A SCHUR METHOD FOR LOW-RANK MATRIX APPROXIMATIONP

ALLE-JAN VAN DER VEEN

Abstract. The usua way to compute alow-rank approximant of amatrix H isto takeits singular value decom-
position (SV D) and truncate it by setting the small singular values equal to 0. However, the SVD is computationally
expensive. This paper describes amuch simpler generaized Schur-type agorithm to compute similar low-rank ap-
proximants. For agiven matrix H which has d singular values larger than €, we find al rank d approximants H such
that H —H has 2-norm less than €. The set of approximants includes the truncated SV D approximation. The advan-
tages of the Schur algorithm are that it has a much lower computational complexity (similar to a QR factorization),
and directly produces a description of the column space of the approximants. Thiscolumn space can be updated and
downdated in an on-line scheme, amenable to implementation on a parallel array of processors.
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1. Introduction. We consider the following problem: for agiven matrix H [J C™" and
tolerance level € = 0, describe al matricesH such that

(@) [H-Hl<e,
@) (b) rank(F)=d,

whered isequal to the number of singular values of H that arelarger than €. (|| - || denotesthe
matrix 2-norm.) Such amatrix H isalow-rank approximation of H in 2-norm. Notethat there
are no approximantsof lower rank than d, and that we do not try to compute an approximant H
of rank d that minimizes || H—H ||, but rather one in which the approximation error islimited.
These approximants can be computed with significantly less effort.

One way to obtain an approximant which satisfies (1) is by computing a singular value
decomposition (SVD) of H:

H=Uzv'=[U; UZ][Zl b2 ] [VP]

2 vy

(Zo)i > &, ()i sE.
Here, U and V are unitary matrices, and X is a diagonal matrix which contains the singular
values oy of H. The matrices are partitioned such that 2; containsthe singular valuesthat are
larger than €, and X, containsthose that are smaller than €. With this decomposition, arank d
approximant H is

H=U;Z,V).

This ‘truncated SVD’ approximant iswidely used and effectively obtained by setting the sin-
gular values that are smaller than € equal to zero. It actually minimizes the approximation
error: ||H—H|| = 0441 < €, and is optimal in Frobenius norm aswell. However, the SVD is
expensive to compute, and much of the information that it revealsisnot even used. Often, we
are not so much interested in the individual singular vectors, but in the principal subspaces,
spanned by the columns of U; and V. Aswe show in this paper, it isindeed possibleto obtain
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2 A.J. VAN DER VEEN

a parametrization of these subspaces and of all rank-d 2-norm approximants. All necessary
information is gleaned from an implicit and non-unique factorization of HH"-¢2| as

HH"-¢2l = BB”-AA”,  [A Blinvertible,

whichisprovided by a‘hyperbolic’ QR factorization of [el H]. Such afactorizationissimilar
to an ordinary QR factorization, except that it uses a matrix which is unitary with respect to
an indefinite inner product. Under additional regularity assumptions on H, this factorization
may be computed using a generalized Schur-type method, which requires only about 1/2n?n
operations (elementary rotations) for amatrix of sizemxn.! The column span of the approx-
imantsis directly obtained from B and A: it isproven that al suitable column spans are given
by the range of
B-AM, |M|<1.

The computation of an approximant itself requires an additional nx n matrix inversion, or a
projection of H onto this subspace.

Continuing efforts on SVD agorithms have reduced its computational complexity to be
mainly that of reducing a matrix to a bidiagonal form: not much more than the complexity
of a QR factorization. However, aremaining disadvantage of the SVD in demanding appli-
cationsisthat it is difficult to update the decomposition for a growing number of columns of
H. Indeed, there are important applicationsin signal processing (e.g. adaptive beamforming,
model identification, adaptive least squares filters) that require on-line estimation of the prin-
cipal subspace, for growing valuesof n. A number of other methods have been devel oped that
alleviate the computational requirements, yet retain important information such as numerical
rank and principal subspaces. Some of thesetechniquesarethe URV decomposition[1], which
isarank revealing form of a complete orthogonal decomposition [2], and the rank revealing
QR decomposition (RRQR), [3-8], see[8] for areview. TheURV agorithmisiterativeand re-
quires estimates of the conditioning of certain submatricesat every step of theiteration. This
isaglobal and data-dependent operation: not a very attractive feature. The SVD and URV
decomposition can be updated [9, 1], which is till an iterative process, although it has been
shown recently that asimpler schemeisfeasibleif the updating vectors satisfy certain station-
arity assumptions [10, 11]. Aninitia computation of the RRQR consists of an ordinary QR,
followed by an iteration that makesthe decomposition rank revealing. Asaone-sided decom-
position, the RRQR iseasier to update than an SV D, but a so requires (incremental) condition
estimations at each updating step.

Animportant aspect of the hyperbolic QR factorization isthat, similar to a QR factoriza-
tion, it can be updated very straightforwardly for growing n. Therank of the approximants(the
dimension of the principal subspace) is updated as part of the process without any condition
estimation. Nonethel ess, the method provides an exact error bound on the subspace estimates,
in terms of the associated matrix approximation error €. Similar to the URV and the RRQR,
the value of € hasto be fixed beforehand. Another aspect is that the Schur method for com-
puting the hyperbolic QR factorizationisaparallel agorithm with only local and regular data
dependencies, and isvery straightforward to implement on asystolic array of processors. The
structure of the array isthe same as that of the well-known Gentleman-Kung triangular array
for the computation of a QR factorization using Givens rotations [12]. One negative aspect
of the Schur algorithm is that it uses hyperbolic rotations, which are potentially unbounded
and could make the approximation scheme less robust than the SV D or the URV. Thisis more

1 To set our mind, we usually assume that m< n, but all results remain true when m > n.
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a property of the implementation than of the overall technique: it occurs only if certain sub-
matrices have a singular value close to €, and in these cases, a simple loca pivoting scheme
sufficesto virtually eliminate any risk of breakdown. Alternatively, we may derive factoriza-
tion schemes that minimize the number of hyperbolic rotations.

Connections. Schur methods an sich are well known. Originally, Schur devised this al-
gorithm to test whether a polynomial is bounded within the complex unit disc [13]. Schur
algorithmsoccur in certain constrained interpolation problems (viz. [14,15]), rational approxi-
mation by analytic functions[16], factorization and inversion of positivedefinite and later also
indefinite Toeplitz matrices (viz. thereview in [17]), and have been generalized in anumber of
sensestonon-Toeplitz matrices. A generalizationthat comescloseto the description hereisby
Dewildeand Deprettere[18], for Schur-parametrizationsand band approximationsof positive
definite matrices, and by Diepold and Pauli [19, 20], for indefinite matrix cases. In the linear
algebra community, similar generalized Schur methods, but known under other names, have
been used for the solution of positive definite systems[21, 22] and for the downdating of QR
and Cholesky factorizations[23], although the main emphasis has been on hyperbolic House-
holder transformations for the same purposes [24-28]. The HR-decomposition in [24], |ater
known as the hyperbolic QR factorization (e.g., [29]), isin fact precisely the tool we need.

The present application to low rank matrix approximation has been unknown so far. Itis
derived asaspecial case of anew theory for model reduction of time-varying systems[30,31].
The time-invariant counterpart (approximation of a Hankel matrix by one of lower rank) has
been known for morethan adecade and iswidely used in systemstheory and control for model
reduction and for solving Hs-control problems (viz. [32, 33]). This theory goes back to the
work of Adamjan, Arov, and Krein, in 1971, on the solution of the Schur-Takagi interpolation
problem [16].

Structure of the paper. The remainder of the paper is organized as follows. Section 2
is areview of those properties of J-unitary matrices that we need in this paper, such as the
existence of a hyperbolic QR factorization. In section 3, this factorization is used to prove a
basi c version of the approximation theorem, and we introduce a parametrization of all 2-norm
approximants of rank d. Some values of the parametersthat |ead to interesting approximants
arediscussed. The computation of thefactorizationisthetopic of section4. Itisshownthat the
factorization can be computed using a Schur-type algorithm, although certain extraconditions
have to be imposed on the matrix H. We derive necessary and sufficient conditions so that the
algorithm does not break down, and discuss some simple pivoting schemes to alleviate these
conditions. Finally, in section 5, the algorithm is applied to atest case, to show the behavior
of some of the approximants and the effectiveness of the pivoting scheme.

Notation. Thesuperscript (-) 5 denotes complex conjugatetransposition, R(A) isthecol-
umn span (range) of the matrix A, I, isthe mx midentity matrix, and Opxn iSan mxn matrix
with zero entries. AT denotesthe pseudo-inverseof A. At some point, we will usethe notation
Ajj) to be the submatrix of A, consisting of itsfirst till thei-th row, and Ay; i to denotethe first
k columns of Ay;.

2. J-Unitary matrices. We review the definition and some properties of J-unitary ma-
trices, most of which are well-known. A matrix © is J-unitary if it satisfies

@3) olo=J, i =J, WhereJ:[I . ]
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J is asignature matrix; the identity matrices need not have equal sizes. © is necessarily a
square matrix, and invertible as well: @1 = JOMJ. We partition © according to J as

On Op
@ [ O Oz ]

The J-unitarity of © impliesao. 05,02 = | + ©[,0;,. From this expression, we derive in
turn the properties

(5) (a) Oxisinvertible, (c) ”@1265%” <1,
(b) (O3] <1, (d) ||©11-0120530, | < 1.

Indeed, (a) follows because ©,, isaso square, (b) is obtained from
(6) 0202 +(02:01)(0120%3) = 1,

so that ©,5053 <1, and (c) results from the same expression because 55053 > 0. By elemen-
tary algebra, one verifies that the matrix

O1—-0120510, —-01,053
025021 0%

is, in fact, unitary, which implies (d).
Similarly, we have

@ (@) Oy isinvertible, (c) [|ofey| < 1,
(b) [legll =1, (d) [©22-021011Or|| < 1.

Another important property of J-unitary matricesis the preservation of the J-inner prod-
uct. Suppose that A, B,C,D are matrices, related as [C D] = [A B]®. The J-unitarity of ©
implies

AAP-BB- [A BJJA B
[A BJ@JOYA B
ccH-pp*.

(8)

Motivated by this equation, we say that J associates a positive signature to the columns of A,
anegativesignature to the columnsof B, and likewisefor C and D. We will sometimes denote
thisin equations by writing + and — on top of A and B.

So far, the signature matrix J in (3) was sorted: the diagonal hasfirst all the positive en-
ties, then the negative ones. We will at some point also need unsorted signature matrices J,
which isany diagonal matrix with diagonal entriesequal to +1 or 1. Asageneralization of
the definition in (3), we will say that amatrix © is (Jy, J)-unitary? with respect to signature
matrices J;, J; if it satisfies
(9 éDj1é = J~2, éjzém = jl.
Again, © is square and invertible: 1 = J,09;. Sylvester'slaw of inertia claims that the
number of positive entriesin J; must be equal to the number of positive entriesin J,, and

similar for the negative entries. An unsorted signature matrix Ji can aways be sorted by a
permutation matrix My suchthat J; = MyJ;MYis sorted. If also J, = M,JpM5lis sorted, and ©

2 We will sometimes generically write J-unitary, to avoid being overly detailed.
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satisfies (9), then actually J; = b =: J,and © .= I'IléI'IE is J-unitary in the sorted sense of
(3). The permutation, and hence ©, is not unique, but thisisusually irrelevant. Wework with
O rather than © in cases whereits partitioning into submatrices, asin (4), isimportant, but the
properties (5) are independent of precisely which © is chosen.

A matrix Aissaidto beJ-nonsingular, with respect to acertain signature matrix J if AJA©
is nonsingular. It isimmediate that if Ais Ji-nonsingular and © is a (Jl, Jz) unitary matrix,
then A@ is J>-nonsingular. The following basic result claims that J-nonsingular matrices can
be factored:

THEOREM 2.1. Amatrix A: mx(m+n) is Jl nonsingular if and only if there exists a
signature matrix J, anda (Jl, Jz) unitary matrix © such that

(10) AG = [X  Omxn], X:mxm, invertible.

Proof. Assumethat A is J-nonsingular. Then we can factor AJ;A”as
AJ AT = XF XY, X :mxm, invertible,

for some mx msignature matrix J'. Thisfactorization exists and can in principle be computed
from an LDU factorization with pivoting, or from an eigenvalue decomposition of AJ;A.
Since A is Ji-nonsingular, it is also nonsingular in the ordinary sense, so that there exists a
matrix T : (m+ n) xm, such that AT = X. T is not unique. Because X is invertible, we can
take

T = JAY AT AT IX.

Using (AJ; A7) = X0 X1, it is directly verified that this T satisfies T, T = J'. There-
mainder of the proof istechnical and showsthat T can be extended to a square, J-unitary ma-
trix. From T™3;T = J it follows that the m columns of J; T are linearly independent. Taking
any basis of the orthogonal complement of the range of J; T givesa matrix K, with nindepen-
dent columns, such that TZJ,K = 0. The matrix [T K] isinvertible, becauseit is square and
itskernel is empty:

[T K][z]:o E :fil[; K][z]:o

and subsequently, it also followsthat xo = 0. It remainsto normalize the columns of K. Put
-~ J
[T K"L[T K= [ N ] .

N is nonsingular because [T K] isinvertible, and we can factor it asN = R‘J’R. Put
O=[T KRY, J=diagd J.

Then @ is (Jy, J,)-unitary, and satisfies (10). 0

A recursive application of this theorem proves that, under additional conditions, A hasa
triangular factorization:

COROLLARY 2.2. Let A: mx(m+n) be J;-nonsingular. Denote by Ajj) the submatrix of
A, consisting of itsfirst i rows. Then there exists a signature matrix J,, and a (Jl, Jz) -unitary
matrix © such that

AO=1[X Omnl, X :mxm, lower triangular, invertible



6 A.J. VAN DER VEEN

if and only if Ay, is J;-nonsingular, for i = 1, ..., m. If the diagonal entries of X are chosen to
be positive, then X isunique. Such afactorization was proven in [24] for square matrices A
and upper triangular X, but this result extends directly to the rectangular case. In[24], it was
called the HR-decomposition, and it is also known as the hyperbolic QR factorization [29].

3. Approximation theory.

3.1. Central approximant. For agiven mxn datamatrix H and threshold €, denote the
SVD of H asin (2). Suppose that d singular values of H are larger than €, and that none of
them are equal to €. Our approximation theory is based on an implicit factorization of

(12) HH"-¢2| = BB"-AA".

ThisisaCholesky factorization of an indefinite Hermitian matrix. A and B are chosento have
full column rank. They are not unique, but by Sylvester’sinertia law, their dimensions are
well-defined. Using the SVD of H, we obtain one possible decomposition as

HHP- 2] = Uy (22 -2 U4 Ux(Z5-€21)U7,

where the first term is positive semidefinite and has rank d, and the second term is negative
semidefinite and hasrank m—d. Hence, B has d columns, and A has m—d columns.

To obtain an implicit factorization which avoidscomputing HH™, we make use of theorem
2.1

THEOREM 3.1. Let H: mxn have d singular values larger than €, and none equal to €.
Then there exists a J-unitary matrix © such that

(12) [elm H]® = [A B]

where A' = [A Opd] ; B' = [B Onxn-d] , A:mx(m-d), B:mxd, and [A B]isof full rank.

Proof. Thematrix [l H] isJ-nonsingular: by assumption, €21 ~-HH has d negative, m—
d positive, and no zero eigenvalues. Hencetheorem 2.1 impliesthat thereexists@ : [el, H]|© =
[X Omxn]. Thecolumnsof X arethe columnsof [A, B], in some permuted order, where A, B cor-
respond to columnsof X that have a positive or negative signature, respectively. After sorting
the columns of [X 0] according to their signature, equation (12) results. a

Note that, by the preservation of J-inner products (equation (8)), equation (12) implies
(11). Fromthefactorization (12), we canimmediately derive a2-norm approximant satisfying
the conditionsin (1). To thisend, partition @ accordingto itssignature J into 2 x 2 blocks, like
in (4).

THEOREM 3.2. Let H : mxn have d singular values larger than €, and none equal to €.
Define the factorization [elm H]© = [A' B'] asin theorem 3.1. Then

(13) H=B05

isarank d approximant such that ||H-H || < €.

Proof. H iswell-defined because O, is invertible (equation (5a)). It has rank d because
B'=[B 0] hasrank d. By equation (12), B' = €@, + HO2, hence H —H = -£0;,033. It
remains to use the fact that ©1,053 is contractive (equation (5c)). d

We mentioned in the introduction that the column span (range) of the approximant is
important in signal processing applications. From theorem 3.2, it is seen that this column
spanis equal to that of B: it is directly produced by the factorization. However, remark that
[A B] in (12) isnot unique: for any J-unitary matrix ©1, [A; Bi] = [A B]©; also satisfies
€2l -HH"= AjA7-B;BY, and could also have been produced by the factorization. E.g., for
some choicesof ©,, wewill have R(B) = R(U1), and R(A) = R(Uz). Using ©,, wecanfind
more approximants. A parametrization of all 2-norm approximantsis the topic of the follow-
ing section.
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3.2. Parametrization of all approximants. We will now give aformulaof al possible
2-norm approximants H of H of rank equal to d; there are no approximants of rank less than
d. Theformulaisin terms of a chain fraction description. Similar formulas frequently occur
in constrained interpolation theory (see e.g., [14,15] and references therein).

The set of al minimal-rank 2-norm approximants will be parametrized by matrices §_:
mx n, with 2x 2 block partitioning as

d n-d
(S)n (3_)12]

m-d
(14) S ~d [(&)21 ()22

and satisfying the requirements

15 (i) contractive: || S || <1,
( ) (ll) block lower: (S_)12:O

Thefirst conditionon S will ensurethat || H—H|| < &, whereasthe second conditionisrequired
to have H of rank d.

THEOREM 3.3. With the notation and conditions of theorem 3.2, all rank d 2-norm ap-
proximants H of H are given by

H = (B'-AS)(02-025)™,
where §_ satisfies (i): || S_|| <1, and (ii): (S.)12 = 0. The approximation error is

(16) S:=H-H = g0uS -012)(02-0,5)".

Proof. The proof is given in the appendix. O

By this theorem, an estimate of the principal subspace of H is given by R(H) =R(B -
A'S)=R(B-A(S.)n), for any valid choiceof S . Notethat (S )11 rangesover the set of all
contractive (m-d) x d matrices, so that all suitable principal subspace estimates are given by

R(B-AM),  ||M||<1.

The distance of a subspace estimate with the actual principal subspace, R (U1), is measured
only implicitly, in the sense that there exists an approximant H with this column span that is -
closeto H. Actually, for each subspace estimate there are many such approximants, since the
subspace estimate only depends on (S )11, whereas the approximant also depends on (S )21
and (S_) 2. ) )

The choice of a particular approximant H, or subspace estimate R.(H), boils down to a
suitable choice of the parameter S_. Various choices are interesting:

1. The approximant H in theorem 3.2 is obtained by taking § = 0. This approximant
isthe most simpleto compute; the principal subspace estimateis equal to the range of B. The
approximation error is given by €|| ©1,053||. Note that, even if all nonzero singular values
of H are larger than € so that it is possible to have H = H, the choice §_ = 0 typically does
not give zero error. Hence, this simple choice of S could lead to ‘biased’ estimates. Thisis
confirmed in the simulation example in section 5, and occursin cases where gy iscloseto €.

2. Asthetruncated SV D solution satisfiesthe requirements, thereisan § whichyields
this particular solution and minimizes the approximation error. However, computing this §
requiresan SVD, or ahyperbolic SVD [29].
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3. Itissometimespossibleto obtainauniform approximationerror. First write equation
(16) inamoreimplicit form,
“l-len e[S
-G | [ Oz Ox =ln |’

where G isan invertible nx n matrix. This eguation implies
GHe™?SS-1)G = S5 - 1In.

Supposems< n. If wecantake S tobeanisometry, § §= Im, thenrank(S’S. —1n) =n-m. It
followsthat e 1Smust also be an isometry, so that all singular valuesof S= H —H are equal to
€: the approximation error is uniform. S_ can be an isometry and have (S_)1o = Oonly if d >
m-d, i.e.,d=m/2. Inthat case, we cantakefor exampleS_ = [I, 0]. Thisapproximant might
have relevance in signal processing applications where a singular data matrix is distorted by
additive uncorrel ated noise with a covariance matrix 02|,

4. IfwetakeS§ = 63‘11@12, then we obtain H = H and the approximation error is zero.
Althoughthis§_ iscontractive (viz. equation (7)), it does not satisfy the condition (S )12 =0,
unlessd = mord = n. Simply putting (S_)12 = 0 might maketheresulting §_non-contractive.
To satisfy both conditions on S , a straightforward modification is by setting

_ I (011012)u O
17 =00, | ¢ ] = [ u-t
(n S =010 [ On-d (07i01)1 O
The corresponding approximant is
(18) HW = (B'-A©1{01[; o] ) (02~ 0201014 §]) ™,

and the corresponding principal subspace estimate is given by the range of
(19) B := B-A(@7012)11 .

Both the subspace estimate and the approximant itself can be computed by a Schur comple-
ment formula. The subspace estimateis ‘ unbiased’ in a sense discussed below, and is usualy
quite accurate when gy is not very close to €, as shown in simulation examples (section 5).
The approximation error is determined by

" 0 - -
(20) s:H—H<1):s@12[ d —ln-d](622-921@:11@12[58])1'

This shows that the rank of Sisat most equal to min(m, n—d). If m= n, then therank of Sis
m-d, i.e., theerror hasthe same rank as a truncated SV D solution would give.

5. Toimprove on the approximation error, we proposeto take (S )11 = (071012)11, as
in the previousitem, and use the freedom provided by (S_ )21 and (S_)22 to minimize the norm
of the error. The subspace estimate is only determined by (S )11 and is the same as before.
Instead of minimizing intermsof S, which involves anon-linear function and a contractivity
constraint, we make use of the fact that we know already the column span of the approximant:
we are looking for H = BN, with BV given by (19) and N : d x n aminimizer of

rr;\iln||H—B(1)N||.

A solution is given by N = BYTH, and the resulting approximant is

H = BYBWH

(21) qe
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the projection of H onto R (BY)). Although we do not compute the S to which this approxi-
mant corresponds, the residual error is guaranteed to be lessthan or equal to €, becauseit isat
most equal to the norm of Sin (20). Hence, there will be some S_ that satisfies the constraints,
although we never compute it explicitly. For this S, the rank of the residual error is always
at most equal to m—d, the rank of 1,,—BYBDT,

One other important feature of the subspace estimate B™Y in (19) isthat it is unbiased, in
the following sense.

LEMMA 3.4. R(BY) OR(H).

Proof. From [(A 0) (B 0)] = [A' B] = [el H]©, wehave

{ A 0 = £Ou+HOn
B 0 = £Op+HO»
Hence
BY 0 = [B 0-A O]eﬁelz[ ! O]
— (014 HOp) - (s@ﬂ+H921)@;11912[ ! o]
= H(@22—921@3__11@12)[ ! 0 ] +H@22[ 0 | ]+8@12[ 0 | ]
so that
B = H(ezz—eﬂe;jelz)[ 5 ] .
0

With equation (7d), we also have
(22 IBY < H.

This shows that, although J-unitary matrices may be large, this particular subspace estimate
is bounded in norm by the matrix it was derived from.

4. Computation of ©. Inthissection, we consider the actual construction of a J-unitary
matrix © such that

[el H]© = [A B, J:[Im —In]'

The proof of theorem 2.1 providesatechniqueto compute ®, but the constructionisglobal and
not really attractive. We are looking for algorithmsthat do not square the data and that allow
easy updating of the factorization as more and more columns of H are included (growing n).
© will be computed in two steps: © = G, where @ isa (J, J)-unitary matrix with respect to
J and an unsorted signature Jo and is such that

+ - +/= +/-
(23) [elm H]O@= [ X  Omxn], X:mxm.
M isany permutation matrix such that MJ,M"= J isa sorted signature matrix. The latter fac-

torization can be viewed as a hyperbolic QR factorization, in case X has a triangular form,
and can be computed in a number of ways. Hyperbolic Householder transformations have



10 A.J. VAN DER VEEN

been employed for this purpose [24, 29], zeroing full rows at each step, but the most elemen-
tary way isto use elementary rotations to create one zero entry at atime, like Givensrotations
for QR factorizations. Such techniquesare known as (generalized) Schur algorithms, because
of their similarity to the Schur method for Toeplitz matrices. In contrast to hyperbolic House-
holder transformations, they allow for straightforward updating and downdating. The main
differences with the QR factorization, and also with the usual definite Schur algorithms (for
which €2l —-HHY> 0) arethat, here, the basic operations are J-unitary elementary rotations of
up to six different types, and that we haveto keep track of signaturesto determine which type
to use.

Therecursive construction of @ inthisway isnot always possible, unless extraconditions
on the singular values of certain submatrices of H are posed. Thisisawell-known complica-
tion from which al indefinite Schur and hyperbolic Householder methods suffer and that in
its ultimate generality can be treated only by global matrix operations (asin [19,20], or asin
the proof of theorem 2.1, which uses an altogether different algorithm). The exceptions oc-
curs only for specific cases, and simple pivoting schemes (column or row permutations) are
virtually always adequate to eliminate this problem. We will briefly go into these aspectsin
section 4.5.

4.1. Elementary rotations. At an elementary level, we are looking for 2x 2 matrices 6
such that, for given scalarsa, b,

@ bjB =[x 0,

where X is some resulting scalar. The matrices B are J-unitary, but with respect to unsorted
signature matrices jy, Jo:

(8)186 = i, B8j2(8)"= ;.

The signature matrix |, is specified along with a,b and si gnifies the signature of [a b]; i2
is aresulting signature matrix to be computed along with 6 and x, and will be the resulting
signature of [x Q]. There are two rulesthat determine j,. From the J-unitarity of 6, we have
that

[a bljifa b]” = x(j2)ux’

O (fz)n:sign([a bl jila b]D).

We have to assume at this point that the expression in brackets is not zero, so that ( j}) 118
either +1 or —1. The second diagonal entry of j, then follows from theinertia rule: by con-
gruence, the number of positive entriesin j; is equal to the number of positive entriesin o,
and similarly for the negative entries.

Depending on the signatures, we choose one of thefollowing types of elementary ( j~1, j~2)-
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X Y]:=[elmn H]

1= ]

© = lmn

fork=1tonandi=1tom,
(@ b]:=[X(i,i) Y(ik)]
~ [ G, 0
“"[ 0 J(m+km+K)
Computee szroma b, j1 st. [a b] =[O0
Embed 6 into GJ i,k
X Y]:=[X YOk

=08
Jiiy=(21
J(m+k,m+k) = (j2)22

end

J~2 Z:j

FiG. 1. Schur algorithm to compute the factorization [el H]® = [X 0] fromH.

unitary rotations (taking |s® + |c|? = 1 throughout):

2 = ' -1 | j2 = - 1: D é:-_fm —15%
3. n=| 7t e =t _1- O é:-_fD _15%
4 h=|T 1] R=| 1- H 6= —iﬂ _15%
5. h=|* 1]’ = |t 1] D 6= (S:S _cs]
6. Tl:-_l —1]’ j~2:'—1 —1] H é:-(s:g _cs]

Thefirst caseisthe standard elementary hyperbolic rotation. The next three cases are obtained
from thiscase by row and column permutations. Cases5 and 6 are not hyperbolic, but ordinary
elliptic rotations, but they are (] i1, 12) unitary nonetheless. These six cases are sufficient to
consider, as every possible signature pair (Jl, Jg) is covered. With j; and |, known, we select
the appropriatetype of rotation matrix, and the rotation parameterssand c follow subsequently
from the equation [a b]@ = [x O] as

casel, 4 (Ja| > |b)): s=b/a, c=(1
case2,3(laj< b): s=a/b, c=(1-s%)%?
case5, 6: s=b@a+bb) 2, c=(1
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4.2. Indefinite Schur algorithm. To compute the factorization (23), elementary rota-
tions 6 are embedded in plane rotations ©; ) which are applied to the columns of [el H] in
the same way as Givensrotations are used for computing a QR factorization. Each plane ro-

tation produces a zero entry in H; specifically, O(, k) annihilatesentry (i, k). A differencewith
QR isthat we have to keep track of the signatures associated to the columns of the matrix to
determine which type of rotationsto use. The general scheme, however, goes as follows:

+ + + - - - -

€ 0 X X x X] é(u)

[l H = £ X X X X 5
_O € X XX x|
- 4+ + + - - -

X 0 x x x é(Z,l)

X £ X X x X N
| % € X X X X
- 4+ + + - - -
[ x 0 x x X]

X X 0 x x x =
X X g X X x X
- 4+ - + 4+ - -
B(mn) [ x 0 0 0 O]
- X X 0 0 0 O|=[X 0,

[ x x X 0 0 0 0]

0 = 611001 Omy Ou2 OG22 - Omn -

(Except for the first matrix, the signatures of the columnsin the above matrices are examples,
as they are data dependent.) The pivot elements at each step are underlined; these entries,
aong with the signatures of the two columnsin which they appear, determine the elementary
rotation 6 that will be used at that step, as well as the resulting signature j». This signature
is the new signature of these two columns, after application of the rotation. The algorithm
is summarized in figure 1.3 The nulling scheme ensures that [el H]©@ = [X 0], where X
is aresulting lower triangular invertible matrix; it contains the columns of A and B in some
permuted order. The columns of X with apositive signature are the columns of A, the columns
with anegative signaturearethose of B. Hence, thefinal step (not listed figure 1) isto sort these
columns, such that [X O] =[A 0 B 0] = [A' B]. Then © = @ is J-unitary with respect to
J,and[el Hl©@=[A" B].

The complexity of the algorithmissimilar to that of the QR factorization: about 1/2mPn
rotations, or 2men flops. The Schur agorithm has a direct implementation on a systolic array
of processors. Thisarray isentirely similar to the classical Gentleman-Kungtriangular Givens
array [12], except that, now, all data entries have a signature associated to them, and the pro-
cessors have to perform different types of rotations, depending on these signatures. We omit
the details.

4.3. Updatingand downdating. The Schur methodisstraightforwardto updateasmore
and more columns of H become known. If [l Hn|©, = [Xn O] isthe factorization at point

3 Asan aside, we mention that Bojanczyk et al. [23] have developed a numerically more stable implementation
of the application of hyperbolic plane rotations to vectors. This is probably of relevance in the present context.
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nand Hpy1 = [Hn hnya], then, because the al gorithm works column-wise,

[ HnidlOpiny =Xz 0 O [Xa 0 hp] 8™V =Xy 0 0]
( ’ - A A(n+l1)
On+1) = Oy :

for some J-unitary matrix B+ acti ng on the columns of X, and on h,,;. Hence, we can
continuewith the result of the factorization that was obtained at the previousstep. Each update
requires about 1/2n? rotations.

The downdating problem is to compute the factorization for H, with its first column hy
removed, from afactorization of Hy. It can be converted to an updating problem, where the
old column hy is now introduced with a positive signature,

+/-

[%n rTl] 8™ = [Xa41 0.

Thisispossible because, implicitly, wefactor €21 —=HaH{+ hyh? = X,JX{+ hy . The unique-
ness of the hyperbolic QR factorization into triangular matriceswith positive diagonals ([24],
viz. corollary 2.2) impliesthat theresult X, 1 isprecisely thesame asif h; had never been part
of Hy at al.

4.4. Breakdown. Insection 4.2, we had to assume that the data matrix H was such that
at no point in the algorithm [a b] j1[a b]”isequal to zero. If the expression is zero, then there
is no J-unitary rotation & such that [a b]6 = [ 0]. Note that the condition in theorem 3.1
that none of the singular values of H are equal to € does not preclude this case, but merely
ascertains that there exists a® which will zero H. One simple exampleis obtained by taking
H=[11T,¢&=1 Itisstraightforward to show that thereis no J-unitary © such that

][ 32

asthe J-norms of the first row will not be equal. Hence © cannot be obtained by the recursive
algorithm. However, a more general © does exist, such that

+ + - + -+
1 g_ L [1 1|0
1] 1 51-1 1| 0

viz.

.1 1—1? ) 1 ) 1
0=—| -1 -1 2 |, J= 1 , dh= -1 .
IR T RN S AN

The differenceisthat, in this factorization, the resulting matrix X is no longer lower triangu-
lar. Theorem 4.1 gives necessary and sufficient conditions on the singular values of H and a
collection of submatrices of H, so that the Schur algorithm does not break down.

THEOREM 4.1. LetH : mxnbea given matrix, and € 2 0. Denote by H; ; the submatrix,
consisting of the first to the i-th row and the first k columns of H. The Schur algorithm does
not break down if and only if none of the singular values of Hjj g isequal to g, fori =1,...,m
andk=1,...,n.

Proof. (Necessity) When processing the k-th column of H by the Schur agorithm, we
are in fact computing a triangular factorization of [€lm Hmy]. Corollary 2.2 claimsthat a
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suitable J-unitary operator existsif and only if [eli Hp; ] is J-nonsingular, fori = 1,...,m,
i.e., if and only if none of the singular values of H;;  is equal to 1. The triangularization is
donefork=1,2,...,ninturn.

(Sufficiency) Sufficiency at stage (i, k) follows recursively from the factorization at the
previous stage and the exi stence and uniqueness of thefactorization at the current stage. d

Similar results are known for the case where the factorization is computed via hyperbolic
Householder transformations where al zerosin arow are generated at the sametime. In this
case there are less conditions [24], viz. theorem 2.2. It should be noted that the conditionsin
theorem 4.1 are quite elaborate, as only one condition (none of the singular values of H are
equal to €) suffices for the existence of ©. Numerically, we might run into problems also if
one of the singular valuesis close to €, in which case the corresponding hyperbolic rotation
has a large norm. How serious this is depends on a number of factors, and a careful numer-
ical analysisis caled for. One example where a large rotation is not fatal is the case where
the singularity occurs while processing the last entry of a column (i = m). Although the ro-
tation will be very large, the resulting X remains bounded and becomes singular: Xmm = 0.
Hence, the subspace information is still accurate, and X variesin acontinuous way acrossthe
€-boundary; only its signature is necessarily discontinuous. Pivoting schemes can be used to
prevent large rotations, and are discussed in the next subsection.

4.5. Pivoting schemes. Because a breakdown occurs only for special values of the en-
tries of H, we can in almost all cases employ asimple pivoting operation to avoid alarge hy-
perbolicrotation. If such arotation occurs at the zeroing of entry h , then the matrix Hy; | has
asingular value closeto €. At thispoint, there are anumber of remedies, based on therelative
freedom in the order in which zero entries are created. The simplest solution isto permutethe
current column with the next one, which ispossibleif k < n. We can a so permutethe i-th row
withthei + 1-¢t, if i < m. Instead of permutations, other, more complicated operations are
also possible, such as plane rotations of two columns or rows. Finally, if (i,k) = (m,n), i.e,
hi k isthelast entry to be zeroed, then H hasasingular value equal to € and thereis no remedy:
thereis no bounded ©. However, becauseit isthe last rotation, X will still be bounded, but it
becomes singular.

A column permutation at stage (i, k) swapsthek-th column of H withthek+ 1-st, and also
swaps the corresponding rows of ®. Before the permutation is done, the first i — 1 entries of
hy4+1 have to be made zero. Hence, a column permutation scheme is most easily implemented
when entries of H are zeroed row by row, rather than column by column asin the algorithmic
description in section 4.2. Note that it is already sufficient to create zero entries of H in an
anti-diagonal fashion. Thisiswhat actually happensin asystolic array implementation, where
zeros on anti-diagonals of H are created in parallel. Hence, acolumn pivoting scheme can be
readily implemented on such an array, with only one extrabuffer required at each processor (to
gueue entries of a second column), but without sacrificing the systolic nature of the algorithm
in any sense. In column permutation schemes, X stays upper triangular and, after processing
of both hy and hy,1, is the same as it would be without pivoting. © is, of course, different:
unbounded in thefirst case, bounded in the second.

Row permutations are necessary, e.g., if there is no next column (k = n), or if columns
are to be processed one at atime. It is required that the first k—1 entries of thei + 1-st row
of H have already been zeroed before permuting these rows. Thisisautomatically the case if
columns are processed one by one, or requires one rotation if we use an anti-diagonal zeroing
scheme. Another rotation is needed to keep X lower triangular after the permutation has been
performed. This makes row pivoting computationally more expensive. We also have to keep
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30

25l (3,4) — L (33 (24 S w/o pivoting |
- (3,2) ~— with pivoting

20 b

el

10f .

FiG. 2. Normof ©. With pivoting, ||©|| — o for certain values of o, when the indicated entry (i, j) of H is
processed. With pivoting, thisonly occurswhen 6, = 1.

track of the permutations: we are now in fact computing a factorization

Mlel H®=[X 0] - [e H® = [N 0
= [XI 0].

X islower triangular, but the resulting X' in general not. It is possible to use any other invert-
ible transformation of the rowsinstead of a permutation, such as for example a unitary plain
rotation. This more general approach was suggested in [29], and provides a solution even in
the special cases where permutations do not lead to bounded results, such ase.g., in the case
of equation (24). The resulting factorization can be viewed as a Hyperbolic URV decomposi-
tion. The added generality allows to reduce the number of hyperbalic rotations to one or two
per column update, and leads to stable numerical implementations. (A discussion of thisis
relegated to future publications.)

5. Simulation results. In this section, we demonstrate some of the properties of the ap-
proximation scheme by means of asimple example. We take H(o,) = U3 (o) V7 to be ase-
guence of 3x4 matrices, with U and V randomly selected constant unitary matrices, and with
singular values equa to

(20, Oy, 0.5) , 0,=0,0.01,...,3.99,4.

The approximation tolerance is set to € = 1. We compare the approximants H(©) given by
S = 0, H® given by equation (18), H@ given by (21), and HY) when the factorization is
computed with pivoting. The pivoting scheme consists of column permutations, except when
processing the last column, in which case we switch to row permutations. The pivoting is
applied in its extreme form, i.e., whenever this leads to elementary rotation matrices with a
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60
: first column of B
s0f ----- : second column of B, B(Y) ]
- first column of B(Y)
401 ]
30}
20
10}
0
0
1
0.8
0.6
IH=H]
0.4 :
:HO
,,,,, 3@
02f ++ ++ A® .
... :H® pivoting
— - — - trunc. SVD
0 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4

FiG. 4. Norm of the approximation error.
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FIG. 5. Distance between the principal and estimated subspaces.

smaller norm. The approximants are compared on the following aspects: (a) || © ||, with and
without pivoting; (b) ||H - H ||, for each of the mentioned approximants; (c) the accuracy of
the subspace estimates, compared to the principal subspace of H (the column span of the sin-
gular vectors with corresponding singular values larger than 1). The distance between two
subspaces.A and B isdefined asdist(A, B) = || P4 —Pg||, where P4 isthe orthogonal projec-
tion onto A [2].

Figure 2 shows || © | as afunction of o,. Without pivoting, there are a number of peaks,
corresponding to the values of o, where oneof the submatricesHj; i hasasingular value equal
to 1. Intherange 0< 03 <4, this occurred for (i,k) = (3,4), (3,3), (3,2) and (2, 4), respec-
tively. When pivoting is applied, the peak at 6, = 1is, necessarily, still present, but the other
peaks are mostly smoothed out. Figure 3 shows the norm of the columns of B, in the scheme
without pivoting. For 0, < 1, therank of the approximant is 1. At o, = 1, the dimension of
B increases, although at first, the new column has avery small norm. For larger values of a5,
the norm grows and the subspace becomes better defined. Thereis apeak at the point where
H24 has asingular value equal to 1; this peak can be removed by row pivoting but not by
column pivoting. There are no peaks when H;; j) has asingular value equal to 1 and i = m,
because X becomes singular rather than unbounded when asingularity occursat thelast entry
of acolumn. Figure 3 also shows that no peak occursfor the norm of the columns of the ‘im-
proved’ subspace estimate BV of equation (19), on which both HY) and H(? are based. This
isas predicted by lemma3.4: ||BV || < ||H|| = 20. Instead of having a peak, the norm of the
first column of B™Y dipsto about 0.12.

In figure 4, the norm of H —H is shown, for the various choices of H that we discussed in
section 3.2. Thelowest linecorrespondsto thetruncated SV D solution, which givesthe lowest
attainableerror. Itisseenthat, for al approximants, theapproximeation error isalwayslessthan
€ =1. Of the non-pivoted schemes, the approximation error for HO js always higher than the
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error for HY, (2 (but thereisno proof that thisis necessarily alwaysthe case), and the error
for (V) is always higher than the error for H?, since the |atter approximant minimizes this
error while retaining the same subspace estimate. The approximation error for H(® is almost
identically close to thetheoretical minimum, except inasmall region 1< o, < 1.5. Theerrors
for H(® and H(Y) touch anumber of timesonthe (€ = 1)-line. For H(© thiscan be explained as
follows. Theerror for S. = 0 isgiven by equation (16) as —8612655. Because the J-unitarity
of @ implies ©55053 + (0550%,)(012053) = | (viz. (6)), it follows that whenever || O || —
o, necessarily || ©12053 || — 1. The analysis of ||[H-H® || from (17) is more involved and
omitted at this point.

Figure 5 depicts the distance between the principal and estimated subspaces. For 6, < 1,
this distance is very close to zero (< .0002) for each of the methods. The distance jumps up
when o, crosses 1: the subspace increases in dimension but is at first only weakly defined.
For B, the distance goes down again quickly, whereas for B, it stays constant for a while
before going down.

6. Conclusions. We have derived a general formulawhich describes all rank-d 2-norm
approximants of a given matrix H. The formularelies on afactorization which exists if none
of thesingular values of H isequal to €, and which can be computed by a Schur-type algorithm
if additional singular value conditions are satisfied. Updating and downdating is straightfor-
ward, and the algorithm is amenabl e to parallel implementation. It ishighly suitable for adap-
tive subspace estimation: some of these approximants are quite close to the truncated SVD
solution (as shown by anumerical experiment), but much easier to compute. Such an applica-
tion isreported in [34]. Another application is the regularization of ill-conditioned total least
squares problems [35], cf. [36].

There are several open problems and remaining issues. Apart from the listed approxi-
mants, there might be other interesting choices, such as approximants that by construction
haveall their singular valueslarger than €. There are applicationsin which an on-line compu-
tation of the approximant is required, or of itslast column, instead of only its column space:
an integral scheme for doing this would be interesting. As afinal remark, we would like to
mention that while this paper was in review, an updating version for the ‘improved’ approx-
imant B(Y has been obtained: an orthonormal basis for this subspace can be updated using
about twice the number of operations as the basic Schur updating algorithm, without the need
for pivoting, and keeping the number of hyperbolic rotations as small as possible. This will
be reported elsewhere.
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by J. Gotze, Technical University of Munich, while visiting Delft University in the autumn of
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A. Appendix: Proof of theorem 3.3. The proof of theorem 3.3 consists of two propo-
sitions. Thefirst showsthat any §_ which satisfiesthe constraints givesriseto avalid approx-
imant, and the second proves the converse. Without loss of generality, we take e = 1.

PROPOSITION A.1l. Let H : mxn bea given matrix, with d singular values larger than 1
and noneequal to 1, and let §_be a given matrix satisfying conditions (15) (i) and (ii). Define
O,A B asin equation (12). Put

S= (O1S -012)(022-0,5)" .
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Then Siswell defined, and H := H - Sis a 2-norm approximant of rank equal to d, satisfying
H = (B -AS)(0x-0x5)".

G = 018 -0p »
Gy, = —02S +0xn = 0x(1-653019).

Because || ©,302 || < 1and || S_|| £ 1, Gy isinvertible, and hence S= G;G;*. The J-unitarity
of @ implies §'S -1 = GIG; - G5G, = G5(S°S—1)G,. Since Gy isinvertible, and §'S_ - |
is negative semidefinite, it follows that the same holds for S°S—1. Hence Sis contractive:
||S|| < 1, and H is a 2-norm approximant of H. To derive the aternate formula for H and
show that it has rank d, write

Then

H=H-S = |l H][_S

I
e
[0}

(02-025)7t
- K B T |(@z-eas)

HenceH = (B'=A'S)(02-0x15 )L Therank of H isequal to therank of B'—A'S . Inthis
expression, B' = [B 0] isof full columnrank d, and A’ = [A 0], where Aisof full column rank
m-d. Because (S )12 = 0, it followsthat AS. = [A 0]S. = [A(S.)11 0] isof rank lessthan or
equal to d, too. Finally, B'—A'S_is precisely of rank d because the columns of A are linearly
independent of the columns of B. O

PROPOSITION A.2. Let H : mxn bea given matrix, with d singular values larger than 1
and none equal to 1. Define ©, A', B' asin equation (12). Suppose that a matrix H satisfies

(a) ||H‘E||| <1,
(b) rank(H)<d.
Then rank(H) = d, and H = H - Swhere
(25) S=(0nS -012)(02-0x15)7,

for some contractive §_ with (S )12 = 0.
Proof. It follows directly that Sis contractive. Define matrices G, G, by

s _[-G G| [ -S
@ [Pl=e[g] - &)= T]
Asin the proof of proposition A.1, it followsthat G, isinvertible. The J-unitarity of © and
the contractiveness of Simplies G[G; < G5G,. Hence S := G;G,? iswell defined and con-

tractive, and (26) implies (25). The remaining part of the proof is technical and shows that
(S.)12 = 0. First, we define the partitionings

476G d n-d
Gi=" [“

d G . _ _
d GlZ]’ GZIn_d [Gii]; G21: [(Gzl)l (G21)2];
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which are conform the partitioningsof A’ and B'. Then (S.)12 =0 = Gy1(G;}), =0. To
prove that, indeed, G11(G5?), = 0, welook at [Gf G5]. Use of (26) and ©71 = JOMJ gives

GIGY = [S'Ne
7 " - FA%ge + HONje.

We also have
I H = [A BljO1!
| o[ AF At
- [we] = o] - el 5]
| AT
0 = [HDIn]J[HD :[HDIn]GJ[B,D]

U [HDln]e = [(OnX(m—d) ED (Onxd ED]a

where ‘[0 stands for some quantity whose precise value is not of interest. In the last step, we
used the fact that [A B] isof full rank. Inserting this result in (27) shows that

R(GL) OR(AY,  R(G5)OR(HY).

G isinvertible, hence R (G3,) isof full dimensiond. Sincetherank of H |sleesthan or equal
to d, it follows that the rank of H is precisely equal tod, and that actualy R( G HD)
ThisimpliesR(Gf;) O R(G5, ), so that thereis some matrix M such that Gy = MGZl. Hence

Gz(Gz)_l =1
- [ S CONNCORE [ oY ]
] G21(G )2 =0
0 G]_'L(G )2 = MGZl(G£1)2 =0.
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