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Abstract. The usual way to compute a low-rank approximant of a matrix H is to take its singular value decom-
position (SVD) and truncate it by setting the small singular values equal to 0. However, the SVD is computationally
expensive. This paper describes a much simpler generalized Schur-type algorithm to compute similar low-rank ap-
proximants. For a given matrix H which has d singular values larger than ε, we find all rank d approximants Ĥ such
that H − Ĥ has 2-norm less than ε. The set of approximants includes the truncated SVD approximation. The advan-
tages of the Schur algorithm are that it has a much lower computational complexity (similar to a QR factorization),
and directly produces a description of the column space of the approximants. This column space can be updated and
downdated in an on-line scheme, amenable to implementation on a parallel array of processors.
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1. Introduction. We consider the following problem: for a given matrix H ∈ Cm×n and
tolerance level ε ≥ 0, describe all matrices Ĥ such that�

a ��� H − Ĥ � ≤ ε ��
b � rank

�
Ĥ ��� d �(1)

where d is equal to the number of singular values of H that are larger than ε. ( � · � denotes the
matrix 2-norm.) Such a matrix Ĥ is a low-rank approximation of H in 2-norm. Note that there
are no approximants of lower rank than d, and that we do not try to compute an approximant Ĥ
of rank d that minimizes � H − Ĥ � , but rather one in which the approximation error is limited.
These approximants can be computed with significantly less effort.

One way to obtain an approximant which satisfies (1) is by computing a singular value
decomposition (SVD) of H:

H � UΣV∗ ��� U1 U2 	 

Σ1

Σ2 � 

V∗

1
V∗

2 ��
Σ1 � ii � ε � �

Σ2 � ii ≤ ε 
(2)

Here, U and V are unitary matrices, and Σ is a diagonal matrix which contains the singular
values σk of H. The matrices are partitioned such that Σ1 contains the singular values that are
larger than ε, and Σ2 contains those that are smaller than ε. With this decomposition, a rank d
approximant Ĥ is

Ĥ � U1Σ1V∗
1 


This ‘truncated SVD’ approximant is widely used and effectively obtained by setting the sin-
gular values that are smaller than ε equal to zero. It actually minimizes the approximation
error: � H − Ĥ ��� σd � 1 � ε, and is optimal in Frobenius norm as well. However, the SVD is
expensive to compute, and much of the information that it reveals is not even used. Often, we
are not so much interested in the individual singular vectors, but in the principal subspaces,
spanned by the columns of U1 and V1. As we show in this paper, it is indeed possible to obtain
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a parametrization of these subspaces and of all rank-d 2-norm approximants. All necessary
information is gleaned from an implicit and non-unique factorization of HH∗ − ε2I as

HH∗ − ε2I � BB∗ − AA∗ � � A � B	 invertible �
which is provided by a ‘hyperbolic’ QR factorization of � εI H 	 . Such a factorization is similar
to an ordinary QR factorization, except that it uses a matrix which is unitary with respect to
an indefinite inner product. Under additional regularity assumptions on H, this factorization
may be computed using a generalized Schur-type method, which requires only about 1 � 2m2n
operations (elementary rotations) for a matrix of size m×n.1 The column span of the approx-
imants is directly obtained from B and A: it is proven that all suitable column spans are given
by the range of

B − AM � � M � ≤ 1 

The computation of an approximant itself requires an additional n × n matrix inversion, or a
projection of H onto this subspace.

Continuing efforts on SVD algorithms have reduced its computational complexity to be
mainly that of reducing a matrix to a bidiagonal form: not much more than the complexity
of a QR factorization. However, a remaining disadvantage of the SVD in demanding appli-
cations is that it is difficult to update the decomposition for a growing number of columns of
H. Indeed, there are important applications in signal processing (e.g. adaptive beamforming,
model identification, adaptive least squares filters) that require on-line estimation of the prin-
cipal subspace, for growing values of n. A number of other methods have been developed that
alleviate the computational requirements, yet retain important information such as numerical
rank and principal subspaces. Some of these techniques are the URV decomposition [1], which
is a rank revealing form of a complete orthogonal decomposition [2], and the rank revealing
QR decomposition (RRQR), [3–8], see [8] for a review. The URV algorithm is iterative and re-
quires estimates of the conditioning of certain submatrices at every step of the iteration. This
is a global and data-dependent operation: not a very attractive feature. The SVD and URV
decomposition can be updated [9, 1], which is still an iterative process, although it has been
shown recently that a simpler scheme is feasible if the updating vectors satisfy certain station-
arity assumptions [10, 11]. An initial computation of the RRQR consists of an ordinary QR,
followed by an iteration that makes the decomposition rank revealing. As a one-sided decom-
position, the RRQR is easier to update than an SVD, but also requires (incremental) condition
estimations at each updating step.

An important aspect of the hyperbolic QR factorization is that, similar to a QR factoriza-
tion, it can be updated very straightforwardly for growing n. The rank of the approximants (the
dimension of the principal subspace) is updated as part of the process without any condition
estimation. Nonetheless, the method provides an exact error bound on the subspace estimates,
in terms of the associated matrix approximation error ε. Similar to the URV and the RRQR,
the value of ε has to be fixed beforehand. Another aspect is that the Schur method for com-
puting the hyperbolic QR factorization is a parallel algorithm with only local and regular data
dependencies, and is very straightforward to implement on a systolic array of processors. The
structure of the array is the same as that of the well-known Gentleman-Kung triangular array
for the computation of a QR factorization using Givens rotations [12]. One negative aspect
of the Schur algorithm is that it uses hyperbolic rotations, which are potentially unbounded
and could make the approximation scheme less robust than the SVD or the URV. This is more

1 To set our mind, we usually assume that m ≤ n, but all results remain true when m � n.
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a property of the implementation than of the overall technique: it occurs only if certain sub-
matrices have a singular value close to ε, and in these cases, a simple local pivoting scheme
suffices to virtually eliminate any risk of breakdown. Alternatively, we may derive factoriza-
tion schemes that minimize the number of hyperbolic rotations.

Connections. Schur methods an sich are well known. Originally, Schur devised this al-
gorithm to test whether a polynomial is bounded within the complex unit disc [13]. Schur
algorithms occur in certain constrained interpolation problems (viz. [14,15]), rational approxi-
mation by analytic functions [16], factorization and inversion of positive definite and later also
indefinite Toeplitz matrices (viz. the review in [17]), and have been generalized in a number of
senses to non-Toeplitz matrices. A generalization that comes close to the description here is by
Dewilde and Deprettere [18], for Schur-parametrizations and band approximations of positive
definite matrices, and by Diepold and Pauli [19, 20], for indefinite matrix cases. In the linear
algebra community, similar generalized Schur methods, but known under other names, have
been used for the solution of positive definite systems [21,22] and for the downdating of QR
and Cholesky factorizations [23], although the main emphasis has been on hyperbolic House-
holder transformations for the same purposes [24–28]. The HR-decomposition in [24], later
known as the hyperbolic QR factorization (e.g., [29]), is in fact precisely the tool we need.

The present application to low rank matrix approximation has been unknown so far. It is
derived as a special case of a new theory for model reduction of time-varying systems [30,31].
The time-invariant counterpart (approximation of a Hankel matrix by one of lower rank) has
been known for more than a decade and is widely used in systems theory and control for model
reduction and for solving H∞-control problems (viz. [32, 33]). This theory goes back to the
work of Adamjan, Arov, and Krein, in 1971, on the solution of the Schur-Takagi interpolation
problem [16].

Structure of the paper. The remainder of the paper is organized as follows. Section 2
is a review of those properties of J-unitary matrices that we need in this paper, such as the
existence of a hyperbolic QR factorization. In section 3, this factorization is used to prove a
basic version of the approximation theorem, and we introduce a parametrization of all 2-norm
approximants of rank d. Some values of the parameters that lead to interesting approximants
are discussed. The computation of the factorization is the topic of section 4. It is shown that the
factorization can be computed using a Schur-type algorithm, although certain extra conditions
have to be imposed on the matrix H. We derive necessary and sufficient conditions so that the
algorithm does not break down, and discuss some simple pivoting schemes to alleviate these
conditions. Finally, in section 5, the algorithm is applied to a test case, to show the behavior
of some of the approximants and the effectiveness of the pivoting scheme.

Notation. The superscript
�
· � ∗ denotes complex conjugate transposition, � �

A � is the col-
umn span (range) of the matrix A, Im is the m × m identity matrix, and 0m×n is an m × n matrix
with zero entries. A† denotes the pseudo-inverse of A. At some point, we will use the notation
A � i � to be the submatrix of A, consisting of its first till the i-th row, and A � i � k � to denote the first
k columns of A � i � .

2. J-Unitary matrices. We review the definition and some properties of J-unitary ma-
trices, most of which are well-known. A matrix Θ is J-unitary if it satisfies

Θ∗JΘ � J � ΘJΘ∗ � J � where J � 

I

−I � 
(3)
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J is a signature matrix; the identity matrices need not have equal sizes. Θ is necessarily a
square matrix, and invertible as well: Θ−1 � JΘ∗J. We partition Θ according to J as

Θ � 

Θ11 Θ12
Θ21 Θ22 � 
(4)

The J-unitarity of Θ implies a.o. Θ∗
22Θ22 � I � Θ∗

12Θ12. From this expression, we derive in
turn the properties�

a � Θ22 is invertible,
�
c � � Θ12Θ−1

22 � � 1 ��
b � � Θ−1

22 � ≤ 1 � �
d ��� Θ11 − Θ12Θ−1

22Θ21 � ≤ 1 
(5)

Indeed, (a) follows because Θ22 is also square, (b) is obtained from

Θ−∗
22Θ−1

22 � �
Θ−∗

22Θ∗
12 � � Θ12Θ−1

22 ��� I �(6)

so that Θ−∗
22Θ−1

22 ≤ I, and (c) results from the same expression because Θ−∗
22Θ−1

22 � 0. By elemen-
tary algebra, one verifies that the matrix


Θ11 − Θ12Θ−1
22Θ21 −Θ12Θ−1

22
Θ−1

22Θ21 Θ−1
22 �

is, in fact, unitary, which implies
�
d � .

Similarly, we have�
a � Θ11 is invertible,

�
c � � Θ−1

11Θ12 � � 1 ��
b � � Θ−1

11 � ≤ 1 � �
d ��� Θ22 − Θ21Θ−1

11 Θ12 � ≤ 1 
(7)

Another important property of J-unitary matrices is the preservation of the J-inner prod-
uct. Suppose that A � B � C � D are matrices, related as � C D 	 ��� A B	 Θ. The J-unitarity of Θ
implies

AA∗ − BB∗ � � A B	 J � A B	 ∗� � A B	 ΘJΘ∗ � A B	 ∗� CC∗ − DD∗ 
(8)

Motivated by this equation, we say that J associates a positive signature to the columns of A,
a negative signature to the columns of B, and likewise for C and D. We will sometimes denote
this in equations by writing � and − on top of A and B.

So far, the signature matrix J in (3) was sorted: the diagonal has first all the positive en-
ties, then the negative ones. We will at some point also need unsorted signature matrices J̃,
which is any diagonal matrix with diagonal entries equal to � 1 or −1. As a generalization of
the definition in (3), we will say that a matrix Θ̃ is

�
J̃1 � J̃2 � -unitary2 with respect to signature

matrices J̃1 � J̃2 if it satisfies

Θ̃∗J̃1Θ̃ � J̃2 � Θ̃J̃2Θ̃∗ � J̃1 
(9)

Again, Θ̃ is square and invertible: Θ̃−1 � J̃2Θ̃∗J̃1. Sylvester’s law of inertia claims that the
number of positive entries in J̃1 must be equal to the number of positive entries in J̃2, and
similar for the negative entries. An unsorted signature matrix J̃1 can always be sorted by a
permutation matrix Π1 such that J1 � Π1J̃1Π∗

1 is sorted. If also J2 � Π2J̃2Π∗
2 is sorted, and Θ̃

2 We will sometimes generically write J-unitary, to avoid being overly detailed.
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satisfies (9), then actually J1 � J2 � : J, and Θ : � Π1Θ̃Π∗
2 is J-unitary in the sorted sense of

(3). The permutation, and hence Θ, is not unique, but this is usually irrelevant. We work with
Θ rather than Θ̃ in cases where its partitioning into submatrices, as in (4), is important, but the
properties (5) are independent of precisely which Θ is chosen.

A matrix A is said to be J̃-nonsingular, with respect to a certain signature matrix J̃, if AJ̃A∗

is nonsingular. It is immediate that if A is J̃1-nonsingular and Θ̃ is a
�
J̃1 � J̃2 � -unitary matrix,

then AΘ̃ is J̃2-nonsingular. The following basic result claims that J-nonsingular matrices can
be factored:

THEOREM 2.1. A matrix A : m ×
�
m � n � is J̃1-nonsingular if and only if there exists a

signature matrix J̃2 and a
�
J̃1 � J̃2 � -unitary matrix Θ̃ such that

AΘ̃ ��� X 0m×n 	 � X : m × m � invertible.(10)

Proof. Assume that A is J̃-nonsingular. Then we can factor AJ̃1A∗ as

AJ̃1A∗ � XJ̃ � X∗ � X : m × m � invertible,

for some m×m signature matrix J̃ � . This factorization exists and can in principle be computed
from an LDU factorization with pivoting, or from an eigenvalue decomposition of AJ̃1A∗.
Since A is J̃1-nonsingular, it is also nonsingular in the ordinary sense, so that there exists a
matrix T :

�
m � n � × m, such that AT � X. T is not unique. Because X is invertible, we can

take

T � J̃1A∗ �
AJ̃1A∗ � −1X 


Using
�
AJ̃1A∗ � −1 � X−∗J̃ � X−1, it is directly verified that this T satisfies T∗J̃1T � J̃ � . The re-

mainder of the proof is technical and shows that T can be extended to a square, J-unitary ma-
trix. From T∗J̃1T � J̃ � it follows that the m columns of J̃1T are linearly independent. Taking
any basis of the orthogonal complement of the range of J̃1T gives a matrix K, with n indepen-
dent columns, such that T∗J̃1K � 0. The matrix � T K 	 is invertible, because it is square and
its kernel is empty:� T K 	 


x1
x2 � � 0 ⇒ T∗J̃1 � T K 	 


x1
x2 � � 0

⇒ x1 � 0

and subsequently, it also follows that x2 � 0. It remains to normalize the columns of K. Put� T K 	 ∗J̃1 � T K 	 � 

J̃ �

N � 

N is nonsingular because � T K 	 is invertible, and we can factor it as N � R∗J̃ � � R. Put

Θ̃ ��� T KR−1 	 � J̃2 � diag � J̃ � � J̃ � � 	 

Then Θ̃ is

�
J̃1 � J̃2 � -unitary, and satisfies (10).

A recursive application of this theorem proves that, under additional conditions, A has a
triangular factorization:

COROLLARY 2.2. Let A : m×
�
m � n � be J̃1-nonsingular. Denote by A � i � the submatrix of

A, consisting of its first i rows. Then there exists a signature matrix J̃2, and a
�
J̃1 � J̃2 � -unitary

matrix Θ̃ such that

AΘ̃ ��� X 0m×n 	 � X : m × m � lower triangular, invertible
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if and only if A � i � is J̃1-nonsingular, for i � 1 ��
�
�
 � m. If the diagonal entries of X are chosen to
be positive, then X is unique. Such a factorization was proven in [24] for square matrices A
and upper triangular X, but this result extends directly to the rectangular case. In [24], it was
called the HR-decomposition, and it is also known as the hyperbolic QR factorization [29].

3. Approximation theory.

3.1. Central approximant. For a given m×n data matrix H and threshold ε, denote the
SVD of H as in (2). Suppose that d singular values of H are larger than ε, and that none of
them are equal to ε. Our approximation theory is based on an implicit factorization of

HH∗ − ε2I � BB∗ − AA∗ 
(11)

This is a Cholesky factorization of an indefinite Hermitian matrix. A and B are chosen to have
full column rank. They are not unique, but by Sylvester’s inertia law, their dimensions are
well-defined. Using the SVD of H, we obtain one possible decomposition as

HH∗ − ε2I � U1
�
Σ2

1 − ε2I � U∗
1 � U2

�
Σ2

2 − ε2I � U∗
2 �

where the first term is positive semidefinite and has rank d, and the second term is negative
semidefinite and has rank m − d. Hence, B has d columns, and A has m − d columns.

To obtain an implicit factorization which avoids computing HH∗, we make use of theorem
2.1.

THEOREM 3.1. Let H : m × n have d singular values larger than ε, and none equal to ε.
Then there exists a J-unitary matrix Θ such that� εIm H 	 Θ �!� A � B � 	(12)

where A � ��� A 0m×d 	 � B � ��� B 0m×n−d 	 � A: m ×
�
m − d � , B:m × d, and � A B	 is of full rank.

Proof. The matrix � εIm H 	 is J-nonsingular: by assumption, ε2I−HH∗ has d negative, m−
d positive, and no zero eigenvalues. Hence theorem 2.1 implies that there exists Θ̃ : � εIm H 	 Θ̃ �� X 0m×n 	 . The columns of X are the columns of � A � B	 , in some permuted order, where A � B cor-
respond to columns of X that have a positive or negative signature, respectively. After sorting
the columns of � X 0 	 according to their signature, equation (12) results.

Note that, by the preservation of J-inner products (equation (8)), equation (12) implies
(11). From the factorization (12), we can immediately derive a 2-norm approximant satisfying
the conditions in (1). To this end, partition Θ according to its signature J into 2×2 blocks, like
in (4).

THEOREM 3.2. Let H : m × n have d singular values larger than ε, and none equal to ε.
Define the factorization � εIm H 	 Θ ��� A � B � 	 as in theorem 3.1. Then

Ĥ � B � Θ−1
22(13)

is a rank d approximant such that � H − Ĥ � � ε.
Proof. Ĥ is well-defined because Θ22 is invertible (equation (5a)). It has rank d because

B � ��� B 0 	 has rank d. By equation (12), B � � εIΘ12 � HΘ22, hence H − Ĥ � −εΘ12Θ−1
22 . It

remains to use the fact that Θ12Θ−1
22 is contractive (equation (5c)).

We mentioned in the introduction that the column span (range) of the approximant is
important in signal processing applications. From theorem 3.2, it is seen that this column
span is equal to that of B: it is directly produced by the factorization. However, remark that� A B	 in (12) is not unique: for any J-unitary matrix Θ1, � A1 B1 	 ��� A B	 Θ1 also satisfies
ε2I − HH∗ � A1A∗

1 − B1B∗
1, and could also have been produced by the factorization. E.g., for

some choices of Θ1, we will have � �
B ���"� �

U1 � , and � �
A ���"� �

U2 � . Using Θ1, we can find
more approximants. A parametrization of all 2-norm approximants is the topic of the follow-
ing section.
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3.2. Parametrization of all approximants. We will now give a formula of all possible
2-norm approximants Ĥ of H of rank equal to d; there are no approximants of rank less than
d. The formula is in terms of a chain fraction description. Similar formulas frequently occur
in constrained interpolation theory (see e.g., [14,15] and references therein).

The set of all minimal-rank 2-norm approximants will be parametrized by matrices SL :
m × n, with 2 × 2 block partitioning as

SL � 
 d n − d

m − d
�
SL � 11

�
SL � 12

d
�
SL � 21

�
SL � 22 � �(14)

and satisfying the requirements�
i � contractive: � SL � ≤ 1 ��
ii � block lower:

�
SL � 12 � 0 
(15)

The first condition on SL will ensure that � H−Ĥ � ≤ ε, whereas the second condition is required
to have Ĥ of rank d.

THEOREM 3.3. With the notation and conditions of theorem 3.2, all rank d 2-norm ap-
proximants Ĥ of H are given by

Ĥ � �
B � − A � SL � � Θ22 − Θ21SL � −1 �

where SL satisfies
�
i � : � SL � ≤ 1, and

�
ii � : �

SL � 12 � 0. The approximation error is

S : � H − Ĥ � ε
�
Θ11SL − Θ12 � � Θ22 − Θ21SL � −1 
(16)

Proof. The proof is given in the appendix.
By this theorem, an estimate of the principal subspace of H is given by � �

Ĥ ���#� �
B � −

A � SL �$�%� �
B−A

�
SL � 11 � , for any valid choice of SL. Note that

�
SL � 11 ranges over the set of all

contractive
�
m − d � × d matrices, so that all suitable principal subspace estimates are given by� �

B − AM �&� � M � ≤ 1 

The distance of a subspace estimate with the actual principal subspace, � �

U1 � , is measured
only implicitly, in the sense that there exists an approximant Ĥ with this column span that is ε-
close to H. Actually, for each subspace estimate there are many such approximants, since the
subspace estimate only depends on

�
SL � 11, whereas the approximant also depends on

�
SL � 21

and
�
SL � 22.

The choice of a particular approximant Ĥ, or subspace estimate � �
Ĥ � , boils down to a

suitable choice of the parameter SL. Various choices are interesting:
1. The approximant Ĥ in theorem 3.2 is obtained by taking SL � 0. This approximant

is the most simple to compute; the principal subspace estimate is equal to the range of B. The
approximation error is given by ε � Θ12Θ−1

22 � . Note that, even if all nonzero singular values
of H are larger than ε so that it is possible to have Ĥ � H, the choice SL � 0 typically does
not give zero error. Hence, this simple choice of SL could lead to ‘biased’ estimates. This is
confirmed in the simulation example in section 5, and occurs in cases where σd is close to ε.

2. As the truncated SVD solution satisfies the requirements, there is an SL which yields
this particular solution and minimizes the approximation error. However, computing this SL

requires an SVD, or a hyperbolic SVD [29].
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3. It is sometimes possible to obtain a uniform approximation error. First write equation
(16) in a more implicit form,


ε−1SG
−G � � 


Θ11 Θ12
Θ21 Θ22 � 


SL

−In � �
where G is an invertible n × n matrix. This equation implies

G∗ �
ε−2S∗S − In � G � S∗

LSL − In 

Suppose m ≤ n. If we can take SL to be an isometry, SLS∗

L � Im, then rank
�
S∗

LSL − In �'� n−m. It
follows that ε−1S must also be an isometry, so that all singular values of S � H − Ĥ are equal to
ε: the approximation error is uniform. SL can be an isometry and have

�
SL � 12 � 0 only if d ≥

m−d, i.e., d ≥ m � 2. In that case, we can take for example SL �(� Im 0	 . This approximant might
have relevance in signal processing applications where a singular data matrix is distorted by
additive uncorrelated noise with a covariance matrix σ2Im.

4. If we take SL � Θ−1
11 Θ12, then we obtain Ĥ � H and the approximation error is zero.

Although this SL is contractive (viz. equation (7)), it does not satisfy the condition
�
SL � 12 � 0,

unless d � m or d � n. Simply putting
�
SL � 12 � 0 might make the resulting SL non-contractive.

To satisfy both conditions on SL, a straightforward modification is by setting

SL � Θ−1
11 Θ12



Id

0n−d � � 
 �
Θ−1

11 Θ12 � 11 0�
Θ−1

11 Θ12 � 21 0 �(17)

The corresponding approximant is

Ĥ ) 1 * : � �
B � − A � Θ−1

11 Θ12 + I 0
0 0 , � � Θ22 − Θ21Θ−1

11 Θ12 + I 0
0 0 , � −1 �(18)

and the corresponding principal subspace estimate is given by the range of

B ) 1 * : � B − A
�
Θ−1

11 Θ12 � 11 
(19)

Both the subspace estimate and the approximant itself can be computed by a Schur comple-
ment formula. The subspace estimate is ‘unbiased’ in a sense discussed below, and is usually
quite accurate when σd is not very close to ε, as shown in simulation examples (section 5).
The approximation error is determined by

S � H − Ĥ ) 1 * � εΘ12



0d

−In−d � �
Θ22 − Θ21Θ−1

11 Θ12 + I 0
0 0 , � −1 
(20)

This shows that the rank of S is at most equal to min
�
m � n − d � . If m � n, then the rank of S is

m − d, i.e., the error has the same rank as a truncated SVD solution would give.
5. To improve on the approximation error, we propose to take

�
SL � 11 � �

Θ−1
11 Θ12 � 11, as

in the previous item, and use the freedom provided by
�
SL � 21 and

�
SL � 22 to minimize the norm

of the error. The subspace estimate is only determined by
�
SL � 11 and is the same as before.

Instead of minimizing in terms of SL, which involves a non-linear function and a contractivity
constraint, we make use of the fact that we know already the column span of the approximant:
we are looking for Ĥ � B ) 1 * N, with B ) 1 * given by (19) and N : d × n a minimizer of

min
N

� H − B ) 1 * N �-

A solution is given by N � B ) 1 * †H, and the resulting approximant is

Ĥ � B ) 1 * B ) 1 * †H� : Ĥ ) 2 * �(21)
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the projection of H onto � �
B ) 1 * � . Although we do not compute the SL to which this approxi-

mant corresponds, the residual error is guaranteed to be less than or equal to ε, because it is at
most equal to the norm of S in (20). Hence, there will be some SL that satisfies the constraints,
although we never compute it explicitly. For this SL, the rank of the residual error is always
at most equal to m − d, the rank of Im − B ) 1 * B ) 1 * †.

One other important feature of the subspace estimate B ) 1 * in (19) is that it is unbiased, in
the following sense.

LEMMA 3.4. � �
B ) 1 * � ⊂ � �

H � .
Proof. From � � A 0 � �

B 0 � 	 ��� A � B � 	 ��� εI H 	 Θ, we have. � A 0 	 � εΘ11 � HΘ21� B 0 	 � εΘ12 � HΘ22

Hence� B ) 1 * 0 	 � � B 0 	 − � A 0 	 Θ−1
11Θ12



I

0 �� �
εΘ12 � HΘ22 � −

�
εΘ11 � HΘ21 � Θ−1

11 Θ12



I

0 �� H
�
Θ22 − Θ21Θ−1

11 Θ12 � 

I

0 � � HΘ22



0

I � � εΘ12



0

I �
so that

B ) 1 * � H
�
Θ22 − Θ21Θ−1

11 Θ12 � 

I
0 � 


With equation (7d), we also have � B ) 1 * � ≤ � H �-
(22)

This shows that, although J-unitary matrices may be large, this particular subspace estimate
is bounded in norm by the matrix it was derived from.

4. Computation of Θ. In this section, we consider the actual construction of a J-unitary
matrix Θ such that � εI H 	 Θ �!� A � B � 	 � J � 


Im

−In � 

The proof of theorem 2.1 provides a technique to compute Θ, but the construction is global and
not really attractive. We are looking for algorithms that do not square the data and that allow
easy updating of the factorization as more and more columns of H are included (growing n).
Θ will be computed in two steps: Θ � Θ̃Π, where Θ̃ is a

�
J � J̃2 � -unitary matrix with respect to

J and an unsorted signature J̃2 and is such that

+ � −
εIm H , Θ̃ � + �/� − �/� −

X 0m×n , � X : m × m 
(23)

Π is any permutation matrix such that ΠJ̃2Π∗ � J is a sorted signature matrix. The latter fac-
torization can be viewed as a hyperbolic QR factorization, in case X has a triangular form,
and can be computed in a number of ways. Hyperbolic Householder transformations have
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been employed for this purpose [24,29], zeroing full rows at each step, but the most elemen-
tary way is to use elementary rotations to create one zero entry at a time, like Givens rotations
for QR factorizations. Such techniques are known as (generalized) Schur algorithms, because
of their similarity to the Schur method for Toeplitz matrices. In contrast to hyperbolic House-
holder transformations, they allow for straightforward updating and downdating. The main
differences with the QR factorization, and also with the usual definite Schur algorithms (for
which ε2I −HH∗ � 0) are that, here, the basic operations are J-unitary elementary rotations of
up to six different types, and that we have to keep track of signatures to determine which type
to use.

The recursive construction of Θ in this way is not always possible, unless extra conditions
on the singular values of certain submatrices of H are posed. This is a well-known complica-
tion from which all indefinite Schur and hyperbolic Householder methods suffer and that in
its ultimate generality can be treated only by global matrix operations (as in [19,20], or as in
the proof of theorem 2.1, which uses an altogether different algorithm). The exceptions oc-
curs only for specific cases, and simple pivoting schemes (column or row permutations) are
virtually always adequate to eliminate this problem. We will briefly go into these aspects in
section 4.5.

4.1. Elementary rotations. At an elementary level, we are looking for 2 × 2 matrices θ̃
such that, for given scalars a � b, � a b 	 θ̃ �0� x 0 	 �
where x is some resulting scalar. The matrices θ̃ are J-unitary, but with respect to unsorted
signature matrices j̃1 � j̃2: �

θ̃ � ∗ j̃1θ̃ � j̃2 � θ̃ j̃2
�
θ̃ � ∗ � j̃1 


The signature matrix j̃1 is specified along with a � b and signifies the signature of � a b 	 ; j̃2
is a resulting signature matrix to be computed along with θ̃ and x, and will be the resulting
signature of � x 0 	 . There are two rules that determine j̃2. From the J-unitarity of θ̃, we have
that � a b 	 j̃1 � a b 	 ∗ � x

�
j̃2 � 11x∗

⇒
�

j̃2 � 11 � sign 12� a b 	 j̃1 � a b 	 ∗ 3 

We have to assume at this point that the expression in brackets is not zero, so that

�
j̃2 � 11 is

either � 1 or −1. The second diagonal entry of j̃2 then follows from the inertia rule: by con-
gruence, the number of positive entries in j̃1 is equal to the number of positive entries in j̃2,
and similarly for the negative entries.

Depending on the signatures, we choose one of the following types of elementary
�
j̃1 � j̃2 � -
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� X Y 	 : ��� εIm H 	
J̃ : � 


Im

−In �
Θ̃ � Im � n

for k � 1 to n and i � 1 to m �� a b 	 : ��� X �
i � i � Y

�
i � k � 	

j̃1 : � 

J̃
�
i � i � 0
0 J̃

�
m � k � m � k � �

Compute θ̃ � j̃2 from a � b � j̃1 s.t. � a b 	 θ̃ ��� ∗ 0 	
Embed θ̃ into Θ̃ ) i � k *� X Y 	 : ��� X Y 	 Θ̃ ) i � k *Θ̃ : � Θ̃Θ̃ ) i � k *
J̃
�
i � i � : � �

j̃2 � 1 � 1
J̃
�
m � k � m � k � : � �

j̃2 � 2 � 2
end

J̃2 : � J̃

FIG. 1. Schur algorithm to compute the factorization 4 εI H 5 Θ̃ 674 X 0 5 from H.

unitary rotations (taking |s|2 � |c|2 � 1 throughout):

1 
 j̃1 � 

1

−1 � � j̃2 � 

1

−1 � ⇒ θ̃ � 

1 −s

−s∗ 1 � 1
c

2 
 j̃1 � 

1

−1 � � j̃2 � 

−1

1 � ⇒ θ̃ � 

−s∗ 1
1 −s � 1

c

3 
 j̃1 � 

−1

1 � � j̃2 � 

1

−1 � ⇒ θ̃ � 

−s∗ 1
1 −s � 1

c

4 
 j̃1 � 

−1

1 � � j̃2 � 

−1

1 � ⇒ θ̃ � 

1 −s

−s∗ 1 � 1
c

5 
 j̃1 � 

1

1 � � j̃2 � 

1

1 � ⇒ θ̃ � 

c∗ −s
s∗ c �

6 
 j̃1 � 

−1

−1 � � j̃2 � 

−1

−1 � ⇒ θ̃ � 

c∗ −s
s∗ c �

The first case is the standard elementary hyperbolic rotation. The next three cases are obtained
from this case by row and column permutations. Cases 5 and 6 are not hyperbolic, but ordinary
elliptic rotations, but they are

�
j̃1 � j̃2 � -unitary nonetheless. These six cases are sufficient to

consider, as every possible signature pair
�
j̃1 � j̃2 � is covered. With j̃1 and j̃2 known, we select

the appropriate type of rotation matrix, and the rotation parameters s and c follow subsequently
from the equation � a b 	 θ̃ ��� x 0 	 as

case 1, 4 (|a| � |b|): s � b � a � c � �
1 − s∗s � 1 8 2

case 2, 3 (|a| � |b|): s � a � b � c � �
1 − s∗s � 1 8 2

case 5, 6: s � b
�
a∗a � b∗b � −1 8 2 � c � �

1 − s∗s � 1 8 2 
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4.2. Indefinite Schur algorithm. To compute the factorization (23), elementary rota-
tions θ̃ are embedded in plane rotations Θ̃ ) i � k * which are applied to the columns of � εI H 	 in
the same way as Givens rotations are used for computing a QR factorization. Each plane ro-
tation produces a zero entry in H; specifically, Θ̃ ) i � k * annihilates entry

�
i � k � . A difference with

QR is that we have to keep track of the signatures associated to the columns of the matrix to
determine which type of rotations to use. The general scheme, however, goes as follows:

� εI H 	 � 9: � � � − − − −
ε 0 × × × ×

ε × × × ×
0 ε × × × ×

;<
Θ̃ = 1 > 1 ?
→

9: − � � � − − −
× 0 × × ×
× ε × × × ×
× ε × × × ×

;<
Θ̃ = 2 > 1 ?
→

9: − � � � − − −
× 0 × × ×
× × 0 × × ×
× × ε × × × ×

;<
→

· · ·
Θ̃ = m > n ?
→ 9: − � − � � − −

× 0 0 0 0
× × 0 0 0 0
× × × 0 0 0 0

;< ��� X 0 	 �
Θ̃ � Θ̃ ) 1 � 1 * Θ̃ ) 2 � 1 * · · ·Θ̃ ) m � 1 * · Θ̃ ) 1 � 2 * · · ·Θ̃ ) 2 � 2 * · · · Θ̃ ) m � n * 


(Except for the first matrix, the signatures of the columns in the above matrices are examples,
as they are data dependent.) The pivot elements at each step are underlined; these entries,
along with the signatures of the two columns in which they appear, determine the elementary
rotation θ̃ that will be used at that step, as well as the resulting signature j̃2. This signature
is the new signature of these two columns, after application of the rotation. The algorithm
is summarized in figure 1.3 The nulling scheme ensures that � εI H 	 Θ̃ ��� X 0 	 , where X
is a resulting lower triangular invertible matrix; it contains the columns of A and B in some
permuted order. The columns of X with a positive signature are the columns of A, the columns
with a negative signature are those of B. Hence, the final step (not listed figure 1) is to sort these
columns, such that � X 0 	 Π ��� A 0 B 0 	 ��� A � B � 	 . Then Θ � Θ̃Π is J-unitary with respect to
J, and � εI H 	 Θ ��� A � B � 	 .

The complexity of the algorithm is similar to that of the QR factorization: about 1 � 2m2n
rotations, or 2m2n flops. The Schur algorithm has a direct implementation on a systolic array
of processors. This array is entirely similar to the classical Gentleman-Kung triangular Givens
array [12], except that, now, all data entries have a signature associated to them, and the pro-
cessors have to perform different types of rotations, depending on these signatures. We omit
the details.

4.3. Updating and downdating. The Schur method is straightforward to update as more
and more columns of H become known. If � εI Hn 	 Θ̃ ) n * ��� Xn 0 	 is the factorization at point

3 As an aside, we mention that Bojanczyk et al. [23] have developed a numerically more stable implementation
of the application of hyperbolic plane rotations to vectors. This is probably of relevance in the present context.
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n and Hn � 1 ��� Hn hn � 1 	 , then, because the algorithm works column-wise,� εI Hn � 1 	 Θ̃ ) n � 1 * ��� Xn � 1 0 	 ⇒ � Xn 0 hn � 1 	 θ̃ ) n � 1 * ��� Xn � 1 0 0 	
Θ̃ ) n � 1 * � Θ̃ ) n * θ̃ ) n � 1 * �

for some J-unitary matrix θ̃ ) n � 1 * acting on the columns of Xn and on hn � 1. Hence, we can
continue with the result of the factorization that was obtained at the previous step. Each update
requires about 1 � 2m2 rotations.

The downdating problem is to compute the factorization for Hn with its first column h1
removed, from a factorization of Hn. It can be converted to an updating problem, where the
old column h1 is now introduced with a positive signature,� �$8 −

Xn

�
h1 	 θ̃ ) n � 1 * ��� Xn � 1 0 	 


This is possible because, implicitly, we factor ε2I−HnH∗
n � h1h∗

1 � XnJ̃X∗
n � h1h∗

1. The unique-
ness of the hyperbolic QR factorization into triangular matrices with positive diagonals ( [24],
viz. corollary 2.2) implies that the result Xn � 1 is precisely the same as if h1 had never been part
of Hn at all.

4.4. Breakdown. In section 4.2, we had to assume that the data matrix H was such that
at no point in the algorithm � a b 	 j̃1 � a b 	 ∗ is equal to zero. If the expression is zero, then there
is no J-unitary rotation θ̃ such that � a b 	 θ̃ �@� ∗ 0 	 . Note that the condition in theorem 3.1
that none of the singular values of H are equal to ε does not preclude this case, but merely
ascertains that there exists a Θ̃ which will zero H. One simple example is obtained by taking
H ��� 1 1 	 T , ε � 1. It is straightforward to show that there is no J-unitary Θ̃ such that


1 1
1 1 � Θ̃ � 


× 0 0
× × 0 �(24)

as the J-norms of the first row will not be equal. Hence Θ cannot be obtained by the recursive
algorithm. However, a more general Θ̃ does exist, such that
 � � −

1 1
1 1 � Θ̃ � 1A

2


 � − �
1 1 0

−1 1 0 �
viz.

Θ̃ � 1A
2

9: 1 −1
A

2
−1 −1

A
2

0 2 −
A

2

;< � J̃1 � 9: 1
1

−1

;< � J̃2 � 9: 1
−1

1

;< 

The difference is that, in this factorization, the resulting matrix X is no longer lower triangu-
lar. Theorem 4.1 gives necessary and sufficient conditions on the singular values of H and a
collection of submatrices of H, so that the Schur algorithm does not break down.

THEOREM 4.1. Let H : m×n be a given matrix, and ε ≥ 0. Denote by H � i � k � the submatrix,
consisting of the first to the i-th row and the first k columns of H. The Schur algorithm does
not break down if and only if none of the singular values of H � i � k � is equal to ε, for i � 1 ��
B
�
 � m
and k � 1 ��
�
�
C� n.

Proof. (Necessity) When processing the k-th column of H by the Schur algorithm, we
are in fact computing a triangular factorization of � εIm H � m � k � 	 . Corollary 2.2 claims that a
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suitable J-unitary operator exists if and only if � εIi H � i � k � 	 is J-nonsingular, for i � 1 ��
B
�
 � m,
i.e., if and only if none of the singular values of H � i � k � is equal to 1. The triangularization is
done for k � 1 � 2 �B
D
�
 � n in turn.

(Sufficiency) Sufficiency at stage
�
i � k � follows recursively from the factorization at the

previous stage and the existence and uniqueness of the factorization at the current stage.

Similar results are known for the case where the factorization is computed via hyperbolic
Householder transformations where all zeros in a row are generated at the same time. In this
case there are less conditions [24], viz. theorem 2.2. It should be noted that the conditions in
theorem 4.1 are quite elaborate, as only one condition (none of the singular values of H are
equal to ε) suffices for the existence of Θ. Numerically, we might run into problems also if
one of the singular values is close to ε, in which case the corresponding hyperbolic rotation
has a large norm. How serious this is depends on a number of factors, and a careful numer-
ical analysis is called for. One example where a large rotation is not fatal is the case where
the singularity occurs while processing the last entry of a column (i � m). Although the ro-
tation will be very large, the resulting X remains bounded and becomes singular: Xm � m � 0.
Hence, the subspace information is still accurate, and X varies in a continuous way across the
ε-boundary; only its signature is necessarily discontinuous. Pivoting schemes can be used to
prevent large rotations, and are discussed in the next subsection.

4.5. Pivoting schemes. Because a breakdown occurs only for special values of the en-
tries of H, we can in almost all cases employ a simple pivoting operation to avoid a large hy-
perbolic rotation. If such a rotation occurs at the zeroing of entry hi � k, then the matrix H � i � k � has
a singular value close to ε. At this point, there are a number of remedies, based on the relative
freedom in the order in which zero entries are created. The simplest solution is to permute the
current column with the next one, which is possible if k � n. We can also permute the i-th row
with the i � 1-st, if i � m. Instead of permutations, other, more complicated operations are
also possible, such as plane rotations of two columns or rows. Finally, if

�
i � k ��� �

m � n � , i.e.,
hi � k is the last entry to be zeroed, then H has a singular value equal to ε and there is no remedy:
there is no bounded Θ. However, because it is the last rotation, X will still be bounded, but it
becomes singular.

A column permutation at stage
�
i � k � swaps the k-th column of H with the k � 1-st, and also

swaps the corresponding rows of Θ̃. Before the permutation is done, the first i − 1 entries of
hk � 1 have to be made zero. Hence, a column permutation scheme is most easily implemented
when entries of H are zeroed row by row, rather than column by column as in the algorithmic
description in section 4.2. Note that it is already sufficient to create zero entries of H in an
anti-diagonal fashion. This is what actually happens in a systolic array implementation, where
zeros on anti-diagonals of H are created in parallel. Hence, a column pivoting scheme can be
readily implemented on such an array, with only one extra buffer required at each processor (to
queue entries of a second column), but without sacrificing the systolic nature of the algorithm
in any sense. In column permutation schemes, X stays upper triangular and, after processing
of both hk and hk � 1, is the same as it would be without pivoting. Θ̃ is, of course, different:
unbounded in the first case, bounded in the second.

Row permutations are necessary, e.g., if there is no next column (k � n), or if columns
are to be processed one at a time. It is required that the first k − 1 entries of the i � 1-st row
of H have already been zeroed before permuting these rows. This is automatically the case if
columns are processed one by one, or requires one rotation if we use an anti-diagonal zeroing
scheme. Another rotation is needed to keep X lower triangular after the permutation has been
performed. This makes row pivoting computationally more expensive. We also have to keep
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FIG. 2. Norm of Θ. With pivoting, E Θ E → ∞ for certain values of σ2 when the indicated entry F i G j H of H is
processed. With pivoting, this only occurs when σ2 6 1.

track of the permutations: we are now in fact computing a factorization

Π � εI H 	 Θ̃ ��� X 0 	 ⇔ � εI H 	 Θ̃ � � Π∗X 0 	� � X � 0 	 

X is lower triangular, but the resulting X � in general not. It is possible to use any other invert-
ible transformation of the rows instead of a permutation, such as for example a unitary plain
rotation. This more general approach was suggested in [29], and provides a solution even in
the special cases where permutations do not lead to bounded results, such as e.g., in the case
of equation (24). The resulting factorization can be viewed as a Hyperbolic URV decomposi-
tion. The added generality allows to reduce the number of hyperbolic rotations to one or two
per column update, and leads to stable numerical implementations. (A discussion of this is
relegated to future publications.)

5. Simulation results. In this section, we demonstrate some of the properties of the ap-
proximation scheme by means of a simple example. We take H

�
σ2 ��� UΣ

�
σ2 � V∗ to be a se-

quence of 3×4 matrices, with U and V randomly selected constant unitary matrices, and with
singular values equal to �

20 � σ2 � 0 
 5 �I� σ2 � 0 � 0 
 01 �J
�
�
C� 3 
 99 � 4 

The approximation tolerance is set to ε � 1. We compare the approximants Ĥ ) 0 * given by
SL � 0, Ĥ ) 1 * given by equation (18), Ĥ ) 2 * given by (21), and Ĥ ) 1 * when the factorization is
computed with pivoting. The pivoting scheme consists of column permutations, except when
processing the last column, in which case we switch to row permutations. The pivoting is
applied in its extreme form, i.e., whenever this leads to elementary rotation matrices with a
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σ2

� H − Ĥ �
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FIG. 5. Distance between the principal and estimated subspaces.

smaller norm. The approximants are compared on the following aspects: (a) � Θ � , with and
without pivoting; (b) � H − Ĥ � , for each of the mentioned approximants; (c) the accuracy of
the subspace estimates, compared to the principal subspace of H (the column span of the sin-
gular vectors with corresponding singular values larger than 1). The distance between two
subspaces L and M is defined as dist

� LN�CMO���(� P P −P QR�S� where P P is the orthogonal projec-
tion onto L [2].

Figure 2 shows � Θ � as a function of σ2. Without pivoting, there are a number of peaks,
corresponding to the values of σ2 where one of the submatrices H � i � k � has a singular value equal
to 1. In the range 0 ≤ σ2 ≤ 4, this occurred for

�
i � k ��� �

3 � 4 � , �
3 � 3 � , �

3 � 2 � and
�
2 � 4 � , respec-

tively. When pivoting is applied, the peak at σ2 � 1 is, necessarily, still present, but the other
peaks are mostly smoothed out. Figure 3 shows the norm of the columns of B, in the scheme
without pivoting. For σ2 � 1, the rank of the approximant is 1. At σ2 � 1, the dimension of
B increases, although at first, the new column has a very small norm. For larger values of σ2,
the norm grows and the subspace becomes better defined. There is a peak at the point where
H � 2 � 4� has a singular value equal to 1; this peak can be removed by row pivoting but not by
column pivoting. There are no peaks when H ) i � j * has a singular value equal to 1 and i � m,
because X becomes singular rather than unbounded when a singularity occurs at the last entry
of a column. Figure 3 also shows that no peak occurs for the norm of the columns of the ‘im-
proved’ subspace estimate B ) 1 * of equation (19), on which both Ĥ ) 1 * and Ĥ ) 2 * are based. This
is as predicted by lemma 3.4: � B ) 1 * � ≤ � H ��� 20. Instead of having a peak, the norm of the
first column of B ) 1 * dips to about 0 
 12.

In figure 4, the norm of H − Ĥ is shown, for the various choices of Ĥ that we discussed in
section 3.2. The lowest line corresponds to the truncated SVD solution, which gives the lowest
attainable error. It is seen that, for all approximants, the approximation error is always less than
ε ≡ 1. Of the non-pivoted schemes, the approximation error for Ĥ ) 0 * is always higher than the
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error for Ĥ ) 1 * , Ĥ ) 2 * (but there is no proof that this is necessarily always the case), and the error
for Ĥ ) 1 * is always higher than the error for Ĥ ) 2 * , since the latter approximant minimizes this
error while retaining the same subspace estimate. The approximation error for Ĥ ) 2 * is almost
identically close to the theoretical minimum, except in a small region 1 ≤ σ2 ≤ 1 
 5. The errors
for Ĥ ) 0 * and Ĥ ) 1 * touch a number of times on the

�
ε � 1 � -line. For Ĥ ) 0 * this can be explained as

follows. The error for SL � 0 is given by equation (16) as −εΘ12Θ−1
22 . Because the J-unitarity

of Θ implies Θ−∗
22Θ−1

22 � �
Θ−∗

22Θ∗
12 � � Θ12Θ−1

22 ��� I (viz. (6)), it follows that whenever � Θ22 � →
∞, necessarily � Θ12Θ−1

22 � → 1. The analysis of � H − Ĥ ) 1 * � from (17) is more involved and
omitted at this point.

Figure 5 depicts the distance between the principal and estimated subspaces. For σ2 � 1,
this distance is very close to zero ( � 
 0002) for each of the methods. The distance jumps up
when σ2 crosses 1: the subspace increases in dimension but is at first only weakly defined.
For B ) 1 * , the distance goes down again quickly, whereas for B, it stays constant for a while
before going down.

6. Conclusions. We have derived a general formula which describes all rank-d 2-norm
approximants of a given matrix H. The formula relies on a factorization which exists if none
of the singular values of H is equal to ε, and which can be computed by a Schur-type algorithm
if additional singular value conditions are satisfied. Updating and downdating is straightfor-
ward, and the algorithm is amenable to parallel implementation. It is highly suitable for adap-
tive subspace estimation: some of these approximants are quite close to the truncated SVD
solution (as shown by a numerical experiment), but much easier to compute. Such an applica-
tion is reported in [34]. Another application is the regularization of ill-conditioned total least
squares problems [35], cf. [36].

There are several open problems and remaining issues. Apart from the listed approxi-
mants, there might be other interesting choices, such as approximants that by construction
have all their singular values larger than ε. There are applications in which an on-line compu-
tation of the approximant is required, or of its last column, instead of only its column space:
an integral scheme for doing this would be interesting. As a final remark, we would like to
mention that while this paper was in review, an updating version for the ‘improved’ approx-
imant B ) 1 * has been obtained: an orthonormal basis for this subspace can be updated using
about twice the number of operations as the basic Schur updating algorithm, without the need
for pivoting, and keeping the number of hyperbolic rotations as small as possible. This will
be reported elsewhere.
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A. Appendix: Proof of theorem 3.3. The proof of theorem 3.3 consists of two propo-
sitions. The first shows that any SL which satisfies the constraints gives rise to a valid approx-
imant, and the second proves the converse. Without loss of generality, we take ε � 1.

PROPOSITION A.1. Let H : m×n be a given matrix, with d singular values larger than 1
and none equal to 1, and let SL be a given matrix satisfying conditions (15) (i) and (ii). Define
Θ � A � � B � as in equation (12). Put

S � �
Θ11SL − Θ12 � � Θ22 − Θ21SL � −1 
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Then S is well defined, and Ĥ : � H −S is a 2-norm approximant of rank equal to d, satisfying

Ĥ � �
B � − A � SL � � Θ22 − Θ21SL � −1 


Proof. Let 

−G1
G2 � � 


Θ11 Θ12
Θ21 Θ22 � 


−SL

I � 

Then

G1 � Θ11SL − Θ12

G2 � −Θ21SL � Θ22 � Θ22
�
I − Θ−1

22Θ21SL �I

Because � Θ−1

22Θ21 � � 1 and � SL � ≤ 1, G2 is invertible, and hence S � G1G−1
2 . The J-unitarity

of Θ implies S∗
LSL − I � G∗

1G1 − G∗
2G2 � G∗

2
�
S∗S − I � G2. Since G2 is invertible, and S∗

LSL − I
is negative semidefinite, it follows that the same holds for S∗S − I. Hence S is contractive:� S � ≤ 1, and Ĥ is a 2-norm approximant of H. To derive the alternate formula for Ĥ and
show that it has rank d, write

Ĥ � H − S � � I H 	 

−S
I �� � I H 	 Θ 

−SL

I � �
Θ22 − Θ21SL � −1� � A � B � 	 


−SL

I � �
Θ22 − Θ21SL � −1 


Hence Ĥ � �
B � −A � SL � � Θ22 −Θ21SL � −1. The rank of Ĥ is equal to the rank of B � −A � SL. In this

expression, B � ��� B 0 	 is of full column rank d, and A � �(� A 0 	 , where A is of full column rank
m−d. Because

�
SL � 12 � 0, it follows that A � SL �(� A 0 	 SL �(� A �

SL � 11 0 	 is of rank less than or
equal to d, too. Finally, B � − A � SL is precisely of rank d because the columns of A are linearly
independent of the columns of B.

PROPOSITION A.2. Let H : m×n be a given matrix, with d singular values larger than 1
and none equal to 1. Define Θ � A � � B � as in equation (12). Suppose that a matrix Ĥ satisfies�

a ��� H − Ĥ � ≤ 1 ��
b � rank

�
Ĥ � ≤ d 


Then rank
�
Ĥ ��� d, and Ĥ � H − S where

S � �
Θ11SL − Θ12 � � Θ22 − Θ21SL � −1 �(25)

for some contractive SL with
�
SL � 12 � 0.

Proof. It follows directly that S is contractive. Define matrices G1 � G2 by

−S
I � � Θ



−G1
G2 � ⇔



−G1
G2 � � Θ−1



−S
I � 
(26)

As in the proof of proposition A.1, it follows that G2 is invertible. The J-unitarity of Θ and
the contractiveness of S implies G∗

1G1 ≤ G∗
2G2. Hence SL : � G1G−1

2 is well defined and con-
tractive, and (26) implies (25). The remaining part of the proof is technical and shows that�
SL � 12 � 0. First, we define the partitionings

G1 � 

m − d G11
d G12 � � G2 � 


d G21
n − d G22 � � G−1

2 � + d n − d�
G−1

2 � 1
�
G−1

2 � 2 , �
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which are conform the partitionings of A � and B � . Then
�
SL � 12 � 0 ⇔ G11

�
G−1

2 � 2 � 0. To
prove that, indeed, G11

�
G−1

2 � 2 � 0, we look at � G∗
1 G∗

2 	 . Use of (26) and Θ−1 � JΘ∗J gives� G∗
1 G∗

2 	 � � S∗ I 	 Θ� � −Ĥ∗ 0 	 Θ �T� H∗ I 	 Θ 
(27)

We also have � I H 	 � � A � B � 	 Θ−1

⇔



I
H∗ � � Θ−∗



A � ∗
B � ∗ � � JΘJ



A � ∗
B � ∗ �

⇒ 0 � � H∗ In 	 J 

I

H∗ � �!� H∗ In 	 ΘJ



A � ∗
B � ∗ �

⇒ � H∗ In 	 Θ � + � 0n× ) m−d * ∗ � �
0n×d ∗ � , �

where ‘∗’ stands for some quantity whose precise value is not of interest. In the last step, we
used the fact that � A B	 is of full rank. Inserting this result in (27) shows that� �

G∗
11 � ⊂ � �

Ĥ∗ �I� � �
G∗

21 � ⊂ � �
Ĥ∗ �&


G2 is invertible, hence � �
G∗

21 � is of full dimension d. Since the rank of Ĥ is less than or equal
to d, it follows that the rank of Ĥ is precisely equal to d, and that actually � �

G∗
21 ���%� �

Ĥ∗ � .
This implies � �

G∗
11 � ⊂ � �

G∗
21 � , so that there is some matrix M such that G11 � MG21. Hence

G2
�
G2 � −1 � I

⇔



G21
G22 � � � G−1

2 � 1
�
G−1

2 � 2 	 � 

I 0
0 I �

⇒ G21
�
G−1

2 � 2 � 0
⇒ G11

�
G−1

2 � 2 � MG21
�
G−1

2 � 2 � 0 
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