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On-Line Subspace Estimation Using a Schur-Type Method 

Jiirgen Gotze and Alle-Jan van der Veen 

Abstract-A recently developed Schur-type matrix approximation tech- 
nique is applied to subspace estimation. The method is applicable if an 
upper bound of the noise level is approximately known. The main feature 
of the algorithm is that updating and downdating is straightforward and 
efficient and that the subspace dimension is elegantly tracked as well. 

I. INTRODUCTION 
Subspace estimation plays an important role in many modem 

high-resolution parameter estimation algorithms. Examples are the 
direction-of-arrival estimation problem, harmonic retrieval, system 
identification, and the (total) least squares solution of systems of 
overdetermined linear equations. In a typical app!ication, we have a 
r n  x n measured data matrix X = X +A’, where X is a rank-deficient 
noise-free matrix based on the signals of interest, and N represents 
additive noise. The objective is to estimate the column span R ( X )  
of ’f, assuming that the noise is sufficiently “small,” say IlXIl 5 n,. 

For a given threshold 7, an estimate of is obtained by solving 

Usually, the Frobenius norm is chosen. In this norm, the solution X, 
which also minimizes I IX - RI 1 ,  is given by the truncated singular 
value decomposition (SVD) of X;  if 

(ElLt > 7. (&)H I y (2) 

is the SVD of X, then a solution of (1) is 8 = C J I C L S 7 ~ .  The 
“signal subspace,” or principal subspace, is given by R(U1). Its 
dimension is equal to the number of singular values of S that 
are larger than, say, 7: td. A number of alternative decompositions 
have been developed to estimate R( IJ1)  in a computationally more 
efficient way. Examples are the URV decomposition [ 11 and the rank 
revealing QR (RRQR) decomposition [2], [3].  The complexity of 
these algorithms can be reduced further by considering updating 
techniques [4], [5], although at this point, norm bounds on the 
estimation error hold only asymptotically. Furthermore, a condition 
estimation is usually required for determining d ,  which might not be 
very accurate or computationally elegant, and requires a sufficiently 
large gap between the signal and noise singular values. 

In this correspondence, we take a different route and propose to 
compute subspace estimates based on the matrix 2-norm (i.e., the 
largest singular value of the matrix). The 2-norm is strong enough to 
give accurate subspace estimates, and the subspace dimension is still 
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equal to d. However, approximants in this norm are considerably 
easier to compute, essentially by a Schur-type method that boils 
down to a hyperbolic QR (HQR) factorization at a complexity of 
order 1 / 2 ? n L n  rotations. Updating and downdating the HQR is very 
straightforward. The norm bound (1) is exact and still holds when 
the data is not stationary, for example, when the number of sources 
is changing. 

The mathematical details of this Schur method are in a separate 
paper [6]. The purpose of this correspondence is to demonstrate its 
relevance to signal processing applications. To this end, we consider 
the problem of direction finding. It is shown by computer simulations 
that even under critical circumstances (low SNR’s, spatially close 
signals), a particular choice of the subspace estimates obtained by 
the Schur method is close to the true signal subspace as defined by 
the principal singular vectors. 

11. SCHUR-TYPE METHOD FOR SUBSPACE ESTIMATION 

A. Background 

implicit factorization of 
The Schur-type subspace estimation (SSE) method is based on an 

(3) 

for matrices .4, B of minimal dimensions. In (3), the spectrum of 
X X H  is shifted such that its small eigenvalues (corresponding to the 
small singular values of X )  become negative and can be separated. 
A and B are not unique, but their dimensions are fixed; if d is the 
number of singular values of X that are larger than 7 ,  and none of 
them are equal to 7, then B has d columns, and A has m - d columns. 
In addition, it is shown in [6] that for every such factorization, there 
exists a matrix E : d x 72 such that X = B E  satisfies (1). Thus, 
R(B) is a valid 2-norm principal subspace estimate. It is also shown 
in [6] that all such estimates are given by R ( B  - A S L ) ,  where S,, is 
any ( T J L  - d x d)-matrix satisfying lISr,ll < 1. Some choices for SL 
may lead to a smaller approximation error IIX - 211. We propose 
one particular choice later. 

To describe the hyperbolic factorization, we need the following 
definitions. A signature matrix .? is a diagonal matrix with diagonal 
entries equal to $1 or -1. A matrix 6 is J-unitary if it satisfies 

X X I I  - - , 2 ~  =: B B ~   SA^ 

( 6 ) H & 6  =,&. 
6J2(6)H = j, (4) 

for signature matrices .]I, .J, .  Using permutations, the entries of a 
signature matrix can be sorted into a positive and a negative block, 
and we partition 0 accordingly as 

0 0 1 2  

= O i i ] .  

(for identity matrices of appropriate sizes). We will denote an unsorted 
signature matrix by a tilde. 

B. The HQR Algorithm 
The main step in the SSE method is the implicit computation of the 

factorization (3) via a HQR factorization. Suppose that none of the 
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The rotation parameters s and c of the different cases follow from the equation [I' 4 6  = [* 01 as 

singular values of X are equal to 7. Then, there exists a factorization [ + -1 - [+/- o+/- ] 

1 J1 = p -I,,,,, 

11,,Lx7n x 0 = L 1 n x n  (6) 

where L is a lower triangular r n  x in matrix, and 6 is ( J I  . .j> ) -  
unitary. Here, .Ji is given on the outset as 

which associates a positive signature with the columns of 2 I and a 
negative signature with the columns of X. J p  is an unsorted output 
signature, which is to be determined along with L .  After sorting the 
columns of [ L  01 according to their signatures, one obtains 

+ -  + -  
[TI  - Y ] 0  = [A/ B'];  

A' = [ A v &I. 
i i i - d  d 

B ' = [  w2-J B (7)  
d 7,-d 

where 0 is a matrix that leaves the "J-norm" invariant so that (3) 
follows from (7). Thus, A is equal to the columns of L that have 
a positive signature, and B consists of the columns with a negative 
signature. 0 is obtained by applying the same permutations to 6. 

The algorithm to obtain (6) is similar in structure to an ordinary LQ 
factorization algorithm using elementary (Givens) rotations, except 
that we have to keep track of the signature of every column, and 
the type of elementary rotation (circular or hyperbolic) is dependent 
on these signatures. Thus, 6 is computed by subsequently zeLoing 
every entry . r t k  of X in a column-wise top-down fashion: 0 = 
K,, . > 7 1  n:,, I'Z @t% i.1 . At stage (2. A : ) ,  suppose we are 
acting on [L' X'] (with L' lower triangular): 

[L' y](p k )  = [L" ,"I. 

( $ 2 .  k )  ' is an embedding of an elementary hyperbolic rotation of 
is such that entry xtk of size 2 x 2 into a plane rotation, where 

4' is zeroed against entry I : ,  of L': 

L L 

This will only change column i of L' and column k of X ' ,  as well 
as the signatures associated with these columns. L" remains lower 
triangular because entries 1 to i - 1 of this column of X '  are already 
zero. 

At the elementary level, we have to compute 8 such that 
[ I '  01, where the input signature 91 is given along 
with I' and-.?. Using the fact that e is (jL, .&-unitary, I" and its 
signature ( j L ) I 1  follows from [I' . x ' ]S l [?  .E']'' = I Z ' ' I ' ( J ~ ) ~ ~ .  
Altogether, this gives six possible cases to consider. These cases are 
summarized in Table I. The case where 12'1 = Ilc'l is degenerate and 
has to be ruled out. This case occurs if one of the singular values of 
.Y, or of its principal minors, is precisely equal to y. 

Since the HQR algorithm is similar to the QR factorization, it can 
be implemented on an upper triangular processor array. The mere 
difference is that the processor cells must be able to perform circular 
as well as hyperbolic rotations and that each column has a signature 
associated with it. Fig. 1 shows the corresponding signal flow graph. 

s ' ] H  = [I" 

C. Subspace Estimators 
As mentioned in Section 11-A, all 2-norm signal subspace estimates 

are given by the range of lT.ssE = B - ASL,  where Si, is any 
nt - d x d-matrix with IISr,ll 5 1. A particularly simple subspace 
estimate is obtained by taking SI, = 0, which gives 
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Fig. 1.  
and is initialized by ^,I .  011 is initialized by I .  The shaded processors compute rotation parameters per Table I. 

Signal flow graph of the Schur algorithm. Associated with every matrix entry is also its signature (f or -). L contains a permutation of [ A  I31 

and will be called the Schur subspace estimate-1 (SSE-1) for refer- 
ence. Despite its simplicity, this subspace estimate gives quite good 
results when the conditions are noncritical (high enough SNR, well- 
separated sources) so that there is a large gap between g d  and ad+l. 

in more critical cases, the estimate li,yssl exhibits biased results 
since the estimation error is not minimized but only kept smaller 
than y. in particular, if :lr = 0 (all nonzero singular values of X are 
larger than 0,) so that X = X would be an approximant with zero 
error, the choice SL = 0 in general gives an approximantk # X. 
It is possible, however, to compute the SL that leads to X = X in 
this case [6]. The corresponding subspace estimate is called SSE-2 
and is given by 

Simulation examples indicate that this subspace estimate is usually 
close to the principal subspace. It is unbiased in the sense that 
R(I'ssss) C R ( X )  [16], which is something that is not true for 
C r , ~ , 5 ~ l .  Although this is not clear at first sight, USSCZ can be 
computed and updated efficiently at about four times the complexity 
of l ' , s S E i  [7] .  

D. Updating and Downdating the Subspace Estimate 
Because the HQR factorization (6) is computed column-by-column, 

it can be updated with new columns .E of X in a straightforward 
manner. It suffices to continue with s, giving it a negative signature. 
Downdating (removing a column I(̂  of X )  is simple as well. It consists 
of an updating step by the column of X that has to be removed but 
now with a positive signature. This is because the HQR factorization 
provides an implicit minimal factorization of - X X H  = 
L( j2 )  I I L", and after downdating, we should have an implicit 
factorization of -,'I - SX" + zc". This updatingidowndating 
scheme gives a sliding window adaptive subspace tracking algorithm. 
Downdating with an exponential forgetting factor (scaling X by 
X 4 1) is also possible but, in its exact form, is less efficient. This 
is because simply scaling the result L is not sufficient as this will 
also scale -, to yX. To restore 7, the scaling of L by X has to be 
followed by an update by (1 - Xs)J'271m (with a positive signature). 

This involves the processing of ni columns, rather than 1, but we can 
instead do a stochastic update with a single column ri with covariance 
E(nnH)  = I ,  . (1 - X2)y, generated by a white noise process. Note 
that we could use the same technique to adjust 7 to any other value. It 
is possible to change the noise threshold "on-the-fly." One application 
would be to devise an iterative or adaptive scheme to find a tight lower 
bound for the noise threshold, e.g., based on the residual power after 
projection of the data vectors on the estimated signal subspace. 

E. Choice of -, 
Suppose that the noise N = [n,] added to X is white and 

has a known variance cr: E(nrz") = u'I,,. It is standard and 
straightforward to show that ad+l + ~ 2 / ; ; ( n  - m) so that a tight 
value for the threshold 7 would be -yo = a&. However, for finite 
data lengths n, od+l is a stochastic variable that is typically larger 
than 04; therefore, this threshold is too low. To achieve y > ( ~ d + l  

with some level of confidence, we model ~ d + l  = (1 + a )  .?o, where 
Q > 0 is a finite-sample correction term to the limiting value of 

in a first-order approximation (small d), cy is only dependent 
on the noise matrix N and not on the signal matrix X; therefore, 
it can be modeled as a function of n and the number of sensors m 
only. Empirically, we obtain that cy has a mean value and standard 
deviation given by, respectively 

Therefore, a suitable value for y such that y > o d + l  with probability 
larger than 0.998 is 

7 =  (1+cr+3sa)-fo. (10) 

111. SIMULATION RESULTS 
To assess the performance of the SSE technique, we consider a 

standard direction finding problem. Suppose that we have a linear ar- 
ray of ni Xf2-spaced omnidirectional sensors, receiving d sinusoidal 
signals with directions of arrival (DOA's) $k, IC = l., . . . . d .  A total 
number of n snapshots is taken, producing an ni x n data matrix X 
that satisfies the model X = AS + N .  Here, A = A(d1. . . . , d d )  : 
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Fig. 2. Experiment 1: (a) Averaged subspace angle between the estimated 
and the "true" subspace and (b) RMS error of the estimated DOA's as a 
function of the SNR. Number of correct estimates of d: Schur = loo%, COD 
= 97%, RRQR = 64%. 

71) x d is the array response matrix that is a function of the DOA's, 
S : d x IZ contains the 7z samples of the d source signals, and -\- 
contains samples of white additive i.i.d. noise sources with variance 
a21, independent of the signals. Given X ,  the d k  are to be estimated. 

The ESPRIT algorithm for estimating the DOA's [8] works in two 
steps. The first step is to estimate a basis for the signal subspace 
R(A),  which is usually taken to be the d principal left singular 
vectors of X ,  i.e., US = lrl. We will compare this with the Schur- 
based subspace estimates ( U S  = Lrs .~~ l  and VS = I S S E ' L )  and 
estimates based on the complete orthogonal decomposition (COD) 
191 and RRQR [2], [3].  Once the signal subspaces are estimated, the 
DOA's are obtained from a certain eigenvalue decomposition based 
on these subspaces. 

The quality of subspace estimates can be measured by computing 
the distance between the estimated and the true subspaces, as defined 
in [9j. We conducted three sets of experiments: varying SNR's, 
varying source gaps, and varying source correlations. Figs. 2 4  show 
the averaged distance between the estimated and true subspace (a) 
and the RMSE of the resulting estimated DOA's (b). These statistics 
are computed from 100 repetitions of each particular experiment. 

Experiment 1: I L  = 30; ni = 6; d = 2 uncorrelated signals; 
DOA's are 41 =20". and 4 2  =40". The SNR is varied from 0-30 
dB in steps of 2 dB (see Fig. 2). 

Experiment 2: n = 30; m = 6 ;  d = 2 uncorrelated signals; SNR 
= 20 dB; DOA's are 41 =20", and 4 2  is varied from 2141"  in 
steps of 2" (see Fig. 3). 

Experiment 3: ri = 30; m, = 6; d = 2 correlated signals; SNR = 
20 dB; DOA's are 41 =20", and $2 =40". The correlation coefficient 
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Fig. 3. 
correct estimates of d: Schur = loo%, COD = 95%, RRQR = 69%. 

Expenment 2: Same as Fig. 2 as function of 02 - 41. Number of 

between the two signals is varied from 0.0-0.9 in steps of 0.1 (see 
Fig. 4). 

For the Schur-type methods, the threshold y is selected as in (10); 
this produced the correct estimate of the number of sources in almost 
all cases. The experiments show that the SSE-2 performs almost as 
well as the truncated SVD method. The simpler SSE-1 is applicable 
for noncritical scenarios. 

For the COD and the RRQR, the value of y in (10) is often too tight 
to produce the correct principle subspace dimension, especially when 
the gap between CJd and Ud+i is narrow (closely spaced signals, low 
SNR, or highly correlated signals). In these cases, we had to increase 
the value of e, during the experiments; otherwise, the results of COD 
and RRQR are worse than shown in the figures. The percentage of 
correct estimates of the number of sources is listed in the figure 
captions. In the case of incorrect dimension estimations, usually, the 
number of sources is overestimated, and we included the results of 
these cases in the figures, assuming that the "true" DOA's can be 
detected. Of course, the number of wrong dimension estimates can be 
significantly reduced for COD and RRQR by using more advanced 
condition estimators. However, this is an additional computational 
effort that is not required for the Schur method. 

IV. CONCLUSIONS 

In the SSE method, a priori knowledge of the noise level is 
assumed in the selection of the threshold 7. Such information is often 
available in practice at little cost. For example, for bursty signals, one 
can use periods in which the signals are absent to measure the noise 
level. Another possibility is to measure the average power over a 
wide enough frequency band, which, before sampling, requires not 
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Robust Adaptive Beamforming via Target Tracking 

Saeed Gazor, Sofikne Affes, and Yves Grenier 

Abstract- The proposed robust beamformer adaptively self-corrects 
and tracks desired-source location errors or variations regardless of the 
eigenstructure of the input correlation matrix, of the array shape and 
nature of the noise. It only requires an order of computations of the 
sensors number and performs nearly as well as MUSIC in localization. 

I. INTRODUCTION 
Adaptive beamforming such as the GSC [l] is very sensitive to 

source location errors. In the case of location uncertainty (e.g., mobile 
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