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Abstract—A new peak-to-average power ratio (PAPR) reduc-
tion approach forMIMO-OFDM/A is developed based on the well-
known constant modulus algorithm (CMA). This combines two
ideas: 1) time domain signals from “resource blocks” (consisting
of several subcarriers) may be linearly combined using precoding
weights, transparent to the receiver; 2) the precoding weights can
be designed to minimize the modulus variations of the resulting
signal, leading generally to a reduction in PAPR. This technique
is compatible with various beamforming modes in single antenna
andMIMO systems. Simulation results show a noticeable improve-
ment relative to the Partial Transmit Sequences (PTS) technique
with significantly less complexity.

Index Terms—Beamforming, convex optimization, multiple
input multiple output (MIMO), orthogonal frequency division
multiplexing (OFDM), partial transmit sequence (PTS).

I. INTRODUCTION

O FDM is known as one of the most favorable modula-
tion techniques for communication over frequency se-

lective wireless channels, and is widely used in telecommuni-
cation standards. A well-known drawback of OFDM is that the
amplitude of the time domain signal varies strongly with the
transmitted symbols modulated on the subcarriers in the fre-
quency domain, resulting in a ‘peaky’ signal. If the maximum
amplitude of the time domain signal is too large, it pushes the
transmit amplifier into a non-linear region which distorts the
signal resulting in a substantial increase in the error rate at the
receiver. Over the past decade, an extensive amount of literature
has been dedicated to Peak to Average Power Ratio (PAPR) re-
duction techniques. These techniques are associated with costs
in terms of bandwidth or/and transmit power. Also, most of
them require modifications to both the transmitter and the re-
ceiver which makes them non-compliant to existing standards.
Multiple signal representation methods, such as PTS and se-
lected mapping (SLM) are among the most cited techniques [1],
[2]. Extension of these algorithms to multiple antenna (MIMO)
systems is not straightforward. Another combined precoding
and PAPR reduction technique has been proposed for multiuser
MIMO systems with sorted Tomlinson-Harashima precoding
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(sTHP). For more details and further developed techniques on
MIMO-OFDM peak reduction see [3] and references therein.
A new technique called CP-PTS is proposed in [4] which is

adaptable for different beamforming schemes in standard point
to point or multiuser MIMO systems. In this technique, the
OFDM subcarriers are grouped into blocks and the phase of
each block is changed in a manner similar to the PTS method
but without the drawback of sending explicit side information.
As long as each block is multiplied with only one phase coef-
ficient, the receiver will perceive this as a channel effect and
will compensate for it during the channel equalization process
[5]. An extension of CP-PTS to MIMO-OFDM systems is in-
troduced in[6]. In both cases, a sequential quadratic program-
ming (SQP) algorithm is used to solve the phase optimization
problem. The computational complexity of this algorithm can
be prohibitive for high data rate and/or low latency communi-
cation links. The PAPR weights need to be determined again for
every OFDM data block, hence the underlying algorithm should
be sufficiently efficient to enable a real-time processing.
In this letter, the same configuration as CP-PTS is used but

instead of solving a non-convex optimization problem, an alter-
native problem formulation is proposed based on a cost function
used in constant modulus algorithms (CMAs). Accordingly, the
block-iterative SDCMA algorithm [7] is used to find the pre-
coding PAPR weights. The resulting computational complexity
is linear in the number of subcarriers. Furthermore, to make
sure that the BER performance of the system is not affected by
the PAPR precoding an additional constraint is appended to the
CMA objective function which requires the weights to be on the
unit circle. Like CP-PTS, the proposed technique is transparent
to the receiver; this means that it only affects the base station
(BS) and it does not require any signal processing in the mobile
station (MS).
The proposed method does not function if the channel esti-

mation exploits the smooth changes of the channel coefficients
over the complete OFDM block. However, this assumptions is
not valid in the modern multiuser systems based on RB assign-
ment [5], [8].

II. TRANSMIT SIGNAL MODEL

Similar to [6] we consider a generic MIMO-OFDM/A
downlink scenario with one base station (BS) employing
antennas. An OFDM block with subcarriers is transmitted
from each antenna. The subcarriers include useful sub-
carriers surrounded by two guard bands with zero energy. The
useful subcarriers are further grouped into resource blocks
(RBs) each consisting of subcarriers. Data of
one or more users is placed in these RBs and mapped into the
space-time domain using an inverse discrete Fourier transform
(IDFT) and space-time block coding (STBC). To allow channel
estimation at the receivers (mobile stations), each RB also con-
tains several pilot subcarriers that act as training symbols. The
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Fig. 1. Data structure of an OFDM block for a MIMO-OFDM/A downlink.

Fig. 2. Beamformed MIMO transmit data in frequency domain.

transmit signal model is illustrated in Fig. 1. It is compatible
with the WiMAX standard [8].
Let us first describe the MIMO transmit data model in the

frequency domain; for simplicity we consider only a single time
block from now on. The data in the -th RB is a matrix

, it is premultiplied with a corresponding beamforming
matrix , , resulting in transmit
sequences . Together with guard intervals,
they are collected in a matrix , where the rows
of this matrix represent the symbols to be transmitted from
the antennas. The data model is

(1)

where , and is a
block-diagonal matrix with structure as in Fig. 2, which includes
guard intervals as well. Matrix represents the spatial data in
the frequency domain.
The time-domain MIMO-OFDM transmit data model is ob-

tained by taking the IDFT of the beamformed data matrix ,
resulting in

(2)

where denotes the IDFT matrix, and
contains the resulting transmit OFDM se-

quences for each of the antennas. Let us further denote
the time-domain data matrix ; this is a full matrix.
Accordingly, the beamformed OFDM block can be expressed
as

(3)

Denote the total power (or energy) in the data matrix by
, where .Func-

tion creates a column vector whose elements are the
columns of the matrix . is the total number of subcarriers
or samples to be sent from all antennas, and is defined
as the average transmit power per sample (including the zero
power guard bands). If we assume that the beamforming ma-
trix consists of orthonormal matrices , then applying
beamforming and the IDFTdoes not change the total transmit
power.

III. PROPOSED PRECODING SCHEME

The IDFT operation in (2) leads to a large dynamic range of
the resulting time-domain OFDM signal. PAPR is a common

metric to measure the distortion caused by probable high peak
of the OFDM signal and for aMIMO-OFDM block we define

(4)

Clearly, the lowest PAPR is achieved for a constant modulus
(CM) signal, for which the infinity norm is equal to the average
power of the sequence.
The main idea in [4], [6] is to design a precoding matrix to

transform the OFDM symbols in to a favorable signal with
lower PAPR (ideally a CM signal). This precoding matrix
needs to fulfill the following requirements:
1) Reduce the dynamic range of the OFDM block,
2) Preserve the beamforming property,
3) Be transparent to the receiver,
4) Not impact the bit error rate (BER).
To satisfy the second and third constraint, we are allowed to
premultiply each RB, , with a diagonal scaling matrix .
To the receiver, this will appear as a fading channel effect. To
not affect the BER, the scaling should be unimodular (phase
only). Equivalently, a diagonal (unimodular) precoding matrix

is applied to . The resultingMIMO-OFDM
transmit matrix (replacing ) is

(5)

If we define , then the PAPR reduction problem
is to design as

(6)

where is a fixed total transmit power. This problem
is not convex because nonlinear equality constraints can rarely
be expressed in a convex form. The approach in [4], [6] was
to solve a series of quadratic convex subproblems iteratively.
Although this does not solve the original problem in (6) exactly,
the results were excellent compared to other techniques, and
attractive as the method is transparent to the receiver and does
not distort the transmit signals. Unfortunately, this approach is
yet too complex for real time applications.

IV. PROPOSED CMA APPROACH

A. Formulation as a Constant Modulus Problem

Using properties of Kronecker products, we can rewrite in
(5) as

(7)

where , , denotes the
complex conjugate of , and denotes the Khatri-Rao product
(column-wise Kronecker product). The creates a
column vector whose elements are the main diagonal of the ma-
trix . The optimization problem (6) becomes

(8)

We now propose an alternative formulation of this problem,
by replacing the infinity norm by the average deviation of the
OFDM block from a constant modulus signal. Ideally, the re-
sulting will be close to a CM signal, and hence have close-to-
optimal PAPR. The corresponding cost function is
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Here, the vector , represents the -throw
of matrix , the column vector is a vector with all en-
tries equal to 1 and dimension , and denotes the Schur-
Hadamard product (pointwise multiplication).
This formulation is similar to the well-known “CMA(2,2)”

cost function for adaptive blind equalization or blind beam-
forming, and can be solved efficiently using available iterative
algorithms. The matrix plays the role of the data matrix in
the usual CMA context, whereas plays the role of the beam-
forming vector. The original CMA cost function is expressed
in terms of an expectation operator; the present “deterministic”
formulation is similar to the Steepest Descent CMA (SDCMA)
in [7].

B. Steepest-Descent CMA (SDCMA)

The SDCMA is a block-iterative algorithm in which we act
on the full data matrix and update until it converges. The
derivation of the block SDCMA is straightforward when the
statistical expectation in original formula in [7] is replaced by
an average over a block. For the -th iteration, we start from the
current estimate and compute:

(9)

(10)

(11)

(12)

Here, is a suitable step size, and is the update error. The
maximal step size could be defined as a scale independent
parameter in relation to the signal power in . To keep the so-
lution unchanged as scales, needs to be divided by factor
, . For convergence, the algorithm is initialized

with (although other choices are possible). The algo-
rithm should be run until the cost function converges; in
practice convergence is fast and the algorithm is run for a fixed
small number of iterations.
To satisfy the power constraint in (6), we can simply scale the

resulting after convergence. If is indeed a constant
modulus signal, then , and the power constraint is
inherently already satisfied. Thus, the scaling is expected to be
close to 1 and could be omitted in practice (it has no effect on
the cost function ).
A difference with the standard CMA is that, here, a good solu-

tion does not necessarily exist. The usual application of CMA is
for a linear combination of constant modulus sources for which,
without noise, a perfect beamformer exists. The present situa-
tion could be said to correspond to a very noisy source sepa-
ration situation. Note that, also for other methods, there are no
existence results for PAPR reduction.

C. Unit-Circle CMA (UC-CMA)

In SDCMA, the computed has no constraints and may have
some small entries. These are equivalent to a (broad) null in
the channel which will affect the BER performance. Ideally, we
should restrict the entries of to take only unimodular values:

, , and add this constraint to the
optimization problem (8).
In order to restrict the solution to be on the unit circle, a nor-

malization step is added to each iteration after(12):

(13)

where denotes pointwise division, and takes the absolute
value of each entry of the vector argument. This alternative up-
dating algorithm is called Unit Circle CMA (UC-CMA) since
(13) projects the solution of CMA to a unit circle at each itera-
tion.

D. Computational Complexity

The complexity of the SDCMA algorithm in (12) is dom-
inated by the matrix products and . The resulting
complexity is approximately per iteration (linear in
the number of subcarriers). UC-CMA has the same complexity.
In conventional PTS [2], each RB (sub-block in PTS context)

is weighted with a phase shift in such a way that the summation
of sub-blocks produce an OFDM sequence with a smaller PAPR
[2]. The phase weights are selected by an exhaustive search
among a discrete set of phases, and are sent as side information
to the receiver. Accordingly, all combinations of the avail-
able phase weights need to be calculated and then multiplied
with an IDFT summation matrix, which has the same size as
matrix . Finally, one sequence with the least PAPR metric is
chosen with the corresponding phase weights. The complexity
of the exhaustive search is calculated for the simplest set of only
two phases and RBs as multipli-
cations and comparisons. For CP-PTS, the complexity is

; the exact expression for complexity is derived in [4].

V. SIMULATION RESULTS

In WiMAX, one RB spans sub-carriers over two
OFDM symbols in time, containing 4 pilots and 24 data sym-
bols. For a 10 MHz system, there are a total of RBs
[8]. In agreement with this WiMAX setting, the proposed PAPR
reduction technique is simulated for an OFDM block of size

including data subcarriers with QPSK
modulation and 92 guard subcarriers at each end of the band.
The number of MIMO transmit antennas is either , 2
or 4, as will be indicated. The various techniques are evaluated
using the complementary cumulative density function (CCDF),
which denotes the probability that the PAPR of a data block ex-
ceeds the argument of the function. To avoid the PAPR under-
estimation, The algorithm is run with four times oversampling
so the number of the samples processed in the simulations is

.
A total number of 10,000 OFDM blocks are randomly gen-

erated to produce the CCDF curves. For each block, a random
complex fading channel is generated, and the beamforming
matrices are chosen as the right singular vectors of these
channel matrices.
In Fig. 3, the CCDF performance is shown for SDCMA (var-

ious number of iterations), UC-CMA (50 iterations), and com-
pared to CP-PTS [6] and the standard PTS [2]. The latter algo-
rithm is simulated only for RBs due to prohibitive com-
putational complexity for larger . In this simulation,
transmit antenna. The simulations show that the proposed tech-
niques attain a PAPR reduction of up to 6 dB. Although 50 it-
erations are sufficient for good performance, another 0.5 dB is
gained by increasing this to 500 iterations. UC-CMA (50 itera-
tions) is worse by about 0.5 dB. The PAPR reduction for PTS is
worse by 1 to 2 dB. The previously proposed CP–PTS outper-
forms PTS and SDCMA with 50 iterations, however a similar
gain is reached by SDCMA with a larger number of iterations.
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Fig. 3. Performance comparison for the proposed CMA PAPR reduction algo-
rithm for various number of iterations and , CP-PTS with 5 iterations,
and conventional PTS with phase alphabet and .

Fig. 4. BER performance of the proposed algorithms in comparison with
AWGN and Raleigh fading channels for single antenna QPSK–OFDM system
of size and .

Fig. 5. PAPR reduction performance in MIMO-OFDM for both SDCMA and
UC-CMA with 50 iterations and .

Moreover, the CCDF curves in Fig. 3 show the superior perfor-
mance of SDCMA in 90% and 99.9% of OFDM blocks in 50
and 500 iterations respectively, comparing to the CP-PTS.
The empirical CDF of values in SDCMA indicates the

Rayleigh distribution of PAPR weights which affect the BER
performance of the system. Fig. 4 shows the BER versus SNR
curves for the QPSK-OFDM system without PAPR reduction
in a randomly generated Rayleigh fading and AWGN channels
compared to the scenarios that SDCMA and UC-CMA weights
are applied at the transmitter. In SDCMA and UC-CMA the
channel is assumed to be AWGN and the received vector is di-
vided by to equalize the PAPR weights. Where, in Rayleigh

Fig. 6. Complexity comparison between CMA, CP-PTS and PTS usingMatlab
runtime evaluation.

fading channel the received vector is divided by the frequency
domain channel coefficients. in both cases, the perfect channel
recovery is assumed. From Fig. 4, the effect of non-modified
SDCMA is analogous to a Rayleigh fading channel in terms of
BER performance so the same error correcting codes used for a
fading channel can be applied here. As expected the UC-CMA
does not influence the BER performance. This motivates the use
of UC-CMA technique.
Fig. 5 shows the performance of SDCMA and UC-CMA for

various number of transmit antennas, , 2, 4, and 50
iterations. It is seen that the performance is not a strong function
of the number of antennas; small improvements are seen due
to more available phase weights or degrees of freedom in the
optimization problem.
To demonstrate computational complexity, Matlab runtimes

on a standard 2011 laptop are shown in Fig. 6 as a function of
(number of RBs). In this simulation, . It is seen that

the proposed CMA algorithms (using 50 iterations) are about a
factor 50 faster than CP-PTS, whereas the complexity of PTS is
growing exponentially with the number of RBs and is quickly
not feasible anymore.
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