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Abstract— Localizing a source given range measurements from to make the noise terms appear linear at the price of inergasi
base stations with fixed locations is a nonlinear optimizatn  the number of unknowns. What we mean is that when we write

problem. A typical solution to such a problem is to run iterative 44,y the equations there are no noise terms that are squared.
algorithms which do not guarantee convergence or use maxinm

likelihood with grid searches. An alternative is then to transform Il. REVIEW OF CLASSICAL TOA CLOSED FORM
the problem to a new one for which we know the solution is simp

and computationally stable. We formulate the time-of-arrival LOCALIZATION ALGORITHMS
base localization problem as a constrained robust stochdstleast In this section we will review the classical methods of
squares problem. While we can solve such problems efficieytl ToaA closed form localization. In the following equations,

the price paid for computational stability is positioning accuracy. ; : . .
Hence there is a trade-off between two desirable properties %Y denote the Cartesian coordinates of the mobile station

accuracy and computational stability. and x;, yi, xx, yr denote the coordinates of the base station
labeled with! and k respectively andr;; = x, — x; and
|. INTRODUCTION Y = yr —yi. 7 andry, are the distances of the mobile station

Localization with time-of-arrival (TOA) usually consiststo the base stations labeled withand k& andry; = ri — ;.
of two steps. In the first step the TOAs are obtained froe consider a 2D scenario for ease of development. Extention
channel measurements. In the second step these paraméteBD is straightforward. For simplicity we consider the €as
are used to obtain the final estimate of location. In the s#coaf 4 base stations. It assumed that exact knowledge of the
step the problem is still a non-linear optimization problentocations of base stations is available. First we introdilnee
Although a maximum likelihood approach can be used, li#ast squares closed for localization for TOA from [6]. The
is computationally costly to implement with grid searcheslistance equations are:

Closed form algorithms meet the need for a rough initial 2 9 5
estimate. When we have an initial estimate from closed form ri=(@—2)"+ Y —wu) (1)
solutions this can be used as a starting point for an iterativ i = (z—x)® + (y — yn)? (2

or grid-search based optimization. Furthermore closechfo
algorithms constitute a good trade-off between compuiatio
complexity and positioning accuracy. Indeed there is a fot
options in the trade-offs between computational stabdityl broa = Hroa0r04 3
positioning accuracy.

Due tp it§ im_portange, many.closed form solutions exist To1 Yo
for localization in the literature in the context of aerospa Hroa =2 |21 ya Oros — [x] @)
and acoustic applications [1]-[6]. The algorithms are Ugua
derived for far field scenarios.

Common to all of the closed form solutions is the lineariza-
tion of the quadratic equations by some form of Gaussian
elimination. After this linearization, we obtain a lineat ©f
equations in the unknown coordinates of the mobile station.
Usually a variation of least squares is used to obtain the a practical setting, the ranges in the vectwro, are
unknown coordinates from the linear set of equations. Nevéeplaced with their estimates and the noisy vector becomes
theless when we perform Gaussian elimination the noisestertnro 4. Note that since the ranges appear quadratically in the
enter the equations in a squared manner. Indeed squarisg ngectorbro 4, the noise on the vector becomes non-Gaussian
only causes error. This also makes exact analytical arsalygnd biased. The initial estimate of the location is obtaivied
difficult and in the literature there is only approximate lgss simple least squares as follows:
of noise [1], [5]. In this paper, we show that it is possiblscal bron = (HgoAHTOA)_ngoABTOA (©)
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(EET,\?ggf tggrzssaéeDwgglf? eITff]g r,]\;\é?,zseﬂ/azgle%?g Ifegsﬁgfﬁe %C;L;n?ﬁ There are many other possibilities yet this approach will be
part by NWO-STW under the VICI programme (DTC.5893). our benchmark. Indeed some authors prefer to make first

rBy subtracting the pair of equations from eachother we abtai
Bhe following set of equations:
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order approximations to the quadratic terms and then ptbcemnsists of the range differences. As we said earlier ranges
with these simplified models. Nevertheless the algorithnase random variables hence the maiifxpartially consists of
always become dirty in the sense that we can not get rid @ndom variables. We again do not know the exact matrix but

nonlinearities. nevertheless we can describe its statistical behavioresinc
In the next section we will formulate a novel way ofconsists of range differences and we assume that we know the
Gaussian elimination applied to TOA measurements. statistical behavior of ranges. And note that ranges ehter t

matrix in an additive manner. There are no squaring operstio
This is what we mean when we say that noise terms are made
Consider the following set of equations for ranges whefigear, although some may vies them as multiplicative. i th
we do not introduce noise yet: end this does not make any difference in the development of
9 9 9 the optimal algorithms.
TIQ = (@—m) 2+ (v =u) ) (7) Until now we treated the vectd# as comletely unknown.
k= (@ —2)" + (Y — yr) (8) But this is not true again. Indeed we know the statistical
By subtracting the second equation from the first we obtairP€havior of some of its parameters. The ranges are described
with some mean value and variance. In addition to this fact
(re —r)(ri+ 1) = (z — 26)* + (y — Y&)? (9) the coordinatesr,y and the ranges are not independent.
—(—m)? = (y—u)? We must use all of these information if we aim to solve
o ) . ] ) _ the problem completely. Indeed we will use the statistical
With simple algebraic manipulations, we obtain the follogi knowledge about ranges but we will ignore the dependence

IIl. THE PROPOSED ALGORITHM

set of equations between the unknown coordinates and the ranges.
12 =(z—m)2+ (y— ) (10) In the next section we provide a very simple algorithm
which will later be improved.
= (= )+ (g — ) (11) P

28 + 2yry + + =a+yr—a; —yp (12 . o
Tu@ + 2yay + rare + ran = o+ g — 2 -y (12) A. Smple Closed Form Localization

The unknowns in these equations argy, ri, ;. Now this
may sound strange. Why should we call ranges as unknowns
Indeed we never measure the exact ranges. We always estinf4t
a parameter which has also some uncertainty. Of course we N PSSP
may give a certain region of values where we are almost minimize ||b — Ho||3 (16)
sure that the true range is. In other words, measured ranges subject toA6 = ¢ 17)
obtained from the channel are random variables with some
mean value and variance. So we must never treat themVvgiere
exact deterministic parameters.

In this case part 08 is actually observed. To exploit this,
'ecan pose the following optimization problem:

Compared to the previous case we have a small increase in 8 8 é ? 8 8 "
the number of unknowns. This is the price we paid. In matrix A= 000010 r= ;2 (18)
form the equations are written as follows: 0000 0 1 71
b =H6 (13)

For the/s norm the problem has an explicit solution given

2291 2y21 To1 T21 as

231 2ys1 T 31 N amia 1 oM pama 1 me g .
H- |22a 2yn ra T41 (14) 6=60,—(H H)"A'[A(H H)" A"|" (A6, —1‘)19
2x30  2y32 T32  T32 (19)
2 2
Ta2  2Y42 T42 742 where
2243 2ya3 T43  T43
6, = (A"H)'H"b 20
] [BB-e-y A 0
2 2 .2 2
v 3 iyg B 1 B v The problem with this approach is we do not exploit the
0=1""b=|" H Yi B 1 B 91 (15) uncertainty in the matri#f and the constraints do not account
"2 x% + y% _ x% _ y% for the uncertainties in the ranges. Nevertheless it is adgoo
"3 x% y% x% y% trade-off between computational complexity and positigni
T4 Tyt Yy — T3 Y3

accuracy. It is just the case when we have only point estenate
In this formulation the vectob is exact. It consists only of the parameters but not variances. Then what is the atgorit
from the coordinates of the base stations. But the ma&ix to handle the case where we know also the variance of range
must be replaced with its estimated versionFhsBecause it estimates. This will be answered in the next section.



B. Localization with TOA as a robust stochastic least squares V@ —a1)? + (y —y1)?
problem V(@ —22)? + (y — y2)?

In this section we assume that we have estimates of ranges u) = : (29)
and their variances. In other words we have second order :
description of the uncertainties in the ranges. How showdd w

use that information in an efficient way. As remarked earlier V(@ —am)? 4+ (y — ym)?
ranges appear both in the matlf and the unknowng. )
The good thing is that now we can describe the second order o1 )
statistical behavior of the matrid and the unknowns§. 72
C= . (30)
2
So we know#; and we knowE{n?} and E{.} denotes oy
expectation operation. _ P -
The question now is to find an algorithm that can handle Vi(e—21)2+(y—y1)?
uncertainties in the matril. It turns out that the proposed set L =
of equations can be solved via robust stochastic least esuar o) _ | Vieatlm) (31)
method. The basic idea is to minimize the expected value of 96, '
the least squares cost function. -
r—x )2 — 2
minimize E{|[b — HO|[3} (22) AR
subject toly, < r, < ug k=1,2,3,4 (23) r \/(I_Ii!)_zi](y_y])g _
This is a constrained robust stochastic least squaresgimbl 91u(0 \/(Ifmy);'f(yiy E
Note that we have handled the uncertainties in the maifrix p(0) — ’ ’ (32)
via expectation operation, and uncertainties in the unkrsow 962
via convex constraints. This reduces the problem to a convex Y=Yy
optimization problem which can be efficiently and reliably LV (@—2m)2+(y—yar)? |
solved. Now we can fix the variances on theandy coordinates

By using the well known results from robust stochastigg follows
optimization [7], our optimization problem takes the foling

form: var{0;} > [T71(6)); (33)
minimize |[b — F16/|2 + 67 PO (24) V. SIMULATIONS
subject toly, < r < ug k=1,2,34 (25) In order to test the _performance of the proposed algqrithms
_ A we performed extensive computer simulations. In the first se
whereH = E{H} andP = E{UTU}. of simulations we tested the performance of the TOA based

algorithms in the near field and in the far field. The coordigat

8 8 221 21 . of the base stations were fixed throughout the simulations to
0 0 n?’l 31 . (0,0), (0,10), (10, 0), (5,5), (10, 10). We change the location
U= - i (26) of the mobile station fron(15,15) to (300, 300). In all the
0 0 n32 MN32 . . . .
simulations we change the noise variance and use the RMS as
0 0 Ngo Ngo .
00 n n the measure of performance. In the below notationdenotes
43 a3 the coordinates of the mobile station and), y(i) denote the
andn;; = n; — n;j. estimate at thé'" simulation.
The upper and lower bounds;, [, are obtained from the ~
L . 1
standard deviation of noise on the range measurement RMSE — | — Z(x(i) —2)? + (y(i) — y)? (34)
IV. CRLB ANALYSIS i=1

In this section we provide the CRLB without derivation\Ve repeated the simulation 10000 times for every noise
Since it follows directly from [8]. The elements of the Fishevariance. Figure 1 and Figure 2 show the performance for

information matrix are given as follows: the near filed case.
In order to test the performance of the constrained
Ou(O)17 1 [Om(6) - :
[Z(0)];; = {_] C 1[ } (27) robust stochastic least squares algorithm we performed
90, 06, extensive computer simulations. The coordinates of the

The parameters in the expression are given as follows base stations were fixed throughout the simulations to
- (0,0), (0,10),(10,0), (5,5), (10, 10). The location of the mo-
6= [z y] (28) pile station was fixed tq15,15). In all the simulations the
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noise variance on each range measurement was fixed for all

base stations. We performed 100 Monte-Carlo simulations fag. 4. Comparison of estimation variance for the y coorddinsith CRLB
each noise variance. Fig. 3 and Fig. 4 show the comparison
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