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Chapter 1
Introduction

Wireless communications has become an essential part of modern life and indus-
try, covering a great variety of applications ranging from satellite communications
and cellular networks to the networks of wireless sensors. Consequently, there are
various communication links with different ranges, data rates and latencies which
are designed for diverse applications and specifications. Apeaceful coexistence
of all these wireless devices which share the same medium is not possible with-
out careful accessibility regulations. The standardization of wireless technologies
provides a map to the existing products and illustrates the borders and boundaries
of the telecommunications industry. A summary of these standards indicates the
edges and highlights the research areas of the wireless technology.

1.1 Trends in Wireless Communications

Wireless standards are often categorized according to their range and data rates for
different applications. A map for a number of wireless standards in terms of their
operational range and data rates is shown in Fig. 1.1 [1]. Wireless personal area
network (WPAN) technologies target low-cost and low-powerapplications within
a short range up to tens of meters, while a wireless local areanetwork (WLAN)
covers greater distances up to hundreds of meters, but requires more expensive
hardware and has a higher power consumption [2].

Indeed, short-range wireless communication (up to 10 m) is one of the evolving
areas among current wireless applications to provide connections between various
wireless devices at close distances. Home appliances, industrial and even medical

1
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Figure 1.1: Conventional data rates and operational rangesfor wireless standards.

devices are shifting towards the use of wireless connections for the sake of easing
the mobility, installation and maintenance. Some standards and technologies have
specifically been developed to cover such short-distance applications with limited
throughput such as Bluetooth and ZigBee. Accordingly, wireless USB which oper-
ates in the frequency range of 3.1 to 10.6 GHz, is built upon ultra-wideband (UWB)
technology and it is capable of sending up to 0.5 Gbps, to support compressed video
streaming. Further improvements will not be seen in the nearfuture for wireless
USB, due to the restrictions on the transmit power levels imposed by regulatory
bodies.

To cover the real-time streaming of data such as video and music, the IEEE
802.15.3 (WPAN) standard was established for a high data rate and high quality
of service. Particularly, the 802.15.3c sub-group was launched to design a WPAN
standard for a multi-gigabyte transmission on a millimeter-wave carrier which op-
erates in the unlicensed band of 57-64 GHz defined by the Federal Communica-
tions Commission (FCC). The choice of millimeter-wave enables the simple coex-
istence with other microwave WPAN standards. This is the latest IEEE standard on
WPAN and it enables the streaming of high-quality video and other contents be-
tween servers and portable devices. This includes applications such as high speed
internet access, streaming content download (video on demand, HDTV, home the-
ater, etc.), real time streaming, and wireless data bus for cable replacement [3].

Modulating the signal at millimeter-wave frequencies facilitates the positioning
of many antennas in a small area [4, 5], which enables multiple-input multiple-
output (MIMO) systems with very large antenna arrays and consequently higher
data rates. The availability of broadband spectrum in the frequency band around
60 GHz provides a great opportunity for ultra-high data rateshort-range wireless
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communications. This frequency band was quite recently proposed for outdoor
cellular communications in the emerging 5G standard (visible on the right top of
the wireless standards map in Fig. 1.1 ) [6]. The growing trend towards 60 GHz
transmission motivates a great deal of study and research inthis area from hardware
and integrated circuit (IC) design to signal processing andalgorithm development
and standardization. However, the huge data throughput andthe ultra-high carrier
frequency give rise to serious challenges for the low-cost and reliable radio design.
Challenges involve aspects of channel propagation issues,baseband modulation
schemes, antennas and IC technologies [7].

This classification leads us to spot the challenges in wireless technology and to
proactively shift towards modern telecommunications systems which are capable
of delivering superior data rates reliably and fast. This isin line with the actual
consumer urge which is the main motivation engine behind thedevelopment of
new technologies and underlying research activities, and this research work is no
exception in this regard.

1.2 Research Motivation

Inside mechatronic and industrial machinery, the requiredwiring is an increasing
concern, as it comes with issues like reliability, space efficiency, and flexibility. It
thus becomes interesting to replace the wires by wireless connections. On the one
hand, using multiple cables inside a dense area to connect moving parts within a
confined space can significantly complicate the design and maintenance of the sys-
tem. A wired connection to a moving part affects the dynamicsand may cause cable
jams and frequent damage to such machineries. On the other hand, current wireless
technology does not meet the data rates and latency offered by wired standards like
gigabit Ethernet. In fact, the required specifications for many industrial applica-
tions, including gigabit rate and low latency plus high reliability, are nowhere near
the existing wireless standards as discussed in Section 1.1.

Specifically, wireless sensor networks (WSN) are currentlyof growing inter-
est for industrial usage and they are mainly categorized as short-range wireless
technologies due to battery limitations. Generally, thesesensors are distributed
to observe environmental and ambient conditions includingtemperature, sound,
vibration, pressure, motion, etc., and they are widely usedwithin mechatronic sys-
tems where human interaction is limited if not impossible [8]. A wide range of
WSNs demand high data rates and extremely reliable connections between sensor
nodes and possible control units.
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This thesis is based on a collaboration between Delft University of Technology
and industrial partners and poses real and demanding research questions related
to the design and development of a wireless link inside a lithography machine.
Lithography systems play a critical role in the developmentand manufacturing
of ICs. The lithography process requires extremely accurate mask and substrate
positioning. This task is performed via several sensors andactuators on a moving
platform, which are typically connected to the control units via flat-cable wires. The
moving platform experience a very high acceleration. The stiffness of the cables
causes undesired disturbances to the system, which leads toinaccurate positioning.
Also, the trend towards increasing numbers of moving sensors makes the design of
the wiring system prohibitively complex, therefore the replacement of the cables is
of interest.

The lithography system of interest consists of several(20−30) moving sensors
and one fixed central unit within a closed metal environment inside the lithography
machine. The operating distance varies between0.5 − 300 cm and the maximum
velocity of the moving sensors is10m

s . The sensors collect the data and send them
over the wireless channel within the enclosed environment to the central processing
unit to be used in a wideband control loop. A data block is sentevery50 µs seconds,
but only a small portion of time is dedicated to transmission, while most of the time
is reserved for control processing. The main specificationsof the system include
high (peak) data rates (Gbps) and a very low latency (µs).

Accordingly, the initial problem statement and the main motivation behind this
thesis can be formulated in one question:How to design a highly reliable short-
range gigabit wireless link within a confined metal environment subject to a
rigid latency requirement.

Obviously, for delivering a comprehensive working model, many intercon-
nected design levels have to be considered which clearly takes more than one PhD
thesis to be accomplished. During the progress of the thesis, the initial research
question has been generalized and diversified which is discussed in the next sec-
tion.

1.3 Thesis Contributions and Outline

The central research question is partitioned into sub-questions which are addressed
in this thesis.
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Research Question 1 What limitations are imposed on the wireless link perfor-
mance and therefore the design criteria, when the communication system is con-
fined to a closed metal environment which is the common case for industrial ma-
chineries?

A fundamental difference between typical indoor and outdoor wireless appli-
cations with industrial systems arises in terms of very distinguished propagation
environments. Accurate and viable wireless channel modelsare of vital impor-
tance to design a realistic and functioning wireless system. Therefore, to move
towards a reliable and fast wireless connection for industrial usage, many efforts
have been made to provide suitable and inclusive channel models. For very small-
scale applications such as inter chip connections [9] or board-to-board commu-
nications [10, 11], a noticeable difference, in terms of channel properties, has
been reported in the literature compared to the typical indoor and UWB chan-
nels [12, 13, 14, 15, 16]. Also, Ohira et al. studied propagation characteristics
inside information communication technology (ICT) equipment such as a printer,
vending and automated teller machine (ATM) [17]. However, there seems to be
no literature on channel models for closed metal environments, particularly for
the millimeter-wave band which is chosen to be the most suitable frequency band
for very high-rate wireless applications as motivated in Section 1.1. Therefore,
a channel measurement campaign has been conducted to provide statistics on the
radio frequency (RF) behavior in a metal enclosure which emulates the environ-
ment within a lithography machine. The measurement resultshave been processed
carefully to establish the foundations for further system design. The results and a
comprehensive channel model for a wideband 60 GHz wireless system is presented
in Chapter 2. A frequency domain channel sounding technique is used for obtain-
ing channel impulse responses for multiple locations of thereceive antennas on a
fine grid map within metal closets of several dimensions. Theresults indicate that
the channel impulse response within a closed metal cabinet is significantly longer
in time compared to the reported channels in the literature,i.e. having an extremely
dispersive environment to conduct a wireless connection.

Research Question 2 Long and fading-prone channels require fading resistant
modulation and equalization techniques.What are competitive equalization options
which are capable of taming the extremely dispersive wireless channel and will the
available techniques admit the high data rate, great reliability and low latency
requirements of industrial applications?

A review on existing equalization techniques for dispersive channels is given in
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Chapter 3. This includes time domain and frequency domain techniquesas well
as block processing and serial equalization algorithms. Anexplicit comparison for
different equalization techniques with latency and complexity evaluations provides
a clear measure for choosing the most proper equalization technique for particular
specifications.

Wideband transmission techniques are briefly reviewed within the system model
of interest, inChapter 4. Interestingly, almost all wideband wireless standards use
a multi-carrier technology known as Orthogonal-frequency-division-multiplexing
(OFDM), where the band is divided into many narrowband channels, i.e., one of
the prime candidates for transmission in highly dispersivechannels. A key benefit
of OFDM is that it can be efficiently implemented using the fast Fourier trans-
form (FFT), and that the receiver structure becomes simple since each channel or
sub-carrier can be treated as narrowband instead of a more complicated wideband
channel [18]. A detailed OFDM system design is sketched for awideband appli-
cation based on the measured channel impulse responses fromChapter 2 and the
BER performance and latencies are simulated and illustrated for different possible
settings. This gives an initial hint on the achievable data rates and latency of an
OFDM system in such a dispersive and hostile environment.

This is the end of the first part of this thesis, which considers a single-input
single-output (SISO) communication system, and more specifically is dedicated to
the channel characterization and system design for the lithography device of in-
terest. The second part of the thesis, which covers a more general problem than
the “proposed system in metal box”, starts withChapter 5. This chapter, is ded-
icated to review material on multiple-input multiple-output (MIMO) system and
the associated capacity boost with respect to a SISO system.The system model is
also renewed here to accommodate the MIMO setting considered in the subsequent
chapters.

Research Question 3 Although OFDM has impressive fading-resistance proper-
ties, a well known drawback is the high peak-to-average-power-ratio (PAPR). If the
maximum amplitude of the time domain signal is large, it may push the transmit
amplifier into a non-linear region which leads to an erroneous detection and de-
grades the overall performance of the system dramatically.The major challenge is
how to reduce the PAPR efficiently and effectively in OFDM systems, particularly
for multiple antenna systems which have been less studied inthe literature.

PAPR reduction techniques have been developed over the pastdecade to ad-
dress this important problem of OFDM systems, however thereis always a notice-
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able trade-off between reducing the PAPR metric and the sacrificed bandwidth or
complexity even in popular techniques. We propose a novel and effective signal
processing technique inChapter 6 which can be implemented at the transmit-
ter side of MIMO-OFDM systems with minimal complexity overhead. A major
competence of the proposed algorithm is its transparency tothe receiver which en-
ables the independent implementation in current working wireless systems without
a concern to modify the (mobile) receivers.

Research Question 4 To push the boundaries on throughput and performance
of wireless systems, MIMO systems have widely been researched over the past
decade. The emerging 60 GHz technology sheds new light on MIMO systems
by enabling a large number of antennas in a limited space.How to optimally use
multiple antennas and transceivers with respect to their hardware constraints is
the subject of the last research question that is covered in this thesis.

It is no secret that the capacity of the wireless channel can be increased linearly
with the minimum number of the transmitters and receivers ina MIMO system
[19]. However, the hardware complexity of the system is increased respectively as
there are more RF chains including expensive non-linear components. The online
complexity of the system can even grow combinatorially as optimal detection is
required to be performed on a vector of the received data frommultiple antennas
rather than a single output. An increased signal processingburden such as higher
order equalization, beamforming etc. are other aspects of MIMO systems and this
leads to a more complex and susceptible system due to hardware and software
imperfections. We aim to limit the complexity and yet benefitfrom the diversity
and multiplexing gains offered by a MIMO system.Chapter 7 of this thesis is
dedicated to formulate and solve for an optimal precoder subject to complexity
constraints such as a limitation on the number of RF chains ora per antenna power
limit, in this context. This is achieved by jointly defining aprecoding and antenna
selection pre-processor. The original problem is shown to be extremely difficult to
solve and an alternative sub-optimal approach is proposed to solve a relaxed version
of the problem.

Besides the revisited and proposed techniques and the application-oriented re-
search questions that were summarized here, the signal processing tools to formu-
late the problems and the solution mappings are of high importance and are con-
sidered as thesis contributions. Optimization theory and techniques are among the
most used signal processing tools that have been consideredin this work. In partic-
ular, we have developed non convex optimization algorithmsand convex relaxation
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techniques for the problems involving quadratic power expressions that appear fre-
quently in communications, motivated by the common power constraints that are
posed in order to avoid unstable systems or to protect hardware components. Also,
most of the quantitative measures for performance evaluations are linear or non-
linear functions of power, such as channel capacity or interference measures. Some
interesting examples, are presented throughout this thesis inChapter 6 andChap-
ter 7 and many are left for further investigation.Chapter 8 concludes the thesis
by reviewing the presented topics and introducing the related problems and future
directions for continuation of this work.

The general notations throughout this thesis are as follows: bold upper case and
bold lower case symbols indicate matrices and vectors, respectively andIN denotes
an identity matrix of sizeN . The conjugate transpose, conjugate, and transpose of
a matrixA are denoted asAH , A∗ andAT . Statistical expectation of vectora
is denoted byE{a}. More specific notations are explained in time. Each chapter
follows its own notation, in the sense that the symbols are not globally defined
throughout the thesis. In turn, the abbreviations are introduced at each chapter.

1.4 List of Publications

Journals

1. S. Khademiand A. J. van der Veen, “Constant Modulus Algorithm for Peak-
to-Average Power Ratio (PAPR) Reduction in MIMO OFDM/A,” Signal Pro-
cessing Letters, IEEE , vol.20, no.5, pp.531-534, May 2013,
doi: 10.1109/LSP.2013.2254114.

2. S. Khademi, S. Prabhakar Chepuri, Z. Irahhauten, G. Janssen and A. J. van
der Veen, “Channel Measurements and Modeling for a 60 GHz Wireless Link
Within a Metal Cabinet,” Wireless Communications, IEEE Transactions on,
vol.14, no.9, pp.5098-5110,
doi: 10.1109/TWC.2015.2432755.

3. S. Khademi, G. Leus and A. J. van der Veen, “Convex Optimization for
Joint Antenna Selection and Precoder Design in Multi-user MISO Systems,”
Submitted to Signal Processing, Elsevier, April 2016.



1.4. List of Publications 9

Conferences

1. S. Khademi, A. J. van der Veen and T. Svantesson, “Precoding technique
for peak-to-average-power-ratio (PAPR) reduction in MIMOOFDM/A sys-
tems,” Acoustics, Speech and Signal Processing (ICASSP), IEEE 38th Inter-
national Conference on, pp.3005-3008, March 2012,
doi: 10.1109/ICASSP.2012.6288547.

2. S. Khademi, S. Prabhakar Chepuri, G. Leus and A. J. van der Veen, “Zero-
forcing pre-equalization with transmit antenna selectionin MIMO systems,”
Acoustics, Speech and Signal Processing (ICASSP), IEEE 39th International
Conference on, pp.5046-5050, 26-31, May 2013,
doi: 10.1109/ICASSP.2013.6638622.

3. S. Khademi, S. Prabhakar Chepuri, Z. Irahhauten, G.J.M. Janssen and A.J.
van der Veen, “Channel characterization for wideband 60 GHzwireless link
within a metal enclosure,” Antennas and Propagation (EuCAP), 8th Euro-
pean Conference on, pp.1575-1579, April 2014,
doi: 10.1109/EuCAP.2014.6902085.

4. S. Khademi, E. DeCorte, G. Leus, G. and A. J. van der Veen, “Convex opti-
mization for joint zero-forcing and antenna selection in multiuser MISO sys-
tems,” Signal Processing Advances in Wireless Communications (SPAWC),
IEEE 15th International Workshop on, pp.30-34, June 2014,
doi: 10.1109/SPAWC.2014.6941311.

5. N. Bakhshi Zanjani,S. Khademiand G. Leus, “Gradient-based solution for
hybrid precoding in MIMO systems,” submitted to Acoustics,Speech and
Signal Processing (ICASSP), IEEE 42th International Conference on, March
2017.



10



Part I
Wideband Channel Characterization and System Design

11



12



Chapter 2
60 GHz Channel Measurements and
Modeling Within a Metal Cabinet

This chapter presents the channel measurements performed within a closed metal
cabinet at 60 GHz covering the frequency range 57- 62 GHz. Twodifferent vol-
umes of an empty metal cupboard are considered to emulate theenvironment of
interest (an industrial machine). Furthermore, we have considered a number of
scenarios like line-of-sight (LOS), non LOS (NLOS), and placing absorbers. A
statistical channel model is provided to aid short-range wireless link design within
such a reflective and confined environment. Based on the measurements, the large
scale and small scale parameters are extracted and fitted using the standard log-
normal and Saleh-Valenzuela (SV) models, respectively. The obtained results are
characterized by a very small path loss exponent, a single cluster phenomenon, and
a significantly large root-mean-square (RMS) delay spread.The results show that
covering a wall with absorber material dramatically reduces the RMS delay spread.
Finally, the proposed channel model is validated by comparing the measured chan-
nel with a simulated channel, where the simulated channel isgenerated from the
extracted parameters.

This chapter is published as “Channel Measurements and Modeling for a 60 GHz
Wireless Link Within a Metal Cabinet,” Wireless Communications, IEEE Transac-
tions on, vol.PP, no.99, pp.1-1, doi: 10.1109/TWC.2015.2432755.
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2.1 Introduction

2.1.1 Problem Context

Inside mechatronic and industrial machinery, the requiredwiring is an increasing
concern, as it comes with issues like reliability, space efficiency, and flexibility. It
thus becomes interesting to replace the wires by wireless connections. Literature
refers to a so-called “wireless harness” for the communication between components
inside machinery devices where the propagation distances are in the order of a few
meters or less [20]. On the one hand, using multiple cables inside a dense area
to connect moving parts within a confined space can significantly complicate the
design and maintenance of the system. A wired connection to amoving part affects
the dynamics and may cause cable jams and frequent damage to such machineries.
On the other hand, current wireless technology does not meetthe data rates offered
by wired standards like gigabit Ethernet. To move towards a reliable and fast wire-
less connection for industrial use, many efforts have been made to provide suitable
channel models for the wireless harness applications. In very small-scale applica-
tions such as inter chip connections [9] or board-to-board communications [10, 11],
a noticeable difference, in terms of channel properties, has been reported in the lit-
erature compared with the typical indoor and UWB channels [12, 13, 14, 15, 16].
Furthermore, Ohira et al. studied the propagation characteristic inside the informa-
tion communication technology (ICT) equipments such as a printer, vending and
automated teller machine (ATM) [17] which is the most relevant work in spirit to
this chapter as the channel is measured inside a metal enclosure. Also, a simple
communication system is tested for ICT devices and associated results are reported
in [21].

The unlicensed multi-GHz spectrum available around 60 GHz has gained a lot
of interest in the past decade for both indoor and outdoor applications [22, 23, 24].
Specifically, this millimeter-wave band has the ability to support short-range high
data rates in the order of Gbps. Both 802.11ad and 802.15c areevolving standards
based on this alternative bandwidth (BW) [2, 3]. As a result,many measurements
have been conducted to model the propagation environment at60 GHz. While the
literature is mostly concentrated on indoor channel characterization at this band
[25, 26, 27, 28], channel models for outdoor implementationof wireless systems
based on millimeter-wave have also been investigated [29].However, there are
numerous issues for long-distance communications in this band due to the large at-
tenuation of radio waves because of oxygen absorption. A good survey on channel
measurements in 60 GHz can be found in [30].
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Channel characterization results for short-range wireless links in the 60 GHz
band, have been reported in [31, 32, 3], however, the channelcharacterization for
the so-called wireless harness application1 is not yet reported. The physically
available BW (at least 5 GHz) and small antenna size makes the60 GHz band very
appealing for wireless harness applications. Furthermore, the integration of anten-
nas on small chips [33] can facilitate the deployment of the recently introduced
large-MIMO systems [34] which could be a milestone in boosting the data rate in
wireless systems.

The main contribution of this chapter is to provide a statistical channel model
for applications in the 60 GHz band that operates inside a metal enclosure.

2.1.2 Applications and Motivations

Lithography systems play a critical role in the developmentand manufacturing
of integrated circuits (ICs). The lithography process requires extremely accurate
mask and substrate positioning. This task is performed via several sensors and
actuators, which are typically connected to the control units via flat-cable wires.
In this chapter, we investigate the propagation environment for millimeter-waves
inside a lithography system for developing a very high data rate (peak data rate up
to a few tens of Gbps) wireless link between the positioning sensors and the control
unit. This is fundamental for replacing the wired connections with wireless links.

The sensors and actuators are mounted on moving platforms that experience
very high accelerations. The stiffness of the cables causesundesired disturbances to
the system which leads to inaccurate positioning. Also, thetrend towards increasing
numbers of moving sensors makes the design of the wiring system prohibitively
complex, therefore the replacement of the cables is of interest.

As we had limited access to an actual lithography machine, the measurements
have been conducted inside a metal cabinet that was empty except for some cables,
antennas and stand holders. The reproducible setup emulates the propagation en-
vironment in a wafer stage section within the lithography machine. This can be
described as a metal drawer which is placed in the lithography device and includes
two moving wafer stages as illustrated in Fig. 2.1.

This environment contains rather large amounts of open space, in contrast to
the compact scenarios found in ICT devices, as investigatedin the literature [17].
The initial experiments for establishing the wireless linkwithin the metal enclo-

1Kawasaki et al. studied the millimeter propagation environment for internal I/O connections in
[9].
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Figure 2.1: An illustration of two moving wafer stages with their cables in a lithography
system. The considered measurement scenarios emulate suchlithography machines.

sure show an extremely fading environment due to the reflections from the walls,
which limits the data rate. Thus, the lack of proper channel models for such hollow
and confined environments motivates the considered measurement campaign and
modeling.

Apart from lithography machines, there are other systems that can benefit from
this work, e.g., scenarios with wireless connections for possible sensors or devices
inside an empty elevator or telecabine shaft. The empty cupboard can be viewed
as an extreme case of a general metal enclosure. With absorbing objects inside
the confined space, one can expect fewer reflections and shorter channel impulse
responses.

2.1.3 Outline

In the context of this chapter, we have made extensive measurements of channel
frequency responses using a channel frequency domain sounding technique within
the 57-62 GHz band. This has been done by placing the receiveron a pre-designed
spatial grid, step by step, while the transmitter is fixed. The power delay profile and
multipath components are extracted by post processing. Twodifferent volumes of
the metal cupboard are used and the measurements are provided for both the LOS
and NLOS scenarios. The results indicate that the environments within metal en-
closures are highly reflective, and the resulting “long” wireless channels will make
wireless communications very challenging. Also, the fading properties change de-
pending on the volume of the cupboard rather than the LOS and NLOS situations.
We have also used absorbers to cover a metal wall for one scenario which resulted
in a significant reduction in the root-mean-square (RMS) delay spread (RDS) and
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this consequently affects the fading properties of the channel.

Both small-scale and large-scale channel model parametersare extracted from
the measurements, based on the well-known Saleh-Valenzuela (SV) [35] and log-
normal model [36, 19], respectively. Accordingly, a comprehensive statistical chan-
nel model is provided to simulate similar fading channels. Random channel in-
stances are generated based on the extracted parameters forarrival time, time decay
constant, and number of paths. Next, the RDS properties of the simulated and mea-
sured channels are compared. The purpose of this verification is two fold. Firstly,
it assures whether the number of measurements is sufficient for extracting the para-
metric statistical channel model. Secondly, it validates the accuracy of the model
itself. Together with the Doppler frequency change (time variance property), the
proper channel instances can be simulated via the Matlab channel modeling toolbox
[37] or other off-the-shelf simulation software based on SVor stochastic tap-delay-
line models [13, 38].

The remainder of this chapter is organized as follows. In Section 2.2.1, we de-
scribe the measurement set-up and explain the measurement procedure. In Section
2.2.2, we provide details regarding data processing to extract parameters required
for channel modeling. Based on these parameters, large-scale (path loss) and small-
scale channel models (RDS) are presented in Sections 2.3 and2.4, respectively. The
proposed statistical channel parameters based on the SV model (time decay con-
stant and arrival rates) are given in Section 2.5. The proposed channel model is
validated together with the coherence time and bandwidth ofthe system in Section
2.6. Also, we compare the statistical parameters for the measured channels with
the SV channel model suggested for the IEEE 802.15 standard and other related
measurements in the literature. Final remarks are made in Section 2.7.

2.2 Measurement Set-up and Procedure

In this section, the channel measurement procedure and details of the equipment
used for the measurements are explained.

Channel characterization can be performed in either time domain or frequency
domain [39]. In the measurements provided in this chapter, afrequency domain
sounding technique is used. The scattering parameters (i.e.,S11, S12, S21, andS22)
are measured using a vector network analyzer (VNA) by transmitting sinusoidal
waves at discrete frequencies. The frequency spacing,∆fs, and the scanned BW,
Bw, determines the maximum measurable excess delay,τmax, and the resolution
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of the captured multipaths,τres, respectively, and they are given as

∆fs =
Bw

Ns − 1
, τmax =

1

∆fs
, τres =

1

Bw
, (2.1)

whereNs is the number of transmitted sinusoidal waves.
The frequency domainS21 parameter is generally referred to as channel fre-

quency response. The channel impulse response (CIR) is obtained from the mea-
sured channel frequency response by taking the inverse fastFourier transform (IFFT).
A Hann window is applied to reduce the effect of side lobes.

2.2.1 Measurement Set-up

The measurement BW is set toBw = 5 GHz, and the channel is sampled from
57 GHz to62 GHz atNs = 12001 frequency points. This results in a frequency
spacing of∆fs = 0.416 MHz, so that the time resolution isτres = 1

Bw
= 0.2 ns

and the maximum measurable excess delay isτmax = 2400 ns. The channel fre-
quency response is measured using a PNA-E series microwave VNA E8361A from
Agilent. An intermediate frequency BW ofBIF = 50 Hz is chosen to reduce
the noise power within the measurement band, which improvesthe dynamic range.
This is the receiver BW for single sinusoid in a VNA; the smaller intermediate
frequency BW leads to a larger signal to noise ratio. Also each measurement is
repeated 50 times to further average out the noise.

Due to the losses inside the VNA and60 GHz co-axial cables, the measured
signal at the receiver is weak. A60 GHz solid state power amplifier (PA) from
QuinStar Inc. (QGW-50662030-P1) is used to compensate for the losses and to
further improve the dynamic range. An illustration of the measurement set-up is
provided in Fig. 2.2. For the transmit and receive antennas,we have used two
identical open waveguide antennas operating in 50-75 GHz frequency band with
aperture size3.759 × 1.880 mm2. The beam pattern of the antennas is shown in
Fig. 2.3. The gain of the open waveguide antenna is about4.6 dBi (see [4] for
details on computing the gain).

The near field distance for the antenna is calculated based onthe Fraunhofer
distance and it is found to be less than 3 mm from the antenna aperture. Therefore,
all the measurements are taken in the far field, and hence, there is no near field
effect considered here. Two holders are used to fix and elevate each antenna to
avoid coupling between the antenna and metal surface of the metal enclosure.

To investigate the channel behavior within the empty metal cabinet, we have
considered the following four scenarios.Scenario 1is an LOS scenario where we
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Figure 2.2: Measurement setup for channel sounding inside the metal cabinet. The solid
parallelogram just above the first level shows the metal plate that has been used in the
NLOS scenario. The top right wall is covered with absorber for scenario 4(small size
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Table 2.1: Receive antenna co-ordinates

x-axis y-axis z-axis

Scenario 1 15-85 cm; 8 steps 5-30 cm; 6 steps 150,165 cm; 2 steps

Scenario 2 15-85 cm; 8 steps 5-30 cm; 6 steps 40,145 cm; 2 steps

Scenario 3 15-40 cm; 6 steps 5-30 cm; 6 steps 40,145 cm; 2 steps

Scenario 4 15-35 cm; 5 steps 5-30 cm; 6 steps 150,165 cm; 2 steps
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use a metal enclosure of dimension100 × 45 × 45 cm3. Scenario 2is an LOS
scenario with a metal enclosure of a larger dimension, i.e.,100 × 45 × 180 cm3.
Scenario 3is a NLOS scenario with the dimensions100×45×180 cm3. Scenario 4
is an LOS scenario as inScenario 1except that one of the side walls is covered
with an absorber (see the illustration in Fig. 2.2). Absorbers are an alternative
physical solution to reduce the channel length which will simplify the required
channel equalization. Note that the volume of the metal enclosure inscenario 2
andscenario 3is four times larger than the volume of the metal enclosure used for
scenario 1andscenario 4. To block the LOS path, and create the NLOS scenario,
a50× 45 cm metal separation plate is used inscenario 3as illustrated in Fig. 2.2.

The transmit and receive antennas were placed on a styrofoam(polystyrene)
sheet, which acts as vacuum for radio waves and has a negligible effect on the
channel behavior. The transmit and receive antennas were supported using clamps
(stand holders) with sufficient clearance from the metal surface. The co-axial ca-
bles were drawn into the metal cabinet by means of small holeswhich are just
sufficiently large to pass the cable.

For all scenarios, the location of the transmit antenna was kept fixed. The
channel was measured at various locations in3 dimensions, i.e.,x, y, z-axes, as
specified in Table 2.1. This produced 96, 96, 72 and 60 receiver locations for
scenario 1, 2, 3 and 4, respectively. Two elevation steps were used in z-axis, 6 steps
in y-axis and 8, 6 and 5 steps in x-axis for different scenarios as shown in Table 2.1.

In scenario 1and scenario 4the transmit antenna was fixed at co-ordinate
(xt, yt, zt) = (65, 15, 135) cm, and inscenario 2andscenario 3the transmit an-
tenna was located at(xt, yt, zt) = (15, 15, 130) cm. The position of the metal
plate was atz ≈ 60 cm andz ≈ 140 cm for the first and second steps inz-axis
in scenario 3. In scenario 4, the bulky absorbers were limiting the space so less
measurements were taken in this scenario and only the RDS spread property has
been extracted. The minimum and maximum distances between Tx and Rx are in
the range of 1.5 m to 15 cm.

2.2.2 Data Processing

Post-processing of the data is required to extract the CIR from the measured fre-
quency domain signals. In principle, this involves an inverse discrete Fourier trans-
form (IDFT). The IDFT includes a window; the resulting impulse response is
thresholded to remove paths with small amplitudes. Prior tothe IDFT, we can-
cel the antenna and instrument responses by using an inversefiltering technique
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frequency response) and after inverse filtering (upper channel frequency response) and ref-
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[40, 41] which is briefly explained in Appendix 2.A.
Fig. 2.4 shows the original frequency domain response of a sample measure-

ment fromscenario 1, the frequency domain response after inverse filtering and
the frequency domain signal of the truncated reference measurement. The effect
of inverse filtering can be observed after calibration plot where the sample chan-
nel frequency response is normalized byRfl(f) which is the channel frequency
response for free space without reflections or obstructionsconsists of a single LOS
path. Rfl(f) is parametrized by an attenuation and a simple delay equal tothe
time- of-flight of the signal between the transmit and receive antenna. We can
make a recording of the received signal at a known reference distance in free space,
and after time gating we obtainrfl(f) which is the CIR corresponding toRfl(f).
The change in the power levels after inverse filtering is due to the compensation of
antenna and instrument responses.

For model parameters that do not depend on the absolute power(i.e. the small-
scale channel model considered in Section. 2.4), we have normalized the received
signal to have a maximum value at0 dB. The dynamic range of the received signal
is in the order of70 dB, where we assume that the noise level is at−70 dB after
normalization.

For estimating statistics of the individual link parameters, it is useful to truncate
the duration of the channel. We compute the threshold takinginto account the noise
level, amount of total received power and relevant multipath components [42, 43].
By setting a threshold at 30 dB below the strongest path, morethan98% of the
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Figure 2.5: Sample CIR with 30 dB threshold and received paths forscenario 1.

total power is captured. This threshold is still well above the noise level. As an
illustration, Fig. 2.5 shows a normalized received CIR witha threshold at−30 dB.
The duration of this channel is still about 800 ns.

2.3 Path Loss Model

The large-scale channel model, specifically the path loss model, is essential for
any wireless system design to calculate its link budget. Fora conventional channel
(outdoor or indoor), the path loss model suggests that the average received power
decreases exponentially with increasing distance betweenthe transmitter and re-
ceiver. This is generally expressed in logarithmic scale as

PL(d)dB = PL(d0)dB + 10α log10(
d

d0
) +Xσ. (2.2)

wherePL(d)dB is the signal power loss at a distanced (m) relative to an arbitrary
reference distanced0 (m), α represents the path loss exponent, andXσ is a zero-
mean Gaussian random variable with standard deviationσ reflecting the attenuation
(in dB) caused by shadowing [36, 19]. In fact, the first two terms in (2.2) together
represent the expected path loss and the last term represents the random variations
of this model. Based on the measurements, first the parameters of the statistical
model are identified for the average received power and the path loss exponent and
later the shadowing parameters are determind.

Using the measurements of the received power for different distances between
the transmit and receive antennas, we can estimate the path loss exponentα. Ac-
cordingly, for each measurement the distance related path loss term in dB (Pt−Pr)
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is calculated, based on the known transmit power (-68 dB), asshown in Fig. 2.6a
which shows that the path loss exponentα is very small (around0.02-0.002). The
reference distance is taken as 1 meter similar to common indoor environments.
This suggests that in such a closed metal environment there is nearly no loss in
the received power as function of distance. The same phenomenon is reported in
[10] for the environment inside a computer case. Other measurements for NLOS
wireless personal area network (WPAN) reportedα in the range of0.04 − 0.09

[44, 42], whileα in the range1.6 − 6 is common for typical indoor systems [36].
According to the Friis formula, the path loss for conventional indoor environments
should be larger for transmissions at60 GHz compared to lower carrier frequen-
cies. However, this is not the case for highly reflective environments such as metal
enclosures.

An ideal metal enclosed environment acts as a semi-conservative physical sys-
tem where the only sources of absorption are the antennas, cables and stand holders.
The waves keep bouncing back and forth, and when the distancebetween the anten-
nas is increased, the received power does not fluctuate because most of the energy
reaches the receive antenna either directly or as multipathreflection in the metal
cabinet.

Fig. 2.6b shows the probability density function (PDF) ofXσ , i.e., the fluctua-
tion of the path loss around the regression line in Fig. 2.6a.It is seen that the PDF
approximately follows a normal distribution, with a standard deviation of0.16–0.39
dB. Among the considered scenarios, the NLOS case (scenario 3) shows the small-
est variation, and this is due to the larger distances (volume) and the obstructed
LOS path. In general there is no noticeable shadowing effectin the environment
even in NLOS case, since the reflected paths are almost as strong as the LOS path
in the metal enclosure.

Accordingly, the large scale properties of the channel has been fitted to the
well-known log-normal model in (2.2), and can be used for thewireless system
design within empty (not-dense) metal enclosures.

2.4 RMS Delay Spread (RDS)

Besides path-loss, the channel can be further characterized by its small-scale prop-
erties caused by reflections in the environment, which are modeled as multipath
components [36, 19]. We do not consider fading on individualdelay paths since
the measurements show that there are few multipath components in each resolv-
able time bin (over the measurement grids), and hence, they are not considered
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Figure 2.7: Number of received paths and RDS for different thresholds.

directly in our model. Instead, we consider the statistics of the model parameters
for the (normalized) power delay profiles (power delay profiles) obtained over all
the spatial grids i.e. power delay profile(g)(τ) = |h(g)(τ)|2, whereg denotes the
grid (position) point [16]. For example,g = 1, 2, · · · , G = 96, for scenario 1and
scenario 2. Thenth multipath component denoted bynth entry ofh(g)(τ), and it
is described by its powera2n and arrival timetn.

Multipath leads to small-scale fading (variations over short distances due to
constructive and destructive additions). The most important model parameters that
describe a multipath channel variations are the RDS and fading properties that can
be modeled as the time decay constant and the multipath arrival times in the SV
model. These aspects are studied next.

Delay spread describes the time dispersion effect of the channel, i.e., the dis-
tribution of the received power in time. A large delay spreadcauses severe inter-
symbol interference (ISI) and can deteriorate the system performance. The RDS is
a commonly used parameter to characterize this effect [19].The RDS is obtained
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Figure 2.8: Cumulative distribution function for RDS of measured channels.

by first estimating the individual path parameters{(a2n, tn)} for each observation,
and then computing

trms =

√

t̄2 − (t̄)2, t̺̄ =

∑N
n=1 a2nt

̺
n

∑N
n=1 a2n

,

wheret̄, t̄2 and t̺̄ are the first, second and̺moment of the delay spread, respec-
tively.

Fig. 2.7a shows the number of received paths for different power thresholds.
As expected, the number of received paths (N ) increases with increasing thresh-
old level. The received paths are saturated more quickly inscenario 4due to the
absorbers. In the same way, the RDS increases as the number ofcollected paths
increases (Fig. 2.7b). At a threshold of 30 dB, the curves saturate and we used the
corresponding value as the estimated RDS. Fig. 2.8 shows thecumulative distribu-
tion function (CDF) of the estimated RDS values for all the four scenarios. The
figure also shows the fit to a normal distribution. The mean values of the normal
distribution, obtained after fitting, reveals the average length of the channel, and
they are113.4 ns (scenario 1), 159.1 ns (scenario 2), 158.3 ns (scenario 3), and
30.6 ns (scenario 4). These mean RDS values for empty metal enclosures are sig-
nificantly larger than the conventional indoor channels, which are typically between
4− 21 ns.

These large values will impact the system design and signal processing within
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such environments, e.g., the channel equalization and residual inter block interfer-
ence (IBI) after equalization, and hence, the achievable data rates.

Note that the estimated mean RDS is almost the same forscenario 2andsce-
nario 3, which shows that there is a clear relation between the volume of such metal
enclosures and RDS, independent of LOS and NLOS cases. Also,in scenario 4the
RDS is reduced by more than 3.5 times as compared to the empty cupboard in
Scenario 1. These are very interesting results and indicates that evencovering one
wall with the absorber can reduce the channel length and fading almost to that of a
typical indoor environment.

2.5 Saleh-Valenzuela (SV) Model Parameters

Most current IEEE standard channel models [45, 2] and MIMO channel character-
izations [28] for millimeter-wave are based on the extendedSV model [46, 47]. In
this model, the multipaths are considered as a number of raysarriving within dif-
ferent clusters, and separate power decay constants are defined for the rays and the
clusters. This is a very well-known and well-validated model for wireless channels
with multipath which was proposed to cover the shortcoming from the traditional
Rayleigh (Nakagami) models to describe the statistical power delay profile. For in-
stance in UWB channel when only the superposition of few multipath components
falls within each resolvable delay, the central limit theorem does not hold anymore.
This also is the case in our measurements as the high resolution in time makes it
less probable to find many multipath component within each time bin (channel tap)
to derive the fading parameters [16] over each path. Accordingly, we use the SV
model by extracting the corresponding statistical parameters from the measurement
data.

Furthermore, these parameters can be used to generate channel instances with
identical statistical properties by defining the average power delay profile based on
the extracted parameters together with the Doppler frequency information. We only
derive the SV model parameters for the empty cupboard inscenarios 1-3and not
for scenario 4as the focus of the work is on the empty metal enclosure.

2.5.1 Time Decay Constant

A cluster is defined as a group of arrival paths that are reflected from the objects
with the same angular profile. One of the common and basic methods to identify
the clusters in the channel impulse response (CIR) is by visual observation. We
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carefully observed the CIRs that were obtained at differentpositions. Our obser-
vation do not show that the multipath components come form multiple clusters i.e.
the power in CIRs is exponentially decaying over the channellength time. This has
been observed visually over the measured CIR and verified by the estimated decay
parameters. A physical justification comes from the fact that multipath reflections
are coming from the (same) walls. Note that if paths from different clusters arrive
with the same delay, then the observation technique can not resolve this ambiguity.

In this case, the average power delay profile is defined by onlyone decay pa-
rameterγ rather than the common SV model with two decay parameters. Therefore,
the proposed model can be given as:

ā2n = ā20 exp (−tn/γ) , (2.3)

whereā20 and ā2n are the (statistical) average power of the first andnth multipath
component, respectively, over all different positions andγ is the power decay time
constant for arriving rays, assumed as a random variable. Tofind the decay pa-
rameters first we compute the normalized logarithmic power delay profiles for each
measurement. We estimateγk for each measurement (each position indicated by
indexk) in every scenario using a least-squares curve fitting onlog(a2n)/ log(a

2
0),

as shown by the examples in Fig. 2.9. Time delay instances on the x-axis indicate
the arrival time for multipath component with respect to thefirst path.

Based on these estimates for theγks which are different realizations for random
variableγ, the PDF forγ is plotted and fitted to Gaussian, Gamma, and Weibull dis-
tributions for each considered scenarios, as shown in Fig. 2.10. These distributions
are commonly used to statistically modelγ [44, 42].

The best fitted model is chosen as the argument which minimizes the Akaike
Information Criterion (AIC) i.e., the distribution that maximizes the log likelihood
function in the estimation problem. Accordingly, a Gamma distribution has been
chosen as the best fit for theγ distribution in scenario 1and scenario 2while
Weibull distribution is the best candidate inscenario 3in the sense that we loose
less information by using these models rather than real data.

We use the statistically estimatedγ in the rest of the chapter. The Gamma
distribution is given by

f(x|δ, β) =
xδ−1

βδE(δ)
exp(−

x

β
), (2.4)

whereE(δ) is a Gamma function, and the parametersδ andβ are computed for all
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Figure 2.9: LS fit for time decay constantγk for each measurement.



30

160 165 170 175 180 185 190
0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

P
D

F

γ (ns)

measured data
Gaussian fitting
Weibull fitting
Gamma fitting

(a)Scenario 1
Gaussian(µ, σ) = (175.2, 4.901)

Gamma(δ, β) = (1281, 0.137)

Weibull (ζ, k) = (177.5, 42.28)

170 175 180 185 190 195 200 205 210 215
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 

 

P
D

F

γ (ns)

measured data
Gaussian fitting
Weibull fitting
Gamma fitting

(b) Scenario 2
Gaussian(µ, σ) = (197.9, 5.481)

Gamma(δ, β) = (1265, 0.156)

Weibull (ζ, k) = (200.3, 46.05)

185 190 195 200 205 210 215
0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

P
D

F

γ (ns)

measured data
Gaussian fitting
Weibull fitting
Gamma fitting

(c) Scenario 3
Gaussian(µ, σ) = (197.9, 4.865)

Gamma(δ, β) = (1689, 0.117)

Weibull (ζ, k) = (200.4, 39.37)
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scenarios from the empirical data. The Weibull distribution is expressed as

f(x|ζ, k) =
{ k

ζk
xk−1 exp

(
− (xλ )

k
)

if x > 0

0 if x < 0
(2.5)

where the scale and shape parameters areζ andk, respectively.
There are more accurate techniques to estimate the cluster decay which are

specially developed for mm-wave channels when the dynamic range of the system
is limited due to the high path-loss, that are not applicablefor our measurements
[28].

2.5.2 Multipath Arrival Times

Next we consider a statistical model on the multipath arrival times (tn) in order to
offer a complete channel model. This gives insight about howdense or sparse the
channel is in terms of multipath components and is calculated based on the time
difference between two consecutive multipath components.The inter arrival times
tn − tn−1 gives the time between the events of multipath arrivals. Themultipath
arrival timestn would be typically modeled as a single Poisson process within
each cluster. Having one extended cluster as we observe in our measurements
cannot be suitably expressed with a single Poisson process.This is due to the fact
that the Poisson parameters are considered unrelated to thedelays and are treated
independently, which does not reflect the reality, so we use different Poisson models
for different delay areas.

For a single Poisson process, the inter arrival timestn − tn−1 are modeled by
an exponential PDF as

p(tn|tn−1) = λ exp
(
− λ(tn − tn−1)

)
, (2.6)

whereλ is the mean arrival rate of the multipath components. It is motivated in
[48, 42] that when the measured arrival times deviate too much from the single
Poisson model, a mixture of two Poisson processes is more suitable for modeling
their arrival times. The mixture of two Poisson processes can be expressed as

p(tn|tn−1) = b λ1 exp
(
− λ1(tn − tn−1)

)

+ (1− b)λ2 exp
(
− λ2(tn − tn−1)

)
, (2.7)

whereλ1 andλ2 are the arrival rates and parameter0 ≤ b ≤ 1 is the mixing
probability.
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Figure 2.11: Logarithm of the complementary CDF of the interarrival times.
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Fig. 2.11 shows the corresponding estimated parameters. The inter arrival times
are indicated on the x-axis while the logarithmic complementary CDF is shown on
the y-axis as it is more informative due to the exponential nature of the Poisson
process. As seen, the mixed Poisson process provides a much closer fit to the
measured data than the conventional single Poisson process. In fact, parameters
b, λ1 andλ2, that are estimated and stated in Fig. 2.11, are used furtherto generate
random arrival time values to be used in the production of thechannel instances via
simulations.

Similar results are reported in IEEE 802.15.4 [48] for device to device com-
munication for ranges less than 10 m (WPAN). Apparently, if the RDS or channel
length is large, the arriving paths appear over a wide range of time differences
which makes it difficult to be represented by only one Poissonparameter. The
results indicate that the inter arrival times are smaller, in general, compared to con-
ventional indoor channels reported in [48, 3]. This indicates the richer scattering
environments of the examined metal enclosure.

2.6 Validation and Evaluation

In this section, we validate our proposed statistical modelvia Matlab simulations
and subsequently we study the behavior of the channel with respect to time. The
coherence bandwidth of the measured channel is calculated based on the RDS pa-
rameters extracted in Sec. 2.4. Finally, channel model parameters from related
measurements are compared with extracted model parametersto give an analogy
between different environments and applications.

2.6.1 Validation of the Proposed Model via Simulations

We use the estimated SV parameters all the previous section to simulate CIRs and
later to compare the properties of these model based simulated channels with the
measured channel. This is a straightforward way to validatethe proposed statistical
channel model. In order to generate a CIR, we need the time instances of multipath
arrivals and the energy associated with each path, which areboth random variables
that are estimated withλ andγ in Sec. 2.5, respectively. Also, we need to define the
number of paths for each channel instance which is a normal random variable itself
with certain mean and standard deviation. Having these statistical properties we
are able to generate random CIR. Note that the quality of the fit for the power delay
profiles are examined implicitly through the simulation of the RDS parameters as
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the random power delay profiles are generated for the simulation of each scenario
using the estimated statistical values in Fig. 2.10. We use the RDS for the validation
phase as it comprehensively includes all the parameters of the proposed model.

We have simulated 1000 channels using the proposed model parameters for all
three scenarios within the empty metal enclosure. The RDS iscalculated for these
channel instances and the CDF curves with a fitted mean and variance are illustrated
in Fig. 2.12.

In scenario 1andscenario 3there is a small (almost 5 ns) overestimation (4.5%
and 3% error) and inscenario 2, an underestimation (3% error) of the mean RDS,
in comparison to the measured values which shows an acceptable model estimation
error. As a result, the proposed model parameters are valid and can be used to
simulate random channels for link design and other studies that require the channel
model.

2.6.2 Coherence Time and Bandwidth

A good channel model describes the statistical channel strength over both time
and frequency domains. The time varying nature of the channel is characterized
by the Doppler frequency shift. The resulting coherence time is directly defined
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by the relative movement (speed) between transmitter and receiver so this is an
application specific parameter [19]. The under-test lithography system is part of a
mechatronic device in a closed metal environment in which sensors and actuators
on a moving platform have to communicate to a controller on the fixed platform.
Since movements that occur outside the enclosure do not affect the channel, we
expect a slowly time-varying channel with a sufficiently long coherence time. The
Doppler shift is defined as∆fD = νfc

c , whereν is the relative speed between
transmitter and receiver,c is the speed of light, andfc is the carrier frequency.
If we assume a maximum relative speed of10 ms−1, then the Doppler frequency
range is∆fD = 2 kHz, and the coherence time of the channel is1∆fD

= 0.5 ms.

The coherence BW denoted asBc gives a sensible insight into the wideband
fading model of the system and is directly estimated from theRDS of the chan-
nel. A general approximation isBc ≈ ι

µc
, whereι depends on the shape of the

power delay profile andµc is the so-called mean RDS extracted in Fig. 2.8. A 90%
coherence bandwidth is defined as the separation in frequency such that the cross
correlation between two frequency samples of the channel is0.9 i.e.,Bc ≈ 0.02

µc

[19]. This is the so called 90% approximation of the mean coherence BW which
for different measured scenarios are reported as 176.4, 125.7, 126.3, and 653.6
kHz for scenarios 1 to 4, respectively. The 50% coherence BW is 10 times the 90%
values.

The coherence BW for the empty metal box is extremely small, this is visu-
ally clear from Fig. 2.4 where the sample channel frequency response shows the
dynamic range of almost 30 dB while the reference measurement outside the cup-
board is mostly a constant. Note that equalization for such an extreme frequency
selective environment is very complex if not impossible. Moreover, despite the
general understanding of the 60 GHz propagation environment in outdoor and typ-
ical indoor places, the channel does not follow the sparse model in the time domain
but it can be considered relatively sparse in the frequency domain.

2.6.3 Comparison to Other Channel Models

To the best of our knowledge, there are no 60 GHz channel models for very short-
range wireless communications (wireless harness) prior tothis work. However
channel modeling has been done for the IEEE 802.15c standard, for small indoor
environment such as cubic offices and kiosks which we discusshere for the sake
of comparison. We also compare our obtained results with thechannel character-
ization of a room with metal walls [49] as well as a reflective environment when
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metallic cabinets are located in the middle of the room [50].

For lower frequencies (3-5 GHz) the results in [17] are interesting for com-
parison because of the application similarity but the parameters for path loss are
expressed in terms of the customized three part model (near,transition and far
field) which do not comply with our log-normal model. However, there are some
other interesting measurement results for short range wireless applications that we
summarize here.

• In [49], path loss and RDS are studied for a 2 GHz band centered at 58 GHz
for different room dimensions and properties. In two scenarios, rooms with
metal walls are considered with dimensions44.7 × 2.4 × 3.1 m3 and9.9 ×
8.7×3.1 m3. For a reference distance ofd0 = 1 m,PL(d0) around 80 dB and
α < 0.5 have been reported. Also, the RDS in order of 100 ns is measured
which is very close to the results from the metal cabinet.

• In [50], a 60 GHz measurements have been conducted in a room with di-
mensions of11.2 × 6.0 × 3.2 m3 with metal reflectors such as metal walls
within the room for LOS and NLOS scenarios as well as for different antenna
settings.PL(d0) with d0 = 1m, for the Tx-antenna heights of 1.4, 1.9, and
2.4 m are 56.1, 66.8 and 73.1 dB (71.1, 75 and 77.7 dB) for LOS (NLOS),
respectively. Path loss exponents of 1.17, 0.18 and 0.61 (5.45, 3.82 and 2.67)
are reported for the different Tx elevations for LOS (NLOS) scenarios. As
can be seen, smallαs in the LOS cases are similar to the ones from the metal
cabinet.

• In [51], channel characterization is provided for elevator shafts at 5 GHz
with 50 MHz BW, the mean RDS values are reported as 14-60 ns fora still
elevator, at different locations (buildings) and the maximum RDS is recorded
between 144-152 ns when it is moving (different scenarios with the receiver
inside the elevator car and outside are tested). RDS values similar to our
measurements, are observed here. The derived log distance models show the
path loss exponent in the range of2.75−6.66 when the elevator door is closed
and2.40 − 5.76 when it is open. Also, the shadowing normal distribution
exhibits a standard deviation (σPL

) of 1.89−6.08 dB (door closed) and2.37−
5.52 dB (door open).

• In [11], measurements have been conducted in a computer case at 3.1-10.6 GHz
(7.5 GHz BW) for a wireless chip area network (WCAN) application. Param-
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etersα,PL(d0) andσPL
are 1.607, 23.78 dB, and 0.548 dB (2.692, 25.27 dB,

and 1.908 dB) for case closed (case open), respectively, ford0 = 62 cm.

• In a similar work in [10], for board-to-board communication in two com-
puter cases (both dense and sparse) the path loss exponent was reported to be
negligible wherePL(d0) andσPL

appeared as 29.1 dB and 1.4 dB (28.7 dB
and 1.4 dB), for the dense (sparse) case, respectively. The 50% coherence
BW of the channel andγ are reported as 79 MHz and 3.49 ns (51 MHz and
5.44 ns) for dense (sparse) case. Oneγ parameter is considered in this work
similar to a single cluster model in this paper. The results show a greater
coherence BW and consequently smaller time decay constant compared to
our estimated parameters mostly due to the a small volume of the computer
case and many absorbing objects inside the metal box. Some losses also can
be related to the ventilation holes in the case.

The estimated parameters for our proposed channel model aresummarized in
Table 4.1, together with the channel model parameters for IEEE 802.15. In this
table, the listed parameters are:

PL(d0) : path loss at reference distanced0 (m)

α : path loss exponent

σPL
: path loss log-normal standard deviation

L̄ : mean RDS

Λ : cluster arrival rate

λ : ray arrival rate (single Poisson fit2)

Γ : power decay constant for clusters

γ : power decay constant for rays

σΓ : cluster power decay log-normal standard deviation

σγ : ray power decay log-normal standard deviation

2The single Poisson parameter is shown here since we want to compare it to other models which
use single Poisson fit.
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Table 2.2: Comparison of various channel parameters of the measured channels, compared
to IEEE 802.15.3c channel models. Abbreviation “NA” standsfor not available and “-”
means not applicable here.

Metal cabinet IEEE 802.15.3c
Sc. 1 Sc.2 Sc. 3 CM4 CM9

Parameter Unit LOS LOS NLOS NLOS LOS

PL(d0) dB 54.711 53.439 54.116 56.1 NA
α 0.02 0.004 0.002 3.74 NA

σPL dB 0.39 0.17 0.16 8.6 NA
L̄ ns 113.4 158.3 159.1 NA NA

Λ 1/ns - - - 0.07 0.044
λ 1/ns 0.985 1.037 1.094 1.88 1.01
Γ ns - - - 19.44 64.2
γ ns 175.23 197.99 197.93 0.42 61.1
σΓ ns - - - 1.82 2.66
σγ ns 4.90 5.48 4.86 1.88 4.39

The numbers for IEEE 802.15c are taken from [45], which provides models
for wideband (9 GHz BW) channels at 60 GHz carrier frequency.The reported
parameters are selected from the CM4 and CM9 channel models suggested in this
document and obtained from measurements in office areas in a NLOS scenario, and
within a kiosk with a LOS scenario, respectively.

It can be seen from Table 4.1 that the measured channel in our tested metal
enclosure differs significantly from the typical wireless channels, as expected. The
main distinctions are:

1. The path loss exponents are very small in both LOS and NLOS cases.

2. The RDS depends on the metal enclosure volume rather than LOS or NLOS.

3. The channel length is significantly long according to the estimated RDS.

4. The arriving rays do not form clusters.

5. The arrival rate is modeled as a mixed Poisson process.
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2.7 Conclusion

In this chapter, a comprehensive channel model (large and small scale) is provided
for 60 GHz transmission inside a metal enclosure, which is taken as a generic model
for the environment inside a lithography system. The frequency domain channel
sounding technique with a resolution of 0.2 ns for resolvingmultipaths and maxi-
mum measurable excess delay of 2400 ns is employed to obtain accurate data. A
total BW of 5 GHz with a center frequency of 59.5 GHz is used.

The well-known Saleh-Valenzuela model is used to fit the model parameters,
which is widely used and validated in the community. Moreover, channel instances
are simulated based on the proposed model parameters and theRDS values are
shown to comply, in good extent, with the ones from the measured channel. This
can serve as a verification of the suggested model.

Distinguishing features of the considered (rather non-conventional) environ-
ment are, first of all, the significantly long channels, in theorder of 1µs, together
with very rich multipath reflected from the metal walls (small inter arrival times).
A statistical model suggests a single cluster nature of the arriving multipath com-
ponents and the best model fit is proposed as Gamma and Weibullfor different
scenarios. Further, we observed relatively sparse channelfrequency responses with
coherence bandwidths of less than 200 kHz, which relates to the high frequency
selectivity of the propagation environment. This is a rare phenomenon that has not
been observed in other channels before.

The RMS delay spread is shown to be increased by a 40% when the volume of
the metal enclosure is increased 4 times, accordingly, thisleads to 40% decrease in
the coherence bandwidth in a larger metal box. The accurate relationship between
the enclosure volume/geometry, and the channel parametersyet needs to be verified
in future work. Even though this could be performed by extensive measurements
and processing, other analytical approaches such as ray tracing can be employed
for further investigation in such a confined environment. Ray tracing may provide
more accurate parameters and enable us to study a variety of scenarios without
the hassle of sensitive and complex 60 GHz measurements [52,53]. In our inves-
tigation the direction of the antenna does not impact the channel behavior as the
open waveguide shows a negligible directivity. Also, the environment of test is
somehow symmetrical around a fixed transmitter as the only reflectors are identical
metal walls so the expectation is that the power angle profileis almost uniform for
the measured channels. However, the angular profile of the channel is of a great
interest for MIMO applications.
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The purpose of this work is to replace cable connections inside a metal enclosed
mechatronic system to ease the installation and integration of the machine and also
to improve the accuracy and reliability. High data rate and low latency are two crit-
ical requirements for lithography devices due to the fast control feedback loop. The
latency of the wireless system is determined by the long CIR and the long cyclic
prefix in case of OFDM systems. Physical remedies include an absorber coating
inside the metal enclosure [54], if restrictions on installing such bulky materials
inside the mechatronic system are permitted. The measurement results with an
absorber coating suggest significant channel shortening.

The proposed statistical channel model helps to understandthe challenges re-
lated to the wideband wireless communications. We believe that the outcome of this
chapter contributes to enrich our understanding of the millimeter-wave propagation
properties. However, in signal processing, a simplified version of such comprehen-
sive channel models are used for the sake of conciseness. This approximation of
the communication channel keeps the signal model mathematically trackable. In
the next chapter we introduce a simplified channel model thatwe use for the signal
processing tasks in the subsequent chapters.

2.A Inverse Filtering and Channel Recovery

In this Appendix, we document the selected process of channel estimation from the
observed channel frequency responses. Letx(t) be the transmitted signal, which is
impaired by the measurement system and the antennas. The received signalr(t) is
given by

r(t) = x(t) ∗ htx(t) ∗ hsys(t) ∗ h(t) ∗ hrx(t), (2.8)

wherehtx(t) andhrx(t) are the impulse responses of the transmit and receive an-
tennas,hsys(t) is the transfer function of the measurement system andh(t) is the
CIR of interest.

The CIR for free space without reflections or obstructions consists of a single
LOS path, parametrized by an attenuation and a simple delay equal to the time-
of-flight of the signal between the transmit and receive antenna. We can make a
recording of the received signal at a known reference distance in free space, and
after time gating obtain a reference signalrfl(t), given by

rfl(t) ≈ x(t) ∗ htx(t) ∗ hsys(t) ∗ hrx(t) , (2.9)

so that
r(t) ≈ rfl(t) ∗ h(t). (2.10)
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More specifically,rfl(t) in (2.9) absorbs the effect of the antennas and the sys-
tem (this is not entirely accurate as the directionality of the antennas is ignored).
The CIR is obtained from (2.10) via inverse filtering. Equivalently, in frequency
domain, we can obtain the channel frequency responseH(f) by

H(f) =
R(f)

Rfl(f)
. (2.11)

The CIR is then obtained by taking the (windowed) IFFT ofH(f) and correction
for the delay and attenuation (normalization).

We have obtained a reference LOS signalrfl(t) by placing the transmitter and
receiver at a distance of25 cm outside the metal cabinet (free space). The LOS
path was retrieved by time gating the measured signal and truncating it after 50 ns,
so as to remove noise and multipaths beyond the direct line ofsight.
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Chapter 3
Preliminaries on Wireless Channel

Estimation and Equalization

3.1 Introduction

Based on the results from Chapter 2, the long and fading-prone wireless channel
within a metal enclosure requires an equalization treatment to allow a reliable com-
munication link. In this chapter, the most pertinent equalization techniques for fad-
ing channels are reviewed, in the context of linear processing for the single-input
single-output (SISO) point to point (single user) wirelesssystem and a brief com-
parison is given for complexity and latency of different methods. This is the first
step towards the feasibility study of the desired wireless link for the mechatronic
system of interest, which was introduced in Chapter 2. We aimto identify the ex-
isting equalization techniques and their limitations for this purpose. In this thesis,
we consider a linear system model and a wireless channel withfinite elements.

3.2 Wireless Channel Model

In general, a wireless communication channel is characterized by different factors
and phenomena including the path loss, shadowing and small scale fluctuations due
to fading. Path loss is a result of wave attenuation and is proportional to the fre-
quency and inverse of the distance between the transmitter and receiver. Shadowing
or large scale fading causes random variations due to the blockage from objects in
the signal path. These variations are also caused by changesin reflecting surfaces
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and scattering objects [19]. The large scale effects are mostly studied in wide-range
transmission systems like cellular communications for budget calculation. In short-
range transmission we are only interested in the small scalefading properties. Con-
sidering this simplification, a wireless channel is expressed in terms of multipath
delays and the corresponding fading gains for a wideband communication system
as

ha(t) =
L−1∑

l=0

ale
−jφlδ(t− τl) , (3.1)

whereha(t) is the impulse response of the physical channel and in general is a
function of time and delay (excitation time), however, herewe consider channels
that are time-invariant over each transmission block i.e.,the channel impulse re-
sponse for a block is given by (3.1). The number of paths is denoted asL, δ(t)
is the Dirac delta function and (al, φl, τl) corresponds to the triple of channel gain
(determined using the time decay constant), phase and delay(related to the ray ar-
rival time) for thelth received path. The phase of thelth resolvable delay path is
given byφl = 2πfcτl − φDl

which is a function of Doppler phaseφDl
and carrier

frequency offc. In fact, whenfcτl ≫ 1 then a small change in the path delayτl can
lead to a large phase change in thelth multipath component and this leads to a con-
structive and destructive addition of multipath components. This phenomenon is
called fading and it has a random nature due to the randomly changing parameters
al, φl andτl. The model in (3.1) can be simplified to a statistical model of

ha(t) =

L−1∑

l=0

αlδ(t− τl) , (3.2)

by replacingale−jφl with a complex random variableαl which represents the fad-
ing complex gain of thelth path. Different models are possible for the distribution
of the{αl} and{τl} variables, which highly depend on the environment. For the
{αl}, Nakagami distributions and lognormal distributions are the most accepted
ones to fit the measurement data in different environments for {αl}. A Poisson
process is considered to be a reasonable model for excess delay parameters{τl}
[19, 55]. In Chapter 2 of this thesis these parameters were estimated and validated,
for an extremely reflective environment with metal walls, based on acquired exper-
imental data. This is a fundamental step towards a realisticsystem design for the
application of interest.
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Simulations of a Wireless Channel

Once the stochastic properties of the wireless channel are known for a particular
environment, different realizations of the random channelcan be generated using
computer simulations. The simulated channel is further used to evaluate the per-
formance of the designed wireless system and plays an important role as a test bed
for comparison and verification of algorithms at different levels. A wireless chan-
nel simulator needs to model both the time selectivity of thechannel due to the
Doppler spread, and the frequency selectivity (time spreading) due to the fading.
The time dynamics (fading) of a wireless channel is an important feature which is
not consider in the model in (3.2). The most common model usedin the literature,
to simulate the fading process is the Clarke’s model [56].
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(a) 3D plot of channel gains in dB.
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(b) 2D contour plot of channel gains.

Figure 3.1: Simulated channel gains for slowly time-variant and dispersive channel over
frequency and time using the tapped delay line (TDL) method,with sampling period of
Ts = 0.2 ns.

Here, an example of a 3D representation of the channel gains showing both time
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and frequency domain fluctuations is given in Fig. 3.2. The channel has been simu-
lated based on the tap delay line (TDL) set up where each tap (path) is constructed
using the estimated time decay constants from Chapter 2 withJakes’ Doppler spec-
trum [56]. This is customized for a slowly time-variant channel of interest in the
metal enclosure. Fig. 3.1a shows the channel gains in dB in both time and fre-
quency axis and the corresponding Fig. 3.1b maps the projection of these channel
gains on a 2D surface. The time difference in Fig. 3.1b between two horizontal
points with relatively different amplitude reveals the coherence time of the channel
and respectively the coherence bandwidth can be determinedfinding two consecu-
tive uncorrelated points in the frequency (vertical) axis.

Reception Model

In the absence of noise, the received signalya(t) after convolution with the linear
channel introduced in (3.2) can be expressed as

ya(t) =
L−1∑

l=0

αlxa(t− τl) , (3.3)

wherexa(t) is the analogue transmit signal which can be a simple quadrature am-
plitude modulation (QAM) signal or a signal generated by more complicated mod-
ulation techniques like multicarrier code division multiple access (CDMA), orthog-
onal frequency division multiplexing (OFDM), etc. Digitalsignal processing which
is the focus of this thesis is performed after sampling. Assuming the{τl} can be
interpolated by integers between0 andL− 1, the received sequence for a discrete
time signal model is given by

y(n) =

L−1∑

l=0

αlx(n− l), (3.4)

in the absence of noise. For wideband systems, we usually consider the channels
static over each data block (i.e., block time-invariant)

The signal model in (3.4) represents a finite impulse response (FIR) filter with
a finite complex impulse responseh = [h(0), h(1), · · · , h(L − 1)]T and orderL
which is defined relative to the symbol time such that each element inh corre-
sponds to anαl at the sampling moment. The received signal is thus expressed as a
convolution of the channel impulse response with the transmitted signalx(n) plus
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noise samples denoted bye(n), i.e., given by

y(n) =

L−1∑

l=0

h(l)x(n − l) + e(n), (3.5)

The channel gainh(l) in (3.5) caters for the wireless channel effects including
the pathloss and shadowing. There are more basic channel models that are used in
array processing which assume far field reception, so the channel can be parame-
terized only by the direction of signal arrivals. The formermodel is considered in
this thesis.

A major consequence of a wideband (convolutive) channel is the inter-symbol
interference (ISI) due to the short symbol periods (transmitted pulses) with respect
to the channel length. This is equivalent to having a wideband signal with respect
to the channel coherence bandwidth. To successfully detectthe received sequence,
the distractive effect of the wireless fading channel needsto be canceled first. This
process is referred to as channel equalization.

3.3 Channel Estimation

The availability of channel state information (at the transmitter and/or receiver) is
often required for the design of signal processing algorithms. In fact, to fully com-
pensate for the inter-symbol interference (ISI) phenomenon, the receiver and/or
transmitter need to know the instantaneous channel impulseresponse. Thus, chan-
nel estimation is inevitable and therefore, a brief introduction to common channel
estimation techniques is given here.

A common way to perform the channel estimation is to transmita number of
known symbols (pilot/training sequence) and measure the time domain channel
impulse response based on the received sequence. In contrast, blind processing
techniques look at the inherent structure of the data for system identification. The
channel impulse response is changed over time as discussed before and needs to be
estimated each time the channel decorrelates. This is the result of relative move-
ment between the transmitter and receiver (Doppler).

Channel estimation can be done either in time domain or in frequency domain.
Here, we look at the conventional training based model for the impulse response
estimation. A sequence of known training symbols of lengthk is sent to the re-
ceiver and in the simplest scenario, the standard least square (LS) algorithm is
used to estimate the channel based on the received vector without assuming any
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properties for the noise or signal. Generally, the sequenceof known symbols
x = [x(0), x(1), x(2), · · · , x(K − 1)]T is inserted periodically in a block of data
symbols where the time between two consecutive pilot sequences is determind by
the coherence time of the wireless channel. The transmit signal after processing is
denoted byx, and the unprocessed data sequence is referred to asd. Depending on
the transmitter, these two could be equal or not. If there is no processing involved
in transmission then the transmitter transfer matrix is an identity andx = d.

The received signal is the convolution ofx with the wireless channelh. The
convolution operation can be represented by a matrix multiplication. To this end,
the data vectorx is converted into a Toeplitz matrixX ∈ C

(K+L−1)×L and the
received sequence is given by

y = Xh+ e , (3.6)

whereX is

X =





















x(0) x(−1) x(−2) · · · x(−L + 1)
...

. . .
. . .

. . .
...

x(L− 1) x(L − 2) x(L − 3) · · · x(0)

x(L) x(L − 1) x(L − 2) · · · x(1)
...

. . .
. . .

. . .
...

x(K − 2) x(K − 3) x(K − 4) · · · x(K − L− 1)

x(K − 1) x(K − 2) x(K − 3) · · · x(K − L)
...

. . .
. . .

. . .
...

x(K + L− 2) x(K + L− 2) x(K + L− 3) · · · x(K − 1)





















. (3.7)

The firstL samples ofy = [x(0), · · · , x(L− 1), · · · , x(K + L− 2)]T are the
transient part of the convolution since they are contaminated with previous un-
known symbols ([x(−1), · · · , x(−L+ 1)]) and the lastL symbols are also affected
by unknown data so the valid output vector hasK − L− 1 elements which corre-
sponds to the middle part of the X, denoted by
ŷ = [y(L), y(L + 1), · · · , y(K − 2)]T .

In order to estimate the channel impulse response, only the known symbols are
taken so the matrix̂X is formed by removing the first and lastL rows inX. The
channel can then be estimated in least square (LS) sense by

ĥ = argmin
h

‖ŷ − X̂h‖2 . (3.8)
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The solution to the LS optimization problem in (3.8) is givenby

ĥ = X̂†ŷ = (X̂HX̂)−1X̂H ŷ , (3.9)

and requires a cubic complexityO(L3) to compute, with respect to the channel
lengthL. Note thatL is itself relative to the symbol timeTs (the inverse of the
signal bandwidth). For instance, in a channel lasting over200ns andTs = 0.1ns,
the channel length can be expressed asL = 200

0.1 = 2000. Therefore, for a single
transmit antenna, the complexity of the matrix inversion isin order of109 multi-
plier - accumulator (MAC) operations. In fact the inversionoperation in (3.9) can
be calculated with complexityO(L2) because of the Toeplitz structure ofX once
a block time-invariant channel model is assumed. Moreover,to have a full col-
umn rank matrix for inversion in (3.8), the number of training symbols needs to
be sufficient soK ≥ 2L + 1. The optimal design for the training sequence can
be derived by solving an optimization problem when the mean square error (MSE)
of the channel estimation is minimized under a total training power constraint of
the system [57]. There are alternative less complex frequency domain channel es-
timation techniques that are based on diagonalization of the matrixX by means
of the Fourier transform. Similar techniques are discussednext in the context of
frequency domain equalization.

3.4 Wireless Channel Equalization

Optimal and Suboptimal Receivers

An optimal receiver for a digital communication system employs maximum likeli-
hood sequence estimation (MLSE) for detecting the information sequence from the
samples of the received symbols. The MLSE for a channel with ISI has a computa-
tional complexity that grows exponentially with the lengthof the wireless channel,
i.e., for a channel of lengthL and a symbol alphabet withM members, the Viterbi
algorithm computesML+1 matrices for each new received symbol. This is simply
impractical in real systems with a limited latency requirement. Instead, suboptimal
receivers employ linear or nonlinear equalizers to remove or reduce the effect of
the channel on the transmitted information. There are different types of equalizers,
each with different performance and computational complexity, they can be listed
as:

• Linear equalizers including zero forcing (ZF), minimum mean square error
(MMSE) and adaptive approaches to update a linear equalizerlike least mean
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square (LMS) or recursive least square (RLS) algorithms.

• Nonlinear equalizers including the decision feedback equalizer (DFE) and
maximum a posterior (MAP) equalizer with a BCJR algorithm orTurbo de-
coding which treats the channel as a convolutional code.

We focus on linear equalizers here, where the first choice of linear equalizers try
to minimize the least square error (LSE) cost function with no probabilistic assump-
tions, which leads to the best linear unbiased estimator (BLUE) when the noise is
white. The LSE criterion gives the minimum-variance unbiased (MVU) estimator
when the noise is assumed to be white and Gaussian. However, the performance
of such equalizers (e.g., the ZF equalizer) highly depends on noise characteristics.
Alternatively, the MSE cost function can be minimized taking into the account the
stochastic property of the noise which trades off the noise,and ISI at the output of
the equalizer.

In contrast, adaptive algorithms corresponding to both criteria are used for time-
variant channels, where filters are trained periodically over time to track the channel
state and updating algorithms are used, like RLS and LMS [58]. Frequency domain
equalizer (FDE) types [59] are an alternative low-complexity approach to ISI mit-
igation, where the digital transmission is carried out block-wise and equalization
relies on DFT operations which makes them closely related toOFDM systems.

3.4.1 Time Domain Equalization

Time domain equalization (TDE) removes the channel effect by filtering the re-
ceived signal in time domain with an FIR filter (inverse filtering). This is imple-
mentable as serial equalization as well as block equalization. The main difference
in the problem formulation appears in the representation ofthe equalization param-
eters which are given as a vectorw for a serial equalizer while this is a matrixW
for a block equalizer.

Serial Equalizers

The received sequencey passes through the equalizer filter with impulse response
w to reconstruct the desired original sequencex. So we havêx = Yw, where
Y ∈ C

P×(2L+1) the received symbols is collected in a Toeplitz matrix similar
to X in (3.7). For serial equalizers, the LS criterion minimizesthe squared error
betweenx̂ and the desired sequence which leads to a ZF equalizer. Generally,
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the filter coefficients are derived directly based on the known training sequencex
introduced in Section 3.3, so the least square filtering is given by

wZF = argmin
w

‖x− x̂‖2 = argmin
w

||x−Yw||2 = (YHY)
−1

YH x . (3.10)

The same approach can be followed to derive the MMSE equalizer, but this time
the stochastic mean of the squared error is minimized, so thenoise distribution is
also taken into account. Accordingly the MMSE equalizer is derived as

wMMSE = (YHY +
1

γ
I2L+1)

−1YH x , (3.11)

where σ2
x

σ2
e

is the signal to noise ratio (SNR). Here, it is assumed that the transmit
signal and noise are zero mean.

Both of these equalizers have the same number of taps(2L + 1), whereL is
the channel length, so they introduce the same delay to the system. The matrix
inversion operation in (3.10) and (3.11) has a complexity oforderO(L3) and also
each received symbol needs to be multiplied with(2L+ 1) filter coefficients. As a
result, for the data sequence of lengthN , we requireN(2L + 1) flops to perform
the equalization.

Block Linear Equalizers

For block linear equalizer, a block of data is transmitted followed by a guard inter-
val. The receiver decodes the full block after collecting it. The ISI is assumed to be
within a data block once a long enough time guard is inserted between two consec-
utive transmissions. Note that the latency of a block transmission system depends
on the block length unlike the serial equalizer. The channelcan be explicitly esti-
mated at the receiver side as explained in Section 3.3, and the channel coefficients
can be used directly to update the equalizer taps.

The guard interval is inserted between different data blocks to isolate the ISI in
each block and is selected to be a cyclic prefix of data or just astretch of zeros of
at least lengthL. Subsequently, the received vector is given by

y = Gx+ e , (3.12)

whereG ∈ C
N×(N+L) is a Toeplitz convolution matrix defined by,

G =











h(L− 1) · · · h(0) 0 0 · · · 0

0 h(L− 1) · · · h(0) 0 · · · 0

0 0 h(L− 1) · · · h(0) · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 0 h(L− 1) · · · h(0)











. (3.13)
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The transmit sequence is denoted by the vector
x = [x(−L), x(−L + 1), · · · , x(0), x(1), · · · , x(N − 1)]T after appending the
time guard. The vectory = [y(0), y(1), · · · , y(N − 1)]T includes the received
sequence after the wireless channel and after the removal oftime guard (the firstL
samples). In turn,e is a vector containing samples of zero-mean complex Gaussian
noise. For a block time-invariant wireless channel,G is a banded Toeplitz matrix
and (3.12) models the single-input and single-output blocktransmission communi-
cation system in a Gaussian channel.

For a block time-invariant channel model, the equalizationmatrixW is a Toeplitz
matrix, containing the coefficients of a filterw. Again, both ZF and MMSE equaliz-
ers can be applied in block mode. When the channel is known, the ZF equalizer can
be derived by forcing the cross correlation between the error sequenceε = x − x̂

and the desired information sequence to be zero where the equalized signal is

x̂ = WĜx+We , (3.14)

and the Toeplitz version of the estimated channel vector is denoted aŝG. The cross
correlation of the error and the signal is given by

E{εxH} = E{(x− x̂)xH} = E{xxH} − E{WĜxxH} , (3.15)

assuming that the noise and data are uncorrelated.
To force (3.15) equal to zero,W needs to be the inverse of the channel matrix

WZF = Ĝ† = (ĜHĜ)−1ĜH . (3.16)

The noise enhancement is the price we pay for using the ZF equalizer. The SNR
scales inversely with the noise variance and to keep the performance unaltered, the
SNR needs to be increased according to the noise enhancementfactor [60].

For the MMSE equalizer, the square error between the transmitted sequence
and the convolution of the received sequence with the equalizer filter is minimized.
Then the objective function is given by

E{εεH} = σx
2(WĜ− IN+L)(WĜ − IN+L)

H + σe
2WWH . (3.17)

The derivative of the expression in (3.17) is put to zero to obtain the optimal solu-
tion of (3.17), which follows

WMMSE = (ĜHĜ+
1

γ̄
IN+L)

−1ĜH . (3.18)
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Given a full matrixW, the multiplication ofWy requiresN2 operations. How-
ever, there exist more efficient algorithms to perform the block equalization by
exploiting the Toeplitz structure onW. Note that to achieve a better performance,
fractionally spaced sampling is required to cancel out the ISI, but this increases the
complexity linearly by oversampling factor. Moreover, forgigabyte transmissions,
the bandwidth of ADC/DAC is a serious issue even at a Nyquist sampling rate, so to
do the oversampling we need to reduce the data rate to cope with limited bandwidth
of ADC/DACs.

3.4.2 Frequency Domain Equalization

In a block transmission mode, the time guard block was until now used to insert
zero symbols in the data stream. Alternatively, each block can be circularly ex-
tended by inserting the repetition of at leastL of its last symbols as a time guard
(cyclic prefix). This overhead data transmission introduces an elegant mathematical
property of periodicity which can be exploited to form structured circular channel
matrices. This results in a significant complexity reduction which simplifies the
equalization process which is exploited in OFDM systems andfrequency domain
equalization [61].

The received signal vectory satisfiesy = Gx + e as introduced in (3.12).
By inserting a cyclic prefix inx, we can write (3.12) in terms of the original data
sequence excluding the cyclic prefix,x′ = [x(0), x(1), · · · , x(N − 1)], as

y = Gcx
′ + e , (3.19)

where a circulant matrixGc ∈ C
N×N is

Gc =












h(0) 0 · · · h(L− 1) · · · h(1)
... h(0) 0 0

. . .
...

h(L− 1) · · · h(0) 0 0 h(L− 1)
...

. . .
...

...
...

...
0 0 h(L− 1) · · · h(1) h(0)












. (3.20)

In FDE, the noisy received signal is first transformed by a DFTmatrix (F) at
the receiver and is transformed back by multiplying an IDFT matrix (FH ) after the
equalization process. The original data vector is denoted by x′ and its estimate at
the receiver is shown aŝx. In turn, the representation ofy is given by

x̂ = FHWFy = FHWFGcx
′ + FHWv , (3.21)
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wherev is the Fourier transform of the noise vector. Finally, the data vectorx′ can
be written asFHFx′, then (3.21) is expressed as

x̂ = FHW
︸ ︷︷ ︸

R

QFx′ + v′ , (3.22)

whereQ = FGcF
H is diagonal for the considered block time-invariant channel.

This exploits the properties of circulant matrices. An equivalent noise vector after
multiplication with frequency domain equalizerR is denoted asv′. The diago-
nal entries ofQ correspond to the Fourier transform of the channel i.e.,Q(k) =
∑L−1

l=0 h(l) e−j2πkl/N .
Both ZF and MMSE criteria can be used, similar to TDE, to derive the FDE by

minimizing the mean square error between the decision vector x̂ and the original
signalx′, where the error is expressed as

ε = (RQF− IN )x′ + v′ . (3.23)

The required matrix inversion takesN flops to calculate since the matrixQ to be
inverted is diagonal, versusN2 flops in TDE. The complexity of the DFT imple-
mented as a fast Fourier transform (FFT) isO(N log(N)) operations and to apply
the equalization,N MACs are required unlike the block linear TDE which spends
N2 MACs.

3.4.3 Comparison of Computational Complexity

To conclude the equalization discussion, in Table 3.1 the complexity of the equal-
ization algorithms is summarized in terms of the required flops forN samples in
one block (or symbols if oversampling is not the case). Note that the latency is
considered as the time between the moment that data is received until it is available
for detection, excluding the training (channel estimation) time.

As shown in Table 3.1, the complexity of the time domain blockequalization
varies betweenO(N) andO(N2) i.e., depending on the structure of matrixG.
The inversion of a symmetric or unsymmetric Toeplitz matrixcan be performed
in O(N2) flops, however the matrix needs to be sufficiently well conditioned in
unsymmetric mode. Banded matrices can also save in terms of computational com-
plexity using a Cholesky decomposition. The computationalcomplexity can be
reduced to orderO(N) if the bandwidth of the banded matrix is small enough and
for a regular Toeplitz matrix it is of orderO(N2) [56].

If a continuos transmission system is considered and the channel is highly time-
variant then the training sequence needs to be sent frequently so the equalizer can
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Table 3.1: Comparison between the complexity and convergence time of different equaliza-
tion algorithms. The length of one block isN , Ts is the symbol time andL is the channel
length.

algorithm order of flops per block latency

ZF O(N)−O(N2) NTs

block MMSE O(N)−O(N2) NTs

FDE O(N) NTs

serial
ZF O(NL2) (2L+ 1)Ts

MMSE O(NL2) (2L+ 1)Ts

RLS O(NL2) ∼ (2L+ 1)Ts

adaptive
LMS O(NL) ∼ 10LTs

fast Kalman DFE O(NL) (2L+ 1)Ts

square root LS DFE O(NL2) (2L+ 1)Ts

track the channel variation fast enough. In this case, direct matrix inversion is not
an efficient way to update the equalizer coefficients and adaptive algorithms are
employed to update the coefficients. RLS and LMS are among themost common
adaptive algorithms. Their complexity is listed in Table 3.1. In order to learn
the channel coefficient fast enough, the training process needs to converge before
the channel changes, in other words the convergence time of the algorithm to the
optimal coefficients needs to be smaller than the channel coherence time [19]. Non-
linear equalizers are also considered in Table 3.1 i.e., decision feedback equalizers
(DFE) and square root LS DFE. These commonly use a feedback loop to enhance
the estimation quality.

Finally, the elements of the original datad that we are trying to estimate are
limited to the discrete values of the digital modulation scheme; in general a vector
d of sizeN × 1 can takes2MN values where2M is the alphabet size of the modu-
lation format. This indicates a detection problem rather than an estimation problem
and the maximum likelihood detector is proved to be the optimal detector. Unfortu-
nately it is not computationally efficient or even feasible to perform a Viterbi search
to find the optimal sequence. maximum likelihood detectors with low complexity
have been proposed during the past decades, e.g., the received sequence is pre-
processed prior to the maximum likelihood detector by passing it through a linear
equalizer or a decision feedback equalizer to reduce the channel length to a desired
channel impulse response ofL0. This reduces the computational complexity of the
Viterbi algorithm toML−L0 [58].
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3.5 Conclusion

In this chapter, we introduced the wireless channel model that is considered in
the subsequent chapters to design the signal processing algorithms for a wideband
communication system. This is a simplified model compared tothe one introduced
in Chapter 2. The knowledge of the instantaneous complex channel gains is ac-
quired, by transmitting a short training sequence (known data). Common criteria
for receiver design and channel equalization were reviewedwith respect to their
complexity and latency and the importance and effectiveness of the linear equaliz-
ers were highlighted in this context.

Note that, even though the equalization process was studiedas part of the re-
ceiving process in this chapter, the same linear processingcan be performed at the
transmitter side to pre-equalize the wireless channel. This is beneficial when there
is more processing power available at the transmitter rather than the receiver, e.g,
in cellular systems. OFDM is an example of transferring a part of the processing
to the transmit side, i.e., by performing the IDFT before transmission of the signal,
and later applying the FDE at the receiver. An example of an OFDM design for a
wideband system is presented in the next chapter.



Chapter 4
Wideband System Design Example

4.1 Introduction

In high-speed communications, the propagation environment is the main source of
disturbance of the original signal and the main task of the transmitter and receiver,
respectively, is to prepare and recover the signal before and after passing it through
the wireless channel. In general, flat-fading channels (narrowband) are much eas-
ier to handle, while wideband channels introduce inter-symbol interference (ISI)
which can be regarded as noise that is correlated with the desired signal and is
difficult to handle. The main strategy for successful transmission in wideband sys-
tems is to translate the channel to a set of parallel narrowband subchannels. In this
way, the effective existing transmission and reception techniques for narrowband
communications can be applied to each sub channel.

Orthogonal frequency division multiplexing (OFDM) is an effective modula-
tion scheme, and is indeed considered for most of the existing wideband wireless
standards including WiMAX, LTE, WiFi, and also for the upcoming new standard
for 60 GHz WPAN, i.e., IEEE 802.15.3c. In general, the frequency band is divided
into several subcarriers such that each subcarrier experiences a flat-fading channel.
In this chapter we introduce, in more detail, the lithography system of interest and
we design an OFDM system that can meet the requirements of thesystem. Basi-
cally, this is to implement a wireless link inside a tight feedback control loop.

As introduced in Chapter 1, the main characterization of thecommunication
system of interest for the lithography machine is high peak data rate and low la-
tency. The sensors send a data block everyT seconds, but only a small portion of
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this interval is dedicated to transmission. Most of the timeis reserved for control
processing soT = kTt whereTt is the actual transmission period. The processing
time at the receiver isTpr which is used for demodulation, decoding etc. and de-
fines the processing delay at the receiver. This setting is illustrated in in Fig. 4.1.
The peak data rate is given by the ratio of the number of transmitted bits overTt.

All information bits need to be sent in the transmission periodTt and processed
in a very limited processing time (Tpr ) according to the system requirements. In
fact, latency is a critical measure for the system performance in this kind of appli-
cation and it is required to be in the order of micro-seconds which is far less than
the millisecond requirements on, e.g., video applications. Latancy is defined as the
time difference between the moment that the data is ready to be sent at the transmit-
ter and once it is available as data symbols at the receiver. However, some signal
processing can be performed during the non-transmitting time slot of durationTpt ,
e.g. training symbols transmission and channel estimation.

......

Tt Tpr Tpt

T

estimation datadata training

Figure 4.1: Time diagram for data transmission and processing. The time intervalT rep-
resents the time between the two data transmission periods whereTt is the available time
for sensors to send information andTpr

is the available processing time at the receiver.
Training symbols are sent before the next transmission and the estimation of the channel
coefficients is done during the specified estimation time.

The receiver (control unit) is located at a fixed position so the speed of the
moving platform defines the time variation of the wireless channel. By assuming a
relative speed of10 m

s and a frame time ofT = 50µs, the transmitter has moved by
0.5mm between two transmission periods. This is less than10% of the wavelength
at a carrier frequency of60 GHz. Hence, the channel estimation can be performed
after the channel decorrelates which is approximately every 5 frames at60 GHz
and every100 frames at a3 GHz carrier frequency which indicates a slowly time
variant channel.

This leads to the choice of a frequency selective block time-invariant channel
model and requires a careful choice of the equalizer to combat the fading without
exaggerating the latency of the system. Moreover, the system uses a wideband
burst transmission mode which accumulates the data symbolsin a block before
transmission rather than continuous transmission.
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Figure 4.2: A typical block diagram of the transmitter and receiver for a point-to-point
wideband communication system with frequency domain equalization at the receiver.

4.2 Block Transmission Model

Systems for wideband transmission can generally be dividedinto two possible set-
tings: 1) multicarrier transmission including OFDM and multicarrier code division
multiple access (multi carrier-CDMA), or 2) single carriertransmission. Note that
single carrier transmission is commonly performed with frequency domain equal-
ization for wideband systems to eliminate the frequency selectivity of the wideband
channel. Frequency domain equalization is an alternative equalization technique to
the classical time domain equalization, which was initially developed for ISI mit-
igation in wireline channels like dial up modems and in general for narrowband
systems [62].

A common diagram for a block-wise wideband transmission system is illus-
trated in Fig. 4.2. In the transmitter, after mapping the data bits vectorb into some
form of digital modulation like quadratic phase shift keying (QPSK) or QAM, the
complex symbols are grouped into data blocks of sizeN so
d = [d(0), d(1), · · · , d(N − 1)]T , d ∈ C

2M , whereM is the alphabet size of
the modulation scheme. Each block is linearly transformed by a code spreading
matrix C and the spread data signal is given byds = Cd, where the spreading
code selection defines the choice of transmission as follows:

• single carrier with frequency domain equalization:C = F ∈ C
N×N is a

Fourier matrix.

• OFDM:C = IN ∈ R
N×N is an identity matrix.

• multi carrier-CDMA:C = K ∈ C
N×N is a Walsh-Hadamard matrix.

Basically, any unitary matrix satisfyingCCH = IN can be used for the purpose of
code spreading. Then, the spread signal is modulated ontoN narrowband subcarri-
ers in a block which is denoted byx′. Based on the model in Fig. 4.2, the transmit
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signal before adding the time guard is given by

x′ = FHCd. (4.1)

The final transmit signalx is a concatenation of vectorx′ and the time guard se-
quence which is discussed next for an OFDM system. In turn, the received signal
after equalization and despreading is

d̂ = CHWFGcF
HCd+ e, (4.2)

whereGc andW are the circulant channel and equalization matrix which arede-
fined in equations (3.20) and (3.14), respectively, ande is the additive noise. We
know that a circulant matrix is orthogonalized by a Fourier transform, soFGcF

H

is an orthogonal matrix containing the Fourier transform ofthe channel impulse re-
sponse and the equalization matrix inverses the channel effect, ideally. Therefore,
the received signal is the transmit signal plus zero mean white Gaussian noise and
the optimal receiver is the matched filter in this case.

4.3 Orthogonal Frequency Division Multiplexing (OFDM)

OFDM modulation is a multi-carrier transmission scheme with overlapping subcar-
riers which increases the spectral efficiency and has becomevery popular because
of its ISI rejection property in frequency selective wireless channels. The frequency
band is divided into several subcarriers while each subcarrier experiences a flat fad-
ing channel [19].

In general, an OFDM system uses a cyclic prefix to isolate ISI within each
block. The cyclic prefix is the time guard which is created by concatenating the
lastNcp samples to the beginning of the block. The length of the cyclic prefix is
commonly chosen to be longer than two times the rms delay spread of the wireless
channel. Therefore, in OFDM, a long channel can waste bandwidth and limit the
data rate. There are techniques to reduce the channel lengthincluding a channel
shortening filter which uses the same approach as time domainequalization. The
channel shortening filter is designed by minimizing the meansquare error between
the desired channel impulse response and the one after filtering [63]. Nevertheless,
deep fading in subchannels results in erroneous decisions on corresponding modu-
lated symbols in those OFDM subcarriers. If some consecutive subchannels are in
deep fade, the channel is useless in a portion of the frequency band. In other words,
OFDM does not benefit from multipath diversity. There are some classic solutions
for this issue which can be classified as:
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Interleaving can be performed at the receiver to obtain the multipath diversity by
diversity combining. At each transmission period in time, all subchannels do not
experience the same fading across the band and this can be used to achieve diversity
gain by sending the same OFDM symbol over multiple subchannels at the cost of
reducing the data rate. The receiver combines the received signal in such a way that
the total SNR is increased at the output [19].

Coding is the simplest way to correct for random errors in the received block of
data. The combination of coding and interleaving can be usedto avoid burst errors
in OFDM due to fading. In fact, symbols in time domain are coded and interleaved
before IDFT modulation, so those adjacent subcarriers which experience fading
over the wireless channel are relocated at the deinterleaver block and decoded af-
terward. Therefore, burst errors are spread over the received sequence and can be
recovered by some form of error correcting codes.

Adaptive modulation is another way to improve the performance of OFDM sys-
tem by allocating more complicated mapping scheme or more power in subchan-
nels with better SNR and vice versa. This needs explicit channel state information
at the transmitter and is an optimal resource allocation technique to maximize the
mutual information (capacity) in a communication link.

Zero padding OFDM addresses the diversity issue in OFDM by taking into ac-
count the redundant part of the channel. This was first proposed in [64] based on
trailing zeros rather than a cyclic prefix to eliminate the inter-block interference. In
this approach the appended zeros are not removed as in cyclicprefix but they are
used in the equalization process. If the number of appendingzero symbols equals
the cyclic prefix length then zero padding OFDM has the same spectral efficiency as
cyclic prefix OFDM. The price paid here for symbol recovery isthe receiver com-
plexity, since the single FFT in cyclic prefix version is replaced by FIR filtering
[65].

OFDM suffers from other issues including a large peak-to-average power ra-
tio (PAPR) which seriously limits the efficiency of the poweramplifier. There are
several methods to combat PAPR, we discuss this in Chapter 6.The other prob-
lem with OFDM is the sensitivity to carrier frequency offset. There are literatures
dedicated to comparing OFDM to single carrier with frequency domain equaliza-
tion, and many simulations are presented on the performanceof coded and uncoded
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OFDM [61]. Next, we discuss a simple OFDM design for the mechatronic system
of interest according to the channel specifications that areintroduced in Chapter 2.

4.4 OFDM Design Example for the Dispersive Channel

In this section the BER performance of an OFDM system using the measured chan-
nel is compared to that using a simulated Rayleigh fading channel to answer to
some extent important system design questions such as

• What are suitable modulation schemes and equalization techniques for such
dispersive (rich scattering) and extremely long channels?

• Can we benefit from the diversity gain offered by these typesof channels with
an acceptable computational complexity or should the channel be shortened
using e.g. absorbers?

• What is the channel capacity for such highly reflective environments?

For the numerous existing wireless channel models, these questions are well stud-
ied. A straightforward approach is to relate the proposed channel model in Chap-
ter 2 to the available models and modify the system design including the modula-
tion, coding and equalization in order to cope with the new circumstances.

Here we design a wideband orthogonal frequency division multiplexing (OFDM)
system with a zero forcing (inverse filtering) frequency domain equalization for
a lithography system with certain latency and rate requirements. The proposed
system design is simulated in Matlab using the measured channel in the60 GHz
band from Chapter 2 within a closed metal cabinet which emulates the environ-
ment inside the lithography machine. In contrast to conventional indoor channels
at 60 GHz, the channel in the metal enclosure is highly reflective resulting in a
rich scattering environment with a significantly large root-mean-square (RMS) de-
lay spread which makes high data-rate communications a challenging task. The
bit error rate (BER) performance is evaluated and compared to two long and short
simulated Rayleigh channels and also theoretical BER performance for Rayleigh
channels. In general the BER performance is almost3 dB better when more sub-
carriers are used in one OFDM block as the ratio of cyclic prefix to the information
symbols and consequently the power spread is reduced.
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Figure 4.3: A data sequence with frequency guard bands (nullsubcarriers in frequency
domain) and pilot subcarriers is converted to the transmitted time domain OFDM block by
taking an inverse discrete Fourier transform (IDFT) and appending the time domain guard
(cyclic prefix) to the block.

4.4.1 Design Parameters

The design example is based on a single antenna, standard OFDM modulation with-
out coding (see Fig. 4.3). An OFDM block with bandwidthBw is split intoN sub-
carriers, consisting of guard bands andNu ’user’ subcarriers (data and pilots). In
time domain, the correspondingN samples are augmented with a cyclic prefix of
Ncp samples. The symbol duration isTs = 1/Bw and the maximum delay spread
is denoted astmax. Straightforward equalization requires that the time duration of
the cyclic prefix is larger than the length of the wireless channel:

NcpTs > tmax (4.3)

This is used to isolate the inter symbol interference (ISI) within each block of the
OFDM symbol so that the ISI can be eliminated separately in each block by fre-
quency domain equalization.

We assumeM -ary modulation, withM = 2m, so that a symbol consists ofm
bits. The bandwidth efficiency is

κ =
mNu

Ncp +N

and the resulting data rate isκ/Ts bits per second.

The data rate can be increased by increasingm but this will require a better
SNR or lead to a higher bit-error rate (BER). We can also increaseNu (hence also
N ) until the bandwidth efficiency saturates tom. Finally, the symbol durationTs

can be shortened by increasing the available bandwidthBw.
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Latency is often also a consideration, and this leads to a limitation on the size
of a data packet. The latency is at least equal to the durationof one OFDM block,
which is (Ncp + N)Ts and our desired system specification poses a maximum to
this.

Several other limitations are in place. Apart from practical limitations and com-
putational limitations, the number of subcarriers (N ) that can be allocated in one
OFDM block is limited by the requirement that the channel is constant over the du-
ration of the OFDM symbol, i.e., the coherence time of the channel should be larger
[19]. The coherence time is defined as1∆fD

where∆fD is the range of possible
Doppler frequencies of the channel, and the requirement becomes

(N +Ncp)∆fD Ts ≪ 1 . (4.4)

Another requirement is that each subcarrier experiences flat fading. In frequency
domain, the distance between fades is related to1/tmax [19]. This leads to

Bw

N
≫

1

tmax
or N ≫ Bwtmax. (4.5)

As an example, let us design a system atfc = 60 GHz with an available band-
width Bw = 5 GHz. For the sake of simplicity, we consider BPSK modulation,
which leads tom = 1 andTs = 1

Bw
= 0.2 ns. The channel follows the metal

enclosure in Chapter 2 and we taketmax = 1µs, i.e., the maximum length of the
measured channels in average.

The proposed system is part of a mechatronic system in a closed metal environ-
ment in which a moving platform with sensors and actuators has to communicate
to a controller which is fixed. Since movements that occur outside the enclosure do
not affect the channel, we expect a slowly time-varying channel with a sufficiently
long coherence time. The Doppler shift is defined as∆fD = νfc

c , whereν is the
relative speed between transmitter and receiver,c is the speed of light, andfc is the
carrier frequency. If we assume a maximum relative speed of10 ms−1, then the
Doppler frequency range is∆fD = 2 kHz, and the coherence time of the channel
is 1

∆fD
= 0.5 ms.

As discussed earlier, the spectral efficiency increases with the number of sub-
carriers. Considering (4.4) for∆fDTs = 0.4×10−6, the upper bound on the length
of an OFDM block is given byNcp +N ≪ 2.5 × 106 subcarriers. To satisfy this,
we consider as constraint on the size of a transmission block

Ncp +N < 2.5 × 105 symbols.
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The cyclic prefixNcp should satisfy (4.3). For a channel of length1 µs, this leads
to

Ncp ≥ 5000 ,

and the exact number depends on the scenario. Finally, condition (4.5) leads to

N ≫ 5000 .

We consider two versions of the system: (A) minimal latency;(B) maximal data
rate. For minimal latency, we takeNcp = 5000, and a block size ofN = 213 =

8192 of which we takeNu = 6720 data/pilot symbols, and2 × Nguard = 1472

null subcarriers for frequency guards at both ends of a block. This is different for
different systems, we take less than10% of the total subcarriers here. This leads to
a spectral efficiency ofκ ≈ 0.5. The duration of one data packet becomes 2.64µs
and the data rate is 2.547 Gbps.

For maximal data rate, we chooseN = 217 ≈ 1.3×105, of which we takeNu =

107520 data/pilot symbols, and2×Nguard= 23552 null subcarriers. By taking less
subcarriers as a frequency guard, the spectral efficiency (data rate) will increase,
respectively. In our setting the same amount of frequency guard is used for both
proposed OFDM block length, however since the bandwidth of the subchannels is
smaller in the longer OFDM block, more subchannels are reserved that is for a fair
comparison between the two proposed OFDM designs. The duration of one data
packet is about 27.2µs and the data rate is 3.95 Gbps. Thus, the latency increases
more than 10 times by takingN = 217 compared toN = 213 whereas the data rate
increases by less than 50%.

For the measured channels, the channel lengthtmax varies depending on the
scenario, which alters the cyclic prefix and consequently the block length. Table 4.1
summarizes the parameters that are taken in our design and used in the following
simulation. As usual, higher data rates could be obtained byconsidering higher-
level modulation as well as multiple antennas.

4.4.2 Simulation Setup and Results

For the designed BPSK-OFDM systems, we will compare the BER performance for
both simulated Rayleigh fading channels and the measured channels for the vari-
ous scenarios. The Rayleigh fading channel is based on a tapped delay line setup
where each path is assumed to be a Rayleigh fading process without considering
any specific power delay profile.
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A: N = 213 B: N = 217

Ncp rate (Gbps) latency (µs ) rate (Gbps) latency (µs )

Simulated 1 11 4.096 1.640 4.101 26.216
Simulated 2 4001 2.756 2.438 3.980 27.015
Scenario 1 3903 2.778 2.418 3.983 26.994
Scenario 2 5812 2.399 2.801 3.927 27.377
Scenario 3 5617 2.433 2.762 3.933 27.338

Table 4.1: Data rates and latency for (A) a low-latency system, and (B) a high-rate system.

The considered performance measure is BER as function ofEb/N0, whereEb

is the transmit energy per bit, andN0
2 is the two-sided noise power spectral density

(PSD). In the simulation, we first convertEb to the energy per symbolEs, taking
into account the number of bits per symboll and the overhead by the cyclic prefix
Ncp, resulting in

Es

N0
=

Eb

N0
×

lNu

Ncp +N
. (4.6)

The measured and simulated channels are normalized to unit power and convolved
with the transmit sequence. In that case, the transmittedEs/N0 is equal to the
received signal to noise ratio (SNR), and we add white Gaussian noise of suitable
power to obtain the specified SNR.

For such dispersive channels, several subcarriers experience fading so that the
BER is usually not very good. Various well-known techniquescould be introduced
to combat the fading subchannels, e.g., channel coding, interleaving, rake receiver
design, as well as single input multiple output (SIMO) systems with diversity com-
bining schemes [19]. However, for improved interpretationof the results, we will
not consider these in the simulation. In the simulation, we assume that the receiver
has perfect knowledge of the channel.

Fig. 4.4 shows the BER as a function ofEb/N0 for the various channels. As
expected, the performance is generally limited by the fading channel as the symbols
in channel nulls cannot be recovered by frequency domain equalization. For the
larger block size (design (B)), the BER performance is slightly (almost 3 dB) better
than the shorter OFDM block, as expected, due to the spectralefficiency and less
spread of transmit power over the cyclic symbols.
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Figure 4.4: BER performance of an uncoded OFDM system over the measured channels
for different scenarios with block sizeN = 8192 andN = 217 . The BER plot of OFDM
block of sizeN = 217 is shown forscenario1, (scenario2and 3 have the same BER
curves asscenario1), and also for two simulated Rayleigh fading channels withL = 10

andL = 4000 taps. A theoretical BER curve for a narrowband signal (no ISI) is plotted as
a reference.

4.5 Conclusion

A simple OFDM system design example for a highly dispersive wireless channel
that is measured in a metal enclosure is introduced in this chapter. The results
indicate that the frequency domain equalization can work sufficiently good and the
most important source of system degradation comes from the fact that we need a
long time-domain guard (cyclic prefix) to avoid inter-blockinterference. The loss is
two-fold: increased latency and reduced spectral efficiency. Moreover, the power
spread due to the extra power that is put in the redundant symbols, is a waste of
power resources in a long cyclic prefix. The latter can be addressed with a zero
padded time guard which has been proposed in [65], i.e., by sending nothing in the
time guard between two consecutive blocks. However, the detection of the signal
is more complicated with zero padded OFDM.

In a more general context, the summary of the literature suggests that the single
carrier with frequency domain equalization can outperformthe plain OFDM in
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BER criteria but coded OFDM together with adaptive modulation still keeps the
OFDM technique as one of the most promising solutions for wideband systems
[66]. OFDM is proposed in this thesis as a competent solutionfor the short-range
and high data-rate system of interest inside the industrialmachine. However, this
application requires a very careful and unique design of theOFDM system for such
a specific environment and requirements. More on the implementation issues of an
OFDM system will be presented in coming chapters.

This concludes the first part of this thesis providing detailed specifications and
a design example for the mechatronic system of interest which was the starting
point of this research project. The first three chapters opened up the challenges
of transmission in an extremely reflective environment of confined metal enclo-
sure which can generalize the propagation environment in mechatronic systems.
We showed that the classical equalization techniques and modulation schemes can
fairly cater for ISI resulting from the dispersive environment while the latency is
the most challenging issue afterwards.

The rest of this thesis is dedicated to more general topics insignal processing
for wideband communication systems. Multiple antenna systems and multidimen-
sional processing are discussed in the following chapters.MIMO-OFDM systems
are emphasized as an ultimate combinational systems that simultaneously exploit
different dimensions of the signal in frequency, time and space. The difficulties and
bottlenecks in MIMO-OFDM systems are introduced and novel signal processing
solutions are developed to move the performance of these state of the art techniques
towards their optimum.
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Chapter 5
Preliminaries on Multiple-Input

Multiple-Output (MIMO) Systems

5.1 Introduction

We start the second part of this thesis by a brief introduction to a multiple-input
multiple-output (MIMO) system that is one of the existing parts of almost any mod-
ern wireless system nowadays. This extends the discussed single stream signal and
channel model in the previous chapters to the multi-dimensional one. In this chap-
ter, common MIMO system models and some related techniques on precoding and
beamforming are briefly reviewed. Also the channel capacityin MIMO is reviewed
and is compared to the single channel system.

MIMO techniques are widely used in wireless communicationsto improve the
system performance by gaining diversity (SNR gain) and/or multiplexing (capac-
ity). This exploits independent fading paths in wireless channels by means of an
antenna array for which the elements are separated in space.However, the increased
performance comes at the expense of additional complexity costs including

• Extra antennas and radio frequency (RF) chains: This includes high-power
amplifiers, mixers, analog to digital convertors (ADCs) anddigital to analog
convertors (DACs).

• Space required to separate the antenna elements: The common spacing cri-
teria assume a spacing of at least0.38λ or approximately half a wavelength
to achieve independent paths [67], hence the required distance between two
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Figure 5.1: A point to point MIMO system withMt andMr transmit and receive antennas,
respectively. Thehi,j value represents the communication channel from theith transmitter
to thejth receiver.

elements is 5 cm forfc = 3 GHz and 0.25 cm forfc = 60 GHz.

• Circuit power: For each antenna additional components areused to receive
and process the signal which translates to extra power consumption.

• Multidimensional signal processing: The channel, receive and transmit sig-
nals are expanded due to the additional signaling dimension. For example
the equalization process is more complex.

The ultimate goal of MIMO system design is to maximize eitherthe capacity
(data-rate) or the diversity gain (SNR) subject to one or more of the aforementioned
costs or conversely to minimize a cost subject to constraints on minimum SNR or
capacity gain.

5.2 FIR-MIMO Channel Model

To establish the basics for the following chapters on MIMO transmission, a com-
monly used channel model is considered. This model is based on a finite impulse
response (FIR) channel i.e., we assume a channel with a finitelength similar to the
corresponding SISO channel model in Chapter 3.

A point to point MIMO communication system ofMt transmit antennas and
Mr receive antennas is illustrated in Fig. 5.1 which can be represented by the fol-
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lowing discrete time model
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By assuming an instantaneous channel model, this can be formulated in a compact
form given by

y(n) = Hx(n) + e(n). (5.2)

The elements of the instantaneous channel matrixH ∈ C
Mr×Mt correspond to

the complex channel gain between the transmit signalx(n) and the receive signal
y(n) as illustrated in Fig. 5.1. An additive noise vector at the receive antennas is
denoted bye(n). The signal model in (5.1) is valid for a frequency-flat MIMO
(narrowband) channel with no inter-symbol interference (ISI).

In a frequency selective (wideband) MIMO channel, the received signal is a
convolution of a transmitted sequence with a matrix of channel coefficients. There-
fore, each received vectory(n) at time indexn is a superposition of the current
transmit vectorx(n) and the delayed versions ofL previous transmitted vectors
whereL is the channel length, so

y(n) =
L−1∑

l=0

H(l)x(n − l) + e(n) . (5.3)

HereH(l) is the channel matrix for thelth received path. Equation (5.3) is the
MIMO extension of (3.5) to represent a wideband system wherethe computation
is changed to matrix operations. Consequently, the channelestimation complexity
grows with order ofMt

3, for each antenna at the receiver side.

For a wideband system of interest, a block transmission modeis considered as
explained in Chapter 4. Accordingly, samples onMr receive antennas are stacked
in a vectory and the samples onMt transmit antennas are collected in a vectorx.
Assuming a block ofN + L samples is transmitted, define

x = [xT (−L),xT (−L+ 1), . . . ,xT (N − 1)]T , (5.4)

y = [yT (0),yT (1), . . . ,yT (N − 1)]T . (5.5)
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In a time-invariant channel, the instantaneous channel matrix H is repeated along
the diagonal of a convolution matrixG, which leads to a block Toeplitz matrix as
follows

G =











H(L− 1) · · · H(0) 0 0 · · · 0

0 H(L− 1) · · · H(0) 0 · · · 0

0 0 H(L− 1) · · · H(0) · · · 0
...

. . .
...

. . .
...

. . .
...

0 · · · 0 0 H(L− 1) · · · H(0)











. (5.6)

In fact, (5.6) is the MIMO format of (3.4.1), however the dimensions are expanded
here asG ∈ C

MrN×Mt(N+L).
The compact formulation of (5.3) for the received data block, similar to (3.12)

yet with expanded dimensions, is given by

y = Gx+ e . (5.7)

The firstL blocks ofy are contaminated with theL previous transmit blocks which
can be avoided by putting a time guard interval between the consecutive transmit
blocks, on all antennas.

The considered system model is very general and can describedifferent set-
tings for MIMO systems, e.g., the possibility of having onlyone transmitter or
receiver antenna which leads to single-input multiple-output (SIMO) and multiple-
input single-output (MISO) systems, respectively. Also the data block sent over
each transmit antenna could be independent data to increasethe throughput or it
could be a repetition of the same information to achieve diversity.

5.3 MIMO-OFDM System Model

A combination of the OFDM model in Chapter 3.4.2 and the MIMO matrix repre-
sentation leads to an equivalent MIMO-OFDM system model, where the received
data vector in time domain is given by

y = GcF
H
b x+ e , (5.8)

whereFb = IMt ⊗ F is a block-diagonal matrix with unitary discrete Fourier
transform (DFT) matricesF ∈ C

N×N along its diagonal. The transmit signal is
represented byx ∈ C

N×1 (excluding the cyclic prefix) wherexF = FH
b x is the

transmit vector in time domain. The signal model in (5.8) is similar to (3.19) but
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Figure 5.2: A noise-free MIMO-OFDM system model with a circulant channel matrix after
discarding cyclic prefix (time guard) data.

differently, the received and transmit vectors are the result of stacking time samples
on multiple antennas in MIMO setting. This is illustrated inFig. 5.2 (ignoring the
noise). The insertion of the cyclic prefix as time guard between the transmit blocks
enables us to transform the Toeplitz matrix of (5.6) to a block circulant matrix in
Fig. 5.2.

At the receiver, the received signal is multiplied byFb. We know that circu-
lant matrices can be diagonalized using a Fourier transform, so this multiplication
leads to a block diagonal channel matrix, with narrowband channel matrices on the
diagonal. This transformation is expressed as

Fby = FbGcF
H
b

︸ ︷︷ ︸

Q

x+ v , (5.9)

wherev is the Fourier transform of the noise vector, andQ = FbGcF
H
b is a

block diagonal channel matrix owing to the property of circulant matrices. This
is equivalent to a block diagonal flat fading channel. This simple transformation
reduces the interference cancelation task to only a spatialseparation by taking care
of the temporal interference (ISI). For the rest of this chapter, we consider the
narrowband MIMO channel of (5.1) assuming that the frequency selective MIMO
channel is flattened, e.g., by the discussed MIMO-OFDM technique.

5.4 Capacity of a MIMO Channel

Multiple antenna technology is one of the most rewarding techniques to increase the
wireless channel capacity linearly (same effect as increasing the bandwidth). This
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makes the wireless channel outperform the classical AWGN channel at the cost of
additional complexity. The capacity gain obtained from multiple antennas heavily
depends on the available channel state information (CSI) ateither the receiver or
transmitter, the SNR and the correlation between the channel gains at each antenna
element.

In general, the MIMO channelH is a stochastic variable (the static channel will
be discussed later) and having no prior information about the distribution of the
channel, commonly, the elements inH are modeled as complex jointly Gaussian
random variables. More specifically, a zero-mean, spatially white (ZMSW) chan-
nel model is considered where the channel mean is zero (over different channel
realizations in long-term) and the channel covariance is modeled as white (identity
matrix), i.e., the channel elements are assumed to be i.i.d., zero mean and unit vari-
ance random variables. This model admits a Rayleigh flat fading channel model
[58].

In general, the mutual information between the input and theoutput is maxi-
mized over all possible input distributions, to obtain the channel capacity [19] for
all types of channels including both SISO and MIMO channels.The capacity is
given here in units of bits (nats) per second per Hz for the logarithm of base two
(natural) which represents the spectral efficiency. Hence,multiplying it by band-
width gives the data rate in bits (nats) per second, i.e., fora MIMO system is defined
as

C = max
Px(x)

I(x;y) = max [H(y)−H(y|x)] (5.10)

wherePx(x) is the probability density function (pdf) of the input with the covari-
ance matrix ofRx = E{xxH} [68]. The entropyH(y|x) is equivalent to the noise
entropy, so maximizing the mutual information is equivalent to maximizing the
entropy ofy (H(y)) which is a function of SNR and hence of the output covari-
ance matrix. Assuming additive zero mean Gaussian noise with identity covariance
(σ2

eIMr ), the output covariance matrix is

Ry = E{yyH} = HRxH
H + σ2

eIMr , (5.11)

so the optimization variable in (5.10) is reduced toRx, therefore, for jointly Gaus-
sian processes, the maximum mutual information is given by

C = max
Rx

log

(

det[
1

σ2
e

HRxH
H + IMr ]

)

. (5.12)

Shannon proved for an AWGN channel, that for all given outputrealizations,
the entropy is maximized when the input distribution matches the noise distribu-
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tion. Therefore, the optimal input distribution is a zero mean complex Gaussian
for an AWGN channel [69]. Respectively, for a ZMSW complex Gaussian MIMO
channel model, the ideal input is ZMSW complex Gaussian distributed which is
matching the channel. Note that the capacity is a stochasticvariable since the chan-
nel is considered to be stochastic, so the notion of average (ergodic) capacity is
commonly used. Hence the optimal input covariance matrixRx is the scaled iden-
tity (equal power allocation) and the average capacity witha power limit, over all
channel realizations is given by

C = EH

{

log

(

det[
P

Mtσ2
e

HHH + IMr ]

)}

bits/sec/Hz, (5.13)

in units of bits per second per Hz, i.e., by considering the rate per channel use (spec-
tral efficiency). In turn,P is the total transmit power andσ2

e is the noise power for
the ZMSW channel model [70]. Unfortunately, the capacity isonly known, in a
closed form, for a few channel types due to the complexity of capacity evaluations.
A useful performance metric for non-ergodic channels is theprobability that the ca-
pacity is below some value for a specific percentage of channel realizations, which
is referred to as the outage capacity [19]. In non-ergodic channels the transmission
blocks are short compare to the channel variations, so the ensemble average over
the output sequence does not represent the stochastic mean of the random process.

Note that we commonly assume the availability of CSI at the receiver (CSIR),
as this is quite easy to obtain by sending pilot symbols to thereceiver unlike the CSI
at the transmitter which is rather expensive to learn. Once the channel matrix model
deviates from ZMSW, then equal power allocation is no longeroptimal in terms of
capacity and there is a bias that needs to be exploited when the input covariance is
adapted (the Gaussian model is still valid). In this situation, assuming channel state
information at the transmitter (CSIT), the channel capacity is not known explicitly
and is obtained by solving the following optimization problem

C = EH

{

max log
(

det[ 1
σ2
e
HRxH

H + IMr ]
)

Rx : Tr(Rx) = P

}

, (5.14)

with a short term power constraint over the channel realizations i.e., for each chan-
nel realization the power constraint is to be satisfied. The optimization problem in
(5.14) gives the average capacity of the channel with respect to the instantaneous
total power constraint [70].

An alternative capacity is given by imposing a long term power constraint, i.e.,
the total power constraint is to be satisfied in average over many channel realiza-
tions where the transmit power for each channel realizationisPH and the constraint
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is denoted asE{PH} = P . In fact, the transmit power can be larger thanP for a
specific channel realization as long as in average the constraint is satisfied. In this
context, power allocation techniques aim to redistribute the power optimally over
all antennas, which will be discussed in Chapter 7. More on this topic can be found
in [71, 72, 73].

Interestingly, when the number of transmit antennas is large, we have

lim
Mt→∞

1

Mt
HHH = IMr , (5.15)

such that the capacity in (5.13) asymptotically reaches a constant value of
C = Mr log(1 + P

σ2
e
) [34]. In case of no knowledge of CSIT and largeMt, the

capacity is the same as the one with CSIT, i.e, the optimal input covariance is
the identity matrix. This is one of the most interesting features of MIMO system,
that the capacity grows linearly even if nothing is known about the communication
channel at the transmitter.

Note that, even though the availability of CSIT does not increase the capacity
for a large number of transmit antennas, it can significantlyreduce the decoding
task at the receiver [19]. For the sake of comparison and to highlight the superiority
of MIMO design with respect to SISO systems, a summary of channel capacities
for both SISO and MIMO channels is collected in Table 5.1. Thederivation of all
the mentioned capacities is out of the scope of this thesis, therefore references are
provided for the details.

Static MIMO channels or deterministic channels are time-invariant and accord-
ingly, the parameters are fixed so the capacity is deterministic given by a constant
value. If there is no CSIT then the mutual information maximization problem sub-
ject to the total power constraint, yields equal power allocation to all transmitters,
similar to the stochastic channel. This meansRx is deterministic and is a scaled
identity matrix such that the capacity boils down to

C = log

(

det[
P

Mtσ2
e

HHH + IMr ]

)

=

R=rank(H)
∑

m=1

log

(

1 +
δmP

Mtσ2
e

)

. (5.16)

whereδm is themth eigenvalue value ofHHH .
When CSIT is assumed,

C = max
Rx:Tr(Rx)=P

log

(

det[IMr +
P (m)

P
γ(m)]

)

, (5.17)
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leads to the waterfilling power allocation once a total powerconstraint is imposed
[19]. The waterfilling solution allocates less power to morenoisy channels (low
SNR) and vise-versa, and is given by

P (m)

P
=

{
1
γ0

− 1
γ(m) , γ(m) ≥ γ0

0, γ(m) ≤ γ0
(5.18)

where the SNR on themth channelγ(m),m = 1, 2, . . . ,M , is defined asγ(m) =
Pδm
σ2
eMt

andγ0 is found numerically by the total power constraint equationwhich
implies that no data is sent when the channel SNR is below thisthreshold. The
solution is stated in Table 5.1, and for more details and derivation of the water-
filling solution see [19]. The static channel model is usefulto model block fading
channels where each block experiences a flat fading channel.Note that the capacity
evaluation in this chapter is performed by considering the total power constraint,
mainly due to the complexity of the capacity evaluations. Indeed, even for a simple
power constraint, the capacity is known for just a few channel types.

In Table 5.1 we summarize the capacity expressions for various SISO and
MIMO channels with respect to the availability of the channel information at the
transmitter and/or receiver. If the CSIT is available, the waterfilling algorithm is
used to optimally allocate the power resources among the channels. Hence, the ca-
pacities for SISO and static MIMO channels are obtained by waterfilling with γ0 as
the threshold SNR below which no data is transmitted. In contrast, a uniform power
allocation is considered optimal if only CSIR is available.The capacity formulas
are given subject to the total power constraint where two types of total constraint,
are considered for time-variant MIMO channels: The short-term power constraint
and the long-term constraint which have been discussed before. Note that the SNR
is fixed for an AWGN channel (no fading) and is given byγ = P

σ2
e
, however for the

fading channels this is a random variable which is represented by its pdfpγ(γ). The
time-variant channel is assumed to be continuous where the discrete time-variant
channel can be modeled as a block fading channel with each block experiencing
the flat fading (static) channel.
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Table 5.1: The capacity for the SISO and MIMO channels under different assumptions on the CSI and fading are given subjectto the
total transmit power constraint ofP . The indicesk = 1, 2, . . . , N denote the frequency bins for frequency selective channels, while
m = 1, 2, . . . , R denote the spatial channels whereR = rank{H}. The time-variant MIMO channel capacity knowing the CSIT for short-
term power constraint, and long-term power constraint overchannel realizations is marked with∗ and∗∗ respectively. The random variable
PH is the transmit power for a channel realization.

CSIT
SISO

time-variant
∫ ∞

γ0

log(
γ

γ0
)pγ(γ)dγ[19]

frequency selective
∑

k:γ(k)≥γ0
log(

γ(k)

γ0
) [68]

doubly selective
∑

k:γ(k)≥γ0

∫ ∞

γ0

log(
γ(k)

γ0
)pγ(γ(k))dγ(k)[19]

MIMO
[70] static

∑

m:γ(m)≥γ0
log(

γ(m)

γ0
)

time-variant
EH{max

Rx:Tr(Rx)=P log(det[
1
σ2
e
HRxH

H + IMr ])}
∗

max
PH:E{PH}=PEH{max

Rx:Tr(Rx)=PH
log(det[ 1

σ2
e
HRxH

H + IMr ])}
∗∗

CSIR

SISO time-variant
∫ ∞

0
log(1 + γ)pγ(γ)dγ [74]

MIMO
[70] static log(det[ P

Mtσ2
e
HHH + IMr ])

time-variant
EH{log(det[ P

Mtσ2
e
HHH + IMr ])}
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Figure 5.3: A block diagram of a narrowband MIMO system including the encoder and
precoder.

5.5 MIMO Precoding Design

In this section we focus explicitly on well-known transmitter designs and common
blocks in a MIMO transmitter for the purpose of capacity maximization assuming
a flat fading (instantaneous) MIMO channel. The MIMO transmitter (precoding)
design is the subject of the next two chapters of this thesis.

5.5.1 MIMO System Schematic

In completion of the previous SISO model in Fig. 4.2, a typical MIMO system with
focus on pre-processing blocks at the transmitter side is illustrated in Fig. 5.3. Data
streams at bit level are fed to the encoder which divides theminto R parallel and
independent symbol sequences. The encoder includes a forward error correction
coder (FEC) such as LDPC or Reed Solomon code, a source coder which maps the
data into symbols, a modulator which prepares the symbols for transmission (such
as multicarrier modulation or spreading), and perhaps a space-time coder block
which schedules the data streams in time and space for transmission.

The space-time coding is a solution for the multiplexing-diversity trade-off and
is categorized into two main types: STBC (space-time block codes) and STTC
(space-time trellis codes) which are obtained based on different code design crite-
ria, see [19, 75, 76] and references therein for further information. Considering the
spatial multiplexing forMr ≤ Mt

1, the codeword is a vectord ∈ C
Mr×1 and the

1It is a common assumption for a spatial multiplexing systemsthat the number of transmit and
receive antennas is the same, however, we include a more general scenario ofMr ≤ Mt with Mr

streams.
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codeword covariance matrix is given by

Φ = E{ddH}, (5.19)

where the expectation is over the codeword distribution [75].

5.5.2 Pre-processing at the Transmitter

Processing at the transmitter includes two major steps at the symbol level: signal
shaping and precoding. The former requires no CSIT while thelatter exploits the
channel information available at the transmitter. Based onthis model, the transmit
signal is given by

x = Zd, (5.20)

whereZ ∈ C
Mt×Mr is a linear pre-processor which consists of a signal shaper,

power allocator, and the beamformer. The singular value decomposition of the
pre-processor matrixZ is given by

Z = UZ ΓVH
Z ; x = UZ Γ

︸ ︷︷ ︸

W

VH
Z d

︸ ︷︷ ︸
s

, (5.21)

whereVZ ∈ C
Mr×Mr is the input shaping matrix that mixes the signal coming

from the encoder to form the input,s = VH
Z d, to the precoder. The input shap-

ing matrix is designed with respect to the codeword selection, while unitary ma-
trix UZ ∈ C

Mt×Mt forms the beam patterns towards the different receive antennas
which creates non-interfering transmission paths. Commonly, there is a power con-
straint that needs to be satisfied, this leads to criteria to determineΓ ∈ C

Mt×Mr .
The precoder is referred to the matrixW = UZ Γ, in this context. As a result, the
input covariance matrix is given by

Rx = E{xxH} = E{WVH
Z ddHVZ

︸ ︷︷ ︸

Rs

WH}. (5.22)

Consider the flat fading MIMO channel in (5.1), with the singular value decom-
position (SVD) given by

H = UΣVH , (5.23)

whereU ∈ C
Mr×Mr andV ∈ C

Mt×Mt are unitary matrices andΣ ∈ C
Mr×Mt

is a diagonal matrix containing the singular values(δm) of H. The received signal
after the channel is given by

y = UΣVH WVZd+ e. (5.24)
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The signal shaperVZ and the precoderW are designed with respect to differ-
ent criteria and constraints. The channel capacity is one ofthe common metrics
to be maximized in a stochastic sense, which leads to a matrixVZ matching the
eigenvectors of the codeword covariance matrix [77]. Commonly for spatial multi-
plexing it is assumed thatΦ = IMr and henceVZ is an identity. We discuss next
the criteria to determine the precoder.

Parallel Decomposition of the MIMO Channel

Parallel decomposition of the MIMO channel ensures the maximum achievable rate
(capacity) in a point to point MIMO system. The multiplexinggain of a MIMO
system comes from the fact that the channel can be decomposedinto parallel in-
dependent channels. However, this requires the knowledge of the channel and the
joint processing at the transmitter as well as the receiver.It is referred to as trans-
mitter beamforming and receiver shaping oreigen beamforming, in the literature
[75].

The transmitter precoding and receiver shaping can transform the static MIMO
channel into SISO channels. This can be implemented by multiplying the trans-
mit sequence by the matrixV and the receive vector by the matrixUH . Using
this technique, for a channel matrix of rankR, the complexity of the maximum
likelihood (ML) detection at receiver becomes linear withR, while in general an
exhaustive search is required over all possible vector combinations [77]. This com-
plexity reduction is the direct result of the extra information which is available at
the transmitter.

To perform the decomposition, the matrixUZ is chosen to match the right eigen
vectors of the channel soUZ = V. The transmit vector then is given by

x = VΓd , (5.25)

for the eigen beamforming problem. In turn, a similar unitary beamformer at the
receiver is required to complete the channel decompositiontask, i.e.,

y = UH(UΣVH
︸ ︷︷ ︸

H

VΓd + e) = ΣΓd +UHe, (5.26)

which by takingΓ = Σ−1, implying no power constraint, (5.26) yields

y = d + UHe. (5.27)

This is equivalent toR parallel SISO channels with a additive noise.



84

Optimal Precoder

The parallel channel decomposition using a unitary precoder requires transmitter
and receiver cooperation to complete the decomposition, however, this is not re-
alistic in multi-user systems where the receivers are non-collaborative entities in
general. Consequently, it is preferable that the precodingis completed at down-
link. The optimal capacity achieving precoder maximizes the mutual information
betweenx andy. To derive the optimal precoder we need to calculate the output
covariance as

Ry = HRxH
H + σ2

eIMr = HWWHHH + σ2
eIMr . (5.28)

Therefore, the average channel capacity problem in (5.14) for a time-variant chan-
nel is reduced to finding the optimal linear precoder as follows

C = EH

{

max log
(

det[ 1
σ2
e
HWWHHH + IMr ]

)

W : Tr(W) = P

}

. (5.29)

The total power constraint is imposed by Tr(W) = P assumingE{ssH} = IMr .
Other constrains rather than the total power constraint canbe used to define the
capacity which will be discussed in the coming chapters of this thesis. For a static
MIMO channel, the expectation in (5.29) is dropped for capacity evaluations.

5.6 Conclusion

We have extended our initial SISO channel and system model, introduced in Chap-
ters 3 and 4, to a MIMO system in this chapter. The basics of MIMO transceiver
design have been reviewed, i.e., just a tip of the MIMO iceberg that has grown enor-
mously during the last two decades. There are interesting books that look more into
detailed algorithms and their modifications and extensionssuch as [19, 75] which
are the main references of this chapter.

The MIMO-OFDM system model was introduced that removes the ISI in a
wideband MIMO system. Having the temporal interference removed, the next con-
cern is how to optimally design the transmitter in order to maximally exploit the
spatial dimension. A simple sketch of the common blocks at the transmitter was
introduced and their relations and design criteria were briefly explained. The en-
coder is responsible for the modulation, source and channelcoding. Differently
from SISO encoder, in MIMO the space time coder allocates data steams to differ-
ent antennas and time slots. Afterwards, the signal shaper delivers the optimally
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shaped data streams to the precoder for further processing based on the CSIT. This
is the topic for the coming chapters which focus on the precoder design with re-
spect to the hardware constraints. Furthermore, multi-user MIMO precoding will
be discussed later which has not been covered in this chapter.

In the next chapter, we look at the well-known problem of peak-to-average
power ratio (PAPR) in MIMO-OFDM systems. The unpredictableOFDM wave-
form is manipulated by reformulating the precoder design problem and defining
new design parameters that can be tuned to adjust the OFDM waveform towards a
more hardware-friendly waveform. The proposed signal processing algorithm for
the PAPR reduction purpose is very interesting since it exploits an efficient mini-
mization technique to solve the underlying design problem.

Even though the precoding problem is well studied for the total power con-
straint over all transmitters, the problem is less considered when the power con-
straint is imposed on each individual antenna. The latter ismore realistic since
each transmitter has its own RF chain and power amplifier. Theproblem of pre-
coding design with such per antenna power constraints and a limited number of
transmitters (RF chain) for multi-user MIMO is studied in Chapter 7 of this thesis.
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Chapter 6
Joint Precoding and PAPR

Reduction in MIMO-OFDM
Systems

MIMO technology offers a great increase in data rate and reliability of communi-
cation system at the cost of extra signaling dimensions. Therefore the prospect of
an effective transceiver requires the management of the interference in time, space
and frequency. This is getting more complicated in multi-user systems with extra
sources of interference. As explained in Chapter 3, orthogonal frequency division
multiplexing (OFDM) can reduce a frequency selective channel to a flat fading one
with the aid of the mathematical property of circulant matrices. OFDM is extended
to a MIMO-OFDM system which translates a frequency selective MIMO channel
to a flat-fading MIMO channel which only contains the spatialinterference. This
is a significant progress to eliminate the interference in temporal dimension and
makes OFDM the most popular technique for almost all wideband wireless stan-
dards. However, the OFDM scheme suffers from implementation complications
due to its unconventional waveform which is not hardware-friendly.

In fact, hardware imperfections can significantly influencethe performance of

Part of this chapter is published as “Constant Modulus Algorithm for
Peak-to-Average Power Ratio (PAPR) Reduction in MIMO OFDM/A,” Sig-
nal Processing Letters, IEEE, vol.20, no.5, pp.531-534, May 2013, doi:
10.1109/LSP.2013.2254114.

87



88

−5 0 5 10 15 20
−5

0

5

10

15

 

 

 ideal power amplifier model
real power amplifier model

input power (dB)

o
u

tp
u

tp
ow

er
(d

B
) 3 dB

back off

input PAPR

Figure 6.1: Input-output diagram of a typical nonlinear amplifier.

a wireless system. These are required to be modeled properly, particularly for an
emerging millimeter-wave systems, in order to develop effective compensating sig-
nal processing algorithms. A well-known drawback of OFDM isthat the amplitude
of the time domain signal varies strongly with the transmitted symbols modulated
on the subcarriers in the frequency domain, resulting in a ‘peaky’ signal that shows
a rather wide dynamic range. The measure for evaluating the dynamic range of the
system is the peak-to-average power ratio (PAPR) of the signal.

6.1 Introduction

What is PAPR? High power amplifiers (HPA) are inevitable parts of almost all
communication systems. These devices are very sensitive tononlinearity and re-
quire precise operating points to be set. In single-carriermodulation, the signal
amplitude is deterministic to a good extent, so the operating point in the amplifier
can be determined easily while for multi-carrier systems like OFDM, the envelope
of the time domain signal will change with different data symbols. The direct re-
sult of this fluctuation is a distortion in the HPA, that appears in form of noise at
the receiver, and a signal constellation rotation due to phase conversion. Moreover,
the orthogonality between subcarriers may be destroyed which leads to a dramatic
BER degradation. Fig. 6.1 shows the input-output relation in a typical power am-
plifier for an ideal and real device and the required input back-off to be considered
in order to avoid nonlinearity problems. Clearly, this back-off value decreases the
amplifier efficiency so there is a demand to make the output OFDM signal more
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robust in terms of envelope fluctuations [78].

To quantify the distortion caused by the amplitude fluctuations, a metric is de-
fined to measure the dynamic range of the multicarrier signal. The PAPR is a direct
measure of the severity of the distortion and shows how far the operation point
needs to be set from the saturation point. Since the signal amplitude is a stochas-
tic variable, the PAPR of the signal is commonly presented with its probabilistic
properties such as cumulative distribution function [79, 80].

PAPR reduction techniques have been studied well since two decades ago when
OFDM became popular, so there are many signal processing techniques developed
to limit the dynamic range of the OFDM signal. There are many factors that should
be considered before a specific PAPR reduction technique is chosen. These factors
include PAPR reduction capability, power increase in transmit signal, bit error rate
(BER) increase at the receiver, loss in data rate, computational complexity, etc.

Careful attention must be paid to the fact that some techniques result in other
harmful effects. For example, amplitude clipping techniques clearly remove the
time domain signal peaks, but this results in in-band distortion and out-of-band
radiation [81, 82, 83]. Some techniques require a power increase in the transmit
signal after using PAPR reduction techniques. For example,tone reservation (TR)
requires more signal power because some of its power must be used for the peak re-
duction carriers. Tone injection (TI) uses a set of equivalent constellation points for
an original constellation point to reduce PAPR, but since all the equivalent constel-
lation points require more power than the original constellation point, the transmit
signal will have more power after applying TI [84]. Other techniques may have an
increase in BER at the receiver if the transmit signal powersis fixed or equivalently
may require larger transmit signal power to maintain the BERafter applying the
PAPR reduction technique; active constellation extension(ACE) is one example
[85].

Some techniques require the data rate to be reduced. For example, the block
coding technique requires part of the information symbols to be dedicated to con-
trol the PAPR. In selection mapping (SLM) and partial transmit sequence (PTS),
the data rate is reduced due to the side information used to inform the receiver of
processing at the transmitter [86, 87]. In these techniquesthe side information may
be received in error unless some form of protection such as channel coding is em-
ployed. Once channel coding is used, the loss in data rate dueto side information
is increased further. Computational complexity is anotherissue since most PAPR
reduction techniques such as PTS use many iterations to perform an exhaustive
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Figure 6.2: A block diagram of a transmitter in multi-user MISO-OFDM system with
specific precoding block to reduce the PAPR.

search algorithm. For a more detailed literature survey see[78, 88].

PAPR reduction in MIMO-OFDM is a quite recent topic compared to the tradi-
tional PAPR reduction in SISO systems. Although there are many effective PAPR
reduction techniques for OFDM, the majority of them are developed for SISO-
OFDM and cannot be applied to MIMO-OFDM systems without proper modifica-
tions. Moreover, the capability of traditional PAPR reduction techniques to over-
come the PAPR problem in MIMO systems is not well verified yet.In multiuser
systems the choices are even more limited since the user devices are not collaborat-
ing in general, so any precoding technique that relies on intelligent global decoding
at the receiver side will not work. Even if each user can invert the precoding effect,
this is extremely power inefficient given limited battery life of mobile devices since
this needs to be performed for each OFDM symbol (online processing). Addition-
ally, there is an extra dimension in MIMO systems that can be exploited to develop
more effective and efficient PAPR reduction techniques and ignoring it leads to loss
of performance.

In general, the transmitter in a MIMO-OFDM system, includesan IDFT block
in addition to the encoder. A Fast Fourier transform (FFT) isused in practice which
makes OFDM very efficient in terms of complexity. In Fig. 6.2 amulti-user MIMO-
OFDM system is illustrated, we focus on the downlink direction since the PAPR is
more severe in downlink transmissions. Note that in multi-user systems, the users
cannot collaborate in general so synchronized uplink processing is impractical and
therefore an effective interference cancelation at downlink is of vital importance.
Single-antenna users are considered here for simplicity without loss of generaliza-
tion. The high PAPR is commonly a transmitter problem and we consider multiple
antennas at the transmitter side for the downlink, however the same technique can
potentially be used for uplink transmissions.

The block diagram shown in Fig. 6.2 is very similar to the one in Fig. 5.3 except
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for the IDFT block for OFDM modulation, and the proposed PAPRprecoding block
that is added for pre-processing the OFDM signal such that the dynamic range of
the output waveform is limited. The beamformer directs and weights the transmit
signal to match the channel conditions (eigen-beamforming) whereas the encoder,
IDFT and PAPR precoding units are designed regardless of thechannel conditions
and merely depend on the input data.

On the one hand, the PAPR is measured at the input of the HPA after beam-
forming and on the other hand the beamforming may not be affected by the PAPR
precoding which is a data dependent design. These specifications make it hard to
design an effective PAPR precoder. In this chapter, we introduce a MIMO-OFDM
system model which is equipped with a PAPR-reduction scheme. Furthermore, an
interesting algorithm is proposed in this context to overcome the shortcomings of
conventional PAPR reduction techniques.

6.2 Efficient Low-Peak OFDM

A new PAPR reduction technique based on the proper precodingof the OFDM data
is proposed here which is explained throughout the rest of this chapter. Earlier a
newly developed technique called CP-PTS was proposed in [18] which is adaptable
for different beamforming schemes in standard point to point or multiuser MIMO
systems. In this technique, the OFDM subcarriers are grouped into blocks and
the phase of each block is changed in a manner similar to the PTS method but
without the drawback of sending explicit side information.As long as each block
is multiplied with only one phase coefficient, the receiver will perceive this as a
channel effect and will compensate for it during the channelequalization process
[89]. An extension of CP-PTS to MIMO-OFDM systems is introduced in [90]. In
both cases, a sequential quadratic programming (SQP) algorithm is used to solve
the phase optimization problem. The computational complexity of this algorithm
can be prohibitive for high data rate and/or low latency communication links. The
PAPR weights need to be determined again for every OFDM data block, hence the
underlying algorithm should be sufficiently efficient to enable real-time processing.

In this section, the same configuration as CP-PTS is used but instead of solv-
ing a non-convex optimization problem, an alternative problem formulation is pro-
posed based on a cost function used in constant modulus algorithms (CMAs). Ac-
cordingly, the block-iterative SDCMA algorithm [91] is used to find the precoding
PAPR weights. The resulting computational complexity is linear in the number of
subcarriers. Furthermore, to make sure that the BER performance of the system
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is not affected by the PAPR precoding an additional constraint is appended to the
CMA objective function which requires the weights to be on the unit circle. Like
CP-PTS, the proposed technique is transparent to the receiver; this means that it
only affects the base station (BS) and it does not require anysignal processing in
the mobile station (MS).

The proposed method does not function if the channel estimation algorithm as-
sume the fact that channel coefficients change smoothly overthe complete OFDM
block. However, this assumption is not valid in the modern multiuser systems based
on resource block assignment [89, 92].

6.2.1 Transmit Signal Model for the PAPR Precoding Scheme

Similar to [90] we consider a generic MIMO-OFDM/A downlink scenario with one
base station (BS) employingMt antennas. An OFDM block withN subcarriers is
transmitted from each antenna. TheN subcarriers includeNu useful subcarriers
surrounded by two guard bands with zero energy. The useful subcarriers are further
grouped intoM resource blocks (RB) each consisting ofNb = Nu/M subcarri-
ers. Data of one or more users is placed in these resource blocks and mapped
into the space-time domain using an inverse discrete Fourier transform (IDFT) and
space-time block coding (STBC). To allow channel estimation at the receivers (mo-
bile stations), each resource block also contains several pilot subcarriers that act as
training symbols. The transmit signal model is illustratedin Fig. 6.3. It is compat-
ible with the WiMAX standard [92].

Let us first describe the MIMO transmit data model in the frequency domain;
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for simplicity we consider only a single time block from now on. The data in
the q-th resource block is a matrixD(q) ∈ C

Mt×Nb , it is premultiplied with a
corresponding beamforming matrixW(q) ∈ C

Mt×Mt , q = 1, · · · ,M , resulting in
transmit sequencesX(q)

F = W(q)HD(q). Together with guard intervals, they are
collected in a matrixXF ∈ C

Mt×N , where theMt rows of this matrix represent
theN symbols to be transmitted from theMt antennas. The data model is

XF = WHD , (6.1)

whereW = [W(1)H , · · · ,W(M)H ]H , andD ∈ CMMt×N is a block-diagonal ma-
trix with structure as in Fig. 6.4, which includes guard intervals as well. MatrixXF

represents the spatial data in the frequency domain i.e., MIMO without considering
the PAPR precoding and OFDM modulation.

The time-domain MIMO-OFDM transmit data model is obtained by taking the
IDFT of the beamformed data matrixX, resulting in

XT = XFH = WHDFH , (6.2)

whereFH ∈ C
N×N denotes the IDFT matrix, andXT ∈ C

Mt×N contains the
resulting transmit OFDM sequences for each of theMt antennas. Let us further
denote the time-domain data matrixB = DFH ; this is a full matrix. Accordingly,
the beamformed OFDM block can be expressed as

XT = WHB . (6.3)

Denote the total power (or energy) in the data matrixD by Pd := ‖D‖2F =

‖vec(D)‖2 =: αNt, whereNt = NMt. Function vec(D) creates a column vec-
tor whose elements are the columns of the matrixD. Nt is the total number of
subcarriers or samples to be sent from allMt antennas, andα is defined as the
average transmit power per sample (including the zero powerguard bands). If we
assume that the beamforming matrixW consists oforthonormalmatricesW(q),
then applying beamforming and the IDFT does not change the total transmit power.

6.3 Constant Modulus Algorithm for PAPR Reduction

6.3.1 Introduction

The IDFT operation in (6.2) leads to a large dynamic range of the resulting time-
domain OFDM signal. PAPR is a common metric to measure the distortion caused
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by probable high peak of the OFDM signal and for a MIMO-OFDM blockXT we
define

PAPR(XT ) =
αNt‖vec(XT )‖

2
∞

‖vec(XT )‖
2
2

. (6.4)

Clearly, the lowest PAPR is achieved for a constant modulus signal, for which the
infinity norm is equal to the average power of the sequence.

The main idea in [18, 90] is to design a precoding matrix to transform the
OFDM symbols inXT to a favorable signalS with lower PAPR (ideally a constant
modulus signal). This precoding matrixΩ needs to fulfill the following require-
ments:

1. Reduce the dynamic range of the OFDM block,

2. Preserve the beamforming property,

3. Be transparent to the receiver,

4. Not impact the bit error rate (BER).

To satisfy the second and third constraint, we are allowed topremultiply each re-
source block,D(q), with a diagonal scaling matrixΩ(q). To the receiver, this will
appear as a fading channel effect. To not affect the BER, the scaling should be
unimodular (phase only). Equivalently, a diagonal (unimodular) precoding matrix
Ω ∈ C

MMt×MMt is applied toD. The resulting MIMO-OFDM transmit matrix
(replacingXT ) is

S = WHΩDFH . (6.5)

If we defineω = vecdiag(Ω), then the PAPR reduction problem is to designω as

min
ω

‖vec(S)‖2∞ s.t. ‖vec(S)‖22 = P (6.6)

whereP = αNt is a fixed total transmit power. This problem is not convex be-
cause nonlinear equality constraints can rarely be expressed in a convex form. The
approach in [18, 90] was to solve a series of quadratic convexsubproblems itera-
tively. Although this does not solve the original problem in(6.6) exactly, the results
were excellent compared to other techniques, and attractive as the method is trans-
parent to the receiver and does not distort the transmit signals. Unfortunately, this
approach is yet too complex for real time applications.
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6.3.2 Formulation as a Constant Modulus Problem

Using properties of Kronecker products, we can rewriteS in (6.5) as

s = vec(S) = (B̄ ◦W)
Hvecdiag(Ω) =: Aω , (6.7)

whereA ∈ C
Nt×MMt, DFH = B ∈ C

MMt×N , B̄ denotes the complex conjugate
of B, and◦ denotes the Khatri-Rao product (column-wise Kronecker product). The
vecdiag(D) creates a column vector whose elements are the main diagonalof the
matrixD. The optimization problem (6.6) becomes

min
ω

‖Aω‖2∞ s.t. ‖Aω‖22 = αNt (6.8)

We now propose an alternative formulation of this problem, by replacing the in-
finity norm by the average deviation of the OFDM block from a constant modulus
signal. Ideally, the resultingS will be close to a CM signal, and hence have close-
to-optimal PAPR. The corresponding cost function is

J(ω) = ‖Aω ⊙ (Aω)− α1Nt‖
2

2 =
Nt∑

n=1

(ωHana
H
n ω − α)2 . (6.9)

Here, the vectoraHn , n = 1, · · · , Nt represents then-th row of matrixA, the
column vector1Nt is a vector with all entries equal to1 and dimensionNt, and⊙
denotes the Schur-Hadamard product (pointwise multiplication).

This formulation is similar to the well-known “CMA(2,2)” cost function for
adaptive blind equalization or blind beamforming, and can be solved efficiently
using available iterative algorithms. The matrixA plays the role of the data matrix
in the usual CMA context, whereasω plays the role of the beamforming vector.
The original CMA cost function is expressed in terms of an expectation operator;
the present “deterministic” formulation is similar to the Steepest Descent CMA
(SDCMA) in [91].

6.3.3 Steepest-Descent CMA (SDCMA)

The SDCMA is a block-iterative algorithm in which we act on the full data matrix
A and updateω until it converges. The derivation of the block SDCMA is straight-
forward when the statistical expectation in original formula in [91] is replaced by
an average over a block. For thei-th iteration, we start from the current estimate
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ωi and compute:

ŝi = Aω
i (6.10)

ei = (ŝi ⊙ ¯̂si)− α1Nt (6.11)

ŝe = ŝi ⊙ ei (6.12)

ω
i+1 = ω

i − µ∇J(ωi) = ω
i − µAT ŝe . (6.13)

Here,µ is a suitable step size, andŝe is the update error. The maximal step sizeµ

could be defined as a scale independent parameter in relationto the signal power in
A. To keep the solution unchanged asA scales,µ needs to be divided by factorα2,
µ = µ′/α2. For convergence, the algorithm is initialized withω0 = 1 (although
other choices are possible). The algorithm should be run until the cost function
J(ω) converges; in practice convergence is fast and the algorithm is run for a fixed
small number of iterations.

To satisfy the power constraint in (6.6), we can simply scalethe resultingω
after convergence. Ifs = Aω is indeed a constant modulus signal, then‖s‖22 =

αNt, and the power constraint is inherently already satisfied. Thus, the scaling is
expected to be close to 1 and could be omitted in practice (it has no effect on the
cost function PAPR(S)).

A difference with the standard CMA is that, here, a good solution does not
necessarily exist. The usual application of CMA is for a linear combination of
constant modulus sources for which, without noise, a perfect beamformer exists.
The present situation could be said to correspond to a very noisy source separation
situation. Note that, also for other methods, there are no existence results for PAPR
reduction.

6.3.4 Unit-Circle CMA (UC-CMA)

In SDCMA, the computedω has no constraints and may have some small entries.
These are equivalent to a (broad) null in the channel which will affect the BER
performance. Ideally, we should restrict the entries ofω to take only unimodular
values:ωm = ejφm , m = 1, · · · ,M , and add this constraint to the optimization
problem (6.8).

In order to restrict the solution to be on the unit circle, a normalization step is
added to each iteration after (6.13):

ω
i+1 = ω

i+1 ⊘ |ωi+1| (6.14)
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where⊘ denotes pointwise division, and| · | takes the absolute value of each entry
of the vector argument. This alternative updating algorithm is called Unit Circle
CMA (UC-CMA) since (6.14) projects the solution of CMA to a unit circle at each
iteration.

6.4 Computational Complexity

The complexity of the SDCMA algorithm in (6.13) is dominatedby the matrix
productsAT ŝe andAωi. The resulting complexity is approximately2NMM2

t per
iteration (linear in the number of subcarriers). UC-CMA hasthe same complexity.

In conventional PTS [87], each resource block (sub-block inPTS context) is
weighted with a phase shift in such a way that the summation ofsub-blocks produce
an OFDM sequence with a smaller PAPR [87]. The phase weights are selected by
an exhaustive search among a discrete set of phases, and are sent as side information
to the receiver. Accordingly, all combinations of theM available phase weights
need to be calculated and then multiplied with an IDFT summation matrix, which
has the same size as matrixB. Finally, one sequence with the least PAPR metric
is chosen with the corresponding phase weights. The complexity of the exhaustive
search is calculated for the simplest set of only two phases{±1 = e±jπ/2} andM
resource blocks as2MNM multiplications and2M comparisons. For CP-PTS , the
complexity isO(M3); the exact expression for complexity is derived in [18].

6.5 Simulation Results

In WiMAX, one resource block spansNb = 14 sub-carriers over two OFDM sym-
bols in time, containing 4 pilots and 24 data symbols. For a 10MHz system, there
are a total ofM = 60 resource blocks [92]. In agreement with this WiMAX setting,
the proposed PAPR reduction technique is simulated for an OFDM block of size
N = 1024 includingMNb = 840 data subcarriers with QPSK modulation and 92
guard subcarriers at each end of the band. The number of MIMO transmit antennas
is eitherMt = 1, 2 or 4, as will be indicated. The various techniques are evaluated
using the complementary cumulative density function (CCDF), which denotes the
probability that the PAPR of a data block exceeds the argument of the function. To
avoid the PAPR underestimation, The algorithm is run with four times oversam-
pling so the number of the samples processed in the simulations isN ′ = 4Nt.

A total number of 10,000 OFDM blocks are randomly generated to produce
the CCDF curves. For each block, a random complex fading channel is generated,
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Figure 6.5: Performance comparison for the proposed CMA PAPR reduction algorithm for
various number of iterations andµ′ = 0.05, CP-PTS with 5 iterations, and conventional
PTS with phase alphabet{±1} andM = 10.

and the beamforming matricesW are chosen as the right singular vectors of these
channel matrices.

In Fig. 6.5, the CCDF performance is shown for SDCMA (variousnumber of it-
erations), UC-CMA (50 iterations), and compared to CP-PTS [90] and the standard
PTS [87]. The latter algorithm is simulated only forM = 10 resource blocks due
to prohibitive computational complexity for largerM . In this simulation,Mt = 1

transmit antenna. The simulations show that the proposed techniques attain a PAPR
reduction of up to 6 dB. Although 50 iterations are sufficientfor good performance,
another 0.5 dB is gained by increasing this to 500 iterations. UC-CMA (50 itera-
tions) is worse by about 0.5 dB. The PAPR reduction for PTS is worse by 1 to 2
dB. The previously proposed CP-PTS outperforms PTS and SDCMA with 50 it-
erations, however a similar gain is reached by SDCMA with a larger number of
iterations. Moreover, the CCDF curves in Fig. 6.5 show the superior performance
of SDCMA in 90% and99.9% of OFDM blocks in 50 and 500 iterations respec-
tively, comparing to the CP-PTS.

The empirical CDF of|ωq| values in SDCMA indicates the Rayleigh distribu-
tion of PAPR weights which affect the BER performance of the system. Fig. 6.6
shows the BER versus SNR curves for the QPSK-OFDM system without PAPR
reduction in a randomly generated Rayleigh fading and AWGN channels compared
to the scenarios that SDCMA and UC-CMA weights are applied atthe transmitter.
In SDCMA and UC-CMA the channel is assumed to be AWGN and the received
vector is divided byω to equalize the PAPR weights. Where, in Rayleigh fading
channel the received vector is divided by the frequency domain channel coeffi-
cients. in both cases, the perfect channel recovery is assumed. From Fig. 6.6, the
effect of non-modified SDCMA is analogous to a Rayleigh fading channel in terms
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Figure 6.7: PAPR reduction performance in MIMO-OFDM for both SDCMA and UC-
CMA with 50 iterations andµ′ = 0.05.

of BER performance so the same error correcting codes used for a fading chan-
nel can be applied here. As expected the UC-CMA does not influence the BER
performance. This motivates the use of UC-CMA technique.

Fig. 6.7 shows the performance of SDCMA and UC-CMA for various number
of transmit antennas,Mt = 1, 2, 4, and 50 iterations. It is seen that the performance
is not a strong function of the number of antennas; small improvements are seen due
to more available phase weights or degrees of freedom in the optimization problem.

To demonstrate computational complexity, Matlab runtimeson a standard 2011
laptop are shown in Fig. 6.8 as a function ofM (number of resource blocks). In
this simulation,Mt = 1. It is seen that the proposed CMA algorithms (using 50
iterations) are about a factor 50 faster than CP-PTS, whereas the complexity of
PTS is growing exponentially with the number of resource blocks and is quickly
not feasible anymore.
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6.6 Conclusion

In this chapter a MIMO-OFDM data model is introduced and the famous PAPR
problem is investigated in this context. Also, an efficient and effective PAPR re-
duction algorithm is developed which does not affect the bandwidth efficiency and
the receiver design while performs acceptably by means of Matlab simulations.
This is one step towards the design of a realistic signal processing algorithm which
caters for hardware imperfections.

In the next chapter, another aspect of hardware limitationsin the design of
precoders in MIMO systems is considered. First of all the power restriction is
defined per antenna since each antenna has its own transmitter and amplifier. Also,
there are restrictions on the number of available RF chains that can be installed in
the system.



Chapter 7
Joint Precoding and Antenna

Selection for Multiuser MIMO

Modern multiple-input multiple-output (MIMO) communication networks employ
many antennas, and the optimal use of them is a complex problem subject to several
practical constraints, such as a maximum number of radio frequency (RF) chains,
leading to an antenna selection problem. We consider the downlink of a spatial mul-
tiplexing multi-user multiple-input single-output (MU-MISO) system, and propose
a unified framework for the joint optimization problem of antenna selection, trans-
mit beamforming, and power allocation with realistic yet complicated to handle, per
antenna power constraints. In its original formulation, this is a non-convex and NP-
hard problem which poses no elegant solution. The proposed solution is based on
appending a group sparsity inducing regularizer (GSIR) which makes it amenable
for convex optimization via non-trivial relaxation techniques. Extensive simula-
tion results show a negligible difference in performance between this approach and
the optimal (exhaustive search) selection, while the computational complexity is
significantly smaller compared to the optimal approach.

This chapter is submitted as “Convex Optimization for JointAntenna Selection and
Precoding”, Signal Processing, Elsevier, April 2016.
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7.1 Introduction

7.1.1 Problem Context

The advent of high carrier frequency wireless systems such as the 60 GHz short
range standards IEEE.802.15c and IEEE.802.11ad opens up the possibility to radi-
cally increase the number of antennas beyond conventional multiple-input multiple-
output (MIMO) systems, and perhaps even to integrate all of them on a single chip
[33]. A critical factor in increasing the number of antennasis the cost of the radio
frequency (RF) chain. Antenna selection techniques are needed to determine the
optimal subset of antennas to be connected to the available RF chains, based on the
actual channel conditions. Until now, most research was dedicated to single-user
(SU) MIMO (i.e., point to point MIMO), whereas antenna selection for multi-user
(MU) MIMO has remained rather unexplored. This chapter willfocus on MU-
MIMO at the downlink transmitter.

A good survey on different criteria and sub-optimal techniques for antenna se-
lection is given in [93] which classifies selection techniques for both the trans-
mitter (Tx) and the receiver (Rx) and gives asymptotic performance results. For
SU-MIMO antenna selection at the receiver, it was shown thata subset of opti-
mally selected antennas can achieve the same capacity as a full system [94]. The
high complexity of the combinatorial problem has prompted for “greedy” selection
techniques [95, 96, 97], whereas [98] proposed a convex optimization approach.
In [97], the convergence of greedy algorithms is proved for sub-modular problems
with objective functions including the capacity maximization subject to the total
power constraint. SU-MIMO antenna selection at the transmitter was studied in
[99, 100, 23, 101].

While in SU-MIMO systems the channels are considered known at both sides,
MU-MIMO systems consist of a basestation (or network of basestations), and users
which are individual entities that in general cannot co-operate. Despite fundamen-
tal similarities in selection algorithms, antenna selection techniques for SU-MIMO
systems need to be greatly adapted for MU-MIMO due to the resulting differences.
In particular for the downlink, antenna selection needs to be combined with other
techniques such as beamforming (BF) for interference cancelation and power allo-
cation for the best distribution of available power among streams.

In this chapter, we propose a joint approach to solve for the precoding (beam-
forming and power allocation) and antenna selection matrices simultaneously, and
we refer to this as joint antenna selection and precoding (JASP). For conciseness,
we focus on downlink spatial multiplexing MU-MISO systems,where each re-
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Figure 7.1: Block diagram of MU-MISO link.

ceiver (user) has a single antenna and receives an independent data stream. Fig. 7.1
shows schematically the MU-MISO system of interest. Stacking the received data
in a vectorr, the data model is of the form

r = Hd+ n , d = Ws (7.1)

where the matrixH contains the channel state information (CSI, considered known1),
d is the transmitted data, andn is additive noise. The raw input datas is mapped to
d via a matrixW which consists of three factors: a diagonal selection matrix ∆, a
beamforming matrixG, and a power allocation matrixΓ. We writeW = ∆W′,
whereW′ is the usual precoding matrix (W′ = GΓ

1
2 ).

In the plain precoding problem,∆ is absent, andG is designed either as a
zero forcing (ZF) precoder (HG is an identity matrix) or as the minimum mean
square error (MMSE) precoder2. Note that here the formulation of SINR balancing
beamformer is equivalent to MMSE beamformer therefore it isreferred to as such,
however this is not generally the case. The parameterΓ is designed either by pos-
ing a total power constraint (TPC) or a per antenna power constraint (PAPC). We
consider PAPC as a more realistic constraint as each antennapower is limited by
its corresponding RF chain.

Including the antenna selection matrix∆, the joint precoding and antenna se-
lection problem in its general form is to findW such that

Wopt = arg max f(W) s.t. constraints (7.2)

wheref(W) is a general performance measure, such as capacity. This problem is
combinatorial and NP-hard for almost all precoding strategies. Indeed, the optimal

1CSI can be acquired by sequential use of the available RF chains and it needs to be updated each
time the channel decorrelates, hence the coherence time of the channel needs to be relatively large
for the estimate of the channel to be valid.

2When there is no interference management constraint, the joint antenna selection and precoding
problem is reduced to the sparse power allocation problem. Avery similar problem is addressed in
[98].
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solutionWopt corresponds to a subset of antennas whoseW′ maximizesf(W′)
among all possible combinations of antennas. To avoid this enumeration, the dis-
joint antenna selection approach finds the best antennas ignoring the precoder, e.g.,
by maximizingf(∆) for throughput and independently finding the optimalW′

later for that set of selected antennas (fixing∆). This leads to a sub-optimal perfor-
mance as will be verified here via simulations. Alternatively, sub-optimal sequen-
tial optimization was used by fixing∆ orW′, successively, and optimizing over the
other variable [102, 103]. Other papers consider a known (fixed) power allocation
[104, 105] or consider antenna selection at the receiver instead [106, 103, 102].

In this chapter, we consider ZF and MMSE precoders, as they are the most
common yet effective linear precoders, subject to per antenna power constraints.
We provide sufficient examples for different possible combinations of precoders.
However, none of these precoders has closed form solutions [107] nor are they
convex in their original form. We will follow the primal approach for solving for the
precoder, using iterative convex algorithms developed forquadratically constrained
quadratic problems (QCQP) [108]. The most important works for ZF precoding
can be listed as [109, 110, 107] whereas MMSE precoding has been studied for
[108, 111, 112, 113]. The antenna selection problem can thenbe introduced by
appending a convex (group) sparsity inducing regularizer to the plain precoding
problem.

Convex group sparsity inducing regularizers have gained considerable attention
[114] as they leverage a relaxation for many old NP-hard selection problems. Pre-
coding is no exception in this regard [115, 116], e.g., in [117] synthesizing a sparse
beam-pattern for linear and planar arrays is considered using anℓ1-norm penalty.
A joint beamforming and base station selection (clustering) in [118] is considered
where an iterative group Lasso minimization approach is proposed to for sum-rate
utility maximization. In [119] we proposed a convex formulation based on theℓ1-
norm penalty to handle a simple JASP problem i.e, maximizingthe capacity sub-
ject to a total power constraint. Joint antenna selection and MMSE precoding is an
example of a QCQP with sparsity requirements that is addressed in [120] for broad-
cast beamforming where it is formulated as a semi-definite program (SDP) using
the squaredℓ1-norm as a sparsity inducing regularizer. Later in [121] themulticast
extension was introduced which is the most relevant work forthis chapter.
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7.1.2 Contributions

• We propose a convex formulation for the JASP problem from a unified van-
tage point, i.e., different from the existing literature inthe sense that we try to
solve (7.2) directly rather than finding∆ andW′ sequentially or disjointly.
The original form of the JASP problem in (7.2) is non-convex w.r.t. the pre-
coder matrix variable, and combinatorial w.r.t. the selection variable.

• Sparse regularization for antenna selection has been proposed recently in the
literature. What is missing is a generic problem formulation which describes
the joint antenna selection and linear precoding problem ina unified manner
regardless of the choice of the sparsity regularizer and theprecoding strategy.

• We show that using the proposed regularizer in [121] for SINR balancing
precoder, is unnecessarily complicated for the proposed MMSE (SINR bal-
ancing) problem in this chapter. In fact, SINR constraints can be readily
reformulated as a linear matrix inequality (LMI) or even second order cone
(SOC) constraints as proposed in [108, 112]. We show that theplain group
Lasso regularizer can be used directly to formulate the sparse MMSE pre-
coding problem. Indeed, the squared transformation as in [121] is only nec-
essary for precoding schemes involving the capacity expression which can
not be made convex using the plain group Lasso regularizer. This can be
considered as new insight to an existing technique.

• The proposed sparsity regularizations can be used for other purposes as well,
e.g., the convex formulation allows to find the minimum number of antennas
that is sufficient for a certain quality of service. This is different from antenna
selection since the number of required antennas is not givena priori and
yields an optimization variable itself. We refer to this approach as the antenna
reduction technique (ART).

• We claim that the conventional greedy approaches for antenna selection are
not effective when per antenna power constraints are involved since the ca-
pacity function is not a sub-modular function anymore of theset of antenna
elements in the sense that the effectiveness of an additional antenna element
is not diminishing as the number of antennas increases. Hence, popular
greedy algorithms such as [95] do not converge to a point close to the optimal
solution [97]. This is an important observation which justifies the necessity
for developing a “close to optimal” approach for the systemswhich aim at
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capacity maximization with per antenna power constraints.

7.1.3 Notation

Bold upper case and bold lower case symbols indicate matrices and vectors, re-
spectively. The conjugate transpose and transpose of a matrix A are denoted as
AH andAT . A(i, j) is the(i, j)-th entry of matrixA, andaj is thejth entry of a
vectora. Thejth column ofA is denoted asa(:, j), and itsith row is denoted as
aT (i, :), wherea(i, :) is a column vector. PartitioningA into blocks,Ai,j denotes
the (i, j)-th submatrix. We useAj to represent thejth matrix of a set of matrices
which share the same structure, and‖a‖p denotes theℓp-norm of a vector. Tr(A)

is the trace ofA, and vec(A) vectorizesA by stacking the columns of the matrix.
IN is the identity matrix of sizeN , 1N and1N×M are anN ×1 vector andN ×M

matrix consisting of all ones,0N and0N×M are anN×1 vector andN×M matrix
of zero entries.

7.2 System Model

Consider a spatial multiplexing MU-MISO system as in (7.1),which we rewrite as

r = HWs+ n , W = ∆W′ (7.3)

with Mr users (streams) each with a single antenna, and an access point with Mt

transmit antennas which incorporates the antenna selection scheme. The received
data vector over all users isr ∈ C

Mr×1. The matrixH ∈ C
Mr×Mt is the MU

channel which is considered known. The raw datas ∈ C
Mr is precoded byW =

∆W′, where∆ is the antenna selection matrix andW′ = GΓ1/2 ∈ C
Mt×Mr is

the plain precoding matrix involving the beamforming matrix G and the diagonal
power allocation matrixΓ. The selection matrix∆ = diag(δ) is a diagonal matrix,
where the entries on the diagonal are zero for eliminated antennas and one for
selected antennas, soδ = [δ1, . . . , δMt ] ∈ {0, 1}Mt . The noisen is assumed
to be a complex zero-mean Gaussian random vector. The covariance matrix of
the input signals to the precoder block is assumed to be an identity matrix, i.e.,
E{ssH} = IMr , and the design parameters in the model areδ andW′.
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Table 7.1: Linear precoding design criteria.

power PAPC: ∀i : ‖δiw(i, :)‖22 ≤ p∗i
beamforming ZF: ∀j :

∑

l 6=j |h
H(j, :)∆w′(:, l)|2 = 0

MMSE: ∀j : γj ≥ γ∗j
total power: fP = Tr(W′∆W′H) =

∑

i ‖δiw(i, :)‖22
quality capacity: fC =

∑Mr

j=1 log(1 + γj)

For thejth user, (7.3) can be written as

rj =
Mr∑

l=1

hH(j, :)∆w′(:, l)sl + nj (7.4)

= hH(j, :)∆w′(:, j)sj +
∑

l 6=j

hH(j, :)∆w′(:, l)sl + nj (7.5)

= hH(j, :)∆w′(:, j)sj + hH(j, :)∆W̄′
j s̄j + nj (7.6)

whereW̄′
j ∈ C

Mt×(Mr−1) ands̄j ∈ C
Mr−1 are the precoding matrix and data vec-

tor corresponding to all users exceptj, and (with some abuse of notation)hH(j, :)

is thejth row ofH. The first and second term in (7.6) are the desired signal and the
interference of userj, respectively. The SINR for userj can therefore be expressed
as

γj =
|hH(j, :)∆w′(:, j)|2

∑

l 6=j |h
H(j, :)∆w′(:, l)|2 + σ2

j

. (7.7)

Clearly the SINR of each user depends on all precoding vectors and selected anten-
nas.

Table 7.1 shows common design criteria in terms of the precoder for the power
allocation subject to PAPC. Beamforming is used for interference management,
and as beamforming strategies we consider ZF (cancel all interference soHW is
diagonal) and MMSE (guarantee a certain SINR for each user).Finally, the system
performance (quality) can be formulated as a total sum-rateof the system (capacity)
or total transmit power as follows

fC(W
′, δ) =

∑Mr

j=1 log(1 + γj)

fP(W
′, δ) = Tr(W′∆W′H) =

∑

i ‖δiw(i, :)‖22
(7.8)

In turn, the parameterp∗i denotes the maximum transmit power for theith antenna,
andγj∗ denotes the minimum SINR for userj, which both are used in the con-
straints.
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The precoding problem can be defined in several ways depending on the restric-
tions and flexibilities of the system, e.g., as maximizing the quality subject to one
of the beamforming criteria and a power constraint (performance maximization),
or alternatively as minimizing the transmit power subject to one of the beamform-
ingcriteria and a quality constraint (power minimization). We only consider some
of these possible combinations in this chapter covering thenecessary underlying
optimization algorithms.

Regarding the power constraints, TPC is a relaxation of the PAPC and any
feasible solution for the latter is feasible for the former too. We focus on PAPC
in this chapter as this has relevance in practice, yet harderto deal with. Equal
rates (fairness) are obtained by maximizing the minimum SINR among all users,
which is the capacity achieving strategy in MMSE precoding [112]. This is a quasi
convex problem for MMSE precoders due to a presence of the fractional term in
the objective [67]. We do not consider that problem in this chapter.

Instead, we will define and elaborate three generic problems. The first prob-
lem, denoted asP, is the capacity maximization problem subject to PAPC, ZF and
antenna selection constraints. Also, the converse problemof power minimization
subject to capacity, PAPC and antenna selection constraintis studied. These are re-
ferred to asZF-JASPthroughout this chapter. The former is specified as a capacity
maximization problem and the latter as power minimization problem. The second
problem, denoted asP ′, is the MMSE precoder from a power minimization sub-
ject to the PAPC, SINR and antenna selection constraints named asMMSE-JASP
problem. The third problem is the ART problem, which is denoted byP ′′ and intro-
duced considering two set of constraints: 1) PAPC and SINR constraints 2) PAPC,
ZF and capacity constraints, referred to asMMSE-ARTandZF-ART, respectively.
We believe these examples sufficiently provide all the required transformation and
relaxation techniques, thus extensions for other possibleprecoders are directly pos-
sible.

7.3 Problem Formulation: JASP

We consider in this section the formulation of the JASP problems including ZF-
JASP and MMSE-JASP. In its general form, the JASP problem is written as

maximize f(W′, δ)

W′ ∈ CMt×Mr , δ ∈ {0, 1}Mt

subject to C(W′, δ)

(7.9)
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where the optimization variables are the precoding matrixW′ and the selection
vectorδ. As shown in Table 7.1, the objective functionf(W′, δ) can be either
−fP(W

′, δ) for power minimization orfC(W′, δ) for capacity maximization.

The optimization problem in (7.9) (representing both ZF-JASP and MMSE-
JASP) is not tractable in any of its aforementioned forms as finding the optimal pair
(W′,∆) leads to a mixed-integer problem. This is equivalent to solving the plain
precoding problem while enumerating over a set that includes all possible matrices
∆, which has

(Mt

Ls

)
members,Ls being the number of available RF chains. This is a

combinatorial problem w.r.t.∆, and in most cases is NP-hard w.r.t.W′. To enable
the use of efficient convex optimization techniques, we introduce a relaxation to
this problem. The number of relaxation steps is indicated inthe subscript, e.g.,P0

means no relaxation,P1 shows one relaxation step and so on.

7.3.1 Joint Antenna Selection and Precoding (JASP) Problem

In order to introduce the joint problem of precoding and antenna selection, the
two optimization variables are merged by introducing a new variableW = ∆W′

which conveys both the precoding and antenna selection. Thus, we can write the
joint antenna selection and precoding optimization problem in terms ofW, where
the objectives in (7.8) become

fC(W) =
∑Mr

j=1 log(1 + |hH(j, :)w(:, j)|2)

fP(W) =
∑

i ‖w(i, :)‖22 = Tr(WHW)
(7.10)

We first consider the ZF-JASP problem (P). Since we require the precoder to

zero the interference, the second term in (7.6) is zero, i.e., γj = |hH(j,:)w(:,j)|2
σj

in
(7.7). For normalization purposes we assumeσj = 1, then the capacity expression
(fC) defined in (7.8) is simplified to

∑Mr

j=1 log(1 + |hH(j, :)w(:, j)|2) , and the
ZF-JASP problem is defined as

P0 :

maximize fC(W)

W ∈ CMt×Mr

subject to C0(W) :







∑

l 6=j |h
H(j, :)w(:, l)|2 = 0; j = 1, 2, . . . ,Mr

‖w(i, :)‖22 ≤ p∗i ; i = 1, 2, . . . ,Mt

‖W‖0,2 = Ls;

We used that‖δ‖0 = ‖W‖0,2, i.e., theℓ0-norm of the vector collecting theℓ2-
norms of the rows ofW, obviously this is a non-convex function on precoder vari-
able. The set of constraints for ZF-JASP is defined as the ZF constraint, the PAPC
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constraint, and the antenna selection constraint, respectively. A related power min-
imization problem is also of high interest where the objective is to minimize the
total transmit power subject to the constraints inC0 plus one extra constraint onfC.
Note that ZF-JASP is always feasible as long asLs ≥ Mr for a full-rank channel
matrix.

In MMSE precoding, normally the power is minimized while a set of predefined
SINR constraints are satisfied, leading to

P ′
0 :

minimize fP(W)

W ∈ C
Mt×Mr

subject to C′
0(W) :







|hH(j,:)w(:,j)|2∑
l 6=j

|hH(j,:)w(:,l)|2+1 ≥ γ∗
j ; j = 1, . . . ,Mr

‖w(i, :)‖22 ≤ p∗i ; i = 1, . . . ,Mt

‖W‖0,2 = Ls;

wherefP is defined in (7.8). Note thatC0 andC′
0 include the same PAPC and an-

tenna selection constraints and only the interference (first) constraints are different
for ZF and MMSE precoding.

7.3.2 General Convex Formulation

To move towards a convex formulation, an immediate choice for the relaxation
(softening) of‖W‖0,2 is to replace it by a group sparsity inducing regularizer. A
common group sparsity inducing regularizer is defined as a hybrid ℓ1,q-norm on the
matrixW with entriesw(i, j), defined as

‖W‖1,q =
∑

i=1

{
∑

j=1

|w(i, j)|q}
1
q , (7.11)

where,‖W‖1,2 is the so-called group Lasso regularization and is the tightest con-
vex relaxation of‖W‖0,2 [122]. However, there is no closed form solution to find
the exact counterpart ofLs for the substituted convex term‖W‖1,2. This means
that an iterative approach is needed to find a value for‖W‖1,2 which gives exactly
Ls non-zero rows inW for the JASP problem.

According to optimization theory, any constraint can be appended to an ob-
jective function with a proper Lagrange multiplier, e.g., problemP0 (P ′

0) can be
relaxed asP1 (P ′

1) given aλ′ ≥ 0 corresponding toLs which is found via a simple
binary search as explained later, leading to

P1 (P
′
1) :

maximize f(W)− λ′‖W‖1,2
W ∈ C

Mt×Mr

subject to C1(W) (C′
1(W))

(7.12)
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Figure 7.2: A 2D illustration of an example JASP problem. Theblack diamond is theℓ1-
norm sparsity inducing regularizer, red lines show the TPC (circle) and PAPC (box) con-
straints. (a) optimizing capacity (green contours); (b) optimizing power (green contours),
with a capacity constraint.

whereC1 is formed by omitting the last constraint ofC0 and the same is applicable
to form theC′

1 so

C1(W) :

{ ∑

l 6=j |h
H(j, :)w(:, l)|2 = 0; j = 1, 2, . . . ,Mr

‖w(i, :)‖22 ≤ p∗i ; i = 1, 2, . . . ,Mt

(7.13)

C′
1(W) =

{
|hH(j,:)w(:,j)|2∑

l 6=j
|hH(j,:)w(:,l)|2+1 ≥ γ∗

j ; j = 1, . . . ,Mr

‖w(i, :)‖22 ≤ p∗i ; i = 1, . . . ,Mt

(7.14)

where the relaxation is tight once the exactλ′, corresponding toLs, is found. The
parameterλ′ controls the number of selected antennas as it weighs the group spar-
sity inducing regularizer relative to the main objective. The solutionsPopt

0 (P ′
0

opt)
andPopt

1 (P ′
1

opt) show similar sparsity patterns once a properλ′ is found. The group
sparsity inducing regularizer properties of theℓ1-norm are well known, nonetheless
the following gives a simple example that may provide an illustration of the JASP
problem.

Fig. 7.2 illustrates a system with one user, two antennas, and a real beamformer
w = [w1, w2]

T ; the channel ish = [1, 0.5]. For one user, there is no interference
and hence no ZF constraint. For TPC we take the interior of a circlew2

1 +w2
2 ≤ 9,

and the PAPC is the total power divided by two,|wi| ≤ 4.5 for each antenna, which
leads to the square box shown in Fig. 7.2. Optimizing for capacity (the slanted
green lines), we see that the PAPCs are always satisfied with equality while if the
individual constraint for each antenna is larger than 4.5, the TPC is an active con-
straint and the PAPC becomes inactive (ineffective). The optimal capacity contours
are the ticker green lines in the corner in Fig. 7.2a which coincide with the vertices
of the PAPC square or are tangent to the circle of the TPC when there is no PAPC
considered in the problem.
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Taking anℓ1-norm onw leads to a diamond-shaped region, which induces
sparse solutions since the vertices are the first points thattouch the square of the
PAPC and maximize the capacity. In Fig. 7.2a the resulting sparse solution isw2 =

0, w1 = 4.5 leading to a smaller capacity than for the full system. The figure also
shows that the largest capacity is achieved when only a TPC isimposed on the
precoder with the full antenna set and the second best is the full system with PAPC.

Fig. 7.2b shows the converse problem of minimizing the totalpower subject to
meeting a certain capacity. The two parallel red lines correspond to the capacity
constraint, while the contours of constant equal power for each antenna are shown
as squares. Without the sparsity inducing regularizer, thesmaller green square is
the optimal solution, whereas including the sparsity inducing regularizer (diamond
shape touching the capacity constraint) leads to the largergreen square power con-
tour with solutions at the vertices of the sparsity inducingregularizer. In this case,
more transmit power is needed while fewer (1) antennas are used. More in general
(N dimensions), the feasible set is a polytope and since the objective is always
growing to the outer direction of this polytope, the solution appears on the vertices
[111].

7.4 Proposed Convex Formulation of ZF-JASP

The relaxed problem ZF-JASP (P1) is still non-convex inW. In this section, we
show that the plain group sparsity term in (7.11) cannot be used directly to formu-
late the sparse ZF-JASP precoding problem.

7.4.1 The Proposed Relaxation Technique

The optimization problemP1 is a special form of a QCQP which is proven to be
non-convex and NP-hard in its original form [123]. We will apply the relaxation
technique that is used in [112, 110, 124], to relax the non-convex precoding prob-
lem by introducing the positive semi-definite variables
Zj = w(:, j)wH (:, j). Accordingly,P1 can be expressed as

maximize f({Zj})− λg({Zj})

{Zj} ∈ S
Mt
+

subject to C1({Zj}) , rank(Zj) = 1; ∀j

(7.15)

whereSMt
+ denotes the cone of positive semi-definite matrices andg({Zj}) is a

group sparsity inducing regularizer (a transformation of‖W‖1,2) with its regular-
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ization parameterλ. Obviously, the rank constraints are not convex and later we
drop (relax) these constraints. This relaxation techniquerequires the decomposi-
tion of the optimalZj to obtainw(:, j) at the end, and also increases the number
of optimization variables quadratically as well as the complexity of the algorithm.
We should not use this relaxation technique unless it is absolutely necessary, due
to its complexity. The nonlinear nature of the capacity expression enforces this
relaxation technique as used in the QCQP.

W need to redefine the functions for the objective and constraints in terms of
the new variables{Zj}. The transmit power of thei-th antenna‖w(i, :)‖22 and the
interference terms are readily expressed as

pi := ‖w(i, :)‖22 =

Mr∑

j=1

Zj(i, i), (7.16)

|hH(j, :)w(:, l)|2 = hH(j, :)Zlh(j, :) = Tr(QjZl), (7.17)

Qj := h(j, :)hH(j, :). (7.18)

Similarly, the capacity function in (7.10) can be rewrittenin terms ofZj andQj

as

fC({Zj}) =

Mr∑

j=1

log(1 + Tr(QjZj)). (7.19)

However, it is not straightforward to find the proper transformation from‖W‖1,2
to g({Zj}).

We need to rewrite the group sparsity inducing regularizer as a convex func-
tion of the quadratic variables{Zj}. This is introduced in [121] for multicasting
problem, as‖W‖21,∞. Moreover, a relevant transformation technique is introduced
in [111, page 131], which suggests to replace a function by its square for convex
relaxation purposes. Here we propose‖W‖21,2 as an alternative convex sparsity
regularizer as this is more relevant to the classic group Lasso formulation3. These
two group sparsity inducing regularizers do not necessarily return the same sub-
set of antennas for a fixed channel realization. We also considered‖W‖21,∞ in
the simulations as a sparsity regularizer for the ZF-JASP problem, for the sake of
comparison. Simulation results indicate no statistical privilege among these two
regularizers.

The derivation for the proposed group sparsity inducing regularizer is similar
to [121], however, the proposed regularizer requires proper introduction in order to

3Using the infinity norm limits the precoder solutions to the ones with equal magnitude rows.
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be understood within the new context (capacity problem) so extra discussions and
proofs, compared to [121], are provided here.

Substituting the plain group Lasso regularizer inP1 results inP2 which is given
by

P2 :

maximize fC(W)− λ(‖W‖1,2)
2

W ∈ CMt×Mr

subject to C1(W)

(7.20)

Following [111], we can say that

∃ (λ′, λ) : P
opt
2 ≡ P

opt
1 , (7.21)

which means that there exist aλ corresponding toλ′, such that the problemP2 is
equivalent toP1.

We make the following definitions. Letz = vec(W) and define
Zj,l = w(:, j)wH (:, l)

Z = zzH =








Z1 Z1,2 · · · Z1,Mr

Z2,1 Z2 · · · Z2,Mr

...
...

. . .
...

ZMr ,1 ZMr ,2 · · · ZMr







∈ C

MtMr×MtMr (7.22)

Similarly, we introducez′ = vec(WT ) and defineZ′
i1,i2

= w(i1, :)w
H(i2, :) ∈

CMr×Mr , and

Z′ = z′z′H =









Z′
1,1 Z′

1,2 · · · Z′
1,Mt

Z′
2,1 Z′

2,2 · · · Z′
2,Mt

...
...

. . .
...

Z′
Mt,1

Z′
Mt,2

· · · Z′
Mt,Mt









∈ C
MtMr×MtMr (7.23)

The entries ofZ andZ′ are related asZ ′
i1,i2

(j, l) = Zj,l(i1, i2). In other words,
Z = PZ′PT whereP is a permutation matrix i.e., equivalent to vec(W) =

Pvec(WT ). With these definitions we can write the squared mixed norm ofW

as

(‖W‖1,2)
2 =

(
Mt∑

i=1

‖w(i, :)‖2
)2

=

Mt∑

i1=1

Mt∑

i2=1

‖w(i1, :)‖2 · ‖w(i2, :)‖2

=

Mt∑

i1=1

Mt∑

i2=1

‖Z′
i1,i2‖F . (7.24)

To derive the last step, we have used the following property for arbitrary vectors
a andb: ‖abH‖

2
F = ‖a‖22‖b‖

2
2 . Next, define a matrix̄Z ∈ R

Mt×Mt with scalar



7.4. Proposed Convex Formulation of ZF-JASP 115

entriesZ̄(i1, i2) = ‖Z′
i1,i2

‖
F

, then(‖W‖1,2)
2 = Tr(1Mt×MtZ̄). Further note that

the entries of̄Z satisfy

Z̄(i1, i2) = ‖Z′
i1,i2‖F =

√
∑

j,l

|Zj,l(i1, i2)|2 . (7.25)

The group sparsity inducing regularizer in (7.24) is a convex function ofZj,l =
w(:, j)wH (:, l), then the JASP problem ofP2 can thus be relaxed to the following
convex optimization problem:

P3 :

maximize fC({Zj})− λTr(1Mt×Mt
Z̄)

Zj ∈ S
Mt

+ , Z̄ ∈ RMt×Mt

subject to C3({Zj}, Z̄)

where

C3({Zj}, Z̄) =







∑

l 6=j Tr(QjZl) = 0; j = 1, · · · ,Mr
∑

j Zj(i, i) ≤ p∗i ; i = 1, · · · ,Mt

Z̄(i1, i2) ≥
√∑

j |Zj(i1, i2)|2 i1, i2 = 1, · · · ,Mt

AlthoughZ was defined as a rank one matrix in (7.22), the rank constraintis not
posed. Also the rank constraints on the individualZj have been dropped and what
is left is a constraint that theZj are positive semi-definite. Although̄Z is related
to Z, in this formulationZ̄ is treated as an independent variable which is related
to Z only via the last constraint (a standard SOC constraint). The relaxation of̄Z
is tight because the last constraint is always satisfied withequality: the objective
function tries to minimize Tr(1Mt×MtZ̄) which makes the elements ofZ̄ as small
as possible.

The last constraint and its origin in (7.25), is a function ofthe entries(i1, i2) of
Zj,l. These can be split into the diagonal block-entries{Zj} and the off-diagonal
block-entries{Zj,l}j 6=l. Since there is no constraint on these off-diagonal matrices
(after we drop the non-convex rank constraint on the rank ofZ), they are naturally
put to zero when the group sparsity inducing regularizer is being minimized, and
consequently we could drop them from the optimization problemP3.

Remark 1. SolvingP3 promotes a sparse solution for̄Z and consequently for the
Zj matrices. If the solution is of rank one, and hence decomposable asZj = w(:

, j)wH (:, j), thenW tends to be row-wise sparse.

Please see Appendix 7.A for further discussion on Remark 2. As a result of
Remark 2, the eliminated antennas can be determined by looking at Z̄ at the so-
lution of the optimization problem. Conversely, the set of selected antennas is
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Ic = {i : Z̄(i, i) 6= 0, i = 1, 2, · · · ,Mt}, which is obtained by looking at the
nonzero diagonal entries of̄Z.

7.4.2 The Subspace-Aware Formulation

It is known that the ZF constraint can be removed by searchingonly in the ZF
feasible subset of the optimization problem. This leads to an analytical solution for
ZF precoding with a total power constraints [107]. Here we adapt this formulation
for the case of a PAPC leading to simplifications in the computations. It is known
that the ZF constraint can be written asH̄jw(:, j) = 0Mr−1, whereH̄j is the
aggregated interference channel,

H̄j = [h(1, :), · · · ,h(j − 1, :),h(j + 1, :), · · · ,h(Mr, :)]
H .

Following [107], the ZF precoderw(:, j) needs to lie in the null space of̄Hj ∈

C
(Mr−1)×Mt . Let Kj ∈ C

Mt×Sn holds an orthonormal basis for the null space
of H̄j. AssumingH̄j is full rank, then the size of the nullity is equal toSn =

Mt − Mr + 1. The ZF constraint can now be expressed by requiring thatw(:, j)

can be written asw(:, j) = Kj (:, j), for a vector(:, j) ∈ C
Sn . These vectors are

collected in a matrix

M = [(:, 1), (:, 2), · · · , (:,Mr)] ∈ C
Sn×Mr .

We define the counterpart semi-definite quadratic variablesYj = (:, j)H (:, j), j =
1, 2, · · · ,Mr, to replace theZj matrices. The received power of userj can now be
expressed as

|hH(j, :)w(:, j)|2 = hH(j, :)Kj(:, j)
H(:, j)KH

j h(j, :) (7.26)

= Tr(KH
j h(j, :)hH(j, :)KjYj) = Tr(AjYj), (7.27)

whereAj = KH
j h(j, :)hH (j, :)Kj . Therefore, the objective function can be writ-

ten as
fC({Yj}) =

∑Mr

j=1 log(1 + Tr(AjYj)). (7.28)

We also need to rewrite the constraints and group sparsity inducing regularizer that
involveZj in terms of theYj. This is straightforward:

Zj = w(:, j)wH (:, j) = KH
j (:, j)H(:, j)Kj , (7.29)

with entry(i1, i2) given by

Zj(i1, i2) = kH
j (i1, :)(:, j)

H (:, j)kj(i2, :) = Tr(B(i1,i2)
j Yj);



7.5. Proposed SDP Formulation of MMSE-JASP and ART 117

B
(i1,i2)
j := kj(i1, :)k

H
j (i2, :).

The resulting performance maximization problem with the ZFcriterion ofP3 be-
comes

P3 :

maximize fC({Yj})− λTr(1Mt×Mt
Z̄)

Yj ∈ S
Mt

+ , Z̄ ∈ RMt×Mt

subject to C3({Yj}, Z̄)

where the constraint is given by

C3({Yj}, Z̄) =







∑

j Tr(B(i,i)
j Yj) ≤ p∗i ; i = 1, · · · ,Mt

Z̄(i1, i2) ≥
√

∑

j(Tr(B(i1,i2)
j Yj))2 i1, i2 = 1, · · · ,Mt

One can easily show the last constraint inP3 as a SOC constraints or in general
as LMI form, that is given by

[

Z̄(i1, i2) v(i1,i2)

v(i1,i2) Z̄(i1, i2) IMr

]

� 0, (7.30)

wherev(i1,i2) := [Tr(B(i1,i2)
1 Y1), · · · ,Tr(B(i1,i2)

Mr
YMr)], for a specific index pair

(i1, i2). In summary, we can write

P fsb
0 ⊆ P fsb

1 ≡ P fsb
2 ⊆ P fsb

3 , (7.31)

denotingP fsb
0 as the feasible sets ofP0 and so forth.

In the next Section, we show that the MMSE-JASP problem does not need
the aformensioned relaxation technique for its convex transformation and the plain
group Lasso regularizer suffices for the convex formulationof the problem. In Sec.
7.6, we discus the algorithms that uses these convex optimization problems to solve
the JASP problems.

7.5 Proposed SDP Formulation of MMSE-JASP and ART

7.5.1 JASP Problem with MMSE Precoder (MMSE-JASP)

A formulation of the MMSE precoder as a SOC programming problem has been
introduced in [108, 112]. This formulation relies on the fact that the optimal pre-
coder is determined up to a phase rotation, i.e., ifW is optimal thenWdiag(ejφj )

yields another optimal precoder, where theφjs are arbitrary phases. Accordingly,
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hH(j, :)w(:, j) can be taken as real, and with a proper phase rotation the SINR
expression can be reformulated as a linear function ofw(:, j).

The SINR constraints can be written in SOC form or in general as LMI con-
straints. For each user, one LMI is required to pose the SINR constraint. The PAPC
can be written as linear constraints using the same argumentand the plain group
Lasso sparsity inducing regularizer (‖W‖1,2) can be applied directly to formulate
the JASP problem as follows

P ′
1 :

minimize fP(W) + λ
∑

i ‖w(i, :)‖2
W ∈ CMt×Mr

subject to C′
1(W) =

{
Cj � 0; j = 1, . . . ,Mr

‖w(i, :)‖2 ≤
√
p∗i ; i = 1, . . . ,Mt

where

Cj =

[
1√
γj

∗hH(j, :)w(:, j) [hH(j, :)W̄j , 1]

[hH(j, :)W̄j , 1]
H 1√

γj∗
hH(j, :)w(:, j) IMr

]

andW̄j ∈ C
Mt×Mr−1 is defined similar toW̄′

j in (7.6). ProblemP ′
1 can be solved

using any SDP solver. The Lagrange multiplierλ in P ′
1 takes different value from

the one in ZF-JASP problem, however we use the same notation for the sake of
generalization.

7.5.2 Antenna Reduction Technique (ART) Problem

We propose another interesting setting for the joint problem, i.e., if there is no rigid
number of antennas to be selected and we are interested in finding the minimum
number of antennas that can guarantee a set of desired constraints. In this case
Ls = ‖δ‖0 is the optimization parameter and the ART problem can be formulated
as

P ′′
0 :

minimize ‖δ‖0
W′ ∈ C

Mt×Mr , δ ∈ {0, 1}Mt

subject to power, BF, and quality constraints

The problemP ′′
0 minimizes the number of transmit antennas subject to given

constraint on the power, beamforming criteria and performance quality. Two dif-
ferent ART problems are introduced here: ZF-ART which finds the minimum an-
tennas that can satisfy a set of PAPC, ZF and capacity constraint and MMSE-ART
with PAPC and SINR constraints.
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The ZF-ART problem with ZF and capacity constraints can be defined as

P ′′
3C :

minimize Tr(1Mt×MtZ̄)

Yj ∈ S
Mt
+ , Z̄ ∈ R

Mt×Mt

subject to C3 , fC({Yj}) ≥ f∗
(7.32)

where the feasible set is the intersection ofC3 with an extra constraint on the ca-
pacity. Similar toP3, there are three steps of relaxations to reach theP ′′

3C
which

is denoted by index3. Although the same relaxation steps are taken, the feasible
set for problemP ′′

3C
is different fromP3 as the performance is not anymore the

objective and needs to be satisfied as a constraint (fC({Yj}) ≥ f∗). The problem
need not to be feasible for everyf∗ or p∗i .

Proposition 1. If problemP ′′
3C

is feasible, there exists an attainable rank one so-
lution for theYj.

Proof. The proof is in Appendix 7.B.

Likewise, the same problem can be formulated for MMSE precoding. The
MMSE-ART problem after one step of relaxation (similar to MMSE-JASP) is for-
mulated as

P ′′
1M :

minimize
∑

i ‖w(i, :)‖2
W ∈ C

Mt×Mr

subject to C′
1(W)

(7.33)

which can de readily solved by any SDP solver.

7.6 Proposed Algorithms

7.6.1 Outline

We present algorithms for solving the JASP problems in two major steps. The orig-
inal (P) problem formulation specifies an exact number ofLs antennas that may be
selected. In the relaxed problem,Ls does not appear, but we need to determine the
regularization parameterλ that leads to the correct selection ofLs antennas. This
will be found iteratively in step 1.

To improve the convergence to the sparse precoder, the iteratively reweighed
algorithm of [125] is used. In then-th iteration of the ZF-JASP algorithm, the all-
one matrix1Mt×Mt in the group sparsity inducing regularizer ofP3 is replaced by
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a more general matrixU(n) ∈ R
Mt×Mt which is updated relative to the entries of

Z̄ at each iteration. Likewise, for the MMSE-JASP algorithm, in then-th iteration,
the all-one vector inP ′

1 is replaced byu(n) ∈ R
Mt which is updated relative to the

‖w(i, :)‖2.

• Step 1: Solve the JASP problem, iteratively adaptingλ ∈ (0, 1] andU(n)

(u(n)) until the optimal solution for̄Z, called Z̄opt (Wopt) has exactlyLs

non-zero diagonal elements (rows).

Note that the non-zero diagonal elements inZ̄ and non-zero rows inW indi-
cate the selected antennas that correspond to the non-zero powerspi. Define
p = [p1, · · · , pMt ]

T , let Ic be the set of selected antennas, and denote by
Hs := H(:,Ic) ∈ C

Mr×Ls the corresponding reduced-size channel matrix.

• Step 2:OnceLs antennas have been selected, the JASP problem is solved
once more forλ = 0 and the reduced channelHs. This reduces the prob-
lem to the plain precoding problem (∆ is fixed) and gives the final optimal
precoderWopt

s .

In the notation, we will use subscript “s” to denote variables related toHs and the
selected set of antennas. The reason that we still needStep 2is clarified by the
following remark.

Remark 2. LetWopt be the optimal sparse solution to any JASP problem, directly
obtained or derived from the rank one factorizations of the optimal Zjs, whereλ
is such that‖Wopt‖0,2 = Ls. Then, there always exists a precoderWopt

s with the
same sparsity pattern asWopt such thatf(Wopt

s ) ≥ f(Wopt).

Note that there exists a range ofλ ∈ [λLs , λLs+1) which gives the same sparse
rows for the precoder in the JASP problem, even if the objective values are different
for each value ofλ. Within this range, solving forλ = λLs gives a solution with
the largestf(W).

Although we do not knowλLs , we can obtain the optimal solution by fixing
the sparsity pattern (fixing∆ and reducingH to Hs), and subsequently removing
the sparsity constraint (settingλ = 0). The resulting optimization problem then
only maximizes the performance subject to the corresponding constraints within
the set of selected antennas, which leads to the plain precoding problem and gives
the optimal precoderWopt

s .
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7.6.2 Algorithm for ZF-JASP

For the ZF-JASP problem which involves the nonlinear capacity expression, we
need to solve problemP3 (or the converse power minimization problem). In gen-
eral,Pλ denotes the problem with a selectedλ, and byPλ=0 we mean the plain
precoding problem inStep 2that follows if we setλ = 0 and fix the selected anten-
nas. In that case, we work withHs. Let Ks ∈ C

Ls×Sn denote the corresponding
orthonormal basis of the nullspace, and define(Bs)

(i1,i2)
j accordingly. The plain

precoding problem inStep 2is then formulated as follows:

P3
λ=0 :

maximize fC({(Ys)j})

(Ys)j ∈ S
Ls

+

subject to
∑

j Tr((Bs)
(i,i)
j (Ys)j) ≤ p∗i ; ∀i ∈ Ic

(7.34)

(Note that the second and third constraints inC3 were dropped as they are not
relevant forλ = 0.) This is a convex problem that can be solved using interior
point methods, and we omit further details. The optimal beamforming vectorsws(:

, j) are extracted from(Ys)j using(Ys)j = ws(:, j)w
H
s (:, j). This assumes that

(Ys)j is rank one.

Remark 3. There always is an attainable rank one solution for problemP3
λ=0.

From [110] we know that there is always a rank one solution forP3
λ=0 before

invoking the subspace approach. Since there is no alternation of the problem using
the proper subspace to search for the solution then the same property is remained
after this process. The extended discussion is given in Appendix 7.C.

Algorithm 1 summarizes the iterative algorithm forStep 1of P3. In the algo-
rithm, L denotes the currently selected number of antennas, andλ ∈ [λL, λU ] is
the currently selected regularization parameter. The experimental results show that
taking a small value (close to zero) forλL and takingλU = 1 commonly gives the
properλ in few iterations (always less than 10 iterations) regardless of the choice
for the initialλ. In an inner loop, problemPλ

3 is solved and the resulting number of
selected antennasL is determined. If this does not correspond to the required num-
berLs, then the interval boundλL orλU is adjusted and the problem is solved again
with λ set using a bisection technique. The sparsity enhancing weightsU(n) are
adjusted in an inner loop, whereU(n) is updated by penalizing rows with smaller
norms. Theǫ parameter is commonly used in this context to ensure stability and
avoiding the undesired non-zero estimate atn + 1 iteration due to the zero-valued
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|Z̄(i1, i2)
(n)|. This is chosen relative to the smallest value for|Z̄(i1, i2)| and is

fixed here.

Algorithm 1 ZF-JASP (performance maximization)

1: Initialize λ, λL, λU .
L := Mt

N := 0

2: while L 6= Ls andN ≤ Nmax do
3: n := 0

U(0) := 1Mt×Mt

4: while L 6= Ls and n ≤ nmax do
5: SolvePλ

3

UpdateL based on̄Zopt

U(i1, i2)
(n+1) := 1/(|Z̄(i1, i2)

(n)|+ ǫ), ∀i1, i2
n := n+ 1

6: end while
7: if L > Ls then λL := λ

else if L < Ls then λU := λ

end if
λ := λL + (λU − λL)/2.

8: N := N + 1

9: end while
10: if L > Ls then do brute-force elimination.

For ZF-JASP precoding the problem is always feasible ifLs ≥ Mr so there
is no need for a feasibility check. If the desired number of antennas has not been
achieved within the limited number of iterations then brute-force elimination is
performed by sorting thepis and choosing theLs most significant ones. Once the
proper antenna set is found from Algorithm 1, the reduced size channel matrix is
formed asHs and it is passed on toStep 2. We use the Matlab package CVX [126]
to solve the resulting convex optimization problems which uses the SeDuMi and
SDP3 solvers but alternative solvers such as YALMIP and MOSEK can be used
instead.

7.6.3 Algorithm for MMSE-JASP Problem

Note that, unlike the ZF problem, the MMSE problem may not be feasible even
for Ls ≥ Mr. So first we solve the ART problem related to the MMSE problem
(ProblemP ′′

1M
) to see what is the minimum number of antennas that can handlethe

SINR and power constraints simultaneously. If a solution with Ls antennas is not
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found then the problem is not feasible withLs. Subsequently, an algorithm similar
to Algorithm 1 is carried out to solve the MMSE problem exceptfor the fact that
the problemP ′

1 is solved in the fifth step of Algorithm 1 and that we are looking at
W directly to find the eliminated antennas rather than atZ̄.

7.6.4 Algorithm for MMSE-ART Problem

The ART problem admits the simplest algorithm as it does not require a binary
search. Accordingly, Algorithm 2 finds an exact optimal MMSEprecoder. There is
no need to performStep 2. The ZF-ART follows the same path.

Algorithm 2 MMSE-ART

1: u(0) := 1Mt

L := Mt n := 0

2: while n < nmax do
3: SolveP ′′

1M (u(n))

UpdateL based onWopt

u(i)(n+1) := 1/(‖w(i, :)‖
(n)
2 + ǫ), ∀i

n := n+ 1

4: end while

7.6.5 Computational Complexity

SDP solvers use interior point methods to solve the resulting convex problems. In-
terior point methods use Newton’s method at each iteration to solve a set of linear
equations. The number of Newton iterations mostly depends on the number of lin-
ear inequality constraints [127, 128], but this grows only slowly with the problem
dimension and for our settings varies between3− 5 which can be neglected in the
analysis. Thus, the complexity is dominated by the flops required per Newton iter-
ation, and this depends strongly on the problem structure and the solver. Without
specific structure, a rough approximation on the worst-casecomplexity states the
number of operations asξ = max(µ2η , µ3, F ), whereµ is the number of variables
in the optimization problem andF is the cost of the first and second order deriva-
tive [111, page 8]. Nevertheless, this is not a very useful measure to evaluate the
complexity of the problems in our setting where different problems are considered
with various structures and variables. Alternatively, we give a relative comparison
between the optimal approach and the proposed algorithms.
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In the optimal approach, an exhaustive search to solve problem P1 requires
solving

(
Mt

Ls

)
convex optimization problems, each with a complexity ofξ. This is

28, 210 and 8008 timesξ for the selection of 6 antennas out of 8,10 and 16 anten-
nas, respectively. Clearly the problem becomes intractable even for a small increase
in the number of antennas. On the other hand, the proposed JASP approach in Al-
gorithm 1 solves at mostnmax (typically we takenmax = 10) convex optimization
problems for each selection step in the binary search, independent ofLs andMt.
E.g., this gives a constant10 × ξ for Algorithm 1, compared to(

(16
6

)
= 8008) × ξ

for the optimal approach (Ls = 6 andMt = 16). In our experience, the algorithm
usually converges in less than 10 iterations, on average about 6 iterations are used.

The ART problem is NP-hard in the form of ProblemP ′′
0 , and quickly becomes

impossible to solve optimally. Using the proposed approach, the ART problem can
be solved efficiently without the need to findλ. However, in general, the expansion
of the matrix dimensions in the linearization technique, used in the proposed Algo-
rithm 1 as well as in the plain precoding problem with capacity term, has an impor-
tant practical ramification; the complexity of the problem is increased (squared).
Due to this effect, we can only handle medium size capacity problems withMt

up to 20 with a normal computer and general solvers like CVX and SeDuMi in a
reasonable time. For more antennas, more efficient algorithms are required, i.e.,
perhaps possible by smoothing the non-differentiable constraints or sub-gradient
approaches. This is not a problem for MMSE-JASP since the optimization is over
a linear variable, owing to the alternative SDP formulationin [112]. In the later we
are able to handle on the order of hundreds of antennas.

7.7 Simulation Results

The ZF-JASP problem was relaxed into a convex problem in three steps while the
MMSE-JASP requires only one step of relaxation. It is not known how tight the
relaxed problems are w.r.t. the original problem. This is evaluated using Monte
Carlo simulations.

Each precoding strategy is evaluated using 10,000 random channel realizations.
In turn the channel is generated using independent and identically distributed com-
plex Gaussian random variables4. From these, a complementary cumulative den-
sity function (CCDF) is derived to show the probability thatthe shown performance

4The frequency selectivity of the channel does not directly affect the system model and the prob-
lem formulation in the chapter, as the channel can be potentially flattened using equalization tech-
niques in general.
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metric is less than or exceeds a certain value.

The simulations compare the proposed algorithm to the ‘full’ case without an-
tenna selection, a ‘random selection’ ofLs antennas, and a ‘disjoint’ scheme which
finds the antenna selection∆ and precoderW′ sequentially: an optimal subset of
antennas is selected to maximize the capacity,log(det[IMr +H∆HH ]), using an
exhaustive search, and subsequently the resulting plain precoding problemPλ=0

3

is solved on this ‘optimal’ subset (which did not take into account all constraints).
Globally optimal solutions are calculated by enumerating all

(
Mt

Ls

)
possible choices

of Ls antennas, each time solving the resulting plain precoding problem.

Fig. 7.3 shows the resulting CCDF curves for the ZF-JASP problem. In the
simulations, the maximum number of iterations isNmax = 5 andnmax = 10 in
Algorithm 1. These are chosen based on the average number of iterations that the
algorithm takes to find the the exactLs number of antennas. Empirical results are
fitted to suitable distributions by examining 15 different distributions and using a
log-likelihood test to find the best fit. This is to show the sufficiency of empirical
data as there is no significant fluctuations compared to a fitted distribution. We
show the CCDF of the full, proposed and the proposed selection with the max-
norm regularizer (adapted from [121]) for PAPC in Fig. 7.3a.The result does not
show any noticeable difference between the choice ofℓ∞-norm from [121] and the
proposedℓ2-norm sparsity regularizer in term of the performance. Moreover, the
TPC is considered which gives an insight regarding the performance loss compared
to the PAPC scenario.

From Fig. 7.3b, it is seen that the optimal solution coincides with the proposed
algorithm ifLs = 6 antennas are selected out of 8 antennas. Note that the combi-
natorial nature of the problem makes it impossible to find theoptimal solution for
Mt=16. In the simulation, the diversity gain (capacity increase for increasingMt)
is almost 2 bits per second per Hertz (bit/s/Hz) whenMt is doubled. The results
also show the sub-optimality of the disjoint approach in comparison to the proposed
algorithm. Note that even if the ‘optimal’ subset of antennas is found in the disjoint
approach (only taking capacity into account), its performance is always worse than
the proposed approach. In turn, random selection does not lead to a performance
improvement even ifMt is increased.

We also consider the converse problem of power minimizationfor ZF precoding
where the total transmit power is minimized subject to a predefined constraint on
the capacity performance. Algorithm 1 is readily modified tocover this problem.

The average powers are shown as a function of the number of transmit antennas
Mt in Fig. 7.4. It is seen that, while the average diversity gain. in terms of the



126

3 4 5 6 7 8 9 10
10

−3

10
−2

10
−1

10
0

 

 

5.5 6 6.5

10
−1

 

 
C

C
D

F

capacity (bit/s/Hz)

full (TPC)

full (PAPC)

proposed (TPC)

proposed (PAPC)

max-norm (PAPC)

disjoint (PAPC)

random (PAPC)

(a)Mt = 10, Mr = 5, Ls = 6 andP ∗ = 3 p∗i = 0.5 dB.
CCDF for full and disjoint selection are shown for TPC.
The performance of max-norm andℓ2-norm regularizers
coincides for PAPC.

8 9 10 11 12 13 14 15
10

−3

10
−2

10
−1

10
0

 

 

full (PAPC)

max-norm (PAPC)

C
C

D
F

capacity (bit/s/Hz)

full (Mt = 16)

proposed (Mt = 16)

disjoint (Mt = 16)

full (Mt = 8)

optimal (Mt = 8)

optimal (Mt = 8)

proposed (Mt = 8)

random (Mt = 16)

random (Mt = 8)

(b) Mt = 8, 16, Mr = 4, Ls = 6 , p∗i = 2.5 dB, Optimal
selections are shown forMt = 8, and disjoint selections
for Mt = 16.

Figure 7.3: CCDF curves for ZF-JASP, with capacity objective. The dashed lines represent
the empirical data and solid lines are used for the fitted Weibull model.

reduced average power is increased noticeably whenMt is increased from 6 to 10,
the reduction becomes less significant (more linear) once more than 12 antennas
are available. The diversity gain is not linear whenLs is increased, hence antenna
selection leads to a noticeable power decrease if there are only 4 (few) RF chains
available. Overall, an average power of almost 2 dB (20% of the total power) can be
saved by increasing the number of available antennas from 6 to 16 and performing
the proposed JASP algorithm. Defining the PAPC relative toLs enables us to pose
a total power constraint, inherently, if needed, as considered here to be10 dB.
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Figure 7.4: Power minimization problem for ZF-JASP.

However, average power does not show the probability of highpower events
which might affect the functionality of the amplifier and other nonlinear hardware
components. In Fig. 7.4b, CCDF curves are presented which show how proba-
ble it is to get a certain transmit power. It is seen that random antenna selection
is extremely inefficient while the proposed algorithm is very close to the optimal
approach.

CCDF curves for the MMSE-JASP problem related toP ′
1 are shown in Fig. 7.5.

Effectively, the gain (relative performance) of increasing Mt from 8 to 128, and
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Figure 7.5: The CCDFs for the MMSE-JASP problem, forMr = 3, Ls = 4 andMt =

8, 10, 16, 128 respectively from right to left,γ∗ = 1 dB andp∗i = 0.4 dB. Dashed lines
represent the empirical data, solid lines are fitted statistical models. The optimal solution
is simulated forMt = 8 and it is represented with yellow line. The tick (blue) lines
correspond to the proposed technique and the full antenna performance are illustrated with
the thin (red) lines.

then performing antenna selection to choose the bestLs antennas, is somehow
larger than the relative gain of using the full set of8 to 128 antennas. Moreover, the
low complexity of the SDP implementation of the problem allows for more anten-
nas to be considered and consequently more antenna selection gain to be obtained.

From a statistical point of view, the initial results show that the Weibull distribu-
tion gives the best fit for the capacity maximization problem, whereas the general-
ized extreme value is more suitable for the power minimization problem. However,
for any solid conclusion on the statistical behavior of the system, a more dedicated
study beyond the scope of this work is required.

Finally, the MMSE-ART problem related toP ′′
1M

(Algorithm 2 ) is simulated
with nmax = 3 for differentMt, in Fig. 7.6, by simulating 10,000 channel real-
izations. The minimum number of antennas are searched once the PAPC, TPC and
SINR constraints are fixed. The results show that a largerMt leads to more selected
antennas with a fixednmax while for the smallestMt = 12, most realizations end
up with Ls = 6 (least possible number of antennas). However, as expected,in-
creasingMt reduces the chance of getting infeasible problems, specially for small
P ∗ or largeγ∗.
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Figure 7.6: The histogram for the MMSE-ART problem, forMr = 6, Mt =

12, 16, 20, 24, 28, 32, γ∗ = 25 dB and PAPC withp∗i = 1 dB. Thex axis shows the
number of selected antennas as6, 7, 8, 9, 10 and the y axis is the count of realizations that
a certain number of antennas are selected.

7.8 Summary and remarks

The main contribution of this work is the classification of the most pertinent linear
precoding strategies together with the proper sparsity inducing regularizers that can
provide a convex formulation of the joint antenna selectionand precoding problem.
Simulation results show that the resulting algorithms yield solutions very close to
the optimal selection strategy with far less computationalcomplexity. The disjoint
approach is shown to be sub-optimal in this context.

The chapter considered a capacity maximization and power minimization prob-
lems with beamforming, power allocation and antenna selection constraints. The
map of all steps taken to reach a computationally feasible (convex) problem for
capacity involved problem of ZF-JASP is given as

Step1 : P3
relaxation
======⇒ P2

(7.21)
⇐=⇒ P1

relaxation
======⇒ P0

Step2 : P3
λ=0 [23]

⇐⇒ P2
λ=0 (7.21)

⇐=⇒ P1
λ=0

where the double-headed arrow (⇐⇒) represents equivalence and the single-headed
(=⇒) arrow means relaxation. Three relaxations were performedto reach the surro-
gate convex problem when the nonlinear capacity expressionis involved. For the
JASP-MMSE problem a one-step relaxation is sufficient. A fairness problem which
has not been discussed in this chapter can also be handled using the same SDP for-
mulation, i.e., maximizingfF = min (γj) instead of the capacity expression (fC)
in ZF-JASP.
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The main source of sub-optimality comes from the relaxationwhich translates
the originalℓ0-norm (counting the number of selected antennas) to a convexgroup
sparsity inducing regularizer, based on the squaredℓ1-norm on the precoder matrix,
which is common in all the discussed problems. Unfortunately, there is no guar-
antee that this relaxation yields the same solution as the original discrete selection
problem even if theℓ1-norm is the tightest known relaxation of the problem. How-
ever, if the first step (Step 1) of the algorithm finds the correct subset of antennas
(equal to the optimum set), then the second and final step (Step 2) of finding the
corresponding precoder is always tight and the exact sparseprecoder is guaranteed
to be found. In this case, the solution of the JASP algorithm is optimum.

We conclude the chapter by emphasizing that for the capacityinvolved prob-
lems the squared group Lasso regularizer is required to transform the joint antenna
selection and precoding problem to a convex problem. Although the proposed spar-
sity regularizer can be cast as LMI, the problem is yet not a SDP problem due to the
presence of the nonlinear capacity expression and is solvedusing general interior
point algorithms. For the joint antenna selection and MMSE precoding problem a
common group Lasso sparsity regularizer suffices, and the resulting sparse precod-
ing problem can be solved using any SDP solver.

7.A Discussion on Remark 1

Minimizing the group sparsity inducing regularizer,g(Z̄) := Tr(1Mt×MtZ̄), acts
as minimizing the sum ofM2

t valuesZ̄(i1, i2), i.e., theℓ1-norm of this sequence.
The sparsity property of this norm tends to make each of theZ̄(i1, i2) entries equal

to zero. If that occurs, then sincēZ(i1, i2) ≥
√∑

j |Zj(i1, i2)|2, it follows that

the entry(i1, i2) of all Zj matrices is equal to zero. If moreover theZj matrices
converge to rank one, i.e.,Zj = w(:, j)wH (:, j), thenw(i1, j) andw(i2, j) are
zero for allj, or w(i1, :) = 0 andw(i2, :) = 0. Thus,W tends to be row-wise
sparse. The rows that are zero correspond to the eliminated (un-used) antennas.

7.B Proof of Proposition 1

To prove the proposition, first we prove a more general Lemma as follows.

Lemma 1. LetΩ ∈ C
M×N andΞ ∈ C

M×M be given matrices whereM ≤ N

andΞ is full rank, and suppose there exists a Hermitian matrixΠ ∈ C
N×N of
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rankJ whereM ≤ J ≤ N such thatΩΠΩH = Ξ. Then there exists a Hermitian
matrixΠ′ of rankJ ′ = M such thatΩΠ′ΩH = Ξ.

Proof. First of all, conditioningΞ to be full rank implies that the rank ofΩ andΠ
can not be less thanM according to the rank product property i.e., the rank of the
product of matrices is always less than or equal to the minimum rank of matrices
and hence,Ω is full rank. Now, supposeΩ⊥ ∈ C

N×N = ΩH(ΩΩH)−1Ω is
the orthogonal projection matrix onto the rowspace ofΩ. ThenΩΩ⊥ = Ω, so
ΩΩ⊥ΠΩH

⊥ΩH = Ξ. Note that rank{Ω⊥ΠΩH
⊥} = M ≤ J , since the projection

matrix mapsΠ into a subspace with dimensionM as the rank ofΩ⊥ is alwaysM .
PuttingΠ′ = Ω⊥ΠΩH

⊥ proves the lemma.

The ZF criterion can be stated asHΘHH = Γ whereΓ is a diagonal (full
rank) matrix, and from Lemma 1, there is always aΘ of rankMr which means it is
decomposable asWWH whereW is the beamforming matrix. This is equivalent
to always having rank one solutions for allZj matrices inP3 and consequently for
all Yj matrices inP3. Note that the orthogonal projection is a bounded operator
so the low rank solution is always feasible (satisfying the power constraint) if the
higher rank solution is feasible. Also, as long asΓ is fixed, the capacity (minimum
rate) constraint is still feasible.

7.C Discussion on Remark 4

As proven in [110], we may assume that there always is a rank one solution for the
variables(Zs)j in the plain precoding problemP3

λ=0.
Since(Zs)j = (Ks)j(Ys)j(Ks)

H
j , and(Ks)j is tall with full column rank, it

follows that(Ys)j is also rank one. So the rank relaxation forP3
λ=0 is tight.

Suppose the optimal solution ofP3
λ=0 with any rank isYopt

j for j = 1, 2, · · · ,Mr.
Extending the technique proposed in [110] forP3

λ=0, this solution can be trans-
formed into the desired rank one precoder solution by solving

minimize ℜ{hH(j, :)Kjtj}

tj ∈ C
Sn

subject to |kH
j (i, :)tj |

2 ≤ Tr(B(i,i)
j Yopt

j ); ∀i

(7.35)

for tj = t
opt
j . The precoder is given byw(:, j) = Kjt

opt
j .
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Chapter 8
Conclusion and Future Work

We now revisit the research questions that were introduced in Chapter 1, i.e., to give
a concluding remarks on the covered topics. Moreover, possible future directions
will be introduced which can be built upon this foundation for further research on
this area.

8.1 Summary of Results

This thesis was initiated by an actual industrial demand to establish a fast and
reliable wireless link within a mechatronic system, mainlyto ease maintenance
and to reduce the required space for these machinery devices. By careful inves-
tigation of the wireless channel within an enclosed environment (similar to the
mechatronic system) via performing measurements, basis for the system design
was founded. The first part of the thesis, including three chapters, is dedicated to
channel modeling (stochastic approach) and feasibility study of the specific prob-
lem of designing a wireless link within a mechatronic device. Furthermore, a thor-
ough overview of possible equalization techniques is provided which motivates the
use of frequency domain equalization and orthogonal frequency division multiplex-
ing (OFDM) technique in such dispersive environment. In addition, an example of
OFDM design for the wideband communication model was proposed which can be
deployed to achieve high data-rates in severe frequency selective channels. In this
part, only single-input single-output (SISO) systems are studied.

In the second part, the thesis investigates a more general research area which
covers the transmitter design in multiple-input multiple-output (MIMO) systems.
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In fact, MIMO systems are an inevitable part of any modern wireless standard that
aims for high data rate transmission. First, a brief overview and system model is
given in Chapter 5. Building on this, a precoding technique was proposed which
takes the OFDM waveform, with potentially a large dynamic range, and delivers a
more predictable (close to a constant envelope) signal for the transmission, which
is easier to deal with from an implementation point of view. Finally, the precoder
design was extended for relatively more complex constraints including per antenna
power constraint and limited available radio frequency (RF) chains.

Note that we mainly looked atlinear signal processing operators in this the-
sis and the system istime-invariantat least over one processing block, so an LTI
model was considered here. Further, the instantaneous channel state information
was assumed to be available at the transmitter and the receiver. More specifically,
numerical algorithms anditerative optimization techniquesare used as a general
tool to solve the resulting optimization problems. Accordingly, the gist of the dis-
cussion was centered around how to model, formulate and solve a linear processor
given a priori knowledge about the communication channel toeffectively address
the challenges and opportunities in highly dispersive environments.

8.1.1 Classification of Non-convex Optimization for Communications

Apart from the application oriented problems that are considered in this work, the
signal processing tools that are used throughout this thesis to formulate and solve
the underlying problems are interesting and deserve more attention in the context
of signal processing theory. Summarizing the thesis with this angle leads to the
following overview of approaches for solving non-convex optimization problems.

More specifically, the problems that have been addressed in the second part
of this thesis share the same structure in terms of the optimization problem to be
solved. Commonly, a multivariate nonlinear objective function (performance mea-
sure), such as capacity, is to be maximized or a cost functionto be minimized
subject to a set of equality or inequality constraints. In general, for an arbitrary two
complex (vector) variables ofx andy of lengthn, an optimization problem can be
stated as

minimize f(x,y)

x,y

subject to C1 : h(x,y) = 0

C2 : g(x,y) ≤ 0

(8.1)

Once the objective,f(x,y) : {x,y} ∈ C
n → R, is a convex (concave) function
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of the variables and the equality and inequality constraints are affine and convex
(concave), respectively, the problem is convex and can be transformed to standard
programming frameworks including linear, quadratic, semidefinite programming
then there are standard optimization toolboxes that can be used to solve these prob-
lems. If the problem is convex, the KKT conditions are sufficient and necessary
conditions for optimality and even if the problem can not be formulated as afore-
mentioned programming techniques, it is still solvable provided that the KKT equa-
tions are solvable [111].

In contrast to convex problems, there is no clear classification of non-convex
problems, nor is there a shortcut to summarize the broad range of heuristic algo-
rithms [129]. The KKT equations, in general, may or may not have a closed form
solution (system of nonlinear equations) and in particularfor non-convex problems,
the conditions are necessary but not sufficient for optimality. In communications
theory, the existing problems are often non-convex and/or NP hard due to the non-
linear and/or discrete nature of the objective and constraints. Therefore, different
applications and examples are of great interest and can contribute to this field of
research.

In this thesis, different approaches are provided to handlethe non-convex opti-
mization problems that we encountered. Two examples are given in equations (6.9)
and (7.9). Based on the author’s experience on the topic, possible approaches for
non-convex problems are briefly explained here.

1. The first step is transforming the constrained optimization problem to an un-
constrained one, using the method of Lagrange multipliers in case of only
equality constraints [130]. Gradient based optimization techniques including
gradient descent, conjugate gradient and quasi Newton methods, are used to
solve many types of optimization problems. This requires that the objective
and the constraints are differentiable so the gradient and the Jacobian can be
defined explicitly to form the Lagrangian equation (root finding problem).
For non-convex problems the Lagrangian equation may have more than one
root which corresponds to the local optima of the objective [131]. For gen-
eral optimization problems with equality and inequality constraints, the KKT
conditions need to be solved in order to solve the optimization problem. The
solution for KKT conditions may be achieved numerically, e.g., the waterfill-
ing solution for (5.29). For non-convex problems, the solution of the KKT
conditions may converge to the global optimum,most of the time. This means
that the statistical performance of the algorithm is acceptable with respect to
the required accuracy. The performance and convergence of such algorithms
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to the global optimum are highly dependent on the problem structure, and
more specifically is not guaranteed for non-convex objective functions.

2. Proximal formulation of non-convex problems is another technique which
approximates the original problem (objective and constraints) to the piece-
wise linear or quadratic functions which the convergence for is guaranteed.
Other transformations of the problem to ones with known convergence prop-
erties (even if not convex) are also possible. The PAPR problem in Chapter 6
with the constant modulus algorithm that is used for solvingthe optimization
problem, with some consideration, is an example of such an approach.

3. For multivariate optimization problems, alternating optimization techniques
are among the popular algorithms. The idea for alternating programming is
to fix one variable and solve the optimization problem with respect to the
other variable. This process is repeated until the solutionconverges to the
optimal one. Particularly, when the objective and constraints can be separated
in terms of disjoint variables then the solution is equivalent to the original
problem [111]. The representation of such separable problems is as follows

minimize minimize f(x,y)

x ∈ C1, C2 y ∈ C′
1, C

′
2

(8.2)

whereC1 andC2 are functions ofx andC′
1 andC′

2 are functions ofy. The
optimal solution is reached in (8.2) once both inner and outer problems are
convex and strictly speaking solvable, see [132] for an example.

4. Sequential (successive) programming is another approach to solve nonlin-
ear problems. Here, the objective and constrains are estimated with their
Taylor expansion at each iteration and the approximation ofthe problem is
solved instead of the original problem. The approximation is repeated till
the solution converges to the optimum, although this is not guaranteed in
general. Sequential quadratic programming (SQP) is classified within this
category which is known to be a powerful tool for solving nonlinear opti-
mization problems [133]. An example for the application of SQP can be
found in [18]. Moreover, SQP is a strong candidate for solving the hybrid
precoding problem that will be introduced in section 8.3. The difference
between the the proximal method and the sequential programing is that the
former approximate the problem once regardless of the initial guess, while
the later uses successive approximation of the problem through the route to
the solution.
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5. Convex relaxation is a popular technique which projects the non-convex
problem set to a larger convex set. The relaxed problem is solved instead
of the original problem. The solution is hoped to be close to the solution of
the original problem, and the tightness of the relaxation isthe measure of the
effectiveness of this method [111]. The proposed algorithms in Chapter 7
are categorized as such. This field of research is relativelynew and there is
an increasing interest on convex relaxation techniques forsolving originally
non-convex problems, due to availability of various solvers that can handle
convex optimization problems.

6. One of the effective tools to approach non-convex problems is to solve the
dual problem, which is convex by definition, instead of the primal problem.
Lagrangian duality is the most common duality paradigm thatis used in this
context. However, the solution to the dual problem may not beequal to
the primal solution and gives a lower bound on the objective value in the
optimization problem. If the primal and dual solutions are identical then
there exist a zero duality gap [111].

Note that the aforementioned techniques are not exclusive and are given based
on the experience of the author within the scope of this thesis. For more general
and complete classification, see [129]. These type of optimization problems can
be considered as potential research topics to be explored further in the context of
wireless communications and signal processing.

After this summary, we now look back to the research questions that were de-
fined at the beginning of this thesis to evaluate the extent ofthe provided research
and the main contributions.

8.2 Contributions to the Posed Research Questions

Research Question 1 What limitations are imposed on the wireless link perfor-
mance and therefore the design criteria, when the communication system is con-
fined in a closed metal environment which is commonly the casefor industrial ma-
chineries?

In Chapter 2 of this thesis, a comprehensive stochastic channel model was pro-
posed based on the60 GHz measurement results within a metal cabinet. The es-
timated channel length (in the order of 1µs) indicated an extremely long (slowly
damping) channel impulse response for such a confined metal environment. One
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distinguishing characterization of the measured channel is the continuous multi-
path reception, which neither follows the well-known clustering (Saleh-Valenzuela)
model nor the common sparse representation of the wireless channel for millime-
ter waves. These measurement results opened up new opportunities for research
in system design and underlying signal processing techniques for highly dispersive
environments. This is due the unique properties of the investigated wireless channel
which has not been reported before in the literature, to the best of our knowledge.
Hence, this work can be referred to as one of the first millimeter wave channel
characterizations for confined wireless applications.

Even though accurate channel characterization allows for precise and realistic
channel simulations, it is often too complicated to consider in a signal processing
model particularly for linear processing of the signal. Therefore a simpler model
is established in Chapter 3 that can capture the most influential features of the
measured wireless channel, i.e., the channel length and thepower delay profile.
Accordingly, we believe that the channel characterizationwhich is offered in this
work suffices to build a proper channel model for the design and investigation of
signal processing algorithms.

Research Question 2 What are the competitive equalization options which are
capable of taming extremely dispersive wireless channels,and will the available
techniques admit the high data rate, great reliability and low latency requirements
of industrial applications?

This question was addressed in Chapter 3 by giving a completeoverview of
competent linear equalization techniques for the considered linear system model.
Single carrier modulation with frequency domain equalization at the receiver side
or equivalently OFDM technique are concluded to be the most capable techniques
to combat the inter-symbol interference (ISI) resulting from the frequency selective
channel.

Motivated from the conclusion of Chapter 3, a wideband system model and a
basic OFDM system design was proposed in Chapter 4 that can provide data-rates
up to a few Gbps for the measured channels of Chapter 2. We believe these three
chapters provide enough material to give a clear perspective on the system perfor-
mance with respect to the different constraints on data-rate, latency and reliability
of the system. In a nutshell, with the least complex processing (linear computa-
tional complexity), a latency in the order of a few tens ofµs are foreseen. Also the
data-rate (in the order of a few Gbps) and a reasonable bit-error rate was achieved
to a good extent via Matlab simulations. The latency is determined by the block
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processing delay (communication delay), and the processing delay which is related
to the computational cost of the algorithms. The former is discussed in Chapter 4
and that has a direct relation with the spectral efficiency ofthe system. The latter is
highly affected by the design as well as the implementation of the signal processing
algorithms on a DSP, FPGA and etc. and results in variations in the output latency.
This is worth investigation by the experts in this area.

Research Question 3 How to reduce the peak-to-average-power-ratio (PAPR)
efficiently and effectively in OFDM systems, particularly for multiple antenna sys-
tems which has been less studied in the literature?

The PAPR is a rather old hardware related problem in digital communications
in general, and for multicarrier systems like OFDM in particular. However, the
PAPR problem is less investigated for MIMO-OFDM systems. Toaddress the
PAPR problem in (multi-user) MIMO-OFDM systems, an interesting PAPR reduc-
tion technique was proposed in Chapter 6. This algorithm is shown to be very effec-
tive via Matlab simulations. The proposed algorithm is transparent to the receiver
and does not impose extra processing at the other end, which makes it unique com-
pared to the existing techniques and is widely applicable toMIMO-OFDM systems
of various types. To the best of our knowledge, there is no other algorithm reported
in the literature that can offer a comparable PAPR reductiongain with such a low
cost in terms of the computations, and no cost of bandwidth, BER and power con-
sumption. However, the proposed technique relies on certain assumptions on the
channel estimation and inversion at the receiver side and isnot designed for sys-
tems which exploit models for channel correlations betweenconsecutive OFDM
blocks.

It is worth mentioning that the PAPR reduction is a timely problem and there
is still ongoing research in this area specially for the emerging millimeter wave
MIMO-OFDM systems with increasing hardware sensitivity. The author believes
that the most effective signal processing algorithms to combat the high PAPR, are
need to be developed in a close loop with the electronic front-end design and to-
gether with an RF design expert. Indeed, this is a multidisciplinary problem and
is required to be treated as such, so a valuable follow up of this work will be im-
plementation and evaluation of the actual PAPR reduction gain of the proposed
algorithm on a test platform.

Research Question 4 How to optimally use a MIMO system considering the ex-
isting hardware constraints?
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In Chapter 7, an antenna selection technique was studied andan inclusive
framework was proposed to formulate this problem in the context of transmit pre-
coding. The problem was stated as a joint antenna selection and precoding problem.
This solves for the optimal sparse precoder and leads to using a subset of channels
instead of the full channel with the ambition of lowering thesignal processing bur-
den at the transmitter as well as the receiver. The main contribution of Chapter 7 is
the non-trivial relaxation techniques that are developed to transform the originally
non-convex antenna selection problem to one that can be handled by available off-
the-shelf convex solvers. The proposed antenna selection scheme can be seen as a
convex optimization framework to formulate a general MIMO precoding problem
considering the hardware constraints such as per antenna power constraints and
limited available number of RF chains.

However, the research question above demands much more extensive research
to fully accommodate different types of hardware constraints which can be handled
by signal processing techniques. This requires first the identification and proper
modeling of the hardware constraints where this process itself is a broad area of
research and is impossible without a close collaboration with RF experts. The sec-
ond step is introducing a convenient formulation and framework to represent these
constraints effectively and later to trace appropriate signal processing tools that can
solve the given problem. The focus of this thesis was to address the latter aspect
for a very specific problem of MIMO precoding. Finally, we sense the necessity of
an overarching literature survey that collects all the possible hardware limitations
in this regard, particularly for the future millimeter wavesystems.

To summarize, the optimal design of a wireless system in general is by solv-
ing for all design parameters simultaneously in one optimization problem, as they
are all variables of one common objective which is the systemperformance, ac-
cordingly multidisciplinary design is the ultimate approach. Overall, we covered
diverse topics in the field of wireless communications and broad range of areas
have been explored, from channel modeling to signal processing and optimization
techniques. However, there are areas that are not touched inthis work regarding
our main research question that was introduced in Chapter 1,i.e., How to design
a highly reliable short-range gigabit wireless link within a confined metal en-
vironment subject to a rigid latency requirement. These mainly concern the
practical requirements for the implementation of the system and their impact on
the estimated performance and latency.
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8.3 Future Work

In this section we provide some research directions that canbe followed as a result
of this thesis. First we introduce direct extensions of the proposed techniques that
can be considered to improve or evaluate the performance.

8.3.1 Antenna Selection at Uplink

In traditional MIMO systems, precoding is performed digitally at the baseband
where dedicated RF chains are required for each antenna element [67]. Unlike the
antenna elements that can be manufactured and deployed in large scales, the RF
chain components are expensive and bulky to install and maintain, particularly for
emerging 60 GHz technology [134]. One possible solution to reduce the number of
RF chains yet benefit from large scale MIMO systems is the hardantenna selection
technique that is discussed in Chapter 7.

The proposed model in Chapter 7 aims at downlink antenna selection at the
base station, however, it can be extended to include antennaselection in the up-
link direction or more specifically at the user device. Nevertheless, the underlying
signal processing algorithm to perform antenna selection at the user side needs to
be computationally much more efficient compared to the one atthe base station.
This is due to the fact that user devices are commonly batteryoperated and require
low power consumption. For example, alternative proximal sparsity inducing reg-
ularizers which are differentiable and leverage gradient based algorithms can be
considered [135].

8.3.2 Hybrid Precoding

An alternative approach with respect to the hard antenna selection that is discussed
in Chapter 7, is soft antenna selection, which is widely referred to as hybrid pre-
coding. In hybrid precoding, beside baseband processing inthe complex domain,
RF processing is considered using analog phase shifters [136, 137, 138, 139]. This
is by decomposing the precoderW ∈ C

Mt×Mr into two partsWRF ∈ C
Mt×L

WBB ∈ C
L×Mr , whereMt andMr are the number of transmit and receive anten-

nas, respectively, andL is the number of available RF chains. The elements inWRF

is required to be constant modulus since only phase shiftersare used to implement
the RF precoder. Mathematically, hybrid precoding, for maximizing the capacity,
is a hard (non convex) problem to solve. The main investigation is to formulate the
problem so it can be solved using known optimization techniques. It is expected
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to have better performance results for hybrid precoding technique compared to the
antenna selection scheme for the same number of RF chains.

8.3.3 Imperfect Channel State Information

Throughout this thesis, we assumed that perfect channel information is available
at the transmitter so the processing can be classified as deterministic approaches.
However, in practice this is not the case. Specifically, whenthe feedback channel
from the receiver is used to inform the transmitter about thechannel, limited band-
width with a coarse bit quantizations are used. This can leadto erroneous chan-
nel information and potentially degrades the performance of the wireless system.
Considering this imperfection and deriving proper bounds to evaluate the model
mismatch can be the next research topic for both hard and softantenna selection
techniques. Another type of imperfection can be consideredwhen second order
channel statistics such as a channel covariance matrix is available instead of the
instantaneous channel information, and accordingly the statistical performance of
the algorithms may be investigated with respect to this prior knowledge which is
more towards the stochastic system design approach.

The aforementioned topics are the immediate follow ups of the work presented
in this thesis. Now we will introduce more generic research topics that are made
available as the outcome of this thesis, as well as some uncovered areas that are yet
to be investigated.

8.3.4 Capacity Analysis for Highly Dispersive Channels

In Chapter 2 of this thesis, channel characterization was performed for an extremely
reflective environment within a metal cabinet. The results are notably different from
what has been reported in the literature. The channel frequency response shows
quick fluctuations. As a consequence, the coherence bandwidth of the channel
is significantly narrow. Initial investigations show that for the5 GHz bandwidth,
centered at59.5 GHz, the channel is Gaussian distributed over frequency. This
leads to a Rayleigh fading distribution in frequency domainand one can show that
the Shannon capacity in such frequency selective channels is upper-bounded by the
capacity of an AWGN channel with SNR given byγ = P

Nσ2
v
, σ2

v andP being the
noise power in each frequency band and the transmit power, respectively. Indeed.
this result follows by averaging the capacity (bit per second per Hz) over relatively
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many(N) frequency bands as

C =
1

N

N∑

k=1

log(1 +
P |β|2

Nσ2
v

) = E{log(1 +
P |β|2

Nσ2
v

)} , (8.3)

whereN is the number of frequency bands andβ is a Gaussian random variable
which characterizes the fading in the frequency domain. Using Jensen’s inequality

E{log(1 +
P |β|2

Nσ2
v

)} ≤ log(1 + E{|β|2}
P

Nσ2
v

) = log(1 +
P

Nσ2
v

) , (8.4)

onceE{|β|2} is unity. This has not been reported before in the literatureto the
best of our knowledge and can be exploited to arrive at more profound capacity
analysis for such channels. This can be viewed as an extension of the work to
addressResearch Question 1.

Furthermore, the capacity of the fading wireless channel incomplexity limited
systems (including computational complexity) is not studied at all. This is tightly
related to latency (delay) constrained systems including the wireless link for indus-
trial machineries. Recently this problem is considered fora special receiver which
uses a lattice search [140]. The maximization of the mutual information (to obtain
the capacity) is performed subject to the linear complexityof the optimal receiver.
This can be further investigated to give a more realistic notion of delay constrained
channel capacity. In general, the mutual information framework offers a versatile
quantitative measure to evaluate the effectiveness of the communication channel
with respect to different choice of processors, which is notexplored fairly in the
signal processing literature. Therefore the communication rate per channel use is
potentially a global measure that can fairly describe the overall as well as step by
step efficiency of the system and can replace many of the localmeasures that are
used for system design.

Finally, we did not look at nonlinear signal processing techniques due to their
complications and susceptibility to hardware imperfections. This can be further
investigated in the context of this thesis. Also, distributed algorithms for ad-hoc
implementation of wireless sensors and decentralized approaches are not covered
in this thesis and can be considered for future extensions.

We hope that the research directions that are provided in this chapter can open
up new ideas to be investigated in the field of wireless communication and sig-
nal processing theory. There are still many challenges to beidentified and han-
dled to promise impeccable wireless connections, for demanding industrial and
secure applications which often take place in alternative and unusual propagation
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environments. However, the author believes that this work can introduce a fair
example of an academic approach to tackle a rather wide and multidisciplinary
research/engineering problem.
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Propositions

1. The frequency domain response of the channel within a metal enclosure is
sparse.

2. A priori knowledge of a communication channel is essential for an optimal
system design as the information sent over a “bad” channel cannot be re-
trieved by any means of processing.

3. A suboptimal solution is often more valuable in terms of the performance-
complexity trade-off, nevertheless knowledge of the optimal solution is a
great aid to quantify this trade-off.

4. Linear, quadratic and semidefinite programming are analogues to drawing
on a flat, cylindrical and spherical surface, respectively.Solving non-convex
optimization problems is like drawing on a crumpled ball of paper.

5. Teaching and learning can be modeled as stochastic (noisy) processes so the
mutual information between the teacher and the student is maximized by
recognition and characterization of the noise that is present.

6. The ubiquitous availability of wireless connections hasintroduced the habit-
ual use of smartphones which has absurdly reduced real humaninteractions,
contrary to the genuine objective of communication.

7. In a world played by the rules set by a masculine mentality,it is less likely
that people with feminine skills would excel and visa versa.

8. Individualism is an inevitable part of modernism that, ifleft untamed, could
lead humanity to a new level of self-destruction.

9. Self-reference is a paradox in most religious arguments.

10. “... there is no more dreadful punishment than futile andhopeless labor.”
Albert Camus, The Myth of Sisyphus
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These propositions are regarded as opposable and defendable, and have been
approved as such by the promotor, Prof. Alle-Jan ven der Veen.



Summary

The advent of the digital era has revolutionized many aspectof our society and
has significantly improved the quality of our lives. Consequently, signal processing
has gained a considerable attention as the science behind the digital life. Among
different applications for signal processing theory and algorithms, wireless com-
munications remains one of the attractive and popular ones due to the widespread
use of mobile devices.

This thesis is dedicated to develop signal processing algorithms to design high-
speed wireless transceivers that can perform in highly reflective and harsh envi-
ronments. The start of this research work initiated as a collaboration between TU
Delft and an industrial partner, on a research aimed at shortrange gigabit wireless
link within a lithography machine. The underlying unique wireless environment,
together with the challenging specifications of the communication link for mecha-
tronic systems, made this a compelling research project.

The first part of this research work focuses on constructing areliable propa-
gation model for dispersive environments, based on actual measurements. In our
opinion it is crucial to have decent models to build effective theory and applica-
tions upon it. We developed a statistical channel model for the 60 GHz band for
the extreme case of a confined metal enclosure in order to evaluate and test the
existing signal processing algorithms under such pessimistic ambient conditions.
This unique experiment opened up new research challenges tolook back to popular
design paradigms and reevaluate them with respect to the proposed channel model
with a delay spread in the order of microseconds.

The concept of orthogonal frequency division multiplexing(OFDM) transmis-
sion was revisited and a customized OFDM system was designedwhich meets the
data rate requirements of the mechatronic system of interest. The effectiveness of
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the proposed OFDM design was examined via Matlab simulations using the mea-
sured and modeled channels. Interestingly, the performance of the OFDM system
is not heavily affected by the frequency selectivity of the extreme propagation en-
vironment. The loss is mainly due to the time guard that is dedicated to avoid inter-
ference between consecutive OFDM blocks, suggesting the use of longer OFDM
blocks to minimize the bandwidth loss.

The second part of this thesis is dedicated to multiple-input multiple-output
(MIMO) systems versus the single-input single-output (SISO) system which was
studied in the first part. The emphasis is on general challenges in high speed (wide-
band) communication systems rather than the specific wireless link within a mecha-
tronic machine. Challenging research questions are posed regarding the design and
implementation of MIMO systems. This part starts with a brief introduction to such
systems and redefining our system model with respect to the MIMO setting and it
continues by revisiting the timely problem of peak-to-average power-ratio (PAPR)
reduction in OFDM systems, which deals with stochastic (data-dependent) OFDM
waveforms, and the proposal of an effective algorithm to handle this challenge
within the MIMO context . The hard problem of antenna selection for a MIMO
system was considered at the end by investigating differentlinear precoding de-
signs subject to the realistic hardware constraints including per antenna power con-
straints (rather than a conventional total power constraint) and limited number of
RF chains.

The major content of this thesis concerns offering alternative formulations and
optimization problems for transmitter design in the context of linear signal process-
ing, to include hardware constraints which are more critical in emerging millime-
ter wave wireless systems. This requires the reformulationand relaxation of non-
convex and hard design problems to make them suitable for available optimization
tools, including sub-optimal but less computationally demanding algorithms based
on non-convex optimization theory. A short classification of these non-convex op-
timization techniques is given as part of the conclusion in the last chapter of this
thesis.



Samenvatting

De komst van het digitale tijdperk heeft vele aspecten van onze samenleving veran-
derd en heeft de kwaliteit van leven significant verbeterd. Als de wetenschap achter
het digitale leven staat signaalbewerking in de belangstelling. Onder de toepassin-
gen van signaalbewerkings-theorie en algoritmes is draadloze communicatie een
van de aantrekkelijkste en populairste, dit vanwege het wijdverbreide gebruik van
mobiele apparaten.

Dit proefschrift behandelt signaalbewerkings-algorimesvoor het ontwerp van
hoge-snelheid draadloze transceivers die kunnen opererenin moeilijke omgevingen
met veel reflecties. Dit onderzoek begon als een samenwerking van TU Delft met
een industriele partij, gericht op een giga-bit draadloze verbinding over korte afs-
tanden binnen een lithografie-machine. De onderliggende unieke draadloze omgev-
ing, samen met de uitdagende specificaties van de vereiste communicatieverbinding
voor mechatronische machines, maakte dit een interessant onderzoeksproject.

Het eerste deel van dit onderzoek richt zich op het verkrijgen van een betrouw-
baar propagatiemodel voor dispersieve omgevingen, gebaseerd op echte metingen.
Naar onze mening is het cruciaal om geschikte modellen te hebben om daarop
effectieve theorie en toepassingen te kunnen baseren. We ontwikkelden een statis-
tisch kanaalmodel voor de60 GHz band voor het extreme geval van een dichte met-
alen kast om daarmee de bestaande signaalbewerkings-algoritmes te kunnen testen
onder zulke negatieve omstandigheden. Dit unieke experiment gaf aanleiding tot
nieuwe onderzoeksvragen rond populaire ontwerptechnieken en het evalueren hi-
ervan in het licht van het voorgestelde kanaalmodel met een spreiding in de tijd in
de orde van microseconden.

Het OFDM concept voor het versturen van data is opnieuw bekeken en een
aangepast OFDM systeem is ontworpen waarmee de benodigde data-snelheden
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van het beschouwde mechatronische systeem gehaald kunnen worden. De effec-
tieviteit van het voorgestelde OFDM ontwerp is onderzocht middels Matlab sim-
ulaties gebruikmakend van de gemeten en gemodelleerde kanalen. Interessant ge-
noeg blijkt dat de prestatie van het OFDM systeem niet sterk wordt beı̈nvloed door
de frequentie-selectiviteit van de extreem reflectieve omgeving. Het verlies aan
bandbreedte is hoofdzakelijk een gevolg van de ongebruiktetijd-intervallen die
toegevoegd zijn om storing tussen opeenvolgende OFDM blokken te vermijden.
Het gebruik van langere OFDM blokken zou dit verlies kunnen verminderen.

Het tweede deel van dit proefschrift behandelt multi-antenne (MIMO) syste-
men, in tegenstelling tot het enkele-antenne (SISO) systeem dat in het eerste deel is
bekeken. De nadruk ligt op algemene uitdagingen rond hoge-snelheids (breedband)
communicatiesystemen, in plaats van de specifieke draadloze verbinding binnen
een mechatronisch systeem. Uitdagende onderzoeksvragen rond het ontwerp en
de implementatie van MIMO systemen worden gesteld. Dit deelbegint met een
korte inleiding voor zulke systemen, en het herdefinieren van ons systeemmodel
naar deze MIMO situatie, en het vervolgt met het opnieuw bekijken van het actuele
probleem van het reduceren van de verhouding van de piek tot het gemiddelde
vermogen (PAPR) in OFDM systemen, en het afleiden van een effectief algoritme
om dit in de context van MIMO systemen te verbeteren. Tot slotis het moeilijke
probleem van het kiezen van de beste deelverzameling van antennes in een MIMO
systeem, in combinatie met verschillende lineaire precoding technieken met real-
istische beperkingen op de hardware, waaronder een vermogenslimiet voor iedere
antenne apart (in plaats van de gebruikelijke beperking op het totale vermogen), en
een beperkt aantal RF ontvangers.

Het merendeel van dit proefschrift gaat over het verkrijgenvan alternatieve for-
muleringen en optimalisatieproblemen voor zenderontwerp, beschreven door mid-
del van lineaire algebra, en het rekening houden met beperkingen aan de hardware
die des te belangrijker worden in toekomstige millimeter-golf draadloze systemen.
Dit vereist het herformuleren en afzwakken van niet-convexe moeilijke optimal-
isatieproblemen om deze geschikt te maken voor beschikbareoptimalisatiepro-
gramma’s, waaronder sub-optimale maar minder complexe algoritmes, gebaseerd
op niet-convexe optimalisatietheorie. Een kort overzichtvan deze niet-convexe
optimalisatietechnieken is gegeven als onderdeel van de conclusie in het laatste
hoofdstuk van dit proefschrift.
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