa-
rameters extracted in Sdc. 2.4. Finally, channel modelnpeters from related
measurements are compared with extracted model paranietgrge an analogy
between different environments and applications.

2.6.1 \Validation of the Proposed Model via Simulations

We use the estimated SV parameters all the previous secteimulate CIRs and
later to compare the properties of these model based sedutditannels with the
measured channel. This is a straightforward way to valitteg@roposed statistical
channel model. In order to generate a CIR, we need the tinenioss of multipath
arrivals and the energy associated with each path, whicbatherandom variables
that are estimated with andy in Sec[2.b, respectively. Also, we need to define the
number of paths for each channel instance which is a normedbra variable itself
with certain mean and standard deviation. Having theséstital properties we
are able to generate random CIR. Note that the quality of tierfine power delay
profiles are examined implicitly through the simulation loé tRDS parameters as
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100 120 140 160 180
rms delay spread (ns)

simulated datacenario 3
= = = = normalfitting: (4, 0)=(164.0, 7.3)
——e—— measured datscenario 2

normal fitting: (4, 0)=(154.4, 6.9)
———— measured datscenario 1
normal fitting: (, 0)=(117.5, 6.0)

Figure 2.12: Cumulative distribution function of RDS baged1000 simulated channel
instances, from left to right argcenario 1to scenario 3with the fitted model on top of
each scenario.

the random power delay profiles are generated for the siionlaf each scenario
using the estimated statistical values in Eig. 2.10. Wehs&DS for the validation
phase as it comprehensively includes all the parameteregiroposed model.

We have simulated 1000 channels using the proposed modehpters for all
three scenarios within the empty metal enclosure. The RR8lcsilated for these
channel instances and the CDF curves with a fitted mean aizhearare illustrated
in Fig.[2.12.

In scenario landscenario 3here is a small (almost 5 ns) overestimation (4.5%
and 3% error) and iscenario 2 an underestimation (3% error) of the mean RDS,
in comparison to the measured values which shows an acteptalel estimation
error. As a result, the proposed model parameters are vatidcan be used to
simulate random channels for link design and other stutigsréquire the channel
model.

2.6.2 Coherence Time and Bandwidth

A good channel model describes the statistical channehgitieover both time
and frequency domains. The time varying nature of the cHasreharacterized
by the Doppler frequency shift. The resulting coherenceetisndirectly defined
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by the relative movement (speed) between transmitter arelvier so this is an
application specific parametér [19]. The under-test lithphy system is part of a
mechatronic device in a closed metal environment in whictsees and actuators
on a moving platform have to communicate to a controller @nfiked platform.
Since movements that occur outside the enclosure do nat &ffe channel, we
expect a slowly time-varying channel with a sufficiently gdocoherence time. The
Doppler shift is defined aa fp = % wherev is the relative speed between
transmitter and receiver, is the speed of light, andl. is the carrier frequency.
If we assume a maximum relative speedl6fms—!, then the Doppler frequency
range isA fp = 2 kHz, and the coherence time of the channeA—}% = 0.5 ms.

The coherence BW denoted &5 gives a sensible insight into the wideband
fading model of the system and is directly estimated fromRIES of the chan-
nel. A general approximation B, ~ NL where. depends on the shape of the
power delay profile and. is the so-called mean RDS extracted in 2.8. A90%
coherence bandwidth is defined as the separation in fregusmh that the cross
correlation between two frequency samples of the chann@lis.e., B, ~ Ouﬂ
[19]. This is the so called 90% approximation of the mean caiee BW which
for different measured scenarios are reported as 176.47,1236.3, and 653.6
kHz for scenarios 1 to 4, respectively. The 50% coherence 8Y0 times the 90%
values.

The coherence BW for the empty metal box is extremely smiail, it visu-
ally clear from Fig[ 24 where the sample channel frequeespanse shows the
dynamic range of almost 30 dB while the reference measureawside the cup-
board is mostly a constant. Note that equalization for suckxreme frequency
selective environment is very complex if not impossible. rbtaver, despite the
general understanding of the 60 GHz propagation envirohmesutdoor and typ-
ical indoor places, the channel does not follow the sparsgeimo the time domain
but it can be considered relatively sparse in the frequenoyain.

2.6.3 Comparison to Other Channel Models

To the best of our knowledge, there are no 60 GHz channel rmdoleVvery short-
range wireless communications (wireless harness) prighisowork. However
channel modeling has been done for the IEEE 802.15c stanidarsinall indoor
environment such as cubic offices and kiosks which we diskass for the sake
of comparison. We also compare our obtained results witlchia@nel character-
ization of a room with metal walls [49] as well as a reflectiverieonment when
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metallic cabinets are located in the middle of the room [50].

For lower frequencies (3-5 GHz) the results [in|[17] are ed&ng for com-
parison because of the application similarity but the patans for path loss are
expressed in terms of the customized three part model (tr@asition and far
field) which do not comply with our log-normal model. Howevéitere are some
other interesting measurement results for short rangdesgepplications that we
summarize here.

* In [49], path loss and RDS are studied for a 2 GHz band cenhiré8 GHz
for different room dimensions and properties. In two scesarooms with
metal walls are considered with dimensiofis7 x 2.4 x 3.1 m* and9.9 x
8.7x 3.1 m?. For areference distancedf = 1 m, Pr(dy) around 80 dB and
a < 0.5 have been reported. Also, the RDS in order of 100 ns is medsure
which is very close to the results from the metal cabinet.

* In [50], a 60 GHz measurements have been conducted in a ratdmdiv
mensions ofl1.2 x 6.0 x 3.2 m® with metal reflectors such as metal walls
within the room for LOS and NLOS scenarios as well as for diffé antenna
settings. Pr,(dp) with dy = 1m, for the Tx-antenna heights of 1.4, 1.9, and
2.4 mare 56.1, 66.8 and 73.1 dB (71.1, 75 and 77.7 dB) for LOS)®),
respectively. Path loss exponents of 1.17, 0.18 and 0.85,(3.82 and 2.67)
are reported for the different Tx elevations for LOS (NLO8&@msarios. As
can be seen, smalls in the LOS cases are similar to the ones from the metal
cabinet.

* In [51], channel characterization is provided for elevatbafts at 5 GHz
with 50 MHz BW, the mean RDS values are reported as 14-60 ng $bitl
elevator, at different locations (buildings) and the maximRDS is recorded
between 144-152 ns when it is moving (different scenaridh e receiver
inside the elevator car and outside are tested). RDS valmelrsto our
measurements, are observed here. The derived log distavasishow the
path loss exponent in the range2of5—6.66 when the elevator door is closed
and2.40 — 5.76 when it is open. Also, the shadowing normal distribution
exhibits a standard deviation£, ) of 1.89—6.08 dB (door closed) an?.37—
5.52 dB (door open).

 In[11], measurements have been conducted in a compuieatadsl-10.6 GHz
(7.5 GHz BW) for a wireless chip area network (WCAN) applicat Param-
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etersa, Pr(dp) andop, are 1.607, 23.78 dB, and 0.548 dB (2.692, 25.27 dB,
and 1.908 dB) for case closed (case open), respectively,fer 62 cm.

In a similar work in [10], for board-to-board communicatin two com-
puter cases (both dense and sparse) the path loss exporserepeeted to be
negligible whereP;,(dp) andop, appeared as 29.1 dB and 1.4 dB (28.7 dB
and 1.4 dB), for the dense (sparse) case, respectively. 0¥tecdherence
BW of the channel ang are reported as 79 MHz and 3.49 ns (51 MHz and
5.44 ns) for dense (sparse) case. @rparameter is considered in this work
similar to a single cluster model in this paper. The resul®asa greater
coherence BW and consequently smaller time decay constampared to
our estimated parameters mostly due to the a small volumeeocddmputer
case and many absorbing objects inside the metal box. S@®esl@lso can
be related to the ventilation holes in the case.

The estimated parameters for our proposed channel modsliarmarized in

Table[4.1, together with the channel model parameters fREIB02.15. In this
table, the listed parameters are:

Pr(dy) : pathloss at reference distangg(m)

(07

op,

L
A
A

r

v

. path loss exponent

. path loss log-normal standard deviation

: mean RDS
: cluster arrival rate
. ray arrival rate (single Poissonlﬂ)

: power decay constant for clusters

power decay constant for rays

or : cluster power decay log-normal standard deviation

o, . ray power decay log-normal standard deviation

2The single Poisson parameter is shown here since we wantripare it to other models which

use single Poisson fit.
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Table 2.2: Comparison of various channel parameters of trasared channels, compared
to IEEE 802.15.3c channel models. Abbreviation “NA” stafimisnot available and “-”
means not applicable here.

Metal cabinet IEEE 802.15.3
Sc. 1 Sc.2 Sc. 3] CM4 CM9
Parameter Unif LOS LOS NLOS| NLOS LOS
Pr.(dy) dB | 54.711 53.439 54.116 56.1 NA
« 0.02 0.004 0.002| 3.74 NA
oPL dB 0.39 0.17 0.16 | 8.6 NA
L ns | 113.4 158.3 159.1] NA NA
A 1/ns - - - 0.07 0.044
A l/ns| 0.985 1.037 1.094| 1.88 1.01
T ns - - - 19.44 64.2
~ ns | 175.23 197.99 197.98 0.42 61.1
or ns - - - 1.82 2.66
oy ns 4.90 5.48 486 | 1.88 4.39

The numbers for IEEE 802.15c are taken froml| [45], which piesi models
for wideband (9 GHz BW) channels at 60 GHz carrier frequentlle reported
parameters are selected from the CM4 and CM9 channel maatggested in this
document and obtained from measurements in office areasli©&MNcenario, and
within a kiosk with a LOS scenario, respectively.

It can be seen from Table 4.1 that the measured channel inestedt metal
enclosure differs significantly from the typical wirelesganels, as expected. The
main distinctions are:

1. The path loss exponents are very small in both LOS and NL238sc

2. The RDS depends on the metal enclosure volume rather @&t NLOS.
3. The channel length is significantly long according to tséneated RDS.

4. The arriving rays do not form clusters.

5. The arrival rate is modeled as a mixed Poisson process.
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2.7 Conclusion

In this chapter, a comprehensive channel model (large aadl soale) is provided

for 60 GHz transmission inside a metal enclosure, whiclkisrtas a generic model
for the environment inside a lithography system. The fregyedomain channel
sounding technique with a resolution of 0.2 ns for resolvimgtipaths and maxi-

mum measurable excess delay of 2400 ns is employed to olaeimede data. A

total BW of 5 GHz with a center frequency of 59.5 GHz is used.

The well-known Saleh-Valenzuela model is used to fit the rhpdeameters,
which is widely used and validated in the community. Morepebkannel instances
are simulated based on the proposed model parameters amDtBesalues are
shown to comply, in good extent, with the ones from the measohannel. This
can serve as a verification of the suggested model.

Distinguishing features of the considered (rather nonsentional) environ-
ment are, first of all, the significantly long channels, in tnder of 1.s, together
with very rich multipath reflected from the metal walls (siater arrival times).
A statistical model suggests a single cluster nature of therag multipath com-
ponents and the best model fit is proposed as Gamma and Wkibulifferent
scenarios. Further, we observed relatively sparse ch&ugiency responses with
coherence bandwidths of less than 200 kHz, which relateBetdnigh frequency
selectivity of the propagation environment. This is a rdrerpmenon that has not
been observed in other channels before.

The RMS delay spread is shown to be increased by a 40% whewlinae of
the metal enclosure is increased 4 times, accordinglylgbids to 40% decrease in
the coherence bandwidth in a larger metal box. The accuetdtanship between
the enclosure volume/geometry, and the channel paranyetemgeds to be verified
in future work. Even though this could be performed by extenmeasurements
and processing, other analytical approaches such as @ggrean be employed
for further investigation in such a confined environmenty Racing may provide
more accurate parameters and enable us to study a varietendrsos without
the hassle of sensitive and complex 60 GHz measuremnient$352ln our inves-
tigation the direction of the antenna does not impact thencklabehavior as the
open waveguide shows a negligible directivity. Also, theimmment of test is
somehow symmetrical around a fixed transmitter as the ofiscters are identical
metal walls so the expectation is that the power angle prisfiddmost uniform for
the measured channels. However, the angular profile of theneh is of a great
interest for MIMO applications.
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The purpose of this work is to replace cable connectionsl@asimetal enclosed
mechatronic system to ease the installation and integrafithe machine and also
to improve the accuracy and reliability. High data rate awdlatency are two crit-
ical requirements for lithography devices due to the fastrob feedback loop. The
latency of the wireless system is determined by the long GiiRthe long cyclic
prefix in case of OFDM systems. Physical remedies includebanraer coating
inside the metal enclosure [54], if restrictions on ingtgllsuch bulky materials
inside the mechatronic system are permitted. The measutemsults with an
absorber coating suggest significant channel shortening.

The proposed statistical channel model helps to undergtendhallenges re-
lated to the wideband wireless communications. We beligaethe outcome of this
chapter contributes to enrich our understanding of theénmmeller-wave propagation
properties. However, in signal processing, a simplifiedieer of such comprehen-
sive channel models are used for the sake of conciseness.approximation of
the communication channel keeps the signal model mathealigtirackable. In
the next chapter we introduce a simplified channel modehtleaise for the signal
processing tasks in the subsequent chapters.

2.A Inverse Filtering and Channel Recovery

In this Appendix, we document the selected process of chastimation from the
observed channel frequency responseszi(&tbe the transmitted signal, which is
impaired by the measurement system and the antennas. ®ieegesignal-(¢) is
given by

7(t) = () * hyg () % hays () * B(t) * hyu (1), (2.8)

whereh,, (t) andh,,(t) are the impulse responses of the transmit and receive an-
tennas s, (t) is the transfer function of the measurement system/gngis the
CIR of interest.

The CIR for free space without reflections or obstructionssesis of a single
LOS path, parametrized by an attenuation and a simple dejagl ¢o the time-
of-flight of the signal between the transmit and receive ramie We can make a
recording of the received signal at a known reference distam free space, and
after time gating obtain a reference signal(t), given by

rr(t) = x(t) * hig(t) * heys(t) * hpa (), (2.9)

so that
T(t) ~ Tfl(t) * h(t) (210)
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More specifically,r ¢ (¢) in (2.9) absorbs the effect of the antennas and the sys-
tem (this is not entirely accurate as the directionalityhe antennas is ignored).
The CIR is obtained froni(2.10) via inverse filtering. Eqlevaly, in frequency
domain, we can obtain the channel frequency respéhg® by

_ k()
Rp(f)

The CIR is then obtained by taking the (windowed) IFFTHff) and correction
for the delay and attenuation (normalization).

We have obtained a reference LOS signalt) by placing the transmitter and
receiver at a distance @ cm outside the metal cabinet (free space). The LOS
path was retrieved by time gating the measured signal anddting it after 50 ns,

S0 as to remove noise and multipaths beyond the direct lisgbt.

H(f) : (2.11)
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Chapter

Preliminaries on Wireless Channel
Estimation and Equalization

3.1 Introduction

Based on the results from Chapiér 2, the long and fadingepvareless channel
within a metal enclosure requires an equalization treattoeslow a reliable com-
munication link. In this chapter, the most pertinent equaion techniques for fad-
ing channels are reviewed, in the context of linear proogskir the single-input
single-output (SISO) point to point (single user) wirelegstem and a brief com-
parison is given for complexity and latency of different hwts. This is the first
step towards the feasibility study of the desired wirel@ss for the mechatronic
system of interest, which was introduced in Chapier 2. Wetaiidentify the ex-
isting equalization techniques and their limitations taistpurpose. In this thesis,
we consider a linear system model and a wireless channefiwith elements.

3.2 Wireless Channel Model

In general, a wireless communication channel is charaeiy different factors
and phenomena including the path loss, shadowing and scaddl Buctuations due
to fading. Path loss is a result of wave attenuation and ipgitimnal to the fre-
guency and inverse of the distance between the transmittiiegeiver. Shadowing
or large scale fading causes random variations due to tlegdoe from objects in
the signal path. These variations are also caused by changeftecting surfaces

43
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and scattering objects [19]. The large scale effects ardlyrgiadied in wide-range
transmission systems like cellular communications forgataalculation. In short-
range transmission we are only interested in the small $adieg properties. Con-
sidering this simplification, a wireless channel is expedss terms of multipath
delays and the corresponding fading gains for a widebandmorication system
as

L—-1
ho(t) = ae 995t — ), (3.1)
=0

whereh,(t) is the impulse response of the physical channel and in geisesa
function of time and delay (excitation time), however, hem consider channels
that are time-invariant over each transmission block itee,channel impulse re-
sponse for a block is given by (3.1). The number of paths i®@ehas, 6(t)

is the Dirac delta function anduf, ¢;, 7;) corresponds to the triple of channel gain
(determined using the time decay constant), phase and (telayed to the ray ar-
rival time) for thelth received path. The phase of ttik resolvable delay path is
given by¢; = 2x f.m; — ¢p, wWhich is a function of Doppler phasgp, and carrier
frequency off.. In fact, whenf.7; > 1 then a small change in the path deftagan
lead to a large phase change in tttemultipath component and this leads to a con-
structive and destructive addition of multipath compogenthis phenomenon is
called fading and it has a random nature due to the randonalggihg parameters
a;, ¢; andr;. The model in[(3.11) can be simplified to a statistical model of

L-1
ha(t) =) aid(t—m), (3.2)
=0

by replacinga;e 7% with a complex random variable; which represents the fad-
ing complex gain of théth path. Different models are possible for the distribution
of the {«;} and{~;} variables, which highly depend on the environment. For the
{ay}, Nakagami distributions and lognormal distributions dre most accepted
ones to fit the measurement data in different environment§dg}. A Poisson
process is considered to be a reasonable model for excess plametergr; }
[19,55]. In Chaptelr]2 of this thesis these parameters weireaed and validated,
for an extremely reflective environment with metal wallssé&@on acquired exper-
imental data. This is a fundamental step towards a reabggtem design for the
application of interest.
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Simulations of a Wireless Channel

Once the stochastic properties of the wireless channelrayerk for a particular
environment, different realizations of the random charuael be generated using
computer simulations. The simulated channel is furthed usesvaluate the per-
formance of the designed wireless system and plays an iargoxile as a test bed
for comparison and verification of algorithms at differemidls. A wireless chan-
nel simulator needs to model both the time selectivity of ¢hannel due to the
Doppler spread, and the frequency selectivity (time spneadiue to the fading.
The time dynamics (fading) of a wireless channel is an ingrrteature which is
not consider in the model i (3.2). The most common model usétk literature,
to simulate the fading process is the Clarke’s maodel [56].

amplitude (dB)
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(a) 3D plot of channel gains in dB.
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(b) 2D contour plot of channel gains.

Figure 3.1: Simulated channel gains for slowly time-variand dispersive channel over
frequency and time using the tapped delay line (TDL) methath sampling period of
Ts, =0.2ns.

Here, an example of a 3D representation of the channel gaiwgisg both time
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and frequency domain fluctuations is given in [Figl 3.2. Thenclel has been simu-
lated based on the tap delay line (TDL) set up where each &p)(js constructed
using the estimated time decay constants from Chhpter 2)aibs’ Doppler spec-
trum [56]. This is customized for a slowly time-variant chahof interest in the
metal enclosure. Fid. 3la shows the channel gains in dB tim thrme and fre-
guency axis and the corresponding Fig. B.1b maps the pimject these channel
gains on a 2D surface. The time difference in [Fig. B.1b betwe® horizontal
points with relatively different amplitude reveals the eadnce time of the channel
and respectively the coherence bandwidth can be deterrfimdidg two consecu-
tive uncorrelated points in the frequency (vertical) axis.

Reception Model

In the absence of noise, the received signgt) after convolution with the linear
channel introduced i _(3.2) can be expressed as

L-1
Yalt) =Y oqza(t—m), (3.3)
=0

wherez,(t) is the analogue transmit signal which can be a simple quagraim-
plitude modulation (QAM) signal or a signal generated by enmomplicated mod-
ulation techniques like multicarrier code division mukigccess (CDMA), orthog-
onal frequency division multiplexing (OFDM), etc. Digitsignal processing which
is the focus of this thesis is performed after sampling. Assg the{r;} can be
interpolated by integers betweérand L — 1, the received sequence for a discrete
time signal model is given by

L-1
y(n) = ax(n—1), (3.4)
=0

in the absence of noise. For wideband systems, we usualkidamthe channels
static over each data block (i.e., block time-invariant)

The signal model in (314) represents a finite impulse resp@RER) filter with
a finite complex impulse response= [h(0), h(1),--- ,h(L — 1)]” and orderL
which is defined relative to the symbol time such that eacmei# inh corre-
sponds to amy; at the sampling moment. The received signal is thus explessa
convolution of the channel impulse response with the trattsthsignalz(n) plus
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noise samples denoted bgn), i.e., given by

L-1

y(n) =>_ hDz(n — 1)+ e(n), (3.5)

=0

The channel gainh(l) in (3.8) caters for the wireless channel effects including
the pathloss and shadowing. There are more basic channelsrtbdt are used in
array processing which assume far field reception, so thenghaan be parame-
terized only by the direction of signal arrivals. The fornmeodel is considered in
this thesis.

A major consequence of a wideband (convolutive) channdlgsriter-symbol
interference (ISI) due to the short symbol periods (tratisthipulses) with respect
to the channel length. This is equivalent to having a widdk&gnal with respect
to the channel coherence bandwidth. To successfully diéteckeceived sequence,
the distractive effect of the wireless fading channel needse canceled first. This
process is referred to as channel equalization.

3.3 Channel Estimation

The availability of channel state information (at the traiter and/or receiver) is
often required for the design of signal processing algorghin fact, to fully com-
pensate for the inter-symbol interference (ISI) phenomenioe receiver and/or
transmitter need to know the instantaneous channel impeggmnse. Thus, chan-
nel estimation is inevitable and therefore, a brief intreithn to common channel
estimation techniques is given here.

A common way to perform the channel estimation is to transmmitimber of
known symbols (pilot/training sequence) and measure the tlomain channel
impulse response based on the received sequence. In ¢obtiad processing
techniques look at the inherent structure of the data faeaysdentification. The
channel impulse response is changed over time as discuskeéd Bnd needs to be
estimated each time the channel decorrelates. This is fét k& relative move-
ment between the transmitter and receiver (Doppler).

Channel estimation can be done either in time domain or guiacy domain.
Here, we look at the conventional training based model ferithpulse response
estimation. A sequence of known training symbols of lengils sent to the re-
ceiver and in the simplest scenario, the standard leastesdu&) algorithm is
used to estimate the channel based on the received vectwuvidssuming any
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properties for the noise or signal. Generally, the sequafidenown symbols
x = [2(0),z(1),2(2), - ,z(K — 1)]7 is inserted periodically in a block of data
symbols where the time between two consecutive pilot sempseis determind by
the coherence time of the wireless channel. The transmitibifter processing is
denoted by, and the unprocessed data sequence is referreddtolspending on
the transmitter, these two could be equal or not. If thereipnocessing involved
in transmission then the transmitter transfer matrix isdamiity andx = d.

The received signal is the convolution fwith the wireless channdd. The
convolution operation can be represented by a matrix niigiifoon. To this end,
the data vectok is converted into a Toeplitz matriX € C(K+L—DxL gnd the
received sequence is given by

y=Xh+e, (3.6)
whereX is
[ x(0) x(—1) x(—2) x(—=L+1) T
z(L—1) z(L—2) z(L —3) z(0)
x(L) z(L—1) z(L—2) z(1)
X = 5 ; . (37)
(K — 2) (K —3) (K —4) (K —L-1)
(K —1) (K —2) (K —3) (K —L)
Lz (K —I—.L—Z) a:(K+}]—2) a:(K+}]—3) a:(K'— 1)

The firstL samples ofy = [¢(0), - ,#(L — 1), - ,z(K + L — 2)]T are the
transient part of the convolution since they are contaremhatith previous un-
known symbols(—1),--- ,z(—L + 1)]) and the lasi. symbols are also affected
by unknown data so the valid output vector Has- L — 1 elements which corre-
sponds to the middle part of the X, denoted by
y=[y(L),y(L+1),- ,y(K—2)]".

In order to estimate the channel impulse response, onlyrtbe/tk symbols are
taken so the matriX is formed by removing the first and lastrows inX. The
channel can then be estimated in least square (LS) sense by

h :argmdnHSf—XhHQ. (3.8)
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The solution to the LS optimization problem [n(3.8) is givan
h =Xy = (X7X)"1Xy, (3.9)

and requires a cubic complexity(L?3) to compute, with respect to the channel
length L. Note thatL is itself relative to the symbol timé&; (the inverse of the
signal bandwidth). For instance, in a channel lasting @déms andT; = 0.1 ns,
the channel length can be expressed.as % = 2000. Therefore, for a single
transmit antenna, the complexity of the matrix inversiomisrder of10° multi-
plier - accumulator (MAC) operations. In fact the inversigperation in[(3.9) can
be calculated with complexit®)(L?) because of the Toeplitz structure Xfonce

a block time-invariant channel model is assumed. Moredeehave a full col-
umn rank matrix for inversion i (3.8), the number of tramisymbols needs to
be sufficient soK' > 2L + 1. The optimal design for the training sequence can
be derived by solving an optimization problem when the mepmase error (MSE)
of the channel estimation is minimized under a total tragrpower constraint of
the system[[57]. There are alternative less complex freggudomain channel es-
timation techniques that are based on diagonalization eihatrix X by means
of the Fourier transform. Similar techniques are discussed in the context of
frequency domain equalization.

3.4 Wireless Channel Equalization

Optimal and Suboptimal Receivers

An optimal receiver for a digital communication system eoyglmaximum likeli-
hood sequence estimation (MLSE) for detecting the infolmnagequence from the
samples of the received symbols. The MLSE for a channel \@itlhés a computa-
tional complexity that grows exponentially with the lengttthe wireless channel,
i.e., for a channel of length and a symbol alphabet with/ members, the Viterbi
algorithm computed/~+! matrices for each new received symbol. This is simply
impractical in real systems with a limited latency requissth Instead, suboptimal
receivers employ linear or nonlinear equalizers to removeeduce the effect of
the channel on the transmitted information. There arerdiffetypes of equalizers,
each with different performance and computational conmplethey can be listed
as:

« Linear equalizers including zero forcing (ZF), minimum anesquare error
(MMSE) and adaptive approaches to update a linear equiikedeast mean
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square (LMS) or recursive least square (RLS) algorithms.

* Nonlinear equalizers including the decision feedbackaéger (DFE) and
maximum a posterior (MAP) equalizer with a BCJR algorithnTarbo de-
coding which treats the channel as a convolutional code.

We focus on linear equalizers here, where the first choide@t equalizers try
to minimize the least square error (LSE) cost function wilprobabilistic assump-
tions, which leads to the best linear unbiased estimatotJ@BLwhen the noise is
white. The LSE criterion gives the minimum-variance unbthgMVU) estimator
when the noise is assumed to be white and Gaussian. Howkeguetformance
of such equalizers (e.g., the ZF equalizer) highly depemdsoise characteristics.
Alternatively, the MSE cost function can be minimized takinto the account the
stochastic property of the noise which trades off the nasd, S| at the output of
the equalizer.

In contrast, adaptive algorithms corresponding to botieca are used for time-
variant channels, where filters are trained periodicallgrdivne to track the channel
state and updating algorithms are used, like RLS and LLMS [B&quency domain
equalizer (FDE) types [59] are an alternative low-comgiegpproach to ISI mit-
igation, where the digital transmission is carried out ktadse and equalization
relies on DFT operations which makes them closely relat€dRBDM systems.

3.4.1 Time Domain Equalization

Time domain equalization (TDE) removes the channel effgctiltering the re-
ceived signal in time domain with an FIR filter (inverse filbgy). This is imple-
mentable as serial equalization as well as block equalizailhe main difference
in the problem formulation appears in the representatidgheéqualization param-
eters which are given as a vecwrfor a serial equalizer while this is a mati¥
for a block equalizer.

Serial Equalizers

The received sequengepasses through the equalizer filter with impulse response

w to reconstruct the desired original sequesceSo we havex = Yw, where

Y e CPxCL+D the received symbols is collected in a Toeplitz matrix samil
to X in (3.4). For serial equalizers, the LS criterion minimizke squared error
betweenx and the desired sequence which leads to a ZF equalizer. &lgner
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the filter coefficients are derived directly based on the kmtnaining sequence
introduced in Sectioh 3.3, so the least square filteringvisrgby

Wzp = argmin ||x — x||? = argmin ||x — Yw||? = (YHY)_IYHX. (3.10)

The same approach can be followed to derive the MMSE equgtiatthis time
the stochastic mean of the squared error is minimized, sadfse distribution is
also taken into account. Accordingly the MMSE equalizerdswkd as

1 _
wirmse = (YTY + 5 Ior1) 'Y x, (3.11)

Where;’—% is the signal to noise ratio (SNR). Here, it is assumed thatrdnsmit
signal and noise are zero mean.

Both of these equalizers have the same number of (apst+ 1), whereL is
the channel length, so they introduce the same delay to #teray The matrix
inversion operation il (3.10) and (3]11) has a complexitgraerO(L?3) and also
each received symbol needs to be multiplied with + 1) filter coefficients. As a
result, for the data sequence of length we requireN (2L + 1) flops to perform
the equalization.

Block Linear Equalizers

For block linear equalizer, a block of data is transmittetbfeed by a guard inter-
val. The receiver decodes the full block after collectingrtie ISl is assumed to be
within a data block once a long enough time guard is inserébaden two consec-
utive transmissions. Note that the latency of a block trassion system depends
on the block length unlike the serial equalizer. The chawaalbe explicitly esti-
mated at the receiver side as explained in Sectidn 3.3, anchédnnel coefficients
can be used directly to update the equalizer taps.

The guard interval is inserted between different data lddoksolate the ISl in
each block and is selected to be a cyclic prefix of data or jss$tedich of zeros of
at least lengthL. Subsequently, the received vector is given by

y=Gx+e, (3.12)
whereG e CNV*(N+1L) js a Toeplitz convolution matrix defined by,
hL—-1) - hO) 0 0 0
0  WL-1) - RO) 0 - 0

G= 0 0 h(L—-1) - h(O) - 0 | = (313
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The transmit sequence is denoted by the vector
x = [z(=L),z(=L + 1),--- ,2(0),2(1),--- ,2(N — 1)]7 after appending the
time guard. The vectoy = [y(0),y(1),--- ,y(N — 1)]” includes the received
sequence after the wireless channel and after the remotiasl@fguard (the firsL
samples). In turng is a vector containing samples of zero-mean complex Gaussia
noise. For a block time-invariant wireless chann@ljs a banded Toeplitz matrix
and [3.12) models the single-input and single-output bteamksmission communi-
cation system in a Gaussian channel.

For a block time-invariant channel model, the equalizatiairix W is a Toeplitz
matrix, containing the coefficients of a filtar. Again, both ZF and MMSE equaliz-
ers can be applied in block mode. When the channel is knowr¥ requalizer can
be derived by forcing the cross correlation between the sgquence = x — x
and the desired information sequence to be zero where tlaizeplisignal is

% = WGx + We, (3.14)

and the Toeplitz version of the estimated channel vectoetimted as. The cross
correlation of the error and the signal is given by

E{ex} = B{(x — x)x7} = E{xxT} — E{WGxx}, (3.15)

assuming that the noise and data are uncorrelated.
To force [3.15) equal to zerd¥V needs to be the inverse of the channel matrix

Wyr =Gl = (GHG)IGH. (3.16)

The noise enhancement is the price we pay for using the ZRiegualhe SNR
scales inversely with the noise variance and to keep theimeaince unaltered, the
SNR needs to be increased according to the noise enhanctaoemt[60].

For the MMSE equalizer, the square error between the trateinsequence
and the convolution of the received sequence with the exgrdiiter is minimized.
Then the objective function is given by

E{ee} = 6,2(WG — Iny1) (WG —In, ) + 0 2WWH (3.17)

The derivative of the expression [n (3117) is put to zero taimbthe optimal solu-
tion of (3.17), which follows

| R
Winse = (GG + §IN+L)_1GH. (3.18)
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Given a full matrixW, the multiplication ofWy requiresN? operations. How-
ever, there exist more efficient algorithms to perform thecklequalization by
exploiting the Toeplitz structure oW. Note that to achieve a better performance,
fractionally spaced sampling is required to cancel out 8ielut this increases the
complexity linearly by oversampling factor. Moreover, fpgabyte transmissions,
the bandwidth of ADC/DAC is a serious issue even at a Nyqgaistging rate, so to
do the oversampling we need to reduce the data rate to copdimited bandwidth

of ADC/DACs.

3.4.2 Frequency Domain Equalization

In a block transmission mode, the time guard block was uiV nsed to insert
zero symbols in the data stream. Alternatively, each blak fee circularly ex-
tended by inserting the repetition of at ledstf its last symbols as a time guard
(cyclic prefix). This overhead data transmission introduee elegant mathematical
property of periodicity which can be exploited to form stwed circular channel
matrices. This results in a significant complexity reductiehich simplifies the
equalization process which is exploited in OFDM systems faeguency domain
equalization|[[61].

The received signal vectgr satisfiesy = Gx + e as introduced in[{3.12).
By inserting a cyclic prefix ik, we can write[(3.12) in terms of the original data
sequence excluding the cyclic prefi, = [z(0), z(1),--- ,z(N — 1)], as

y=Gx +e, (3.19)

where a circulant matri, € CN*V is

R(0) 0 h(L —1) h(1)
: h(0) 0 0 . :
G.= |h(L—-1) --- h(0) 0 0 R(L-1)f. (3.20)
i 0 0. h(L _ 1) h(.l) h(.O)

In FDE, the noisy received signal is first transformed by a Didtrix (F) at
the receiver and is transformed back by multiplying an IDFatnw (F7) after the
equalization process. The original data vector is denojed’ fand its estimate at
the receiver is shown as In turn, the representation gfis given by

x = FIWFy =FIWFG.x' +FIWv, (3.21)
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wherev is the Fourier transform of the noise vector. Finally, theadeectorx’ can
be written aF " Fx/, then [3.2]l) is expressed as

x =FIW QFx' + v/, (3.22)
R

whereQ = FG_.F¥ is diagonal for the considered block time-invariant channe
This exploits the properties of circulant matrices. An gglént noise vector after
multiplication with frequency domain equaliz& is denoted as/’. The diago-
nal entries ofQ correspond to the Fourier transform of the channel {gk) =
ZIL:_OI h(l) e—J2mkl/N

Both ZF and MMSE criteria can be used, similar to TDE, to dethe FDE by
minimizing the mean square error between the decision véctnd the original
signalx’, where the error is expressed as

e=(RQF —Iy)x +v'. (3.23)

The required matrix inversion takés flops to calculate since the matrf} to be
inverted is diagonal, versus? flops in TDE. The complexity of the DFT imple-
mented as a fast Fourier transform (FFTYIEN log(NV)) operations and to apply
the equalization) MACs are required unlike the block linear TDE which spends
N? MACs.

3.4.3 Comparison of Computational Complexity

To conclude the equalization discussion, in Tablé 3.1 tmeptexity of the equal-
ization algorithms is summarized in terms of the require@dlor N samples in
one block (or symbols if oversampling is not the case). Nb# the latency is
considered as the time between the moment that data is eeloantil it is available
for detection, excluding the training (channel estimatiime.

As shown in Tablé 311, the complexity of the time domain blegkialization
varies betweerO(N) and O(N?) i.e., depending on the structure of matfx
The inversion of a symmetric or unsymmetric Toeplitz matan be performed
in O(N?) flops, however the matrix needs to be sufficiently well cdadéd in
unsymmetric mode. Banded matrices can also save in ternsrgiwtational com-
plexity using a Cholesky decomposition. The computatiarmhplexity can be
reduced to orde©(N) if the bandwidth of the banded matrix is small enough and
for a regular Toeplitz matrix it is of orde?(N?) [56].

If a continuos transmission system is considered and thenetés highly time-
variant then the training sequence needs to be sent frdgsenthe equalizer can
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Table 3.1: Comparison between the complexity and conversggme of different equaliza-
tion algorithms. The length of one block 8, T} is the symbol time and. is the channel
length.

algorithm order of flops per block latency
ZF O(N) — O(N?) NT;

block | MMSE O(N) — O(N?) NT;
FDE O(N) NT;

_ ZF O(NL?) (2L +1)T

serial
MMSE O(NL?) (2L +1)T
RLS O(NL?) ~ (2L 4+ 1)T5

adaptive LMS O(NL) ~ 10LTy

fast Kalman DFE | O(NL) (2L + 1)T;
square root LS DFE O(NL?) (2L + 1)Ts

track the channel variation fast enough. In this case, diretrix inversion is not

an efficient way to update the equalizer coefficients and tagaplgorithms are

employed to update the coefficients. RLS and LMS are amongtisg common

adaptive algorithms. Their complexity is listed in Tabldl.3.In order to learn

the channel coefficient fast enough, the training procesgsto converge before
the channel changes, in other words the convergence tinfeedlgorithm to the

optimal coefficients needs to be smaller than the channereabke time [19]. Non-

linear equalizers are also considered in Table 3.1 i.eisidecfeedback equalizers
(DFE) and square root LS DFE. These commonly use a feedbapkitoenhance

the estimation quality.

Finally, the elements of the original dadiathat we are trying to estimate are
limited to the discrete values of the digital modulationestie; in general a vector
d of size N x 1 can take2M¥ values wher@™ is the alphabet size of the modu-
lation format. This indicates a detection problem rathantan estimation problem
and the maximum likelihood detector is proved to be the ogituetector. Unfortu-
nately it is not computationally efficient or even feasildgerform a Viterbi search
to find the optimal sequence. maximum likelihood detectathk f@w complexity
have been proposed during the past decades, e.g., theegcgguence is pre-
processed prior to the maximum likelihood detector by pesgithrough a linear
equalizer or a decision feedback equalizer to reduce thenghéength to a desired
channel impulse response bf. This reduces the computational complexity of the
Viterbi algorithm toM/ £~ Lo [58].
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3.5 Conclusion

In this chapter, we introduced the wireless channel moda igh considered in
the subsequent chapters to design the signal processiogtlahgs for a wideband
communication system. This is a simplified model compareti¢amne introduced
in Chapte 2. The knowledge of the instantaneous complerreiaains is ac-
quired, by transmitting a short training sequence (knowia)daCommon criteria
for receiver design and channel equalization were reviewiid respect to their
complexity and latency and the importance and effectivenéshe linear equaliz-
ers were highlighted in this context.

Note that, even though the equalization process was stadigzrt of the re-
ceiving process in this chapter, the same linear processinge performed at the
transmitter side to pre-equalize the wireless channels iBribeneficial when there
is more processing power available at the transmitter rdttaa the receiver, e.qg,
in cellular systems. OFDM is an example of transferring d pathe processing
to the transmit side, i.e., by performing the IDFT beforesrission of the signal,
and later applying the FDE at the receiver. An example of aDKaflesign for a
wideband system is presented in the next chapter.



Chapter

Wideband System Design Example

4.1 Introduction

In high-speed communications, the propagation environmsehe main source of
disturbance of the original signal and the main task of taesmitter and receiver,
respectively, is to prepare and recover the signal befaleaéier passing it through
the wireless channel. In general, flat-fading channelsdmdrand) are much eas-
ier to handle, while wideband channels introduce intertsyininterference (ISl)
which can be regarded as noise that is correlated with theedesignal and is
difficult to handle. The main strategy for successful traission in wideband sys-
tems is to translate the channel to a set of parallel narrod/sabchannels. In this
way, the effective existing transmission and receptiomnees for narrowband
communications can be applied to each sub channel.

Orthogonal frequency division multiplexing (OFDM) is arfesftive modula-
tion scheme, and is indeed considered for most of the egistideband wireless
standards including WiMAX, LTE, WiFi, and also for the upcoign new standard
for 60 GHz WPAN, i.e., IEEE 802.15.3c. In general, the fragryeband is divided
into several subcarriers such that each subcarrier expesea flat-fading channel.
In this chapter we introduce, in more detail, the lithograpiistem of interest and
we design an OFDM system that can meet the requirements sfyfitem. Basi-
cally, this is to implement a wireless link inside a tightdeack control loop.

As introduced in Chaptdrl 1, the main characterization ofdtv@munication
system of interest for the lithography machine is high peata date and low la-
tency. The sensors send a data block edeseconds, but only a small portion of
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this interval is dedicated to transmission. Most of the tiseeserved for control
processing s@’ = kT; whereT; is the actual transmission period. The processing
time at the receiver i, which is used for demodulation, decoding etc. and de-
fines the processing delay at the receiver. This settindusstibted in in Figl_4J1.
The peak data rate is given by the ratio of the number of trétesrbits overT;.

All information bits need to be sent in the transmission qefi; and processed
in a very limited processing timel}, ) according to the system requirements. In
fact, latency is a critical measure for the system perfowaan this kind of appli-
cation and it is required to be in the order of micro-secontiglwvis far less than
the millisecond requirements on, e.g., video applicatidvagancy is defined as the
time difference between the moment that the data is ready sebt at the transmit-
ter and once it is available as data symbols at the receivewelder, some signal
processing can be performed during the non-transmitting 8lot of duratiori},,,
e.g. training symbols transmission and channel estimation

.z [wainnglestmatio //857| ~
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Figure 4.1: Time diagram for data transmission and prongssihe time interval rep-
resents the time between the two data transmission peribdse; is the available time
for sensors to send information afff). is the available processing time at the receiver.
Training symbols are sent before the next transmission laa@stimation of the channel
coefficients is done during the specified estimation time.

The receiver (control unit) is located at a fixed position lse $peed of the
moving platform defines the time variation of the wirelesaraiel. By assuming a
relative speed of0 “* and a frame time df' = 50 us, the transmitter has moved by
0.5 mm between two transmission periods. This is less g4 of the wavelength
at a carrier frequency @f0 GHz. Hence, the channel estimation can be performed
after the channel decorrelates which is approximatelyye@Seirames a0 GHz
and everyl00 frames at & GHz carrier frequency which indicates a slowly time
variant channel.

This leads to the choice of a frequency selective block timwariant channel
model and requires a careful choice of the equalizer to cothleafading without
exaggerating the latency of the system. Moreover, the systges a wideband
burst transmission mode which accumulates the data synmba@sblock before
transmission rather than continuous transmission.
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Figure 4.2: A typical block diagram of the transmitter andeiger for a point-to-point
wideband communication system with frequency domain ezxatédn at the receiver.

4.2 Block Transmission Model

Systems for wideband transmission can generally be divittedwo possible set-
tings: 1) multicarrier transmission including OFDM and tiadrrier code division
multiple access (multi carrier-CDMA), or 2) single carrteansmission. Note that
single carrier transmission is commonly performed witlgérency domain equal-
ization for wideband systems to eliminate the frequenogdipiity of the wideband
channel. Frequency domain equalization is an alternatjualeation technique to
the classical time domain equalization, which was ingiaéveloped for ISI mit-
igation in wireline channels like dial up modems and in gahér narrowband
systems/[62].

A common diagram for a block-wise wideband transmissionesyss illus-
trated in Fig[4.R. In the transmitter, after mapping theadats vectoib into some
form of digital modulation like quadratic phase shift kayi(QPSK) or QAM, the
complex symbols are grouped into data blocks of sizZ€ so
d = [d(0),d(1),--- ,d(N —1)]T, d € C2", where M is the alphabet size of
the modulation scheme. Each block is linearly transformgé lsode spreading
matrix C and the spread data signal is givendy = Cd, where the spreading
code selection defines the choice of transmission as follows

» single carrier with frequency domain equalizatio®: = F € CV*V is a
Fourier matrix.

« OFDM: C = Iy € RV is an identity matrix.
« multi carrier-CDMA: C = K € CV*V is a Walsh-Hadamard matrix.

Basically, any unitary matrix satisfyingC" = Iy can be used for the purpose of
code spreading. Then, the spread signal is modulateddmarrowband subcarri-
ers in a block which is denoted /. Based on the model in Fig. 4.2, the transmit
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signal before adding the time guard is given by
x' =FHCd. (4.1)

The final transmit signak is a concatenation of vects and the time guard se-
guence which is discussed next for an OFDM system. In tumrebeived signal
after equalization and despreading is

d = C*WFG.F’Cd +e, (4.2)

whereG, andW are the circulant channel and equalization matrix whichdare
fined in equationd (3.20) and (3]14), respectively, ansl the additive noise. We
know that a circulant matrix is orthogonalized by a Fouriansform, sd@G .F

is an orthogonal matrix containing the Fourier transfornthefchannel impulse re-
sponse and the equalization matrix inverses the chanregteitleally. Therefore,
the received signal is the transmit signal plus zero meatev@aussian noise and
the optimal receiver is the matched filter in this case.

4.3 Orthogonal Frequency Division Multiplexing (OFDM)

OFDM modulation is a multi-carrier transmission schemdwiterlapping subcar-
riers which increases the spectral efficiency and has besemygyopular because
of its ISI rejection property in frequency selective wikdechannels. The frequency
band is divided into several subcarriers while each sutaraxperiences a flat fad-
ing channel[[10].

In general, an OFDM system uses a cyclic prefix to isolate IBhiw each
block. The cyclic prefix is the time guard which is created byaatenating the
last N, samples to the beginning of the block. The length of the cywtefix is
commonly chosen to be longer than two times the rms delaydEthe wireless
channel. Therefore, in OFDM, a long channel can waste batitveind limit the
data rate. There are techniques to reduce the channel lendlding a channel
shortening filter which uses the same approach as time dosgaialization. The
channel shortening filter is designed by minimizing the msgunare error between
the desired channel impulse response and the one aftenfil{&3]. Nevertheless,
deep fading in subchannels results in erroneous decisioosroesponding modu-
lated symbols in those OFDM subcarriers. If some conseegtilochannels are in
deep fade, the channel is useless in a portion of the freguzamd. In other words,
OFDM does not benefit from multipath diversity. There are satassic solutions
for this issue which can be classified as:
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Interleaving can be performed at the receiver to obtain the multipathrsiiyeby
diversity combining. At each transmission period in timiésabchannels do not
experience the same fading across the band and this candmssieve diversity
gain by sending the same OFDM symbol over multiple subcHaratehe cost of
reducing the data rate. The receiver combines the receigedlsn such a way that
the total SNR is increased at the output|[19].

Coding is the simplest way to correct for random errors in the rembblock of
data. The combination of coding and interleaving can be tsasioid burst errors
in OFDM due to fading. In fact, symbols in time domain are abded interleaved
before IDFT modulation, so those adjacent subcarriers lwhigerience fading
over the wireless channel are relocated at the deinterlddwek and decoded af-
terward. Therefore, burst errors are spread over the mtagquence and can be
recovered by some form of error correcting codes.

Adaptive modulation is another way to improve the performance of OFDM sys-
tem by allocating more complicated mapping scheme or monepo subchan-
nels with better SNR and vice versa. This needs explicit cbbstate information

at the transmitter and is an optimal resource allocatiohrtiggie to maximize the
mutual information (capacity) in a communication link.

Zero padding OFDM addresses the diversity issue in OFDM by taking into ac-
count the redundant part of the channel. This was first pexgbas [64] based on
trailing zeros rather than a cyclic prefix to eliminate theerrblock interference. In
this approach the appended zeros are not removed as in pyefig but they are
used in the equalization process. If the number of apperzing symbols equals
the cyclic prefix length then zero padding OFDM has the sareetsg efficiency as
cyclic prefix OFDM. The price paid here for symbol recoveryhs receiver com-
plexity, since the single FFT in cyclic prefix version is regd by FIR filtering
[65].

OFDM suffers from other issues including a large peak-terage power ra-
tio (PAPR) which seriously limits the efficiency of the powanplifier. There are
several methods to combat PAPR, we discuss this in Chapt&hé.other prob-
lem with OFDM is the sensitivity to carrier frequency offs@here are literatures
dedicated to comparing OFDM to single carrier with freqyedomain equaliza-
tion, and many simulations are presented on the performafremled and uncoded
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OFDM [61]. Next, we discuss a simple OFDM design for the méaméc system
of interest according to the channel specifications thairereduced in Chaptér 2.

4.4 OFDM Design Example for the Dispersive Channel

In this section the BER performance of an OFDM system usiagnbasured chan-
nel is compared to that using a simulated Rayleigh fadinguoblato answer to
some extent important system design questions such as

* What are suitable modulation schemes and equalizatidmigaees for such
dispersive (rich scattering) and extremely long channels?

» Can we benefit from the diversity gain offered by these tygehannels with
an acceptable computational complexity or should the oblams shortened
using e.g. absorbers?

» What is the channel capacity for such highly reflective emments?

For the numerous existing wireless channel models, thesstiqus are well stud-
ied. A straightforward approach is to relate the proposetholl model in Chap-
ter[2 to the available models and modify the system designdirngg the modula-
tion, coding and equalization in order to cope with the newwnstances.

Here we design a wideband orthogonal frequency divisioripiekxing (OFDM)
system with a zero forcing (inverse filtering) frequency @mequalization for
a lithography system with certain latency and rate requerein The proposed
system design is simulated in Matlab using the measuredneham the60 GHz
band from Chapterl2 within a closed metal cabinet which etasl¢he environ-
ment inside the lithography machine. In contrast to conweat indoor channels
at 60 GHz, the channel in the metal enclosure is highly reflectegulting in a
rich scattering environment with a significantly large roman-square (RMS) de-
lay spread which makes high data-rate communications dedgahg task. The
bit error rate (BER) performance is evaluated and compardégd long and short
simulated Rayleigh channels and also theoretical BER padoce for Rayleigh
channels. In general the BER performance is alma$B better when more sub-
carriers are used in one OFDM block as the ratio of cyclic ptefthe information
symbols and consequently the power spread is reduced.
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Figure 4.3: A data sequence with frequency guard bands ¢nbltarriers in frequency
domain) and pilot subcarriers is converted to the transahiitne domain OFDM block by
taking an inverse discrete Fourier transform (IDFT) andesygling the time domain guard
(cyclic prefix) to the block.

4.4.1 Design Parameters

The design example is based on a single antenna, standaril @eDulation with-
out coding (see Fif. 4.3). An OFDM block with bandwidty, is split into N sub-
carriers, consisting of guard bands aNg 'user’ subcarriers (data and pilots). In
time domain, the correspondiny samples are augmented with a cyclic prefix of
N, samples. The symbol durationd$ = 1/B,, and the maximum delay spread
is denoted asmax. Straightforward equalization requires that the time tdaraof
the cyclic prefix is larger than the length of the wirelessreied:

NepTs > tmas (4.3)

This is used to isolate the inter symbol interference (ISthiw each block of the
OFDM symbol so that the ISI can be eliminated separately @ édock by fre-
quency domain equalization.

We assumeél/-ary modulation, withA\/ = 2™, so that a symbol consists of
bits. The bandwidth efficiency is

m N,

K= ———
Nep+ N

and the resulting data rate#g 7 bits per second.

The data rate can be increased by increasingut this will require a better
SNR or lead to a higher bit-error rate (BER). We can also mseéV,, (hence also
N) until the bandwidth efficiency saturatesna Finally, the symbol duratiofi
can be shortened by increasing the available bandwigth
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Latency is often also a consideration, and this leads to itgliion on the size
of a data packet. The latency is at least equal to the durafione OFDM block,
which is (N, + N)T, and our desired system specification poses a maximum to
this.

Several other limitations are in place. Apart from pradticaitations and com-
putational limitations, the number of subcarriefg)(that can be allocated in one
OFDM block is limited by the requirement that the channelisstant over the du-
ration of the OFDM symbol, i.e., the coherence time of thenclehshould be larger
[19]. The coherence time is defined g% whereA fp is the range of possible
Doppler frequencies of the channel, and the requiremerdrbes

(N + Nep) AfpTs < 1. (4.4)

Another requirement is that each subcarrier experiencefaflang. In frequency
domain, the distance between fades is related' tg,.,. [19]. This leads to
B 1

w
- >
N tmax

or N > Bytmas- (4.5)

As an example, let us design a systenfat 60 GHz with an available band-
width B,, = 5 GHz. For the sake of simplicity, we consider BPSK modulation
which leads ton = 1 andT; = B—lw = 0.2 ns. The channel follows the metal
enclosure in Chaptél 2 and we takg,, = 1us, i.e., the maximum length of the
measured channels in average.

The proposed system is part of a mechatronic system in acciostal environ-
ment in which a moving platform with sensors and actuatosstba&communicate
to a controller which is fixed. Since movements that occusidetthe enclosure do
not affect the channel, we expect a slowly time-varying clehmvith a sufficiently
long coherence time. The Doppler shift is defined\a% = % wherev is the
relative speed between transmitter and receivisrthe speed of light, angl. is the
carrier frequency. If we assume a maximum relative speet) afis—!, then the
Doppler frequency range & fp = 2 kHz, and the coherence time of the channel
is ALfD = 0.5 ms.

As discussed earlier, the spectral efficiency increasds twé number of sub-
carriers. Considering (4.4) fax fpT, = 0.4 x 10~%, the upper bound on the length
of an OFDM block is given byV,, + N < 2.5 x 10° subcarriers. To satisfy this,
we consider as constraint on the size of a transmission block

Nep+ N < 2.5 x 10° symbols
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The cyclic prefixIV,, should satisfy[(4]3). For a channel of lengdtius, this leads
to
N, > 5000,

and the exact number depends on the scenario. Finally, taam@@.5) leads to
N > 5000.

We consider two versions of the system: (A) minimal later{By;maximal data
rate. For minimal latency, we tak¥., = 5000, and a block size ofV = 213 =
8192 of which we takeN, = 6720 data/pilot symbols, and x Ngyarg = 1472
null subcarriers for frequency guards at both ends of a blatks is different for
different systems, we take less thEiV; of the total subcarriers here. This leads to
a spectral efficiency of ~ 0.5. The duration of one data packet becomes 2.64
and the data rate is 2.547 Gbps.

For maximal data rate, we choode= 2!7 ~ 1.3x10°, of which we takeV,, =
107520 data/pilot symbols, an2lx Ngyard = 23552 null subcarriers. By taking less
subcarriers as a frequency guard, the spectral efficierata (@te) will increase,
respectively. In our setting the same amount of frequen@rdyis used for both
proposed OFDM block length, however since the bandwidtthefsubchannels is
smaller in the longer OFDM block, more subchannels are vegdhat is for a fair
comparison between the two proposed OFDM designs. Theiolrat one data
packet is about 27.2s and the data rate is 3.95 Gbps. Thus, the latency increases
more than 10 times by takiny = 2!” compared taV = 2'3 whereas the data rate
increases by less than 50%.

For the measured channels, the channel lehgth varies depending on the
scenario, which alters the cyclic prefix and consequen#ybthck length. Table 4.1
summarizes the parameters that are taken in our design addruthe following
simulation. As usual, higher data rates could be obtaineddmgidering higher-
level modulation as well as multiple antennas.

4.4.2 Simulation Setup and Results

For the designed BPSK-OFDM systems, we will compare the B&Rpmance for
both simulated Rayleigh fading channels and the measurachelfs for the vari-
ous scenarios. The Rayleigh fading channel is based on aedageday line setup
where each path is assumed to be a Rayleigh fading procdssuivitonsidering
any specific power delay profile.
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A: N =213 B: N =217
N¢p | rate (Gbps) latencyds ) | rate (Gbps) latencyus )
Simulated 1| 11 4.096 1.640 4.101 26.216
Simulated 2| 4001 | 2.756 2.438 3.980 27.015
Scenario 1| 3903 | 2.778 2.418 3.983 26.994
Scenario 2| 5812 | 2.399 2.801 3.927 27.377
Scenario 3| 5617 | 2.433 2.762 3.933 27.338

Table 4.1: Data rates and latency for (A) a low-latency systnd (B) a high-rate system.

The considered performance measure is BER as functidn, AV, where £,
is the transmit energy per bit, ari>§l is the two-sided noise power spectral density
(PSD). In the simulation, we first convef, to the energy per symbdl,, taking
into account the number of bits per symband the overhead by the cyclic prefix
Ny, resulting in

E. B, IN,
_ B e 4.6
No No Ny+N (4.6)

The measured and simulated channels are normalized toavmér@nd convolved
with the transmit sequence. In that case, the transmiitedV, is equal to the
received signal to noise ratio (SNR), and we add white Ganssbise of suitable
power to obtain the specified SNR.

For such dispersive channels, several subcarriers erperiading so that the
BER is usually not very good. Various well-known technigaesld be introduced
to combat the fading subchannels, e.g., channel codirgy]@atving, rake receiver
design, as well as single input multiple output (SIMO) sgstevith diversity com-
bining schemes [19]. However, for improved interpretatidrihe results, we will
not consider these in the simulation. In the simulation, sgime that the receiver
has perfect knowledge of the channel.

Fig.[4.4 shows the BER as a function Bf/N, for the various channels. As
expected, the performance is generally limited by the fadimannel as the symbols
in channel nulls cannot be recovered by frequency domaialegtion. For the
larger block size (design (B)), the BER performance is sljgfalmost 3 dB) better
than the shorter OFDM block, as expected, due to the spefreiency and less
spread of transmit power over the cyclic symbols.
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BER

0 F; 1‘0 1‘5 2‘0 2‘5 30

. Ey/No. 7
“““ simulated short Rayleigh channé¥ (= 2'7)
—=—Rayleigh (theory)

——measured channel scenarid{ & 217)
simulated long RaYIe|gh channeV(= 2'")

—— measured channel scenarid{ & 213
——measured channel scenarid® & 213
.-.- . measured channel scenarid8 & 213

Figure 4.4: BER performance of an uncoded OFDM system owentbasured channels
for different scenarios with block siz& = 8192 andN = 27 . The BER plot of OFDM
block of sizeN = 2!7 is shown forscenariol (scenario2and 3 have the same BER
curves asscenario), and also for two simulated Rayleigh fading channels wite= 10
and L = 4000 taps. A theoretical BER curve for a narrowband signal (nd ikSplotted as
a reference.

4.5 Conclusion

A simple OFDM system design example for a highly dispersiveless channel
that is measured in a metal enclosure is introduced in theptelh  The results
indicate that the frequency domain equalization can wofficéently good and the
most important source of system degradation comes fromatttettiat we need a
long time-domain guard (cyclic prefix) to avoid inter-bldokerference. The loss is
two-fold: increased latency and reduced spectral effigieMoreover, the power
spread due to the extra power that is put in the redundant @gmis a waste of
power resources in a long cyclic prefix. The latter can be exf#rd with a zero
padded time guard which has been proposed in [65], i.e., giisg nothing in the
time guard between two consecutive blocks. However, thectlen of the signal
is more complicated with zero padded OFDM.

In a more general context, the summary of the literature sstgghat the single
carrier with frequency domain equalization can outperfaha plain OFDM in
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BER criteria but coded OFDM together with adaptive modolatstill keeps the
OFDM technique as one of the most promising solutions forel&hd systems
[66]. OFDM is proposed in this thesis as a competent solutonhe short-range
and high data-rate system of interest inside the industrathine. However, this
application requires a very careful and unique design o&RBM system for such
a specific environment and requirements. More on the imphstien issues of an
OFDM system will be presented in coming chapters.

This concludes the first part of this thesis providing dethgpecifications and
a design example for the mechatronic system of interesthwivigs the starting
point of this research project. The first three chapters egarp the challenges
of transmission in an extremely reflective environment afifted metal enclo-
sure which can generalize the propagation environment ichateonic systems.
We showed that the classical equalization techniques amtililzion schemes can
fairly cater for ISI resulting from the dispersive enviroant while the latency is
the most challenging issue afterwards.

The rest of this thesis is dedicated to more general topisgyimal processing
for wideband communication systems. Multiple antennaesystand multidimen-
sional processing are discussed in the following chaptdi®1O-OFDM systems
are emphasized as an ultimate combinational systems thattaneously exploit
different dimensions of the signal in frequency, time aracgp The difficulties and
bottlenecks in MIMO-OFDM systems are introduced and noigria processing
solutions are developed to move the performance of theteddtdne art techniques
towards their optimum.
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Chapter

Preliminaries on Multiple-Input
Multiple-Output (MIMO) Systems

5.1 Introduction

We start the second part of this thesis by a brief introdactma multiple-input
multiple-output (MIMO) system that is one of the existingtgaf almost any mod-
ern wireless system nowadays. This extends the discussgld siream signal and
channel model in the previous chapters to the multi-din@radione. In this chap-
ter, common MIMO system models and some related techniquesexzoding and
beamforming are briefly reviewed. Also the channel capagiiIMO is reviewed
and is compared to the single channel system.

MIMO techniques are widely used in wireless communicati@nisnprove the
system performance by gaining diversity (SNR gain) and/altiplexing (capac-
ity). This exploits independent fading paths in wirelesaroiels by means of an
antenna array for which the elements are separated in ddaeever, the increased
performance comes at the expense of additional compleagisancluding

« Extra antennas and radio frequency (RF) chains: This dedihigh-power
amplifiers, mixers, analog to digital convertors (ADCs) aigital to analog
convertors (DACs).

» Space required to separate the antenna elements: The coepacing cri-
teria assume a spacing of at leBsi8)\ or approximately half a wavelength
to achieve independent paths|[67], hence the requiredndistaetween two

71
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Figure 5.1: A point to point MIMO system with/, andM,. transmit and receive antennas,
respectively. The; ; value represents the communication channel fromittngansmitter
to thejth receiver.

elements is 5 cm fof. = 3 GHz and 0.25 cm foif. = 60 GHz.

 Circuit power: For each antenna additional componentsusee to receive
and process the signal which translates to extra power ogpison.

» Multidimensional signal processing: The channel, rez@md transmit sig-
nals are expanded due to the additional signaling dimendt@n example
the equalization process is more complex.

The ultimate goal of MIMO system design is to maximize eittiex capacity
(data-rate) or the diversity gain (SNR) subject to one oremdthe aforementioned
costs or conversely to minimize a cost subject to consgantminimum SNR or
capacity gain.

5.2 FIR-MIMO Channel Model

To establish the basics for the following chapters on MIM&nhsmission, a com-
monly used channel model is considered. This model is basedfimite impulse
response (FIR) channel i.e., we assume a channel with aléniggh similar to the
corresponding SISO channel model in Chapter 3.

A point to point MIMO communication system d#/; transmit antennas and
M, receive antennas is illustrated in Hig.]5.1 which can beasgted by the fol-
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lowing discrete time model

y1(n) [ hi1 hia - hia z1(n) e1(n)

y2(n) hoi  hoo -+ howm, z2(n) ea(n)

ys(n) | = | hax  haz2 -+ h3wn, r3(n) | + | es(n) | . (5.1)
Ly (n)| [P hag2 o0 b | [T (n)| o [ear(n))

By assuming an instantaneous channel model, this can beifmed in a compact
form given by

y(n) = Hx(n) + e(n). (5.2)

The elements of the instantaneous channel m&ix CM~*M: correspond to
the complex channel gain between the transmit sigita) and the receive signal
y(n) as illustrated in Fig. 5]1. An additive noise vector at theeree antennas is
denoted bye(n). The signal model in[(5l1) is valid for a frequency-flat MIMO
(narrowband) channel with no inter-symbol interferenc&)(l

In a frequency selective (wideband) MIMO channel, the resisignal is a
convolution of a transmitted sequence with a matrix of clehooefficients. There-
fore, each received vectgr(n) at time indexn is a superposition of the current
transmit vectorx(n) and the delayed versions @éf previous transmitted vectors
wherelL is the channel length, so

L-1

y(n) =Y H()x(n—1) +e(n). (5.3)

=0

Here H(!) is the channel matrix for thé&h received path. Equation (5.3) is the
MIMO extension of [(3.5) to represent a wideband system whegecomputation
is changed to matrix operations. Consequently, the chastiehation complexity
grows with order of(/,3, for each antenna at the receiver side.

For a wideband system of interest, a block transmission mdensidered as
explained in Chaptér 4. Accordingly, samples i receive antennas are stacked
in a vectory and the samples al/; transmit antennas are collected in a vestor
Assuming a block ofV + L samples is transmitted, define

x = [x'(=L),x" (=L +1),...,x" (N -1)]7T, (5.4)

y=[y"0),y"(1),....y" (N - D). (5.5)
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In a time-invariant channel, the instantaneous channelixnHlt is repeated along
the diagonal of a convolution matri&, which leads to a block Toeplitz matrix as
follows

H(L - 1) H(0) 0 0 0
0 H(L - 1) .o H(0) 0 0
G = 0 0 H(L-1) - HO) - 0 |  (56)
0 0 0 H(L'—l) H&O)

In fact, (5.6) is the MIMO format of (3.411), however the dinsgons are expanded
here asG € CMrNxMi(N+L)

The compact formulation of (3.3) for the received data bjathilar to [3.12)
yet with expanded dimensions, is given by

y=Gx+e. (5.7)

The firstL blocks ofy are contaminated with the previous transmit blocks which
can be avoided by putting a time guard interval between tingemutive transmit
blocks, on all antennas.

The considered system model is very general and can degiifibeent set-
tings for MIMO systems, e.g., the possibility of having omge transmitter or
receiver antenna which leads to single-input multiplgaat{SIMO) and multiple-
input single-output (MISO) systems, respectively. Alse thata block sent over
each transmit antenna could be independent data to inctleagbroughput or it
could be a repetition of the same information to achieverdite

5.3 MIMO-OFDM System Model

A combination of the OFDM model in Chapfer 34.2 and the MIM@trix repre-
sentation leads to an equivalent MIMO-OFDM system modeknelihe received
data vector in time domain is given by

y = Gchx +e, (5.8)

whereF;, = I,;, ® F is a block-diagonal matrix with unitary discrete Fourier
transform (DFT) matrice¥ ¢ CY*V along its diagonal. The transmit signal is
represented by € CV*! (excluding the cyclic prefix) whergp = fo is the
transmit vector in time domain. The signal model[in [5.8)imikr to (3.19) but
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(0 H(0) H(L —|1) H(1) % (0)
y(L —1) — H(L —|1) H(0) H(L 1) | |xp(L—1
y(N —1) H(L —(1) H(0) xp(N -1

Figure 5.2: A noise-free MIMO-OFDM system model with a ciant channel matrix after
discarding cyclic prefix (time guard) data.

differently, the received and transmit vectors are thelte$gtacking time samples
on multiple antennas in MIMO setting. This is illustratedrig.[5.2 (ignoring the
noise). The insertion of the cyclic prefix as time guard betwihe transmit blocks
enables us to transform the Toeplitz matrix [0f [5.6) to a kloicculant matrix in
Fig.[5.2.

At the receiver, the received signal is multiplied By. We know that circu-
lant matrices can be diagonalized using a Fourier transfeonthis multiplication
leads to a block diagonal channel matrix, with narrowbarahdel matrices on the
diagonal. This transformation is expressed as

Fyy = FchFf X+ v, (5.9)
Q

where v is the Fourier transform of the noise vector, aQd = FchFf is a
block diagonal channel matrix owing to the property of ciacu matrices. This
is equivalent to a block diagonal flat fading channel. Thise transformation
reduces the interference cancelation task to only a sys&taration by taking care
of the temporal interference (ISI). For the rest of this ¢egpwe consider the
narrowband MIMO channel of(5.1) assuming that the frequesstective MIMO
channel is flattened, e.g., by the discussed MIMO-OFDM teglan

5.4 Capacity of a MIMO Channel

Multiple antenna technology is one of the most rewardingnegues to increase the
wireless channel capacity linearly (same effect as inangabe bandwidth). This
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makes the wireless channel outperform the classical AWGHicél at the cost of

additional complexity. The capacity gain obtained from tiplé antennas heavily

depends on the available channel state information (CSdjtlaer the receiver or

transmitter, the SNR and the correlation between the chagaires at each antenna
element.

In general, the MIMO channd is a stochastic variable (the static channel will
be discussed later) and having no prior information aboatdistribution of the
channel, commonly, the elementskhare modeled as complex jointly Gaussian
random variables. More specifically, a zero-mean, spatalliite (ZMSW) chan-
nel model is considered where the channel mean is zero (aWerett channel
realizations in long-term) and the channel covariance idetenl as white (identity
matrix), i.e., the channel elements are assumed to be zétb mean and unit vari-
ance random variables. This model admits a Rayleigh flahgadhannel model
[58].

In general, the mutual information between the input andothiput is maxi-
mized over all possible input distributions, to obtain timarnel capacity [19] for
all types of channels including both SISO and MIMO channdlke capacity is
given here in units of bits (nats) per second per Hz for thaditigm of base two
(natural) which represents the spectral efficiency. Hemadtiplying it by band-
width gives the data rate in bits (nats) per second, i.eg MO system is defined
as

C= max I(x;y) = max [H(y) — H(y|x)] (5.10)

where P, (x) is the probability density function (pdf) of the input withet covari-
ance matrix oR, = E{xx"} [68]. The entropyH (y|x) is equivalent to the noise
entropy, so maximizing the mutual information is equivalem maximizing the
entropy ofy (H (y)) which is a function of SNR and hence of the output covari-
ance matrix. Assuming additive zero mean Gaussian noiseieantity covariance
(021,4,), the output covariance matrix is

R, = E{yy?} = HR,H" + 021, , (5.11)

so the optimization variable if (5.110) is reduced®g, therefore, for jointly Gaus-
sian processes, the maximum mutual information is given by

1
C = maxlog <det[—2HRmHH + IM,«]> . (5.12)
R, g,

e

Shannon proved for an AWGN channel, that for all given outealizations,
the entropy is maximized when the input distribution masctiee noise distribu-
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tion. Therefore, the optimal input distribution is a zeroameomplex Gaussian
for an AWGN channel [69]. Respectively, for a ZMSW complexuGsian MIMO
channel model, the ideal input is ZMSW complex Gaussiarribiged which is
matching the channel. Note that the capacity is a stocheatigble since the chan-
nel is considered to be stochastic, so the notion of averag®dic) capacity is
commonly used. Hence the optimal input covariance m&rixs the scaled iden-
tity (equal power allocation) and the average capacity wigfower limit, over all
channel realizations is given by

C =Equ {1og <det[MP02 HHY + IMT]> } bits/se¢/Hz, (5.13)

tVe

in units of bits per second per Hz, i.e., by considering tie par channel use (spec-
tral efficiency). In turn,P is the total transmit power anef is the noise power for
the ZMSW channel model [70]. Unfortunately, the capacitpmsy known, in a
closed form, for a few channel types due to the complexityapiacity evaluations.
A useful performance metric for non-ergodic channels igptiodability that the ca-
pacity is below some value for a specific percentage of cHarazations, which
is referred to as the outage capacity|[19]. In non-ergodanaokls the transmission
blocks are short compare to the channel variations, so thengole average over
the output sequence does not represent the stochastic rn@random process.

Note that we commonly assume the availability of CSI at tloeirer (CSIR),
as this is quite easy to obtain by sending pilot symbols tedheiver unlike the CSI
at the transmitter which is rather expensive to learn. Oneelannel matrix model
deviates from ZMSW, then equal power allocation is no lorgg@mmal in terms of
capacity and there is a bias that needs to be exploited wieengit covariance is
adapted (the Gaussian model is still valid). In this sit@tassuming channel state
information at the transmitter (CSIT), the channel capasinot known explicitly
and is obtained by solving the following optimization preivl

1 H
C = Eq max log <det[EHRxH + IM7,]) . (514
R, : Ti(Ry) = P

with a short term power constraint over the channel reatimati.e., for each chan-
nel realization the power constraint is to be satisfied. Tgterozation problem in
(5.14) gives the average capacity of the channel with rédpdbe instantaneous
total power constraini [70].

An alternative capacity is given by imposing a long term poeanstraint, i.e.,
the total power constraint is to be satisfied in average oamynthannel realiza-
tions where the transmit power for each channel realizasiéty and the constraint
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is denoted a&{Pg} = P. In fact, the transmit power can be larger th@rior a
specific channel realization as long as in average the @inisis satisfied. In this
context, power allocation techniques aim to redistribb gower optimally over
all antennas, which will be discussed in Chapter 7. More @ttipic can be found
in [71,[72,73].

Interestingly, when the number of transmit antennas ilange have

Mltigloo M%HHH =1, , (5.15)
such that the capacity if_(5J113) asymptotically reaches rstent value of
C = M,log(1 + U—PQ) [34]. In case of no knowledge of CSIT and largé&, the
capacity is the same as the one with CSIT, i.e, the optimaltigpvariance is
the identity matrix. This is one of the most interesting teas of MIMO system,
that the capacity grows linearly even if nothing is knownwitbe communication
channel at the transmitter.

Note that, even though the availability of CSIT does noteéase the capacity
for a large number of transmit antennas, it can significargtjuce the decoding
task at the receiver [19]. For the sake of comparison andjtdight the superiority
of MIMO design with respect to SISO systems, a summary of sbhoapacities
for both SISO and MIMO channels is collected in Tablg 5.1. @kevation of all
the mentioned capacities is out of the scope of this thdsesetore references are
provided for the details.

Static MIMO channels or deterministic channels are time-invariant and accord-
ingly, the parameters are fixed so the capacity is detertiurgs&zen by a constant
value. If there is no CSIT then the mutual information maxiation problem sub-
ject to the total power constraint, yields equal power @tmn to all transmitters,
similar to the stochastic channel. This mea&hs is deterministic and is a scaled
identity matrix such that the capacity boils down to

p R=rank(H) 5. P
= log ( det HH? +1 = log (1+-2—). (5.16
c og( et g HHY ¢ M,.]> 3 og( ¥ Mtag> (5.16)

wheres,, is themth eigenvalue value dHH .
When CSIT is assumed,
P(m)

B ! I, + —5— 17
O AR Og<det[ Mt —p v(m)]>, (5.17)
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leads to the waterfilling power allocation once a total poa@rstraint is imposed
[19]. The waterfilling solution allocates less power to momsy channels (low
SNR) and vise-versa, and is given by

P(m) _ {——W Y(m) =70 5.18)

P 07 fY(m) S Y0

where the SNR on theith channely(m),m = 1,2,..., M, is defined ag/(m) =
opgi\’Z and~, is found numerically by the total power constraint equatimch
implies that no data is sent when the channel SNR is belowttineshold. The
solution is stated in Table 5.1, and for more details andvedgon of the water-
filling solution see[[19]. The static channel model is usédunodel block fading
channels where each block experiences a flat fading chadotd.that the capacity
evaluation in this chapter is performed by considering tiel tpower constraint,
mainly due to the complexity of the capacity evaluationslekd, even for a simple
power constraint, the capacity is known for just a few chhtypes.

In Table[5.1 we summarize the capacity expressions for war®ISO and
MIMO channels with respect to the availability of the channéormation at the
transmitter and/or receiver. If the CSIT is available, thetewfilling algorithm is
used to optimally allocate the power resources among thenete Hence, the ca-
pacities for SISO and static MIMO channels are obtained kgriding with ~, as
the threshold SNR below which no data is transmitted. Inre@tta uniform power
allocation is considered optimal if only CSIR is availablene capacity formulas
are given subject to the total power constraint where twedypf total constraint,
are considered for time-variant MIMO channels: The shemtrt power constraint
and the long-term constraint which have been discussedeéfmte that the SNR
is fixed for an AWGN channel (no fading) and is givenfy= U_Pg' however for the
fading channels this is a random variable which is represely its pdfp- (). The
time-variant channel is assumed to be continuous whereisiceete time-variant
channel can be modeled as a block fading channel with eadhk kdperiencing
the flat fading (static) channel.




Table 5.1: The capacity for the SISO and MIMO channels undérdnt assumptions on the CSI and fading are given suligetie
total transmit power constraint dP. The indicesk = 1,2,..., N denote the frequency bins for frequency selective chanmdigde
m =1,2,..., R denote the spatial channels whéte= rank{H}. The time-variant MIMO channel capacity knowing the CSIT $bort-
term power constraint, and long-term power constraint oli@nnel realizations is marked wittandxx respectively. The random variable
Py is the transmit power for a channel realization.
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Figure 5.3: A block diagram of a narrowband MIMO system iwlihg the encoder and
precoder.

5.5 MIMO Precoding Design

In this section we focus explicitly on well-known transraeitdesigns and common
blocks in a MIMO transmitter for the purpose of capacity nmaigiation assuming
a flat fading (instantaneous) MIMO channel. The MIMO trartseni(precoding)
design is the subject of the next two chapters of this thesis.

5.5.1 MIMO System Schematic

In completion of the previous SISO model in Hig.]4.2, a typMEVIO system with
focus on pre-processing blocks at the transmitter sidauistibted in Fig. 5J3. Data
streams at bit level are fed to the encoder which divides timonR parallel and
independent symbol sequences. The encoder includes artbesa@r correction
coder (FEC) such as LDPC or Reed Solomon code, a source cbdgr maps the
data into symbols, a modulator which prepares the symbolsdnsmission (such
as multicarrier modulation or spreading), and perhaps aespime coder block
which schedules the data streams in time and space for tisgiem

The space-time coding is a solution for the multiplexingedsity trade-off and
is categorized into two main types: STBC (space-time bloaftes) and STTC
(space-time trellis codes) which are obtained based oerdift code design crite-
ria, seel[19, 75, 76] and references therein for furthewrmédion. Considering the
spatial multiplexing forM,. < Mt@, the codeword is a vectat € CM*! and the

It is a common assumption for a spatial multiplexing systéinas the number of transmit and
receive antennas is the same, however, we include a moreagsnenario ofM,. < M, with M,
streams.



82

codeword covariance matrix is given by
® = E{dd"}, (5.19)

where the expectation is over the codeword distributior.[75

5.5.2 Pre-processing at the Transmitter

Processing at the transmitter includes two major stepseasymbol level: signal
shaping and precoding. The former requires no CSIT whilddtier exploits the
channel information available at the transmitter. Baseth@model, the transmit
signal is given by

x = Zd, (5.20)

whereZ ¢ CM:xM: js a linear pre-processor which consists of a signal shaper,
power allocator, and the beamformer. The singular valu@meosition of the
pre-processor matri¥ is given by

Z=U,T'VYl, x=U,rviq, (5.21)
A%%

whereVz ¢ CM-*M: js the input shaping matrix that mixes the signal coming
from the encoder to form the input, = ng, to the precoder. The input shap-
ing matrix is designed with respect to the codeword selectichile unitary ma-
trix Uy € CMxM: forms the beam patterns towards the different receive aaten
which creates non-interfering transmission paths. Conlyntivere is a power con-
straint that needs to be satisfied, this leads to criterigeterchinel’ € CM:>*Mr,
The precoder is referred to the mathW = U, T, in this context. As a result, the
input covariance matrix is given by

R, = E{xxT} = E{W VZdd? v, W} (5.22)
———
R,
Consider the flat fading MIMO channel in_(5.1), with the sitegwalue decom-
position (SVD) given by
H=UxXV?, (5.23)
whereU € CMrxMr gndV € CMe*M: gre unitary matrices antl € CMrxM:

is a diagonal matrix containing the singular valgés ) of H. The received signal
after the channel is given by

y =USVIWV,d +e. (5.24)
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The signal shapeV ; and the precodeW are designed with respect to differ-
ent criteria and constraints. The channel capacity is orth@tommon metrics
to be maximized in a stochastic sense, which leads to a mdtzixnatching the
eigenvectors of the codeword covariance malrix [77]. Comlgnfor spatial multi-
plexing it is assumed tha® = I,,. and hencéV z is an identity. We discuss next
the criteria to determine the precoder.

Parallel Decomposition of the MIMO Channel

Parallel decomposition of the MIMO channel ensures the mari achievable rate
(capacity) in a point to point MIMO system. The multiplexiggin of a MIMO
system comes from the fact that the channel can be decompusegarallel in-
dependent channels. However, this requires the knowletithee @hannel and the
joint processing at the transmitter as well as the recelvés.referred to as trans-
mitter beamforming and receiver shapingedgen beamformingn the literature
[75].

The transmitter precoding and receiver shaping can tramdfoe static MIMO
channel into SISO channels. This can be implemented by piyittg the trans-
mit sequence by the matri¥ and the receive vector by the matix’’. Using
this technique, for a channel matrix of raik the complexity of the maximum
likelihood (ML) detection at receiver becomes linear withwhile in general an
exhaustive search is required over all possible vector auatibns [77]. This com-
plexity reduction is the direct result of the extra inforinatwhich is available at
the transmitter.

To perform the decomposition, the matfik; is chosen to match the right eigen
vectors of the channel 96 = V. The transmit vector then is given by

x=VTd, (5.25)

for the eigen beamforming problem. In turn, a similar urjitbeamformer at the
receiver is required to complete the channel decompoditisk i.e.,

y=UTUZVEVTId +e) =2I'd + Ufle, (5.26)
H

which by takingl’ = X!, implying no power constraint, (5.26) yields
y =d + Ule. (5.27)

This is equivalent ta? parallel SISO channels with a additive noise.
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Optimal Precoder

The parallel channel decomposition using a unitary precoeguires transmitter
and receiver cooperation to complete the decompositioweter, this is not re-
alistic in multi-user systems where the receivers are raflalmorative entities in
general. Consequently, it is preferable that the precoingpmpleted at down-
link. The optimal capacity achieving precoder maximizes ttutual information
betweenx andy. To derive the optimal precoder we need to calculate theubutp
covariance as

R, = HR,H” + 021, = HWW"H" 1 1), . (5.28)

Therefore, the average channel capacity problemini5dr4) fime-variant chan-
nel is reduced to finding the optimal linear precoder as ¥aslo

max log (det[o—leWWH HY + IMT]) } (5.29)

o:EH{
W :T(W)=P

The total power constraint is imposed by(W) = P assumingE{ss”} = I,;,.
Other constrains rather than the total power constraintbgansed to define the
capacity which will be discussed in the coming chapters isftthesis. For a static
MIMO channel, the expectation ih (5]29) is dropped for cityamvaluations.

5.6 Conclusion

We have extended our initial SISO channel and system modedduced in Chap-
ters[3 and#, to a MIMO system in this chapter. The basics of Mitvhnsceiver
design have been reviewed, i.e., just a tip of the MIMO icglleat has grown enor-
mously during the last two decades. There are interestingdihat look more into
detailed algorithms and their modifications and extensguth as([19, 75] which
are the main references of this chapter.

The MIMO-OFDM system model was introduced that removes Silein a
wideband MIMO system. Having the temporal interferenceaesd, the next con-
cern is how to optimally design the transmitter in order toximmeally exploit the
spatial dimension. A simple sketch of the common blocks attthnsmitter was
introduced and their relations and design criteria wereflgriexplained. The en-
coder is responsible for the modulation, source and chacodihg. Differently
from SISO encoder, in MIMO the space time coder allocates staams to differ-
ent antennas and time slots. Afterwards, the signal shagleers the optimally
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shaped data streams to the precoder for further procesasegiton the CSIT. This
is the topic for the coming chapters which focus on the precaigsign with re-
spect to the hardware constraints. Furthermore, multi-M8®O precoding will
be discussed later which has not been covered in this chapter

In the next chapter, we look at the well-known problem of peakverage
power ratio (PAPR) in MIMO-OFDM systems. The unpredictaBEDM wave-
form is manipulated by reformulating the precoder desigsbjgm and defining
new design parameters that can be tuned to adjust the OFDifevavtowards a
more hardware-friendly waveform. The proposed signal ggsing algorithm for
the PAPR reduction purpose is very interesting since itatgphn efficient mini-
mization technique to solve the underlying design problem.

Even though the precoding problem is well studied for thaltpbwer con-
straint over all transmitters, the problem is less consdevhen the power con-
straint is imposed on each individual antenna. The lattenase realistic since
each transmitter has its own RF chain and power amplifier. problem of pre-
coding design with such per antenna power constraints aidi@d number of
transmitters (RF chain) for multi-user MIMO s studied inapier 7 of this thesis.
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Chapter

Joint Precoding and PAPR
Reduction in MIMO-OFDM
Systems

MIMO technology offers a great increase in data rate andbgiiy of communi-
cation system at the cost of extra signaling dimensionsrefbee the prospect of
an effective transceiver requires the management of teefémence in time, space
and frequency. This is getting more complicated in mulgrusystems with extra
sources of interference. As explained in Chapter 3, orthabfsequency division
multiplexing (OFDM) can reduce a frequency selective clehtma flat fading one
with the aid of the mathematical property of circulant negs. OFDM is extended
to a MIMO-OFDM system which translates a frequency selecitMO channel
to a flat-fading MIMO channel which only contains the spaitiérference. This
is a significant progress to eliminate the interference mperal dimension and
makes OFDM the most popular technique for almost all widdbaimeless stan-
dards. However, the OFDM scheme suffers from implememtatmmplications
due to its unconventional waveform which is not hardwarenfly.

In fact, hardware imperfections can significantly influetioe performance of

Part of this chapter is published as “Constant Modulus Atgor for
Peak-to-Average Power Ratio (PAPR) Reduction in MIMO OFBN/Sig-
nal Processing Letters, IEEE, vol.20, no.5, pp.531-534,y N2®13, doi:
10.1109/LSP.2013.2254114.
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Figure 6.1: Input-output diagram of a typical nonlinear &ifigy.

a wireless system. These are required to be modeled prpperlycularly for an
emerging millimeter-wave systems, in order to developatife compensating sig-
nal processing algorithms. A well-known drawback of OFDNhiat the amplitude
of the time domain signal varies strongly with the transedtsymbols modulated
on the subcarriers in the frequency domain, resulting ireaky’ signal that shows
a rather wide dynamic range. The measure for evaluatingythandic range of the
system is the peak-to-average power ratio (PAPR) of theakign

6.1 Introduction

What is PAPR? High power amplifiers (HPA) are inevitable parts of almost al
communication systems. These devices are very sensitiwertiinearity and re-
quire precise operating points to be set. In single-camedulation, the signal
amplitude is deterministic to a good extent, so the opeagagtimint in the amplifier
can be determined easily while for multi-carrier systerke ODFDM, the envelope
of the time domain signal will change with different data $gis. The direct re-
sult of this fluctuation is a distortion in the HPA, that aprgem form of noise at
the receiver, and a signal constellation rotation due t@@ltanversion. Moreover,
the orthogonality between subcarriers may be destroyedhabads to a dramatic
BER degradation. Fid. 6.1 shows the input-output relatioa typical power am-
plifier for an ideal and real device and the required inpukbaf€to be considered
in order to avoid nonlinearity problems. Clearly, this bafkvalue decreases the
amplifier efficiency so there is a demand to make the output I@Enal more
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robust in terms of envelope fluctuations|[78].

To quantify the distortion caused by the amplitude fluctuegj a metric is de-
fined to measure the dynamic range of the multicarrier sigifa¢ PAPR is a direct
measure of the severity of the distortion and shows how faradperation point
needs to be set from the saturation point. Since the signplitainte is a stochas-
tic variable, the PAPR of the signal is commonly presenteith vi$ probabilistic
properties such as cumulative distribution function [/, 8

PAPR reduction techniques have been studied well since two decades ago when
OFDM became popular, so there are many signal processihgitees developed
to limit the dynamic range of the OFDM signal. There are maydrs that should
be considered before a specific PAPR reduction technigusisen. These factors
include PAPR reduction capability, power increase in tnaihsignal, bit error rate
(BER) increase at the receiver, loss in data rate, compuagtcomplexity, etc.

Careful attention must be paid to the fact that some teclesigasult in other
harmful effects. For example, amplitude clipping techesclearly remove the
time domain signal peaks, but this results in in-band distorand out-of-band
radiation [81] 82, 83]. Some techniques require a poweeas® in the transmit
signal after using PAPR reduction techniques. For exanpie reservation (TR)
requires more signal power because some of its power musidakfor the peak re-
duction carriers. Tone injection (TI) uses a set of equiviatenstellation points for
an original constellation point to reduce PAPR, but sintéhal equivalent constel-
lation points require more power than the original conatiglh point, the transmit
signal will have more power after applying T1[84]. Otherlie@jues may have an
increase in BER at the receiver if the transmit signal povgefised or equivalently
may require larger transmit signal power to maintain the Bfter applying the
PAPR reduction technique; active constellation exten$&QE) is one example
[85].

Some techniques require the data rate to be reduced. Fompkxatme block
coding technique requires part of the information symbolbd dedicated to con-
trol the PAPR. In selection mapping (SLM) and patrtial traitssequence (PTS),
the data rate is reduced due to the side information useddmirthe receiver of
processing at the transmittér [86] 87]. In these technithueside information may
be received in error unless some form of protection such asrei coding is em-
ployed. Once channel coding is used, the loss in data rat¢éodside information
is increased further. Computational complexity is anothsue since most PAPR
reduction techniques such as PTS use many iterations torpedn exhaustive
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Figure 6.2: A block diagram of a transmitter in multi-user $@-OFDM system with
specific precoding block to reduce the PAPR.

search algorithm. For a more detailed literature surve)[&&88].

PAPR reduction in MIMO-OFDM is a quite recent topic compared to the tradi-
tional PAPR reduction in SISO systems. Although there areynedfective PAPR
reduction techniques for OFDM, the majority of them are dgyed for SISO-
OFDM and cannot be applied to MIMO-OFDM systems without gromodifica-
tions. Moreover, the capability of traditional PAPR redottechniques to over-
come the PAPR problem in MIMO systems is not well verified yletmultiuser
systems the choices are even more limited since the useredesie not collaborat-
ing in general, so any precoding technique that relies @fligent global decoding
at the receiver side will not work. Even if each user can intrex precoding effect,
this is extremely power inefficient given limited batterfglof mobile devices since
this needs to be performed for each OFDM symbol (online @siag). Addition-
ally, there is an extra dimension in MIMO systems that candpdoited to develop
more effective and efficient PAPR reduction techniques gndring it leads to loss
of performance.

In general, the transmitter in a MIMO-OFDM system, incluéesiIDFT block
in addition to the encoder. A Fast Fourier transform (FFTjsied in practice which
makes OFDM very efficient in terms of complexity. In Hig.]6.&alti-user MIMO-
OFDM system is illustrated, we focus on the downlink directsince the PAPR is
more severe in downlink transmissions. Note that in mudgfusystems, the users
cannot collaborate in general so synchronized uplink @siog is impractical and
therefore an effective interference cancelation at downis of vital importance.
Single-antenna users are considered here for simplicttyowt loss of generaliza-
tion. The high PAPR is commonly a transmitter problem and aresider multiple
antennas at the transmitter side for the downlink, howedweisame technique can
potentially be used for uplink transmissions.

The block diagram shown in Fig. 6.2 is very similar to the anEig.[5.3 except
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for the IDFT block for OFDM modulation, and the proposed PA*&coding block

that is added for pre-processing the OFDM signal such treatymamic range of
the output waveform is limited. The beamformer directs amibims the transmit
signal to match the channel conditions (eigen-beamforjnivitereas the encoder,
IDFT and PAPR precoding units are designed regardless aftilienel conditions
and merely depend on the input data.

On the one hand, the PAPR is measured at the input of the HIA ladam-
forming and on the other hand the beamforming may not betefidsy the PAPR
precoding which is a data dependent design. These spedoifisahake it hard to
design an effective PAPR precoder. In this chapter, wedutte a MIMO-OFDM
system model which is equipped with a PAPR-reduction schémghermore, an
interesting algorithm is proposed in this context to ovaereahe shortcomings of
conventional PAPR reduction techniques.

6.2 Efficient Low-Peak OFDM

A new PAPR reduction technique based on the proper precadithg OFDM data
is proposed here which is explained throughout the restisfdmapter. Earlier a
newly developed technique called CP-PTS was proposedjmfdi8h is adaptable
for different beamforming schemes in standard point to tpoirmultiuser MIMO
systems. In this technique, the OFDM subcarriers are gobum® blocks and
the phase of each block is changed in a manner similar to tf& rRd@thod but
without the drawback of sending explicit side informatidgks long as each block
is multiplied with only one phase coefficient, the receivell perceive this as a
channel effect and will compensate for it during the chammglalization process
[89]. An extension of CP-PTS to MIMO-OFDM systems is introdd in [90]. In
both cases, a sequential quadratic programming (SQP)ithlgois used to solve
the phase optimization problem. The computational conifyleX this algorithm
can be prohibitive for high data rate and/or low latency camization links. The
PAPR weights need to be determined again for every OFDM datk bhence the
underlying algorithm should be sufficiently efficient to bleareal-time processing.
In this section, the same configuration as CP-PTS is usedbtgtad of solv-
ing a non-convex optimization problem, an alternative pFobformulation is pro-
posed based on a cost function used in constant modulusthiger(CMAs). Ac-
cordingly, the block-iterative SDCMA algorithm [91] is ubéo find the precoding
PAPR weights. The resulting computational complexity nedr in the number of
subcarriers. Furthermore, to make sure that the BER pedioce of the system
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is not affected by the PAPR precoding an additional corngtiaiappended to the
CMA objective function which requires the weights to be oa thit circle. Like
CP-PTS, the proposed technique is transparent to the eecéis means that it
only affects the base station (BS) and it does not requiresamnal processing in
the mobile station (MS).

The proposed method does not function if the channel esamatgorithm as-
sume the fact that channel coefficients change smoothlytbesztomplete OFDM
block. However, this assumption is not valid in the moderiitimser systems based
on resource block assignment [389] 92].

6.2.1 Transmit Signal Model for the PAPR Precoding Scheme

Similar to [90] we consider a generic MIMO-OFDM/A downlinkenario with one
base station (BS) employiny/; antennas. An OFDM block witlV subcarriers is
transmitted from each antenna. Thesubcarriers includev,, useful subcarriers
surrounded by two guard bands with zero energy. The usdbgkstiers are further
grouped into)M resource blocks (RB) each consisting/éf = N,,/M subcarri-
ers. Data of one or more users is placed in these resourcksbéoe mapped
into the space-time domain using an inverse discrete Fowaesform (IDFT) and
space-time block coding (STBC). To allow channel estinmasibthe receivers (mo-
bile stations), each resource block also contains seviéoalpbcarriers that act as
training symbols. The transmit signal model is illustratedig.[6.3. It is compat-
ible with the WiMAX standard[[92].

Let us first describe the MIMO transmit data model in the feagry domain;
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for simplicity we consider only a single time block from now.o The data in
the ¢-th resource block is a matrib(@ e CM:*No it is premultiplied with a
corresponding beamforming matiw (@) ¢ CM:xM: ¢ — 1 ... M, resulting in
transmit sequenceK;?) = W@WHD(, Together with guard intervals, they are
collected in a matriXxX € CM:*N where theM, rows of this matrix represent
the NV symbols to be transmitted from thé; antennas. The data model is

Xp=WID, (6.1)

whereW = [WOH ... WOHH andD e CMM:xN js g block-diagonal ma-
trix with structure as in Fid. 614, which includes guard mtds as well. MatrixX 5
represents the spatial data in the frequency domain i.&4®Avithout considering
the PAPR precoding and OFDM modulation.

The time-domain MIMO-OFDM transmit data model is obtaingddking the
IDFT of the beamformed data matrX, resulting in

X7 = XFH = WHDFH | (6.2)

whereF ¢ CN*N denotes the IDFT matrix, and; € CM+*N contains the
resulting transmit OFDM sequences for each of Migantennas. Let us further
denote the time-domain data matix= DF; this is a full matrix. Accordingly,
the beamformed OFDM block can be expressed as

X, =WH1B. (6.3)

Denote the total power (or energy) in the data maBby P, := ||D||% =
|vedD)||* =: aN;, where N, = N M,. Function ve¢D) creates a column vec-
tor whose elements are the columns of the mabix V; is the total number of
subcarriers or samples to be sent from &l antennas, and. is defined as the
average transmit power per sample (including the zero pgward bands). If we
assume that the beamforming matMX consists oforthonormalmatricesW (@,
then applying beamforming and the IDFT does not change thkttansmit power.

6.3 Constant Modulus Algorithm for PAPR Reduction

6.3.1 Introduction

The IDFT operation in[{612) leads to a large dynamic rangénefresulting time-
domain OFDM signal. PAPR is a common metric to measure thertiin caused
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by probable high peak of the OFDM signal and for a MIMO-OFDMdX X we
define
alN|[vedXr)|[3,

Ivea(Xr)]|3

Clearly, the lowest PAPR is achieved for a constant modugusag for which the
infinity norm is equal to the average power of the sequence.

The main idea in[[18, 90] is to design a precoding matrix tmgtfarm the
OFDM symbols inXt to a favorable signa with lower PAPR (ideally a constant
modulus signal). This precoding matrfX needs to fulfill the following require-
ments:

PAPRX7) =

(6.4)

1. Reduce the dynamic range of the OFDM block,
2. Preserve the beamforming property,

3. Be transparent to the receiver,

4. Not impact the bit error rate (BER).

To satisfy the second and third constraint, we are allowqarémultiply each re-
source blockD(@, with a diagonal scaling matri(?). To the receiver, this will
appear as a fading channel effect. To not affect the BER, ¢héing should be
unimodular (phase only). Equivalently, a diagonal (unimiad precoding matrix
Q € CMM:xMM: s gpplied toD. The resulting MIMO-OFDM transmit matrix
(replacingXry) is

S = WIZQDF! . (6.5)

If we definew = vecdiad?), then the PAPR reduction problem is to desigas
min |veqS)|%, s.t. \|vec(S)||§ =P (6.6)

where P = «aNV, is a fixed total transmit power. This problem is not convex be-
cause nonlinear equality constraints can rarely be expridssa convex form. The
approach in[[18, 0] was to solve a series of quadratic corubproblems itera-
tively. Although this does not solve the original problen{é8) exactly, the results
were excellent compared to other techniques, and atteaatithe method is trans-
parent to the receiver and does not distort the transmitisgunfortunately, this
approach is yet too complex for real time applications.
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6.3.2 Formulation as a Constant Modulus Problem

Using properties of Kronecker products, we can rew8iia (6.3) as
s = veqS) = (B o W)"vecdiad) =: Aw, (6.7)

whereA ¢ CNtexMM: DR = B ¢ CMM:*N B denotes the complex conjugate
of B, ando denotes the Khatri-Rao product (column-wise Kroneckedpet). The
vecdiagD) creates a column vector whose elements are the main diagbtied
matrix D. The optimization probleni_(6.6) becomes

min [|[Aw|? st [Aw|: = alN; (6.8)

We now propose an alternative formulation of this problem rdplacing the in-
finity norm by the average deviation of the OFDM block from astant modulus
signal. Ideally, the resulting will be close to a CM signal, and hence have close-
to-optimal PAPR. The corresponding cost function is

N

J(w) = |1Aw © (Aw) — aly, s = 3 (@ aalfw —a)®.  (6.9)
n=1
Here, the vecton!!, n = 1,---, N; represents the-th row of matrix A, the

column vectorl v, is a vector with all entries equal toand dimensionV;, and®
denotes the Schur-Hadamard product (pointwise multitdiog

This formulation is similar to the well-known “CMA(2,2)” & function for
adaptive blind equalization or blind beamforming, and cansblved efficiently
using available iterative algorithms. The matAxplays the role of the data matrix
in the usual CMA context, whereas plays the role of the beamforming vector.
The original CMA cost function is expressed in terms of anestgtion operator;
the present “deterministic” formulation is similar to thée&pest Descent CMA
(SDCMA) in [91]].

6.3.3 Steepest-Descent CMA (SDCMA)

The SDCMA is a block-iterative algorithm in which we act o tiull data matrix

A and updatev until it converges. The derivation of the block SDCMA is gjtd-
forward when the statistical expectation in original fotenin [91] is replaced by
an average over a block. For thh iteration, we start from the current estimate
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w'’ and compute:

§ = A (6.10)
e = (808 -aly, (6.11)
s = §oé (6.12)
Wl = W - pVJ (W) = W' — pATs, . (6.13)

Here, . is a suitable step size, asd is the update error. The maximal step size
could be defined as a scale independent parameter in refatiba signal power in
A. To keep the solution unchangedAscalesy. needs to be divided by factar,
u = ' /o, For convergence, the algorithm is initialized wit! = 1 (although
other choices are possible). The algorithm should be ruih tingt cost function
J(w) converges; in practice convergence is fast and the algoigtrun for a fixed
small number of iterations.

To satisfy the power constraint in (6.6), we can simply s¢haéeresultingw
after convergence. ¥ = Aw is indeed a constant modulus signal, theti3 =
aNy, and the power constraint is inherently already satisfidtls] the scaling is
expected to be close to 1 and could be omitted in practiceaéitrio effect on the
cost function PAPRY)).

A difference with the standard CMA is that, here, a good smtutloes not
necessarily exist. The usual application of CMA is for a ineombination of
constant modulus sources for which, without noise, a peldeamformer exists.
The present situation could be said to correspond to a vaesy Isource separation
situation. Note that, also for other methods, there are rstence results for PAPR
reduction.

6.3.4 Unit-Circle CMA (UC-CMA)

In SDCMA, the computedy has no constraints and may have some small entries.
These are equivalent to a (broad) null in the channel whidhaffect the BER
performance. ldeally, we should restrict the entriesodb take only unimodular
values:w,, = e/®» m = 1,---, M, and add this constraint to the optimization
problem [6.8).

In order to restrict the solution to be on the unit circle, amalization step is
added to each iteration aftér (6113):
witl

— Wt g Wit (6.14)
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where@ denotes pointwise division, and | takes the absolute value of each entry
of the vector argument. This alternative updating algaritls called Unit Circle
CMA (UC-CMA) since [6.14) projects the solution of CMA to aitcircle at each
iteration.

6.4 Computational Complexity

The complexity of the SDCMA algorithm in_(6.13) is dominatky the matrix
productsA”s, andAw®. The resulting complexity is approximateyw M M2 per
iteration (linear in the number of subcarriers). UC-CMA Ifas same complexity.
In conventional PTS [87], each resource block (sub-blocRTi® context) is
weighted with a phase shift in such a way that the summatisoleflocks produce
an OFDM sequence with a smaller PARRI[87]. The phase weigbtsedected by
an exhaustive search among a discrete set of phases, aedas side information
to the receiver. Accordingly, all combinations of th¢ available phase weights
need to be calculated and then multiplied with an IDFT sunomanatrix, which
has the same size as matix Finally, one sequence with the least PAPR metric
is chosen with the corresponding phase weights. The compleithe exhaustive
search is calculated for the simplest set of only two phésds= eij“/z} andM
resource blocks & N M multiplications an® comparisons. For CP-PTS, the
complexity isO(M?3); the exact expression for complexity is derived’in| [18].

6.5 Simulation Results

In WIMAX, one resource block spans, = 14 sub-carriers over two OFDM sym-
bols in time, containing 4 pilots and 24 data symbols. ForMH® system, there
are atotal of\/ = 60 resource blocks [92]. In agreement with this WIMAX setting,
the proposed PAPR reduction technique is simulated for anNDBlock of size
N = 1024 including M N, = 840 data subcarriers with QPSK modulation and 92
guard subcarriers at each end of the band. The number of M@ mit antennas
is eitherM; = 1, 2 or 4, as will be indicated. The various techniques are evaluated
using the complementary cumulative density function (CEDich denotes the
probability that the PAPR of a data block exceeds the argtiofahe function. To
avoid the PAPR underestimation, The algorithm is run withr fomes oversam-
pling so the number of the samples processed in the simodaisaV’ = 4N;.

A total number of 10,000 OFDM blocks are randomly generategroduce
the CCDF curves. For each block, a random complex fadingreflas generated,
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Figure 6.5: Performance comparison for the proposed CMARPAdeluction algorithm for

various number of iterations and = 0.05, CP-PTS with 5 iterations, and conventional
PTS with phase alphabét-1} and M = 10.

and the beamforming matricd¥ are chosen as the right singular vectors of these
channel matrices.

In Fig.[6.5, the CCDF performance is shown for SDCMA (variausber of it-
erations), UC-CMA (50 iterations), and compared to CP-FI03$ &nd the standard
PTS [87]. The latter algorithm is simulated only fof = 10 resource blocks due
to prohibitive computational complexity for largéd. In this simulation,M; = 1
transmit antenna. The simulations show that the proposbaigues attain a PAPR
reduction of up to 6 dB. Although 50 iterations are sufficiemtgood performance,
another 0.5 dB is gained by increasing this to 500 iteratia®S-CMA (50 itera-
tions) is worse by about 0.5 dB. The PAPR reduction for PTSasse/ by 1 to 2
dB. The previously proposed CP-PTS outperforms PTS and SB@ith 50 it-
erations, however a similar gain is reached by SDCMA withrgdanumber of
iterations. Moreover, the CCDF curves in Hig.16.5 show theesior performance
of SDCMA in 90% and99.9% of OFDM blocks in 50 and 500 iterations respec-
tively, comparing to the CP-PTS.

The empirical CDF ofw,| values in SDCMA indicates the Rayleigh distribu-
tion of PAPR weights which affect the BER performance of thetam. Fig[ 6.6
shows the BER versus SNR curves for the QPSK-OFDM systenoutitRAPR
reduction in a randomly generated Rayleigh fading and AWG&hoels compared
to the scenarios that SDCMA and UC-CMA weights are appligti@transmitter.
In SDCMA and UC-CMA the channel is assumed to be AWGN and theived
vector is divided byw to equalize the PAPR weights. Where, in Rayleigh fading
channel the received vector is divided by the frequency dorohannel coeffi-
cients. in both cases, the perfect channel recovery is axsuFrom Fig[ 6,6, the
effect of non-modified SDCMA is analogous to a Rayleigh fgdthannel in terms
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Figure 6.6: BER performance of the proposed algorithms mgarison with AWGN and
Raleigh fading channels for single antenna QPSK-OFDM systesize N = 1024 and

M = 60.
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Figure 6.7: PAPR reduction performance in MIMO-OFDM for h@DCMA and UC-
CMA with 50 iterations angl’ = 0.05.

of BER performance so the same error correcting codes useal famding chan-
nel can be applied here. As expected the UC-CMA does not imdki¢he BER
performance. This motivates the use of UC-CMA technique.

Fig.[6.7 shows the performance of SDCMA and UC-CMA for vasiowmber
of transmit antennasyl; = 1, 2, 4, and 50 iterations. Itis seen that the performance
is not a strong function of the number of antennas; smallavgments are seen due
to more available phase weights or degrees of freedom indt@iaation problem.

To demonstrate computational complexity, Matlab runtiorea standard 2011
laptop are shown in Fig. 6.8 as a function/af (number of resource blocks). In
this simulation,M; = 1. It is seen that the proposed CMA algorithms (using 50
iterations) are about a factor 50 faster than CP-PTS, whereacomplexity of
PTS is growing exponentially with the number of resourceckdoand is quickly
not feasible anymore.
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evaluation.

6.6 Conclusion

In this chapter a MIMO-OFDM data model is introduced and temdus PAPR
problem is investigated in this context. Also, an efficientl @ffective PAPR re-
duction algorithm is developed which does not affect thedbadth efficiency and
the receiver design while performs acceptably by means dfaldaimulations.
This is one step towards the design of a realistic signalgasiag algorithm which
caters for hardware imperfections.

In the next chapter, another aspect of hardware limitationthe design of
precoders in MIMO systems is considered. First of all the grovestriction is
defined per antenna since each antenna has its own tramsanittemplifier. Also,
there are restrictions on the number of available RF chaiaisdan be installed in
the system.



Chapter

Joint Precoding and Antenna
Selection for Multiuser MIMO

Modern multiple-input multiple-output (MIMO) communig¢ain networks employ
many antennas, and the optimal use of them is a complex pnahlbject to several
practical constraints, such as a maximum number of radguéecy (RF) chains,
leading to an antenna selection problem. We consider thalddwof a spatial mul-
tiplexing multi-user multiple-input single-output (MU480) system, and propose
a unified framework for the joint optimization problem of anba selection, trans-
mit beamforming, and power allocation with realistic yetrgmicated to handle, per
antenna power constraints. In its original formulatiorns th a non-convex and NP-
hard problem which poses no elegant solution. The propasletian is based on
appending a group sparsity inducing regularizer (GSIRcWimakes it amenable
for convex optimization via non-trivial relaxation techoes. Extensive simula-
tion results show a negligible difference in performancevieen this approach and
the optimal (exhaustive search) selection, while the cdatmnal complexity is
significantly smaller compared to the optimal approach.

This chapter is submitted as “Convex Optimization for J@intenna Selection and
Precoding”, Signal Processing, Elsevier, April 2016.
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7.1 Introduction

7.1.1 Problem Context

The advent of high carrier frequency wireless systems sadhe60 GHz short
range standards IEEE.802.15c and IEEE.802.11ad openg yo$sibility to radi-
cally increase the number of antennas beyond conventiouiéiphe-input multiple-
output (MIMO) systems, and perhaps even to integrate alefiton a single chip
[33]. A critical factor in increasing the number of antenmathe cost of the radio
frequency (RF) chain. Antenna selection techniques ardatk® determine the
optimal subset of antennas to be connected to the availdbth&ns, based on the
actual channel conditions. Until now, most research wascdeztl to single-user
(SU) MIMO (i.e., point to point MIMO), whereas antenna séieac for multi-user
(MU) MIMO has remained rather unexplored. This chapter ¥attus on MU-
MIMO at the downlink transmitter.

A good survey on different criteria and sub-optimal tecies) for antenna se-
lection is given in[[93] which classifies selection techmiguor both the trans-
mitter (Tx) and the receiver (Rx) and gives asymptotic penance results. For
SU-MIMO antenna selection at the receiver, it was shown ghatibset of opti-
mally selected antennas can achieve the same capacity Asgsfem [94]. The
high complexity of the combinatorial problem has prompiad‘§reedy” selection
techniques|[[95, 96, 97], whereas [98] proposed a convexnggtion approach.
In [97], the convergence of greedy algorithms is proved @dr-sodular problems
with objective functions including the capacity maximipat subject to the total
power constraint. SU-MIMO antenna selection at the trattemivas studied in
[99,1100, 23 101].

While in SU-MIMO systems the channels are considered knaviooth sides,
MU-MIMO systems consist of a basestation (or network of beg@ns), and users
which are individual entities that in general cannot corafee Despite fundamen-
tal similarities in selection algorithms, antenna setectechniques for SU-MIMO
systems need to be greatly adapted for MU-MIMO due to thdtiegudifferences.
In particular for the downlink, antenna selection needsea@@mbined with other
techniques such as beamforming (BF) for interference daiae and power allo-
cation for the best distribution of available power amomgams.

In this chapter, we propose a joint approach to solve for teequing (beam-
forming and power allocation) and antenna selection nmesgrgimultaneously, and
we refer to this as joint antenna selection and precodin@RJAFor conciseness,
we focus on downlink spatial multiplexing MU-MISO systenvghere each re-
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Joint antenna selection & precoder
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Figure 7.1: Block diagram of MU-MISO link.

ceiver (user) has a single antenna and receives an indegiatata stream. Fig. 7.1
shows schematically the MU-MISO system of interest. Stagkhe received data
in a vectorr, the data model is of the form

r=Hd+n, d =Ws (7.1

where the matriH contains the channel state information (CSl, considerm@),
d is the transmitted data, amdis additive noise. The raw input datas mapped to
d via a matrixW which consists of three factors: a diagonal selection ma\j a
beamforming matrixG, and a power allocation matriR. We write W = AW’,
whereW’ is the usual precoding matrixW’ = GI‘%).

In the plain precoding problemA is absent, andx is designed either as a
zero forcing (ZF) precoderHG is an identity matrix) or as the minimum mean
square error (MMSE) precodermote that here the formulation of SINR balancing
beamformer is equivalent to MMSE beamformer thereforengferred to as such,
however this is not generally the case. The paranfetisrdesigned either by pos-
ing a total power constraint (TPC) or a per antenna powerteains (PAPC). We
consider PAPC as a more realistic constraint as each anpmwer is limited by
its corresponding RF chain.

Including the antenna selection mati, the joint precoding and antenna se-
lection problem in its general form is to firM/ such that

WP — arg max f(W)  s.t. constraints (7.2)

where f(W) is a general performance measure, such as capacity. THhikepras
combinatorial and NP-hard for almost all precoding strigegindeed, the optimal

1CSl can be acquired by sequential use of the available RRghaid it needs to be updated each
time the channel decorrelates, hence the coherence tinie ahinnel needs to be relatively large
for the estimate of the channel to be valid.

2When there is no interference management constraint, ifiegjotenna selection and precoding
problem is reduced to the sparse power allocation problemen similar problem is addressed in
[98].
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solution WOP! corresponds to a subset of antennas wid&emaximizesf(W’)
among all possible combinations of antennas. To avoid thisneration, the dis-
joint antenna selection approach finds the best antennasngrthe precoder, e.g.,
by maximizing f(A) for throughput and independently finding the optinVal'
later for that set of selected antennas (fixing This leads to a sub-optimal perfor-
mance as will be verified here via simulations. Alternagiysub-optimal sequen-
tial optimization was used by fixind or W', successively, and optimizing over the
other variable[[10Z, 103]. Other papers consider a knowedjiyower allocation
[104,[105] or consider antenna selection at the receivéeands[106, 103, 102].

In this chapter, we consider ZF and MMSE precoders, as theyhar most
common yet effective linear precoders, subject to per auatgrower constraints.
We provide sufficient examples for different possible camakibns of precoders.
However, none of these precoders has closed form solutit®i#] nor are they
convex in their original form. We will follow the primal appach for solving for the
precoder, using iterative convex algorithms developed|f@adratically constrained
quadratic problems (QCQF) [108]. The most important woksAF precoding
can be listed as [109, 110, 107] whereas MMSE precoding has siidied for
[108,[111,)112] 113]. The antenna selection problem can Itleeimtroduced by
appending a convex (group) sparsity inducing regularieethe plain precoding
problem.

Convex group sparsity inducing regularizers have gainediderable attention
[114] as they leverage a relaxation for many old NP-hardctiele problems. Pre-
coding is no exception in this regaid [115, 116], e.g., in/Jlsynthesizing a sparse
beam-pattern for linear and planar arrays is consideretyuamn/,-norm penalty.
A joint beamforming and base station selection (clustgring118] is considered
where an iterative group Lasso minimization approach ip@sed to for sum-rate
utility maximization. In [119] we proposed a convex formiga based on thé; -
norm penalty to handle a simple JASP problem i.e, maximitiregcapacity sub-
ject to a total power constraint. Joint antenna selecti@hMNISE precoding is an
example of a QCQP with sparsity requirements that is adeldeiss120] for broad-
cast beamforming where it is formulated as a semi-definibgnam (SDP) using
the squared;-norm as a sparsity inducing regularizer. Latel in [121]rthdticast
extension was introduced which is the most relevant workHisrchapter.
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7.1.2 Contributions

* We propose a convex formulation for the JASP problem fromifiad van-
tage point, i.e., different from the existing literaturdfie sense that we try to
solve [Z.2) directly rather than findindy andW’ sequentially or disjointly.
The original form of the JASP problem in(¥.2) is non-convexktwthe pre-
coder matrix variable, and combinatorial w.r.t. the sétecvariable.

» Sparse regularization for antenna selection has beemgedecently in the
literature. What is missing is a generic problem formuiatichich describes
the joint antenna selection and linear precoding problemunified manner
regardless of the choice of the sparsity regularizer angriaeoding strategy.

* We show that using the proposed regularizer.in [121] for Blbalancing
precoder, is unnecessarily complicated for the proposedSENSINR bal-
ancing) problem in this chapter. In fact, SINR constrairds te readily
reformulated as a linear matrix inequality (LMI) or even@ed order cone
(SOC) constraints as proposed[in [108,1112]. We show thapldia group
Lasso regularizer can be used directly to formulate thesspEMSE pre-
coding problem. Indeed, the squared transformation as2ii][is only nec-
essary for precoding schemes involving the capacity esmesvhich can
not be made convex using the plain group Lasso regularizars dan be
considered as new insight to an existing technique.

* The proposed sparsity regularizations can be used for ptirposes as well,
e.g., the convex formulation allows to find the minimum numiifeantennas
that is sufficient for a certain quality of service. This iffelient from antenna
selection since the number of required antennas is not givpriori and
yields an optimization variable itself. We refer to this eggech as the antenna
reduction technique (ART).

* We claim that the conventional greedy approaches for aatselection are
not effective when per antenna power constraints are iedosince the ca-
pacity function is not a sub-modular function anymore ofgbeof antenna
elements in the sense that the effectiveness of an addifotenna element
is not diminishing as the number of antennas increases. d;lgmpular
greedy algorithms such as [95] do not converge to a poinedimghe optimal
solution [97]. This is an important observation which jiies the necessity
for developing a “close to optimal” approach for the systemmsch aim at
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capacity maximization with per antenna power constraints.

7.1.3 Notation

Bold upper case and bold lower case symbols indicate mateoed vectors, re-
spectively. The conjugate transpose and transpose of axmfatare denoted as
A andAT. A(i, j) is the(i, j)-th entry of matrixA, anda; is the jth entry of a
vectora. Thejth column ofA is denoted aa(:, j), and itsith row is denoted as
a’(i,:), wherea(i, :) is a column vector. Partitioning. into blocks,A; ; denotes
the (7, j)-th submatrix. We use ; to represent thgth matrix of a set of matrices
which share the same structure, djad|,, denotes thé,-norm of a vector. TrA)
is the trace ofA, and ve¢A) vectorizesA by stacking the columns of the matrix.
Iy is the identity matrix of sizéV, 1y and1 s are anN x 1 vector andV x M
matrix consisting of all one®)y and0y « 3 are anN x 1 vector andV x M matrix
of zero entries.

7.2 System Model

Consider a spatial multiplexing MU-MISO system as[in (7vihjch we rewrite as
r=HWs+n, W=AW (7.3)

with M, users (streams) each with a single antenna, and an accessvibi M;
transmit antennas which incorporates the antenna seaiestiteme. The received
data vector over all users isc CM*1, The matrixH € CM~>*Mt js the MU
channel which is considered known. The raw data C" is precoded byW =
AW’, whereA is the antenna selection matrix ali’ = GI''/2 ¢ CM:xMr g
the plain precoding matrix involving the beamforming mai@d and the diagonal
power allocation matriX’. The selection matriXA = diag(d) is a diagonal matrix,
where the entries on the diagonal are zero for eliminatednaiats and one for
selected antennas, $0= [6y,...,dy,] € {0,1}M¢. The noisen is assumed
to be a complex zero-mean Gaussian random vector. The anearimatrix of
the input signak to the precoder block is assumed to be an identity matrix, i.e
E{ss'} =1,;., and the design parameters in the modelfaaad W'
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Table 7.1: Linear precoding design criteria.

power PAPC: Vi:  ||6iw(i,:)]3 < pr
beamforming| ZF: Vi Yy G AW (D2 =0
MMSE: Vi o>
total power: fp = Tr(W/AW'H) =" ||5;w(i, )3
quality capacity:  fo = >0 log(1 + )

For thejth user, [(Z.B) can be written as

Mr
rj = ZhH(j,:)Aw’(:,l)sl—l—nj (7.4)
=1
= h7(j, AW (,5)s; + > WG )AW (L Ds +n;  (7.5)
1]
= h7(j,) AW (:,j)s; + b (j, ) AW's; + 1, (7.6)

whereW/; € CM>(M=1) ands; € CM-~! are the precoding matrix and data vec-
tor corresponding to all users excegptand (with some abuse of notatioh¥ (7, :)
is thejth row of H. The first and second term in_(¥.6) are the desired signalrand t
interference of usef, respectively. The SINR for usgrcan therefore be expressed
as hH i VAW (- i 2

v = ™ (G, ) AW J)] . 7.7)

> iy D (G ) AW (1)) + 0']2'

Clearly the SINR of each user depends on all precoding veetwd selected anten-
nas.

Table[7.1 shows common design criteria in terms of the prexcfmdt the power
allocation subject to PAPC. Beamforming is used for interiee management,
and as beamforming strategies we consider ZF (cancel alfémence sd'W is
diagonal) and MMSE (guarantee a certain SINR for each uBerally, the system
performance (quality) can be formulated as a total sumerdtee system (capacity)
or total transmit power as follows

fo(W',8) = i log(1+7)
fe(W',8) = Tr(WAW™) =37, [[o;w(i, )13
In turn, the parametes; denotes the maximum transmit power for tieantenna,

and~;* denotes the minimum SINR for usgy which both are used in the con-
straints.

(7.8)
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The precoding problem can be defined in several ways depgnodithe restric-
tions and flexibilities of the system, e.g., as maximizing ¢juality subject to one
of the beamforming criteria and a power constrapgrformance maximization
or alternatively as minimizing the transmit power subjecone of the beamform-
ingcriteria and a quality constrainpb@gwer minimization We only consider some
of these possible combinations in this chapter coveringngmessary underlying
optimization algorithms.

Regarding the power constraints, TPC is a relaxation of #the@and any
feasible solution for the latter is feasible for the formeo.t We focus on PAPC
in this chapter as this has relevance in practice, yet haoldeal with. Equal
rates (fairness) are obtained by maximizing the minimumRSHnong all users,
which is the capacity achieving strategy in MMSE precodititd]]. This is a quasi
convex problem for MMSE precoders due to a presence of tlotidraal term in
the objective([67]. We do not consider that problem in thiapther.

Instead, we will define and elaborate three generic problehe first prob-
lem, denoted a®, is the capacity maximization problem subject to PAPC, Z& an
antenna selection constraints. Also, the converse probfgmower minimization
subject to capacity, PAPC and antenna selection constsatudied. These are re-
ferred to asZzF-JASPthroughout this chapter. The former is specified as a capacit
maximization problem and the latter as power minimizatiosbgem. The second
problem, denoted &B’, is the MMSE precoder from a power minimization sub-
ject to the PAPC, SINR and antenna selection constraintedaasMMSE-JASP
problem. The third problem is the ART problem, which is dexadby?” and intro-
duced considering two set of constraints: 1) PAPC and SIN#Rtcaints 2) PAPC,
ZF and capacity constraints, referred toMBISE-ARTandZF-ART, respectively.
We believe these examples sufficiently provide all the negliransformation and
relaxation techniques, thus extensions for other pospitleoders are directly pos-
sible.

7.3 Problem Formulation: JASP

We consider in this section the formulation of the JASP poid including ZF-
JASP and MMSE-JASP. In its general form, the JASP problenritten as

maximize fF(W'9)
W/ € CMexM: § c {0, 1}M: (7.9)
subject to C(W',9)
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where the optimization variables are the precoding mai¥ikand the selection
vectord. As shown in Tablé 7]1, the objective functigitW’, d) can be either
— fp(W’, 8) for power minimization orfc(W’, §) for capacity maximization.

The optimization problem i (7.9) (representing both ZFSPAand MMSE-
JASP) is not tractable in any of its aforementioned formsrasirig the optimal pair
(W', A) leads to a mixed-integer problem. This is equivalent toieglthe plain
precoding problem while enumerating over a set that indwdigpossible matrices
A, which has(]g;) members/.; being the number of available RF chains. Thisis a
combinatorial problem w.r.tA, and in most cases is NP-hard wk.. To enable
the use of efficient convex optimization techniques, weonhiice a relaxation to
this problem. The number of relaxation steps is indicatethénsubscript, e.gR,
means no relaxatior?; shows one relaxation step and so on.

7.3.1 Joint Antenna Selection and Precoding (JASP) Problem

In order to introduce the joint problem of precoding and ange selection, the
two optimization variables are merged by introducing a neviableW = AW’
which conveys both the precoding and antenna selections, M can write the
joint antenna selection and precoding optimization pnobile terms ofW, where
the objectives in(7]8) become

fo(W) = X2 log(1+ b7 (G, )w(:,j)P) 7.10)
(W) = X, Iwii, ) = Tr (W' W)

We first consider the ZF-JASP problerR)( Since we require the precoder to
H(,;. .52
zero the interference, the second termiinl(7.6) is zerg,jije= hZGIwEIE

(Z1). For normalization purposes we assufyl& 1, then the capacny‘expressmn
(fc) defined in [[Z.B) is simplified toz log(1 + (5, :)w(:,§)|?) , and the
ZF-JASP problem is defined as

maximize  fo(W)
WE(CMfXMT
Po: S G w (L D2 =05 j=1,2,..., M,
subjectto  Co(W): ¢ [lw(i,:)[3 < pj; i=1,2,...,M,
[Wllo2 =L

We used that|d|jo = |[W||o,2, i.e., thely-norm of the vector collecting thé,-
norms of the rows oW, obviously this is a non-convex function on precoder vari-
able. The set of constraints for ZF-JASP is defined as the ABtaint, the PAPC
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constraint, and the antenna selection constraint, respBctA related power min-
imization problem is also of high interest where the objexis to minimize the
total transmit power subject to the constraint€jrplus one extra constraint gfg:.
Note that ZF-JASP is always feasible as longlas> M, for a full-rank channel
matrix.

In MMSE precoding, normally the power is minimized while asigredefined
SINR constraints are satisfied, leading to

minimize fr(W)
W ¢ C]\/If,x]\h
/. [h ™ (5, )w(:,5) 2 . g
Py - . / S, B G ow(DPT1 275 J=L..., My
subjectto  Co(W): 9 |lw(i,:)|2 < p; i=1,...,M,
[Willo,2 = Ls;

where fp is defined in[(7.8). Note thal, andC;, include the same PAPC and an-
tenna selection constraints and only the interference)(omstraints are different
for ZF and MMSE precoding.

7.3.2 General Convex Formulation

To move towards a convex formulation, an immediate choicettie relaxation
(softening) of||W||o 2 is to replace it by a group sparsity inducing regularizer. A
common group sparsity inducing regularizer is defined adaithy; ,-norm on the
matrix W with entriesw (i, j), defined as

[Wilg = 30 i, )7}, (7.11)
i=1 j=1
where,||W/|; 2 is the so-called group Lasso regularization and is theeggtton-
vex relaxation of|W ||o 2 [122]. However, there is no closed form solution to find
the exact counterpart df; for the substituted convex terffW||; . This means
that an iterative approach is needed to find a valug Wi, » which gives exactly
L, non-zero rows irW for the JASP problem.

According to optimization theory, any constraint can beem®d to an ob-
jective function with a proper Lagrange multiplier, e.grolplem P, (P}) can be
relaxed asP; (P;) given aX\’ > 0 corresponding td.; which is found via a simple
binary search as explained later, leading to

maximize  f(W) — X||W||12
Pl (7)1) . W c (CMtXMr (712)
subjectto  C; (W) (C}(W))
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w2
w

Figure 7.2: A 2D illustration of an example JASP problem. Bheck diamond is thé; -
norm sparsity inducing regularizer, red lines show the TEieele) and PAPC (box) con-
straints. (@) optimizing capacity (green contours); (biirajzing power (green contours),
with a capacity constraint.

where(; is formed by omitting the last constraint G§ and the same is applicable
to form theC] so

H(; . . 2 _ (. -
(W) - Dy BTG OWEDF=0 j=1,2,..., M, (7.13)
[w(i, )3 < pj; i=1,2,..., M,
[h ™ (5,)w(:.5) | o,
el W) = | S, T 215 I = e My (7.1
[w(i, )13 < pj; i=1,...,M,

where the relaxation is tight once the exattcorresponding td.,, is found. The
parameter\’ controls the number of selected antennas as it weighs thp ggar-
sity inducing regularizer relative to the main objectiveheTsoIutionSP((;pt (P{]Om)
andP{® (P} °") show similar sparsity patterns once a propis found. The group
sparsity inducing regularizer properties of thenorm are well known, nonetheless
the following gives a simple example that may provide arstiiation of the JASP
problem.

Fig.[Z.2 illustrates a system with one user, two antennabkaaaal beamformer
w = [wy,ws]T; the channel i& = [1,0.5]. For one user, there is no interference
and hence no ZF constraint. For TPC we take the interior afcéeai? + w3 < 9,
and the PAPC is the total power divided by tWe,| < 4.5 for each antenna, which
leads to the square box shown in Hig.]7.2. Optimizing for capdthe slanted
green lines), we see that the PAPCs are always satisfied gty while if the
individual constraint for each antenna is larger than 48, TPC is an active con-
straint and the PAPC becomes inactive (ineffective). Thirag capacity contours
are the ticker green lines in the corner in FFig. ¥.2a whicincidie with the vertices
of the PAPC square or are tangent to the circle of the TPC winene is no PAPC
considered in the problem.
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Taking an/;-norm onw leads to a diamond-shaped region, which induces
sparse solutions since the vertices are the first pointstdinah the square of the
PAPC and maximize the capacity. In Hig. 7.2a the resultirgsspsolution isv; =
0,w; = 4.5 leading to a smaller capacity than for the full system. Theréglso
shows that the largest capacity is achieved when only a TR@pssed on the
precoder with the full antenna set and the second best isifreystem with PAPC.

Fig.[Z.2b shows the converse problem of minimizing the tptaler subject to
meeting a certain capacity. The two parallel red lines spwead to the capacity
constraint, while the contours of constant equal power &mheantenna are shown
as squares. Without the sparsity inducing regularizersthaller green square is
the optimal solution, whereas including the sparsity indgicegularizer (diamond
shape touching the capacity constraint) leads to the langen square power con-
tour with solutions at the vertices of the sparsity indudiegularizer. In this case,
more transmit power is needed while fewer (1) antennas ame Wgore in general
(IV dimensions), the feasible set is a polytope and since thectg is always
growing to the outer direction of this polytope, the solateppears on the vertices
[117].

7.4 Proposed Convex Formulation of ZF-JASP

The relaxed problem ZF-JASFP{) is still non-convex inW. In this section, we
show that the plain group sparsity term[in (7.11) cannot leel ulrectly to formu-
late the sparse ZF-JASP precoding problem.

7.4.1 The Proposed Relaxation Technique

The optimization problen®P; is a special form of a QCQP which is proven to be
non-convex and NP-hard in its original form [123]. We willpdy the relaxation
technique that is used ih [112, 110, 124], to relax the nansew precoding prob-
lem by introducing the positive semi-definite variables
Z; = w(:,j)wH(:, j). Accordingly,P; can be expressed as

maximize  f({Z;}) — Ag({Z;})
{Z;} e St (7.15)
subjectto  Ci({Z;}), rank(Z;) = 1; Vj

whereSft denotes the cone of positive semi-definite matrices @R, }) is a
group sparsity inducing regularizer (a transformation| || ; ») with its regular-
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ization parameteA. Obviously, the rank constraints are not convex and later we
drop (relax) these constraints. This relaxation techniegagiires the decomposi-
tion of the optimalZ; to obtainw (:, j) at the end, and also increases the number
of optimization variables quadratically as well as the ctaxity of the algorithm.
We should not use this relaxation technique unless it islate$p necessary, due
to its complexity. The nonlinear nature of the capacity espion enforces this
relaxation technique as used in the QCQP.

W need to redefine the functions for the objective and coimssrén terms of
the new variable§Z;}. The transmit power of theth antennd|w (i, :)|3 and the
interference terms are readily expressed as

M.

pi = |w(i,)||3 = Z Z;(i,1) (7.16)
W7 (G, gw( P = h(, Z)Zlh(% ) =Tr(Q;Zy), (7.17)
Q; := h(j,)n"(j,:). (7.18)

Similarly, the capacity function iri(7.10) can be rewritiarterms ofZ; andQ;
as

fc{Z;}) = Zlog 1+ Tr(Q,Z;))). (7.19)
7=1

However, it is not straightforward to find the proper tramsfation from||W/||; o
to g({Z;}).

We need to rewrite the group sparsity inducing regularizea @onvex func-
tion of the quadratic variable§Z;}. This is introduced in[121] for multicasting
problem, a3|W\|%OO. Moreover, a relevant transformation technique is intosal
in [111, page 131], which suggests to replace a function ogquare for convex
relaxation purposes. Here we propdsé/ Hi? as an alternative convex sparsity
regularizer as this is more relevant to the classic grougd.é&srmulatiod. These
two group sparsity inducing regularizers do not necessaeturn the same sub-
set of antennas for a fixed channel realization. We also derexﬂHWH%oo in
the simulations as a sparsity regularizer for the ZF-JASBIpm, for the sake of
comparison. Simulation results indicate no statisticalilpge among these two
regularizers.

The derivation for the proposed group sparsity inducingilaiger is similar
to [121], however, the proposed regularizer requires propeduction in order to

3Using the infinity norm limits the precoder solutions to tlres with equal magnitude rows.
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be understood within the new context (capacity problem)xs@eliscussions and

proofs, compared to [121], are provided here.
Substituting the plain group Lasso regularizePinresults inP, which is given

by

maximize fe(W) = A(|W|1,2)?
Py: W e CMexM, (7.20)
subjectto  C;(W)

Following [111], we can say that
AN, N PP =P (7.21)

which means that there existacorresponding td\, such that the probler®; is
equivalent tgP;.

We make the following definitions. Lekz = veqW) and define
Z;, = w(:, )w (1)

Z, Zio - 7y,
Z2,1 Z2 e Z2.Mr

Z=zz" = | , _ T e CMeMex MM (7.22)
Zy,a Ly o Ly,

Similarly, we introducez’ = veqW7) and definez’, . = w(iy,:)w!l(iy,:) €

11,12
CMrxM; and

le,l Z/1,2 Tt le.,Mt
Z, Zh, o Z/2 M,
7 — Z/Z/H _ .' .’ (] c CMtIWTXMtIWT (723)
Z/]Wt,l Z/]Wt,2 e ZG\/It,]Wt
The entries ofZ andZ' are related as;, ;,(j,1) = Z;(i1,i2). In other words,

Z = PZ'PT whereP is a permutation matrix i.e., equivalent to V&) =
PvecWT). With these definitions we can write the squared mixed norrivof
as

M; M,

My
(W2 = (D Iw(, H2)? = > lwlin, )l - lwiz, o)l
=1

i1=1 ip=1
My M

= > > NZ sl (7.24)

i1=1 i9=1

To derive the last step, we have used the following propentyafbitrary vectors
aandb: ||ab? |7, = |la|?||b]|?. Next, define a matriZ € RM:M: with scalar
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entriesZ (i1, ia) = || Z}, ;, || .. then(|[W|l1,2)*> = Tr(1as,x 1, Z). Further note that

11,82

the entries ofZ satisfy

Z(i1,i2) = |2}, 3|l = \/Z | Z;1(i1,12)]2 . (7.25)
75l

The group sparsity inducing regularizerin (4.24) is a carfuaction ofZ,; ; =
w(:,7)wll (1), then the JASP problem @, can thus be relaxed to the following
convex optimization problem:

maximize fe{Z;}) — ATr(Las, <, Z)
Py: Zj € ngz c RM:xM;
subject to Cs({Z;}, Z)
where
D1z TH(Q;Zy) = 0; j=1,---,M,
C3({Z;},Z) = { 225 Zii,1) <pis i=1,--, M,

Z(inyiz) > /30121, 02) 2 dnyi2 =1, M,

Although Z was defined as a rank one matrix in_(7.22), the rank consti@imbt
posed. Also the rank constraints on the individdalhave been dropped and what
is left is a constraint that th&; are positive semi-definite. Althoudh is related

to Z, in this formulationZ is treated as an independent variable which is related
to Z only via the last constraint (a standard SOC constrainte rEtaxation ofZ

is tight because the last constraint is always satisfied edumlity: the objective
function tries to minimize Tl 5y, « 7, Z) Which makes the elements &fas small

as possible.

The last constraint and its origin in (7]25), is a functiorttaf entriegiy , is) of
Z;,. These can be split into the diagonal block-entfi&s } and the off-diagonal
block-entries{Z;,};+;. Since there is no constraint on these off-diagonal matrice
(after we drop the non-convex rank constraint on the rarik)opthey are naturally
put to zero when the group sparsity inducing regularizereisadp minimized, and
consequently we could drop them from the optimization pFotiPs.

Remark 1. SolvingP; promotes a sparse solution fé@ and consequently for the
Z; matrices. If the solution is of rank one, and hence decontpges#sZ; = w(:
,J)wt (:, 7), thenW tends to be row-wise sparse.

Please see Appendix_1.A for further discussion on Rernlark 2 a Aesult of
Remark 2, the eliminated antennas can be determined bynigakiZ at the so-
lution of the optimization problem. Conversely, the set efested antennas is
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¢ = {i: Z(i,i) # 0, i = 1,2,---, M;}, which is obtained by looking at the
nonzero diagonal entries @

7.4.2 The Subspace-Aware Formulation

It is known that the ZF constraint can be removed by searchinly in the ZF
feasible subset of the optimization problem. This leadsitaralytical solution for
ZF precoding with a total power constraints [107]. Here wamdhis formulation
for the case of a PAPC leading to simplifications in the corapons. It is known
that the ZF constraint can be written Bsw(:,7) = 0ps,—1, WhereH; is the
aggregated interference channel,

H; = [h(1,:), - ,h(j — 1,:),h(j +1,:),--- ,h(M,, )7

Following [107], the ZF precodew (:, j) needs to lie in the null space Bf; €
CM-=1)xM: ) et K; € CMeS» holds an orthonormal basis for the null space
of H;. AssumingH; is full rank, then the size of the nullity is equal &), =
M; — M, + 1. The ZF constraint can now be expressed by requiringwhat;)
can be written asv(:, j) = K; (:, ), for a vector(:, j) € C*~. These vectors are
collected in a matrix

M =[(;,1),(:2), -, (:, M,)] € CI*Mr,

We define the counterpart semi-definite quadratic varia¥les: (:, 7)1 (:,7), j =
1,2,---, M,, toreplace theZ; matrices. The received power of ugectan now be
expressed as

b7 (G ow( )P = wP()K G0 (L )Kh() ) (7.26)
Tr(K7h(j, )" (j,)K;Y;) = Tr(AY;),  (7.27)

whereA ; = Kth(j, Hhf(j,:)K;. Therefore, the objective function can be writ-
ten as
fe({Y;}) = X000 Tog(1 + Tr(A;Y;)). (7.28)

We also need to rewrite the constraints and group sparsitycing regularizer that
involve Z; in terms of theY ;. This is straightforward:

Zj=w(, j)w (. j) = Ki' ()" (4 ))K;, (7.29)
with entry (i1, i2) given by

Zi(i1yin) = Kl (i1,2) () (. )k iz, ) = Tr(BYV2)Y ),
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BU) = ke (i, )k (i, ).

The resulting performance maximization problem with thecZikerion of Ps be-
comes

maximize Ffo({Y;}) = ATr(1ar, xar, Z)
Ps: Y; € Sft7z € RMixM,
subject to Cj({YJ}7 Z)

where the constraint is given by

> TiBYY;) < pi; P=1,- M,
21,22 \/Z Tr B(“’m) )) i17i2 = 1,- .. ,Mt

CS({Yj}7 Z) = {

One can easily show the last constrainPinas a SOC constraints or in general
as LMI form, that is given by

Z(il, 22) V(il’iQ)
ey _ =0 7.30
Vi) Z(iy i) Tag, | (7:30)
wherev(:2) .= [Tr(B{"?)y,), ... ,Tr(BE@rfiQ)YMT)], for a specific index pair
(i1,12). In summary, we can write
Pe° C PP =PrP C PEP, (7.31)

denotingPfsP as the feasible sets &% and so forth.

In the next Section, we show that the MMSE-JASP problem dat¢seed
the aformensioned relaxation technique for its convexsfiamation and the plain
group Lasso regularizer suffices for the convex formulatibtine problem. In Sec.
[7.8, we discus the algorithms that uses these convex ojtiimizproblems to solve
the JASP problems.

7.5 Proposed SDP Formulation of MMSE-JASP and ART

7.5.1 JASP Problem with MMSE Precoder (MMSE-JASP)

A formulation of the MMSE precoder as a SOC programming mobhas been
introduced in[[108, 112]. This formulation relies on thetfdwat the optimal pre-
coder is determined up to a phase rotation, i.&Wifis optimal thenWdiag(e/?7)
yields another optimal precoder, where the are arbitrary phases. Accordingly,



118

h' (j,:)w(:,7) can be taken as real, and with a proper phase rotation the SINR
expression can be reformulated as a linear functiow©f 5).

The SINR constraints can be written in SOC form or in genesdlMl con-
straints. For each user, one LMI is required to pose the SidiRRtcaint. The PAPC
can be written as linear constraints using the same arguamehthe plain group
Lasso sparsity inducing regularizefW ||; 2) can be applied directly to formulate
the JASP problem as follows

minimize fP(W) + 37 lw(i, )2
W c (CM;,X]WT

771: .
i C; =0 j=1,...,M,
subject to C' (W) = J ) Yoy
J (W) {IIW(Z',:)IQS ph i=1,..., M,
where
1 Hy¢,; . A H(: \YAT .
C, - mHh (.777-)w(.,1,{7) 1 [hH(]', .)Wj,'l]
()W, 17— (G, ) w () T,

andW; e CM*Mr—1is defined similar toW’; in (Z.8). Problen?; can be solved
using any SDP solver. The Lagrange multipliein P; takes different value from
the one in ZF-JASP problem, however we use the same notatiotiné sake of
generalization.

7.5.2 Antenna Reduction Technique (ART) Problem

We propose another interesting setting for the joint pnobliee., if there is no rigid
number of antennas to be selected and we are interested ingfitice minimum

number of antennas that can guarantee a set of desiredaiotsstrin this case
Ls = ||6]|o is the optimization parameter and the ART problem can be ditated

as

minimize 1610
Py W' e CMexMr § ¢ {0, 1}
subject to power, BF, and quality constraints

The problemP; minimizes the number of transmit antennas subject to given
constraint on the power, beamforming criteria and perforeaaquality. Two dif-
ferent ART problems are introduced here: ZF-ART which firtts minimum an-
tennas that can satisfy a set of PAPC, ZF and capacity comtsared MMSE-ART
with PAPC and SINR constraints.
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The ZF-ART problem with ZF and capacity constraints can dandd as

minimize T as, %, Z)
ch . Yj c Si\_/ft’z c RMiex M (7.32)
subject to Cs, fe({Y;}) = [~

where the feasible set is the intersectiorCgfwith an extra constraint on the ca-
pacity. Similar toP3, there are three steps of relaxations to reacwitgﬁcewhich

is denoted by inde®. Although the same relaxation steps are taken, the feasible
set for problenﬂ>§’c is different from’P; as the performance is not anymore the
objective and needs to be satisfied as a constrft{(Y;}) > f*). The problem
need not to be feasible for eveyy or p;.

Proposition 1. If problemP{{C is feasible, there exists an attainable rank one so-
lution for the'Y ;.

Proof. The proof is in Appendik 7.B. O

Likewise, the same problem can be formulated for MMSE priapd The
MMSE-ART problem after one step of relaxation (similar to NE-JASP) is for-
mulated as

minimize S lw(i, )|l
{/M - W e (CMtxM,- (7.33)
subjectto  C[(W)

which can de readily solved by any SDP solver.

7.6 Proposed Algorithms

7.6.1 Outline

We present algorithms for solving the JASP problems in twnsieps. The orig-
inal (P) problem formulation specifies an exact numbefgfntennas that may be
selected. In the relaxed problet, does not appear, but we need to determine the
regularization parametex that leads to the correct selection lof antennas. This
will be found iteratively in step 1.

To improve the convergence to the sparse precoder, theéivtdyareweighed
algorithm of [125] is used. In the-th iteration of the ZF-JASP algorithm, the all-
one matrix1,z, x s, in the group sparsity inducing regularizer®f is replaced by
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a more general matriki(® e RM:xM: which is updated relative to the entries of
Z at each iteration. Likewise, for the MMSE-JASP algorithmthien-th iteration,
the all-one vector irP} is replaced bya™ € RM which is updated relative to the

[[w (i) l2-

« Step 1: Solve the JASP problem, iteratively adaptidge (0,1] and U™
(u(™) until the optimal solution foZ, called Z°P' (W°PY) has exactlyL,
non-zero diagonal elements (rows).

Note that the non-zero diagonal element&Ziand non-zero rows iW indi-

cate the selected antennas that correspond to the non-assygp;. Define

p = [p1, - ,par]7, let Z¢ be the set of selected antennas, and denote by
H, := H(;,Z¢) € CM*Ls the corresponding reduced-size channel matrix.

» Step 2:0Once L antennas have been selected, the JASP problem is solved
once more forx = 0 and the reduced channH;. This reduces the prob-
lem to the plain precoding problend\(is fixed) and gives the final optimal

precoderW .

In the notation, we will use subscript™to denote variables related 8, and the
selected set of antennas. The reason that we still S¢gyl 2is clarified by the
following remark.

Remark 2. Let W°P! be the optimal sparse solution to any JASP problem, directly
obtained or derived from the rank one factorizations of th&rmal Z;s, where\

is such thaf| W°PY|y o = L,. Then, there always exists a precoddtS™ with the
same sparsity pattern 8°Pt such thatf (W) > f(Wopt),

Note that there exists a range ok [\z,, Ar,+1) Which gives the same sparse
rows for the precoder in the JASP problem, even if the objectalues are different
for each value of\. Within this range, solving foA = A, gives a solution with
the largestf (W).

Although we do not know\;,,, we can obtain the optimal solution by fixing
the sparsity pattern (fixindh and reducindd to H,), and subsequently removing
the sparsity constraint (setting = 0). The resulting optimization problem then
only maximizes the performance subject to the correspgndanstraints within
the set of selected antennas, which leads to the plain pregcpdoblem and gives
the optimal precodeW ™.,
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7.6.2 Algorithm for ZF-JASP

For the ZF-JASP problem which involves the nonlinear capagkpression, we
need to solve probler®s (or the converse power minimization problem). In gen-
eral, P* denotes the problem with a selectedand byP*=" we mean the plain
precoding problem istep 2hat follows if we set\ = 0 and fix the selected anten-
nas. In that case, we work wilH,. Let K, € CZs*5» denote the corresponding
orthonormal basis of the nullspace, and deﬁm)(.“’”) accordingly. The plain

J
precoding problem ibtep 2s then formulated as follows:

maximize  fo({(Ys);})
P (Y,); €Sl (7:34)

subjectto 3~ Tr((BS)Ei’i) (Yy);) <pj; VieI*

(Note that the second and third constraintsCinwere dropped as they are not
relevant forA = 0.) This is a convex problem that can be solved using interior
point methods, and we omit further details. The optimal deaming vectorsw (:

,j) are extracted fronfY); using(Ys); = ws(:,7)wil(:, 7). This assumes that
(Y); is rank one.

Remark 3. There always is an attainable rank one solution for probeg=0.

From [110] we know that there is always a rank one solutiorFgY=C before
invoking the subspace approach. Since there is no altematithe problem using
the proper subspace to search for the solution then the seoperty is remained
after this process. The extended discussion is given in Agigé/.C.

Algorithm I summarizes the iterative algorithm f®tep lof P5. In the algo-
rithm, L denotes the currently selected number of antennasiaad\ ., Ay| is
the currently selected regularization parameter. Thergxpatal results show that
taking a small value (close to zero) fay and takingh\y; = 1 commonly gives the
proper in few iterations (always less than 10 iterations) regasliaf the choice
for the initial \. In an inner loop, probler; is solved and the resulting number of
selected antenndsis determined. If this does not correspond to the required-nu
ber L, then the interval bound;, or \y; is adjusted and the problem is solved again
with \ set using a bisection technique. The sparsity enhancinghtesU(™) are
adjusted in an inner loop, whefé(™ is updated by penalizing rows with smaller
norms. Thee parameter is commonly used in this context to ensure diakitid
avoiding the undesired non-zero estimate at 1 iteration due to the zero-valued
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|Z(i1,i2)™|. This is chosen relative to the smallest value @i, ,i»)| and is
fixed here.

Algorithm 1 ZF-JASP (performance maximization)
1: Initialize \, A1, \y.
L= Mt
N:=0
2: while L # Ly and N < Np,q, dO
3: n:=0
UO =1, 0,
4:  while L # Ly andn < ny,q, do
5: SolveP3
UpdateL based orZ°
Ui, io) D) i=1/(|Z(i1,i2) ™| + €), Vi1, iz
n:=n-+1
6: end while
7. if L > L, then \p := \
elseif L < L, then \yy := X\
end if
A=+ (v — /\L)/2-
8: N:=N+1
9: end while
10: if L > L, then do brute-force elimination.

For ZF-JASP precoding the problem is always feasibléf> M, so there
is no need for a feasibility check. If the desired number déanas has not been
achieved within the limited number of iterations then brdice elimination is
performed by sorting thg;s and choosing thé&, most significant ones. Once the
proper antenna set is found from Algorithith 1, the reduced simnnel matrix is
formed asH and it is passed on t6tep 2 We use the Matlab package CVIX[126]
to solve the resulting convex optimization problems whisesithe SeDuMi and
SDP3 solvers but alternative solvers such as YALMIP and MK 8&n be used
instead.

7.6.3 Algorithm for MMSE-JASP Problem

Note that, unlike the ZF problem, the MMSE problem may not éesible even
for Ly > M,. So first we solve the ART problem related to the MMSE problem
(ProblemP{’M) to see what is the minimum number of antennas that can hérelle
SINR and power constraints simultaneously. If a solutiothuli; antennas is not
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found then the problem is not feasible with. Subsequently, an algorithm similar
to Algorithm[1 is carried out to solve the MMSE problem excptthe fact that
the problentP; is solved in the fifth step of Algorithin 1 and that we are loagkat
W directly to find the eliminated antennas rather tha#.at

7.6.4 Algorithm for MMSE-ART Problem

The ART problem admits the simplest algorithm as it does eqtire a binary
search. Accordingly, Algorithinl 2 finds an exact optimal MM@€coder. There is
no need to perfornstep 2 The ZF-ART follows the same path.

Algorithm 2 MMSE-ART

1: u(o) = 1]\/[t
L=Mn:=0
2: while n < Ny, do
3. SolvePy (u™)
UpdateL based oW °r
u(@) D = 1/([w(i, )5 +€), Vi
n:=n+1
4: end while

7.6.5 Computational Complexity

SDP solvers use interior point methods to solve the reguttonvex problems. In-
terior point methods use Newton’s method at each iteratisolve a set of linear
equations. The number of Newton iterations mostly dependb® number of lin-
ear inequality constraints [127, 128], but this grows ombndy with the problem
dimension and for our settings varies betw8en 5 which can be neglected in the
analysis. Thus, the complexity is dominated by the flopsireduper Newton iter-
ation, and this depends strongly on the problem structudettzen solver. Without
specific structure, a rough approximation on the worst-casaplexity states the
number of operations &= max(u?n, u3, F), wherey is the number of variables
in the optimization problem andl' is the cost of the first and second order deriva-
tive [111, page 8]. Nevertheless, this is not a very usefudsuee to evaluate the
complexity of the problems in our setting where differerdlgems are considered
with various structures and variables. Alternatively, vixee@a relative comparison
between the optimal approach and the proposed algorithms.
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In the optimal approach, an exhaustive search to solve gmofsl; requires
solving (J‘L/[t) convex optimization problems, each with a complexityofThis is
28, 210 and 8008 timesfor the selection of 6 antennas out of 8,10 and 16 anten-
nas, respectively. Clearly the problem becomes intraetei®n for a small increase
in the number of antennas. On the other hand, the proposed dp@oach in Al-
gorithm[1 solves at most,,., (typically we taken,., = 10) convex optimization
problems for each selection step in the binary search, et ofL; and M;.
E.g., this gives a constat® x ¢ for Algorithm [, compared t§(') = 8008) x ¢
for the optimal approachl(; = 6 and M; = 16). In our experience, the algorithm
usually converges in less than 10 iterations, on averaget &iterations are used.

The ART problem is NP-hard in the form of Probléy, and quickly becomes
impossible to solve optimally. Using the proposed approdehART problem can
be solved efficiently without the need to find However, in general, the expansion
of the matrix dimensions in the linearization techniquesdli; the proposed Algo-
rithm[1 as well as in the plain precoding problem with capeigtm, has an impor-
tant practical ramification; the complexity of the problesniricreased (squared).
Due to this effect, we can only handle medium size capacitplpms with M/,
up to 20 with a normal computer and general solvers like CVX 8aDuMi in a
reasonable time. For more antennas, more efficient algesithre required, i.e.,
perhaps possible by smoothing the non-differentiable tcaimés or sub-gradient
approaches. This is not a problem for MMSE-JASP since thiendgation is over
a linear variable, owing to the alternative SDP formulatiofil12]. In the later we
are able to handle on the order of hundreds of antennas.

7.7 Simulation Results

The ZF-JASP problem was relaxed into a convex problem ireteteps while the
MMSE-JASP requires only one step of relaxation. It is notvindow tight the
relaxed problems are w.r.t. the original problem. This ialeated using Monte
Carlo simulations.

Each precoding strategy is evaluated using 10,000 randanmethrealizations.
In turn the channel is generated using independent andédéntdistributed com-
plex Gaussian random variab@sFrom these, a complementary cumulative den-
sity function (CCDF) is derived to show the probability tkfz¢ shown performance

“The frequency selectivity of the channel does not diredfigcathe system model and the prob-
lem formulation in the chapter, as the channel can be patgnflattened using equalization tech-
nigues in general.
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metric is less than or exceeds a certain value.

The simulations compare the proposed algorithm to the' ‘¢alte without an-
tenna selection, a ‘random selection’lof antennas, and a ‘disjoint’ scheme which
finds the antenna selectiah and precodeW’ sequentially: an optimal subset of
antennas is selected to maximize the capatity(det[I,; + HAH]), using an
exhaustive search, and subsequently the resulting placogding probleni;=°
is solved on this ‘optimal’ subset (which did not take inte@ant all constraints).
Globally optimal solutions are calculated by enumeratiihg(’é%) possible choices
of L, antennas, each time solving the resulting plain precodioglem.

Fig.[7.3 shows the resulting CCDF curves for the ZF-JASP lprab In the
simulations, the maximum number of iterationsNg,,,, = 5 andn,,,; = 10 in
Algorithm[1. These are chosen based on the average numbteratfans that the
algorithm takes to find the the exakt number of antennas. Empirical results are
fitted to suitable distributions by examining 15 differemtdbutions and using a
log-likelihood test to find the best fit. This is to show thefwigncy of empirical
data as there is no significant fluctuations compared to al fitigtribution. We
show the CCDF of the full, proposed and the proposed setetith the max-
norm regularizer (adapted from [121]) for PAPC in Fig. ¥.Jae result does not
show any noticeable difference between the choidgshorm from [121] and the
proposedls-norm sparsity regularizer in term of the performance. Mwueg, the
TPC is considered which gives an insight regarding the pedoce loss compared
to the PAPC scenario.

From Fig[7.3b, it is seen that the optimal solution coinsidéth the proposed
algorithm if L, = 6 antennas are selected out of 8 antennas. Note that the combi-
natorial nature of the problem makes it impossible to finddptmal solution for
Mt=16. In the simulation, the diversity gain (capacity iease for increasing/;)
is almost 2 bits per second per Hertz (bit/s/Hz) whnis doubled. The results
also show the sub-optimality of the disjoint approach in parnson to the proposed
algorithm. Note that even if the ‘optimal’ subset of antemirsafound in the disjoint
approach (only taking capacity into account), its perfarogais always worse than
the proposed approach. In turn, random selection does adtitea performance
improvement even if\/; is increased.

We also consider the converse problem of power minimizdto&F precoding
where the total transmit power is minimized subject to a efieeéd constraint on
the capacity performance. Algoritim 1 is readily modifiead¢wer this problem.

The average powers are shown as a function of the numbemshtibantennas
M; in Fig.[Z.4. It is seen that, while the average diversity gamterms of the
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Figure 7.3: CCDF curves for ZF-JASP, with capacity objextiVhe dashed lines represent
the empirical data and solid lines are used for the fitted Weibodel.

reduced average power is increased noticeably wigrs increased from 6 to 10,
the reduction becomes less significant (more linear) oncee ith@an 12 antennas
are available. The diversity gain is not linear whienis increased, hence antenna
selection leads to a noticeable power decrease if therendyeddfew) RF chains
available. Overall, an average power of almost 2 dB (20%efdbal power) can be
saved by increasing the number of available antennas fra6 and performing
the proposed JASP algorithm. Defining the PAPC relative tenables us to pose
a total power constraint, inherently, if needed, as comsitibere to bé0 dB.
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(a) Average transmit power versus number of available
transmit antennas\;) for the ZF-JASP problem of power
control, whereM, = 3, C* = 4 bit/s/Hz, andp;
10 dB
L .

10°

CCDF

power (dB)
(b) CCDFforM; =10andM, =3,L; =5,p; =2dB
andC™ = 4 bit/s/Hz. The dashed lines represent the empir-

ical data and solid lines are used for the fitted generalized
extreme value models.

Figure 7.4: Power minimization problem for ZF-JASP.

However, average power does not show the probability of pigler events
which might affect the functionality of the amplifier and etmonlinear hardware
components. In Fid._7.4b, CCDF curves are presented whiglv $tow proba-
ble it is to get a certain transmit power. It is seen that ram@mtenna selection

is extremely inefficient while the proposed algorithm isyelose to the optimal
approach.

CCDF curves for the MMSE-JASP problem relatedoare shown in Fig. 7]5.
Effectively, the gain (relative performance) of increasit/; from 8 to 128, and
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Figure 7.5: The CCDFs for the MMSE-JASP problem, My = 3, L; = 4 and M, =
8,10, 16, 128 respectively from right to lefty* = 1 dB andp; = 0.4 dB. Dashed lines
represent the empirical data, solid lines are fitted stedilsinodels. The optimal solution
is simulated forM, = 8 and it is represented with yellow line. The tick (blue) lines
correspond to the proposed technique and the full antemfap@nce are illustrated with
the thin (red) lines.

then performing antenna selection to choose the bgsintennas, is somehow
larger than the relative gain of using the full seBdb 128 antennas. Moreover, the
low complexity of the SDP implementation of the problem atofor more anten-
nas to be considered and consequently more antenna selgatioto be obtained.

From a statistical point of view, the initial results showttthe Weibull distribu-
tion gives the best fit for the capacity maximization problevhereas the general-
ized extreme value is more suitable for the power minimigagiroblem. However,
for any solid conclusion on the statistical behavior of thstem, a more dedicated
study beyond the scope of this work is required.

Finally, the MMSE-ART problem related t8Y,  (Algorithm[2) is simulated
with n,,., = 3 for different M;, in Fig.[Z.6, by simulating 10,000 channel real-
izations. The minimum number of antennas are searched bad@APC, TPC and
SINR constraints are fixed. The results show that a lakgeleads to more selected
antennas with a fixed,,,,,. while for the smallesf\/; = 12, most realizations end
up with L, = 6 (least possible number of antennas). However, as expdated,
creasingM; reduces the chance of getting infeasible problems, spebolsmall
P* or large~*.
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Figure 7.6: The histogram for the MMSE-ART problem, féf, = 6, M, =
12,16, 20,24, 28,32, v* = 25 dB and PAPC withp; = 1 dB. Thex axis shows the
number of selected antennastag, 8,9, 10 and the y axis is the count of realizations that
a certain number of antennas are selected.

7.8 Summary and remarks

The main contribution of this work is the classification oé tmost pertinent linear
precoding strategies together with the proper sparsitydimg) regularizers that can
provide a convex formulation of the joint antenna selectind precoding problem.
Simulation results show that the resulting algorithmsd/mblutions very close to
the optimal selection strategy with far less computatimuahplexity. The disjoint
approach is shown to be sub-optimal in this context.

The chapter considered a capacity maximization and powamization prob-
lems with beamforming, power allocation and antenna seleconstraints. The
map of all steps taken to reach a computationally feasildev@x) problem for
capacity involved problem of ZF-JASP is given as

Stepl . P3 relazation '])2 (7.21) Pl relazation PO
—o [23 _ 3
Step2: P=0 2 pr=0 L21) p r=0

where the double-headed arrows() represents equivalence and the single-headed
(=) arrow means relaxation. Three relaxations were perfortmeeach the surro-
gate convex problem when the nonlinear capacity expressimvolved. For the
JASP-MMSE problem a one-step relaxation is sufficient. Avkegs problem which
has not been discussed in this chapter can also be handiegtbsisame SDP for-
mulation, i.e., maximizingfr = min (v;) instead of the capacity expressioft}

in ZF-JASP.
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The main source of sub-optimality comes from the relaxatibich translates
the original/p-norm (counting the number of selected antennas) to a caynzeip
sparsity inducing regularizer, based on the squéyeatbrm on the precoder matrix,
which is common in all the discussed problems. Unfortugatblere is no guar-
antee that this relaxation yields the same solution as tlyat discrete selection
problem even if thé;-norm is the tightest known relaxation of the problem. How-
ever, if the first stepStep ) of the algorithm finds the correct subset of antennas
(equal to the optimum set), then the second and final S&p(2 of finding the
corresponding precoder is always tight and the exact spaeseder is guaranteed
to be found. In this case, the solution of the JASP algorithimptimum.

We conclude the chapter by emphasizing that for the capasittved prob-
lems the squared group Lasso regularizer is required teftyan the joint antenna
selection and precoding problem to a convex problem. Alghdhe proposed spar-
sity regularizer can be cast as LMI, the problem is yet not 8 $fvblem due to the
presence of the nonlinear capacity expression and is soisiag general interior
point algorithms. For the joint antenna selection and MM$&£pding problem a
common group Lasso sparsity regularizer suffices, and thatieg sparse precod-
ing problem can be solved using any SDP solver.

7.A Discussion on Remark 1

Minimizing the group sparsity inducing regularizeXZ) := Tr(1,s,xa1,Z), acts
as minimizing the sum oM? valuesZ(iy,iz), i.e., the/;-norm of this sequence.
The sparsity property of this norm tends to make each ofifig, i) entries equal
to zero. If that occurs, then sinc&(iy, iz) > \/2-; 1Zj(i1,d2)[2, it follows that
the entry(i;,i2) of all Z; matrices is equal to zero. If moreover tdg matrices
converge to rank one, i.eZ; = w(:,/)wil(;,5), thenw(iy, j) andw(iz, j) are
zero for allj, or w(i1,:) = 0 andw(iz,:) = 0. Thus,W tends to be row-wise
sparse. The rows that are zero correspond to the eliminatedded) antennas.

7.B  Proof of Proposition 1
To prove the proposition, first we prove a more general Lemsrfallows.

Lemma 1. LetQ € CM*N andZE € CM*M pe given matrices wherd/ < N
and Z is full rank, and suppose there exists a Hermitian maflixe CV*¥ of
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rank J whereM < .J < N such thatQIIQ? = Then there exists a Hermitian

matrix IT' of rank.J’ = M such thatQIT' QY = =.

Proof. First of all, conditioning= to be full rank implies that the rank 2 andII

can not be less thai! according to the rank product property i.e., the rank of the
product of matrices is always less than or equal to the mimmank of matrices
and hencef is full rank. Now, suppos&®, € CV*N = Q7 (QQ)-1Qis

the orthogonal projection matrix onto the rowspacelbf ThenQ2Q;, = €2, so
QQ, Q0 = =. Note that rankQ | TIQ!} = M < J, since the projection
matrix mapdlI into a subspace with dimensidil as the rank of2 is alwaysM.
PuttingTl’ = QLHQf proves the lemma. O

The ZF criterion can be stated #0H” = I whereT is a diagonal (full
rank) matrix, and from Lemnid 1, there is alway®af rank M, which means it is
decomposable 8 W whereW is the beamforming matrix. This is equivalent
to always having rank one solutions for Zl} matrices inP; and consequently for
all 'Y; matrices inPs;. Note that the orthogonal projection is a bounded operator
so the low rank solution is always feasible (satisfying tbev@r constraint) if the
higher rank solution is feasible. Also, as longlas fixed, the capacity (minimum
rate) constraint is still feasible.

7.C Discussion on Remark 4

As proven in[[110], we may assume that there always is a raalsolution for the
variables(Zy); in the plain precoding probler;}=0,
Since(Z,); = (Ks)j(Ys)j(Ks)f, and(Kj); is tall with full column rank, it
follows that(Y); is also rank one. So the rank relaxation fy*=Y is tight.
Suppose the optimal solution 8*=C with any rank isY;.’ptforj =1,2,---, M,.
Extending the technique proposed lin [110] fay*=", this solution can be trans-
formed into the desired rank one precoder solution by sglvin

minimize  R{hf(j, ) K;t;}
subject to [k (i,:)t;[* < TF(B§Z’Z)Y?pt); A

opt

for t; = t77. The precoder is given by :, j) = Kjt;.’pt.
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Chapter

Conclusion and Future Work

We now revisit the research questions that were introdut&haptelL, i.e., to give
a concluding remarks on the covered topics. Moreover, plesfiiture directions
will be introduced which can be built upon this foundatiom fiarther research on
this area.

8.1 Summary of Results

This thesis was initiated by an actual industrial demandstal#ish a fast and
reliable wireless link within a mechatronic system, maitdyease maintenance
and to reduce the required space for these machinery devesareful inves-
tigation of the wireless channel within an enclosed envitent (similar to the
mechatronic system) via performing measurements, basithéosystem design
was founded. The first part of the thesis, including thregtdrs, is dedicated to
channel modeling (stochastic approach) and feasibilitgysof the specific prob-
lem of designing a wireless link within a mechatronic devi€arthermore, a thor-
ough overview of possible equalization techniques is giediwhich motivates the
use of frequency domain equalization and orthogonal fregdivision multiplex-
ing (OFDM) technique in such dispersive environment. Inigoid, an example of
OFDM design for the wideband communication model was pregaghich can be
deployed to achieve high data-rates in severe frequenegta& channels. In this
part, only single-input single-output (SISO) systems #ndied.

In the second part, the thesis investigates a more genaedneh area which
covers the transmitter design in multiple-input multiplgput (MIMO) systems.
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In fact, MIMO systems are an inevitable part of any moderreless standard that
aims for high data rate transmission. First, a brief ovevwamd system model is
given in Chapterl5. Building on this, a precoding techniquas wroposed which
takes the OFDM waveform, with potentially a large dynamiege, and delivers a
more predictable (close to a constant envelope) signahftransmission, which
is easier to deal with from an implementation point of vieunafy, the precoder

design was extended for relatively more complex conssantiuding per antenna
power constraint and limited available radio frequency)(Btains.

Note that we mainly looked dinear signal processing operators in this the-
sis and the system tsme-invariantat least over one processing block, so an LTI
model was considered here. Further, the instantaneousehstate information
was assumed to be available at the transmitter and the eecéMore specifically,
numerical algorithms anderative optimization techniquegre used as a general
tool to solve the resulting optimization problems. Accagly, the gist of the dis-
cussion was centered around how to model, formulate ane sdimear processor
given a priori knowledge about the communication channeiffiectively address
the challenges and opportunities in highly dispersiverenwvnents.

8.1.1 Classification of Non-convex Optimization for Commuitations

Apart from the application oriented problems that are adersid in this work, the
signal processing tools that are used throughout thisghiedbrmulate and solve
the underlying problems are interesting and deserve mtgatan in the context
of signal processing theory. Summarizing the thesis with dimgle leads to the
following overview of approaches for solving non-conveximypzation problems.
More specifically, the problems that have been addresseleirs¢cond part
of this thesis share the same structure in terms of the apiion problem to be
solved. Commonly, a multivariate nonlinear objective fiimt (performance mea-
sure), such as capacity, is to be maximized or a cost fun¢tidme minimized
subject to a set of equality or inequality constraints. Inegal, for an arbitrary two
complex (vector) variables of andy of lengthn, an optimization problem can be

stated as
minimize  f(x,y)
XYy
. 8.1
subjectto C; : h(x,y) =0 ®.1)
Coig(x,y) <0

Once the objectivef(x,y) : {x,y} € C* — R, is a convex (concave) function
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of the variables and the equality and inequality constsaare affine and convex
(concave), respectively, the problem is convex and candmsfiormed to standard
programming frameworks including linear, quadratic, s#gfinite programming

then there are standard optimization toolboxes that casée 1 solve these prob-
lems. If the problem is convex, the KKT conditions are suffittiand necessary
conditions for optimality and even if the problem can not berfulated as afore-
mentioned programming techniques, it is still solvablevjgted that the KKT equa-

tions are solvable [111].

In contrast to convex problems, there is no clear classibicaif non-convex
problems, nor is there a shortcut to summarize the broacerahyeuristic algo-
rithms [129]. The KKT equations, in general, may or may noteha closed form
solution (system of nonlinear equations) and in particidanon-convex problems,
the conditions are necessary but not sufficient for optipalih communications
theory, the existing problems are often non-convex and@hbird due to the non-
linear and/or discrete nature of the objective and comgaiTherefore, different
applications and examples are of great interest and camilmaet to this field of
research.

In this thesis, different approaches are provided to hathéienon-convex opti-
mization problems that we encountered. Two examples aengivequationd (619)
and [7.9). Based on the author’s experience on the topisilgesapproaches for
non-convex problems are briefly explained here.

1. The first step is transforming the constrained optimizrafiroblem to an un-
constrained one, using the method of Lagrange multipliersase of only
equality constraints [130]. Gradient based optimizaterhhiques including
gradient descent, conjugate gradient and quasi Newtonougtlre used to
solve many types of optimization problems. This required the objective
and the constraints are differentiable so the gradientl@dadcobian can be
defined explicitly to form the Lagrangian equation (root fimgdproblem).
For non-convex problems the Lagrangian equation may have than one
root which corresponds to the local optima of the objecih&l]. For gen-
eral optimization problems with equality and inequalitystraints, the KKT
conditions need to be solved in order to solve the optinozaproblem. The
solution for KKT conditions may be achieved numericallg.ethe waterfill-
ing solution for [5.2B). For non-convex problems, the solubf the KKT
conditions may converge to the global optimungst of the timeThis means
that the statistical performance of the algorithm is acgptwith respect to
the required accuracy. The performance and convergenaglofagorithms
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to the global optimum are highly dependent on the problencsire, and
more specifically is not guaranteed for non-convex objediinctions.

. Proximal formulation of non-convex problems is anotteahnique which

approximates the original problem (objective and constsito the piece-
wise linear or quadratic functions which the convergencadguaranteed.
Other transformations of the problem to ones with known eogwnce prop-
erties (even if not convex) are also possible. The PAPR prolih Chaptel 16
with the constant modulus algorithm that is used for sol¥hrgoptimization
problem, with some consideration, is an example of such proagh.

. For multivariate optimization problems, alternatingimjization techniques

are among the popular algorithms. The idea for alternatmogramming is
to fix one variable and solve the optimization problem withpect to the
other variable. This process is repeated until the solutmm/erges to the
optimal one. Particularly, when the objective and constsatan be separated
in terms of disjoint variables then the solution is equivale the original
problem [111]. The representation of such separable pmuble as follows

minimize minimize  f(x,y)

8.2
x€(C,C yelh,C 8:2)

whereC; andC, are functions ok andC’; and(’, are functions ofy. The
optimal solution is reached i (8.2) once both inner andropteblems are
convex and strictly speaking solvable, see [132] for an gtam

. Sequential (successive) programming is another apprtmasolve nonlin-

ear problems. Here, the objective and constrains are dstinvaith their
Taylor expansion at each iteration and the approximatioth@fproblem is
solved instead of the original problem. The approximati®mepeated till
the solution converges to the optimum, although this is n@rgnteed in
general. Sequential quadratic programming (SQP) is ladsivithin this
category which is known to be a powerful tool for solving rinaar opti-
mization problems|[133]. An example for the application &@FScan be
found in [18]. Moreover, SQP is a strong candidate for sgime hybrid
precoding problem that will be introduced in sectlon] 8.3. e Tifference
between the the proximal method and the sequential progmarsithat the
former approximate the problem once regardless of thealrgtiess, while
the later uses successive approximation of the problenudifréhe route to
the solution.
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5. Convex relaxation is a popular technique which projebts rion-convex
problem set to a larger convex set. The relaxed problem iedadhstead
of the original problem. The solution is hoped to be closehtogolution of
the original problem, and the tightness of the relaxatidhésmeasure of the
effectiveness of this method [111]. The proposed algostiimChaptef 17
are categorized as such. This field of research is relatively and there is
an increasing interest on convex relaxation techniquesdiving originally
non-convex problems, due to availability of various sadvirat can handle
convex optimization problems.

6. One of the effective tools to approach non-convex probl&io solve the
dual problem, which is convex by definition, instead of thienait problem.
Lagrangian duality is the most common duality paradigm ihased in this
context. However, the solution to the dual problem may noegeal to
the primal solution and gives a lower bound on the objectizieier in the
optimization problem. If the primal and dual solutions adentical then
there exist a zero duality gap [111].

Note that the aforementioned techniques are not exclusideee given based
on the experience of the author within the scope of this shelSor more general
and complete classification, see [129]. These type of opétiin problems can
be considered as potential research topics to be explordtefun the context of
wireless communications and signal processing.

After this summary, we now look back to the research questibat were de-
fined at the beginning of this thesis to evaluate the extettte@provided research
and the main contributions.

8.2 Contributions to the Posed Research Questions

Research Question 1 What limitations are imposed on the wireless link perfor-
mance and therefore the design criteria, when the commtioicaystem is con-
fined in a closed metal environment which is commonly the foasedustrial ma-
chineries?

In Chaptef R of this thesis, a comprehensive stochasticnethamodel was pro-
posed based on th# GHz measurement results within a metal cabinet. The es-
timated channel length (in the order ofuk) indicated an extremely long (slowly
damping) channel impulse response for such a confined matmbement. One
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distinguishing characterization of the measured chammété continuous multi-
path reception, which neither follows the well-known cargtg (Saleh-Valenzuela)
model nor the common sparse representation of the wirelesmel for millime-
ter waves. These measurement results opened up new oppestdior research
in system design and underlying signal processing teclesifmr highly dispersive
environments. This is due the unique properties of the tigeted wireless channel
which has not been reported before in the literature, to #s¢ of our knowledge.
Hence, this work can be referred to as one of the first millenetave channel
characterizations for confined wireless applications.

Even though accurate channel characterization allowsrwige and realistic
channel simulations, it is often too complicated to considea signal processing
model particularly for linear processing of the signal. fdiere a simpler model
is established in Chaptér 3 that can capture the most infaleeatures of the
measured wireless channel, i.e., the channel length andaiver delay profile.
Accordingly, we believe that the channel characterizatidnch is offered in this
work suffices to build a proper channel model for the desigh iamestigation of
signal processing algorithms.

Research Question 2 What are the competitive equalization options which are
capable of taming extremely dispersive wireless chanmeld, will the available
techniques admit the high data rate, great reliability ana/llatency requirements
of industrial applications?

This question was addressed in Chapier 3 by giving a compieteview of
competent linear equalization techniques for the consttiénear system model.
Single carrier modulation with frequency domain equaltratt the receiver side
or equivalently OFDM technique are concluded to be the maygable techniques
to combat the inter-symbol interference (ISI) resultimnirthe frequency selective
channel.

Motivated from the conclusion of Chapfer 3, a wideband systeodel and a
basic OFDM system design was proposed in Chapter 4 that cardprdata-rates
up to a few Gbps for the measured channels of Chapter 2. Wevbehese three
chapters provide enough material to give a clear persgeotivthe system perfor-
mance with respect to the different constraints on dag-tatency and reliability
of the system. In a nutshell, with the least complex proogsfinear computa-
tional complexity), a latency in the order of a few teng.efare foreseen. Also the
data-rate (in the order of a few Gbps) and a reasonable roit-eate was achieved
to a good extent via Matlab simulations. The latency is deiteed by the block
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processing delay (communication delay), and the procgskitay which is related

to the computational cost of the algorithms. The former s£dssed in Chapter 4
and that has a direct relation with the spectral efficienapefsystem. The latter is
highly affected by the design as well as the implementatidghevsignal processing
algorithms on a DSP, FPGA and etc. and results in variatiotise output latency.

This is worth investigation by the experts in this area.

Research Question 3 How to reduce the peak-to-average-power-ratio (PAPR)
efficiently and effectively in OFDM systems, particulady multiple antenna sys-
tems which has been less studied in the literature?

The PAPR is a rather old hardware related problem in digitaimunications
in general, and for multicarrier systems like OFDM in partgs. However, the
PAPR problem is less investigated for MIMO-OFDM systems. ablress the
PAPR problem in (multi-user) MIMO-OFDM systems, an intéirgs PAPR reduc-
tion technigue was proposed in Chapter 6. This algorithrhasve to be very effec-
tive via Matlab simulations. The proposed algorithm is $gzarent to the receiver
and does not impose extra processing at the other end, wlakbsit unique com-
pared to the existing techniques and is widely applicabMItdO-OFDM systems
of various types. To the best of our knowledge, there is neratgorithm reported
in the literature that can offer a comparable PAPR redug@in with such a low
cost in terms of the computations, and no cost of bandwidER Bnd power con-
sumption. However, the proposed technique relies on cegsgumptions on the
channel estimation and inversion at the receiver side andtislesigned for sys-
tems which exploit models for channel correlations betweemsecutive OFDM
blocks.

It is worth mentioning that the PAPR reduction is a timelylgeomn and there
is still ongoing research in this area specially for the eymgr millimeter wave
MIMO-OFDM systems with increasing hardware sensitivitheTauthor believes
that the most effective signal processing algorithms tolmainthe high PAPR, are
need to be developed in a close loop with the electronic feowt design and to-
gether with an RF design expert. Indeed, this is a multidisary problem and
is required to be treated as such, so a valuable follow upisfabrk will be im-
plementation and evaluation of the actual PAPR reductidn ghthe proposed
algorithm on a test platform.

Research Question 4 How to optimally use a MIMO system considering the ex-
isting hardware constraints?
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In Chapter V7, an antenna selection technique was studiedamaridclusive
framework was proposed to formulate this problem in the edndf transmit pre-
coding. The problem was stated as a joint antenna selecttbpracoding problem.
This solves for the optimal sparse precoder and leads tg assubset of channels
instead of the full channel with the ambition of lowering gignal processing bur-
den at the transmitter as well as the receiver. The mainibatibn of Chapter[7 is
the non-trivial relaxation techniques that are develogenlansform the originally
non-convex antenna selection problem to one that can bdduhhy available off-
the-shelf convex solvers. The proposed antenna seleatf@nse can be seen as a
convex optimization framework to formulate a general MIMf@gpding problem
considering the hardware constraints such as per anterwer ponstraints and
limited available number of RF chains.

However, the research question above demands much moresierteesearch
to fully accommodate different types of hardware constsawhich can be handled
by signal processing techniques. This requires first thetifieation and proper
modeling of the hardware constraints where this procesf isa broad area of
research and is impossible without a close collaboratiadh RF experts. The sec-
ond step is introducing a convenient formulation and fragrévio represent these
constraints effectively and later to trace appropriateaigrocessing tools that can
solve the given problem. The focus of this thesis was to additee latter aspect
for a very specific problem of MIMO precoding. Finally, we serthe necessity of
an overarching literature survey that collects all the jbsdhardware limitations
in this regard, particularly for the future millimeter wasgstems.

To summarize, the optimal design of a wireless system inrgémneby solv-
ing for all design parameters simultaneously in one op@tnin problem, as they
are all variables of one common objective which is the sygpenformance, ac-
cordingly multidisciplinary design is the ultimate appcba Overall, we covered
diverse topics in the field of wireless communications anshlirrange of areas
have been explored, from channel modeling to signal praugssd optimization
techniques. However, there are areas that are not touchedsiwork regarding
our main research question that was introduced in Chapies. lHow to design
a highly reliable short-range gigabit wireless link within a confined metal en-
vironment subject to a rigid latency requirement. These mainly concern the
practical requirements for the implementation of the systnd their impact on
the estimated performance and latency.
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8.3 Future Work

In this section we provide some research directions thabednllowed as a result
of this thesis. First we introduce direct extensions of thappsed techniques that
can be considered to improve or evaluate the performance.

8.3.1 Antenna Selection at Uplink

In traditional MIMO systems, precoding is performed dithjtaat the baseband
where dedicated RF chains are required for each antenn@m=i¢@¥]. Unlike the
antenna elements that can be manufactured and deployedyéndeales, the RF
chain components are expensive and bulky to install andtaiajrparticularly for
emerging 60 GHz technology [134]. One possible solutioretiuce the number of
RF chains yet benefit from large scale MIMO systems is the aateinna selection
technique that is discussed in Chajpter 7.

The proposed model in Chapier 7 aims at downlink antennatamieat the
base station, however, it can be extended to include antesleation in the up-
link direction or more specifically at the user device. Néweless, the underlying
signal processing algorithm to perform antenna selectigheauser side needs to
be computationally much more efficient compared to the orteeabase station.
This is due to the fact that user devices are commonly batieeyated and require
low power consumption. For example, alternative proxinpalrsity inducing reg-
ularizers which are differentiable and leverage gradiexsel algorithms can be
considered [135].

8.3.2 Hybrid Precoding

An alternative approach with respect to the hard antenmeetseh that is discussed
in Chaptel.V, is soft antenna selection, which is widelymrefi to as hybrid pre-
coding. In hybrid precoding, beside baseband processitigeicomplex domain,
RF processing is considered using analog phase shiftes 183/ 138, 139]. This
is by decomposing the precod® ¢ CM*Mr into two partsWrg € CMexE
Wgg € CL*Mr \wherelM, and M, are the number of transmit and receive anten-
nas, respectively, antlis the number of available RF chains. The elemenWige

is required to be constant modulus since only phase shdterased to implement
the RF precoder. Mathematically, hybrid precoding, for imazing the capacity,
is a hard (non convex) problem to solve. The main invesbga to formulate the
problem so it can be solved using known optimization teaesqg It is expected
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to have better performance results for hybrid precodingriiegie compared to the
antenna selection scheme for the same number of RF chains.

8.3.3 Imperfect Channel State Information

Throughout this thesis, we assumed that perfect chanmainiation is available
at the transmitter so the processing can be classified asmieigtic approaches.
However, in practice this is not the case. Specifically, wthenfeedback channel
from the receiver is used to inform the transmitter abouttiennel, limited band-
width with a coarse bit quantizations are used. This can teagroneous chan-
nel information and potentially degrades the performarfae wireless system.
Considering this imperfection and deriving proper bouralgtaluate the model
mismatch can be the next research topic for both hard andasté#hna selection
techniques. Another type of imperfection can be considerben second order
channel statistics such as a channel covariance matrixaitable instead of the
instantaneous channel information, and accordingly thstictal performance of
the algorithms may be investigated with respect to thisrgamwledge which is
more towards the stochastic system design approach.

The aforementioned topics are the immediate follow ups®fxbrk presented
in this thesis. Now we will introduce more generic reseangids that are made
available as the outcome of this thesis, as well as some eredareas that are yet
to be investigated.

8.3.4 Capacity Analysis for Highly Dispersive Channels

In Chaptel 2 of this thesis, channel characterization wefsieed for an extremely
reflective environment within a metal cabinet. The resukts@tably different from
what has been reported in the literature. The channel frexyueesponse shows
quick fluctuations. As a consequence, the coherence batidwfdhe channel
is significantly narrow. Initial investigations show that the’ 5 GHz bandwidth,
centered ab9.5 GHz, the channel is Gaussian distributed over frequencyis Th
leads to a Rayleigh fading distribution in frequency domaaid one can show that
the Shannon capacity in such frequency selective charsefspier-bounded by the
capacity of an AWGN channel with SNR given hy= % o2 and P being the
noise power in each frequency band and the transmit powspectsvely. Indeed.
this result follows by averaging the capacity (bit per setpar Hz) over relatively
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many(/N) frequency bands as

1 Y P|B? P|g?

where N is the number of frequency bands afids a Gaussian random variable
which characterizes the fading in the frequency domainngdensen’s inequality

P|s?

P
E{log(1 +
{Og( N

2
Noz

Py ea

)} < log(1+E{|B*} ) = log(1 +

oy
onceE{|3|%} is unity. This has not been reported before in the literatarthe
best of our knowledge and can be exploited to arrive at mosépnd capacity
analysis for such channels. This can be viewed as an exteo$ithe work to
addresRResearch Question 1

Furthermore, the capacity of the fading wireless channebmplexity limited
systems (including computational complexity) is not stéaldat all. This is tightly
related to latency (delay) constrained systems includiegatireless link for indus-
trial machineries. Recently this problem is consideredafspecial receiver which
uses a lattice search [140]. The maximization of the mutifakination (to obtain
the capacity) is performed subject to the linear complesitthe optimal receiver.
This can be further investigated to give a more realisticomodf delay constrained
channel capacity. In general, the mutual information fraork offers a versatile
guantitative measure to evaluate the effectiveness of ah@rwnication channel
with respect to different choice of processors, which isexqilored fairly in the
signal processing literature. Therefore the communioatide per channel use is
potentially a global measure that can fairly describe theral’as well as step by
step efficiency of the system and can replace many of the toealsures that are
used for system design.

Finally, we did not look at nonlinear signal processing teghes due to their
complications and susceptibility to hardware imperfatiio This can be further
investigated in the context of this thesis. Also, distrdalialgorithms for ad-hoc
implementation of wireless sensors and decentralizedoappes are not covered
in this thesis and can be considered for future extensions.

We hope that the research directions that are providedsrctiapter can open
up new ideas to be investigated in the field of wireless coniaation and sig-
nal processing theory. There are still many challenges tmémtified and han-
dled to promise impeccable wireless connections, for deliingnindustrial and
secure applications which often take place in alternatie nusual propagation
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environments. However, the author believes that this wark introduce a fair
example of an academic approach to tackle a rather wide atiiisciplinary
research/engineering problem.
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Propositions

10.

The frequency domain response of the channel within almatdosure is
sparse.

. A priori knowledge of a communication channel is esséftiaan optimal

system design as the information sent over a “bad” chanmeiatabe re-
trieved by any means of processing.

A suboptimal solution is often more valuable in terms & gerformance-
complexity trade-off, nevertheless knowledge of the optigsolution is a
great aid to quantify this trade-off.

Linear, quadratic and semidefinite programming are gua® to drawing
on a flat, cylindrical and spherical surface, respectivBhlving non-convex
optimization problems is like drawing on a crumpled ball appr.

Teaching and learning can be modeled as stochastic Jrqo@gesses so the
mutual information between the teacher and the student isnmeed by
recognition and characterization of the noise that is priese

. The ubiquitous availability of wireless connections magoduced the habit-

ual use of smartphones which has absurdly reduced real huntesactions,
contrary to the genuine objective of communication.

. In a world played by the rules set by a masculine mentatitg, less likely

that people with feminine skills would excel and visa versa.

. Individualism is an inevitable part of modernism thatgeit untamed, could

lead humanity to a new level of self-destruction.

. Self-reference is a paradox in most religious arguments.

“... there is no more dreadful punishment than futile hogeless labor.”
Albert Camus, The Myth of Sisyphus
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These propositions are regarded as opposable and defendaldl have been
approved as such by the promotor, Prof. Alle-Jan ven der.Veen



Summary

The advent of the digital era has revolutionized many aspkour society and
has significantly improved the quality of our lives. Consamfly, signal processing
has gained a considerable attention as the science belardigital life. Among
different applications for signal processing theory argbathms, wireless com-
munications remains one of the attractive and popular onedalthe widespread
use of mobile devices.

This thesis is dedicated to develop signal processing ihgos to design high-
speed wireless transceivers that can perform in highly atefe and harsh envi-
ronments. The start of this research work initiated as abolation between TU
Delft and an industrial partner, on a research aimed at saonge gigabit wireless
link within a lithography machine. The underlying uniquereless environment,
together with the challenging specifications of the comrmatin link for mecha-
tronic systems, made this a compelling research project.

The first part of this research work focuses on constructimgliable propa-
gation model for dispersive environments, based on actealsorements. In our
opinion it is crucial to have decent models to build effeettheory and applica-
tions upon it. We developed a statistical channel modeltfel60 GHz band for
the extreme case of a confined metal enclosure in order toaeahnd test the
existing signal processing algorithms under such pessiasmbient conditions.
This unique experiment opened up new research challendmskbdack to popular
design paradigms and reevaluate them with respect to tipeged channel model
with a delay spread in the order of microseconds.

The concept of orthogonal frequency division multiplexi@~DM) transmis-
sion was revisited and a customized OFDM system was desigh&dh meets the
data rate requirements of the mechatronic system of iritefé®e effectiveness of
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the proposed OFDM design was examined via Matlab simulsitiging the mea-
sured and modeled channels. Interestingly, the perforenahthe OFDM system
is not heavily affected by the frequency selectivity of txreme propagation en-
vironment. The loss is mainly due to the time guard that isadeed to avoid inter-
ference between consecutive OFDM blocks, suggesting the@fulonger OFDM

blocks to minimize the bandwidth loss.

The second part of this thesis is dedicated to multipletinpultiple-output
(MIMO) systems versus the single-input single-output (®ISystem which was
studied in the first part. The emphasis is on general chakeimghigh speed (wide-
band) communication systems rather than the specific @i dilek within a mecha-
tronic machine. Challenging research questions are peggdding the design and
implementation of MIMO systems. This part starts with atingoduction to such
systems and redefining our system model with respect to théOvBetting and it
continues by revisiting the timely problem of peak-to-ager power-ratio (PAPR)
reduction in OFDM systems, which deals with stochasticgabtpendent) OFDM
waveforms, and the proposal of an effective algorithm todkarhis challenge
within the MIMO context . The hard problem of antenna setettior a MIMO
system was considered at the end by investigating diffdneear precoding de-
signs subject to the realistic hardware constraints incuger antenna power con-
straints (rather than a conventional total power congjraind limited number of
RF chains.

The major content of this thesis concerns offering altévadbrmulations and
optimization problems for transmitter design in the cohtlinear signal process-
ing, to include hardware constraints which are more ctiilt@merging millime-
ter wave wireless systems. This requires the reformulaimhrelaxation of non-
convex and hard design problems to make them suitable fdebleoptimization
tools, including sub-optimal but less computationally @ewting algorithms based
on non-convex optimization theory. A short classificatidrthese non-convex op-
timization techniques is given as part of the conclusiorhin last chapter of this
thesis.



Samenvatting

De komst van het digitale tijdperk heeft vele aspecten vae @amenleving veran-
derd en heeft de kwalliteit van leven significant verbeterd.d& wetenschap achter
het digitale leven staat signaalbewerking in de belanigsjelOnder de toepassin-
gen van signaalbewerkings-theorie en algoritmes is doaadtommunicatie een
van de aantrekkelijkste en populairste, dit vanwege heatweipreide gebruik van

mobiele apparaten.

Dit proefschrift behandelt signaalbewerkings-algorireesr het ontwerp van
hoge-snelheid draadloze transceivers die kunnen opdreneoeilijke omgevingen
met veel reflecties. Dit onderzoek begon als een samenvgevkim TU Delft met
een industriele partij, gericht op een giga-bit draadlogdbwnding over korte afs-
tanden binnen een lithografie-machine. De onderliggengikedraadloze omgev-
ing, samen met de uitdagende specificaties van de vereistagnicatieverbinding
voor mechatronische machines, maakte dit een interessdataneksproject.

Het eerste deel van dit onderzoek richt zich op het verkmijgn een betrouw-
baar propagatiemodel voor dispersieve omgevingen, gefthee echte metingen.
Naar onze mening is het cruciaal om geschikte modellen tbdrelom daarop
effectieve theorie en toepassingen te kunnen baseren. Wé&kkelden een statis-
tisch kanaalmodel voor di# GHz band voor het extreme geval van een dichte met-
alen kast om daarmee de bestaande signaalbewerking#rakgote kunnen testen
onder zulke negatieve omstandigheden. Dit unieke expetigaf aanleiding tot
nieuwe onderzoeksvragen rond populaire ontwerptechmiekehet evalueren hi-
ervan in het licht van het voorgestelde kanaalmodel met peiding in de tijd in
de orde van microseconden.

Het OFDM concept voor het versturen van data is opnieuw kel een
aangepast OFDM systeem is ontworpen waarmee de benodigalsrsdheden
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van het beschouwde mechatronische systeem gehaald kuramdanw De effec-
tieviteit van het voorgestelde OFDM ontwerp is onderzociddels Matlab sim-

ulaties gebruikmakend van de gemeten en gemodelleerdéekanateressant ge-
noeg blijkt dat de prestatie van het OFDM systeem niet stenklibeinvioed door
de frequentie-selectiviteit van de extreem reflectieve ermg. Het verlies aan
bandbreedte is hoofdzakelijk een gevolg van de ongebrdijtentervallen die

toegevoegd zijn om storing tussen opeenvolgende OFDM blok& vermijden.

Het gebruik van langere OFDM blokken zou dit verlies kunnerminderen.

Het tweede deel van dit proefschrift behandelt multi-ange(MIMO) syste-
men, in tegenstelling tot het enkele-antenne (SISO) systi in het eerste deel is
bekeken. De nadruk ligt op algemene uitdagingen rond hoghsids (breedband)
communicatiesystemen, in plaats van de specifieke draadierbinding binnen
een mechatronisch systeem. Uitdagende onderzoeksvragdrhet ontwerp en
de implementatie van MIMO systemen worden gesteld. Dit degint met een
korte inleiding voor zulke systemen, en het herdefinieram aas systeemmodel
naar deze MIMO situatie, en het vervolgt met het opnieuwjkeRivan het actuele
probleem van het reduceren van de verhouding van de pieketogdmiddelde
vermogen (PAPR) in OFDM systemen, en het afleiden van eectieff@lgoritme
om dit in de context van MIMO systemen te verbeteren. Totislbet moeilijke
probleem van het kiezen van de beste deelverzameling vanreeg in een MIMO
systeem, in combinatie met verschillende lineaire pregpdechnieken met real-
istische beperkingen op de hardware, waaronder een venslogeet voor iedere
antenne apart (in plaats van de gebruikelijke beperkingebpdtale vermogen), en
een beperkt aantal RF ontvangers.

Het merendeel van dit proefschrift gaat over het verkrijgem alternatieve for-
muleringen en optimalisatieproblemen voor zenderontweepchreven door mid-
del van lineaire algebra, en het rekening houden met beyggrkiaan de hardware
die des te belangrijker worden in toekomstige millimeteltgraadloze systemen.
Dit vereist het herformuleren en afzwakken van niet-coaveoeilijke optimal-
isatieproblemen om deze geschikt te maken voor beschikiyatimalisatiepro-
gramma’s, waaronder sub-optimale maar minder complexaiates, gebaseerd
op niet-convexe optimalisatietheorie. Een kort overzigdmh deze niet-convexe
optimalisatietechnieken is gegeven als onderdeel van delusie in het laatste
hoofdstuk van dit proefschrift.
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