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Abstract— In this paper, we explore the use of redundant range
differences in signal estimation and detection. Redundant range
differences are known to lie in a certain subspace. This infor-
mation forms our basis of estimation and detection algorithms.
In addition to this information, we also use the configuration
of the base stations to check the consistency of range difference
estimates. In summary we propose the shrunken estimator as an
improvement over the least squares estimator for range difference
smoothing. Shrunken estimator is known to give less mean square
error compared to the least squares estimator. For detection
purposes we propose an method that can passively detect the
presence of a signal form redundant range differences which is
based on matched subspace detectors.

I. INTRODUCTION

Positioning with range differences is a popular method
in cases when there is either by design or naturally, no
synchronization between the receivers and the transmitters.
Range differences are obtained from channel measurements
by methods like cross correlation and maximum likelihood.
Estimated range differences describe hyperboloid in 3D and
by intersecting these hyperboloid the location of the source
is found. For a given base station configuration we explore
to what extent the redundant range differences can be used
for estimation and detection purposes. Redundant range dif-
ferences show a significantly simple property that they lie in
a linear subspace. Beyond that range differences are bounded
by the triangle inequality where bounds are obtained from
the coordinates of the base stations. We make use of these
properties for detection and estimation purposes.

The first problem that we encounter is range difference
smoothing. In this case, the redundancy between range dif-
ferences and the locations of base stations are put together to
obtain an enhanced estimate of range differences. This has the
effect of improving the accuracy of range differences which in
return will provide an improved estimate of source location.
In the literature various forms of range difference smoothing
were used in [1] and [2] however in these approaches the co-
ordinates of the base stations were not taken into account. We
add the coordinates of base stations as a prior knowledge into
our problem and generalize the range difference smoothing as
a constrained norm minimization problem.

The second problem that we encounter is detection. Con-
sider a case where we estimate range differences from the
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channel without deciding whether a signal is present or we
observe only noise. In such a case, we consider the problem
of signal detection at range difference level. This approach
uses the fact that if there is a signal present, then the estimated
range difference should have a strong energy in a certain linear
subspace. On the other hand if we do crosscorrelations only on
noise we will get some random numbers which do not lie in the
specified linear subspace with high probability. We consider
various cases where we either have or lack the knowledge
of the signal location and channel characteristics. We observe
that in general the problem of signal detection is dependent
on the configuration of base stations and the source location.
The configuration of base stations puts an upper bound on
the maximum possible detection performance. Indeed to have
good detection it is better to separate the base stations from
each other.

II. RANGE DIFFERENCE SMOOTHING

We consider source location algorithms with L > 3 number
of base stations. The coordinates of the k** base station are
denoted as xj,yr and are assumed to be precisely known.
Tm,Ym denotes the coordinates of the mobile station. ry is
the distance between mobile station and base station k, and
Tk = Tk — 71 denotes the range difference. We assume that
Tkt = —1y and 7 = 0. For simplicity, all the developments
are in 2D. Generalization to 3D is easy.

In the case of L base stations there are L(L — 1)/2 possible
range difference measurements. An example with 4 base
stations follows

T21 -1 1
T31 -1 1 ™
_|Ta| _ -1 1 T2
A= 732 - -1 1 r3 ’ (1)
T42 -1 1 T4
T43 -1 1

In practice, however, these range difference measurements
A will be corrupted by noise. We can write the previous
equations in matrix form as follows

A=Dr+w ()]

Projecting the noisy range difference measurements to the
column space of D was used in [1] and called as feasible



bivector. The rationale for this was to obtain range difference
vectors that are in the column space of D and satisfy consis-
tency.

Another point of view is to use the fact that in the noiseless
case r3; —T9; = r3g. This is indeed an example of an incidence
graph that has applications in geodesy [3]. When we have
noise of course this equation will no longer be satisfied so
it is reasonable to force the range differences to satisfy it.
Schmidt describes the range differences as A =1 Ar and a
trivector equation 1 A 1 Ar = 0 where A denotes the wedge
product.

In this section we generalise the idea used by Schmidt [1].
The subject is studied from a multilinear algebra point of view
by Schmidt [1]. In this point of view Schmidt proves two
things. The equality of circuital sum trivector condition and
the fact that range differences must be in the column space
of matrix D. We will develop the subject in the context of
statistics and linear algebra. We believe that this point of view
will generalise and simplify the ideas.

The idea of using the redundant combinations of range
differences appears to be somehow (in a restricted sense) used
by different authors. Schmidt [1] takes the subject from an
algebraic (multi-linear algebra) point of view. Hahn and Tretter
[2] deal with redundant range differences but their channel
model assumes that there are no attenuation differences in
the propagation to each sensor. Our main contribution is to
add the coordinates of the base stations to the problem. This
information was ignored by previous authors who dealed with
the problem. As it is clear from simple plane geometry, we
may put an explicit bound on the absolute value of the range
differences A. Let pi; denote the distance between base
station k and base station /. From here we can set the following
bound

Prt > |kt 3)

This follows directly from the triangle inequality.
Now we are ready to formulate our range difference smooth-
ing problem.

minimize ||A - A @
subject to — p;; < 7ij < pij ®)
A € R(D) (©6)

We did not specify any norm yet. Indeed we can use ¢; or {3
norms. The advantage of using ¢; norm is that it can provide
robustness to outliers.

The fact that A is in the column space of D can be written
as A is orthogonal to the orthogonal complement of the colum
space of D. These expressions become very clear if we use
singular value decomposition (SVD). Let the SVD of D be

D=UxVT (7
And let U = [U;Uy,]. In this formulation U, spans the colum

space of D. But we also see from the properties of SVD that
A is orthogonal to U,. This can be written as

ulfa=0 ®)

Hence the fact that a vector lies in a column space can
be simply written into a fact that it is orthogonal to the
space spanned by the orthogonal complements. In other words
the equality of the feasible bivector approach and circuital
sums approach is a simple subspace duality. An alternative
derivation can be found in [1].

Now we aim to provide two special cases which are inter-
esting from an estimation theory perspective. The first is the
Best Linear Unbiased Estimate (BLUE) of range differences
in the case of Gaussian noise with some known covariance
matrix. In this scenario we ignore the knowledge that range
differences should obey the triangle inequality. This approach
reduces to the solution provided by Schmidt. We however
provide a statistical analysis rather then an algebraic one.

The next category is min-max regret estimators. The ques-
tion is whether we can improve the Least Squares estimator
in mean squared error sense. The answer is positive. We show
that shrunken estimator suits very well to our problem.

A. Classical statistical case

It is assumed that the noise is zero mean and the covari-
ance matrix C,, is known. The observation -measurement-
equations take the following form:

A=Dr+w (&)
Note that the matrix D is not full rank. If we assume that
the range vector r is deterministic and unknown, then it is
not estimable. However, the range difference vector A is
estimable. In general, for any linear transformation of the
form a”r, for which a is in the column space of DT, aTr
is estimable [4]. Note that we are not necessarily interested in
the actual range values r. The BLUE of A is

A=DD A (10

where

D~ = (DTC,'D)'DTC,! (11)
and t denotes Moore-Penrose pseudo inverse.

For the case where Cy, = ¢2I, the BLUE reduces to the
Jfeasible bivector solution discussed in [1]. By using the closed
form for the projection operator given in [1], we obtain the
covariance of the estimate as:

1
P =-DD”
7DD7,

From here it is easy to see that:

2
Ca=0’P=ZDD"  (12)

2
var(fkl) = o2 <o?

I 13)

This inequality justifies the advantage of smoothing the range
differences. We reduce the variance on range differences
significantly by using range difference smoothing.



B. Min-max regret approach to range difference smoothing

In this section we apply the min-max regret estimators [5] to
the problem. Min-max regret estimators are known to provide
smaller mean square error compared to least squares estima-
tors. However these estimators require that a certain norm
bound can be put on the estimated parameters. Surprisingly
this fits to our case of range difference smoothing.

Since our initial matrix is not full rank we will introduce
the following parameterization. This is necessary in order to
apply the min-max regret estimators.

A=HO+w (14)

In the above notation H is a full rank N X p matrix spanning
the column space of D. This matrix can simply be obtained
from the SVD of the matrix D. We assume now that noise
w is white Gaussian with some known variance. Since the
range differences are bounded by the coordinates of the base
stations, we can impose the following inequality

6"HTC,'Ho < K? (15)
From here the shrunken estimator is
~ 1
0=(1- ———)0r5s, K?> 16
(- 7m) s ze (9

where @ = (p—1)2 —1 and p is the rank of H and 0y is the
LS estimator of 8. The estimate of range differences is simply
obtained as H.

Note that if the coordinates of the base stations are known
precisely and we know the noise covariance then the minimax
estimator will have less mean square error compared to the
LS estimator. When the noise variance is unknown it can be
estimated as

) 1 -7 ~
However we observed in simulations that this approach does
not provide improvement compared to least squares estimator.

We must note that it is possible to add the uncertainty in
the estimates of noise variance into the problem by using the
results in [6]. It was shown in [6] that the min-max regret
estimator can be extended to the case where the covariance of
noise is uncertain. However exploring this extension is beyond
the scope of the current paper.

III. SIGNAL DETECTION BASED ON RANGE DIFFERENCES

In this section, we discuss to what extent the fact that range
differences lie in a subspace can be used to perform signal
detection. For simplicity and analytical derivations, we assume
that the noise is white Gaussian. We will base our results on
matched subspace detectors [7]. Our linear model is:

A=Dr+w (18)

where we assume that w ~ AN(1¢,0%I). Our purpose in
providing the mean of noise as 1¢ is to remove the effects
of unknown common bias. If there is a bias in the range

difference estimates that will influence the performance of the
detector significantly.

Now lets think the case where we do crosscorrelations on
noise. What we will receive is random range estimates. We
aim to model this as white Gaussian noise with some large
unknown variance. On the other hand what happens when
there is a signal and we are performing crosscorrelations. Then
again our range difference estimates will be noise. We again
assume that the noise on them is white Gaussian.

Under these conditions the hypothesis testing problem can
be written as follows

Ho : A ~ N(S¢,0%1)
Hy: A ~ N(HO + S¢, 0°I)

19)
(20)

where S = 1 and the matrix H is chosen such that it is full
rank and spans the space R(D). The test statistics becomes

@2n

~T -~
- s—pA Pi{PgPiA
L(A) = pon7 S = — >
P ATPIPLPLA
where G = PH. The performance of this detector under
gaussian assumption can be obtained explicitly. However, since
in practice the noise will be non-gaussian. Our approach is
only an approximation. In the above formulation s is the
dimension of the space (S)* and p is the dimension of (G).
1
2= E(Ho)Tpé (H0) (22)
Under the two hypothesis, the distributions of observations are
given as follows

Ho : L(A) ~ Fps-p(0)
Hy: L(A) ~ Fp s p(A?)

(23)
24

From here under the Gaussian assumption we have the fol-
lowing detector characteristics.

Ppy=1- P[FP,S—p(O) <]
Pp=1- P[Fp,s—p()\z) <

(25)
(26)

IV. SIMULATIONS

We tested the performance of the proposed algorithms via
computer simulations. In all the simulations the coordinates of
the base stations were fixed at (0, 0), (0, 10), (10, 0), (10, 10)
And the location of the mobile station is (3,3) for testing
the shrunken estimator. Fig. 1 shows the performance of the
shrunken estimator and it is better than the LS estimator in
MSE sense. We observed that the adaptive algorithm where
the variance of noise is estimated does not perform better than
LS estimator.

We have also tested the detection performance of the
matched subspace detector. Fig. 2, Fig. 3, and Fig. 4 show
how the detection performance is influenced by the location.
In the simulations the variance of noise is set to 1.
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Fig. 2. Detection performance at the location (3, 3)

V. CONCLUSION

We have explored the potential use of redundant range
differences for both estimation and detection purposes. It
has been observed that obtaining redundant range differences
and using a smoothing procedure improves the accuracy of
range difference estimation significantly. In the litcrature the
smoothing approach to range differences was used by Schmidt
[1]. We added the information of the base station locations
to the smoothing procedure and generalized it as a general
constrained norm minimization problem. In the case of known
noise covariance, it was shown that by using a minimax regret
estimator the LS estimation of Schmidt can be improved in
mean square sense.

Finally we observed that range differences themselves can
be used for signal detection. There is huge amount redundancy
in range differences hence when there are many base stations
we will have perfect detection performance.
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Fig. 3. Detection performance at the location (4,4)
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