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Abstract— Localizing a source given range measurements from
base stations with fixed locations is a nonlinear optimization
problem. A typical solution to such a problem is to run iterative
algorithms which do not guarantee convergence or use maximum
likelihood with grid searches. An alternative is then to transform
the problem to a new one for which we know the solution is simple
and computationally stable. We formulate the time-of-arrival
base localization problem as a constrained robust stochastic least
squares problem. While we can solve such problems efficiently
the price paid for computational stability is positioning accuracy.
Hence there is a trade-off between two desirable properties,
accuracy and computational stability.

I. I NTRODUCTION

Localization with time-of-arrival (TOA) usually consists
of two steps. In the first step the TOA’s are obtained from
channel measurements. In the second step these parameters
are used to obtain the final estimate of location. In the second
step the problem is still a non-linear optimization problem.
Although a maximum likelihood approach can be used, it
is computationally costly to implement with grid searches.
Closed form algorithms meet the need for a rough initial
estimate. When we have an initial estimate from closed form
solutions this can be used as a starting point for an iterative
or grid-search based optimization. Furthermore closed form
algorithms constitute a good trade-off between computational
complexity and positioning accuracy. Indeed there is a lot of
options in the trade-offs between computational stabilityand
positioning accuracy.

Due to its importance, many closed form solutions exist
for localization in the literature in the context of aerospace
and acoustic applications [1]–[6]. The algorithms are usually
derived for far field scenarios.

Common to all of the closed form solutions is the lineariza-
tion of the quadratic equations by some form of Gaussian
elimination. After this linearization, we obtain a linear set of
equations in the unknown coordinates of the mobile station.
Usually a variation of least squares is used to obtain the
unknown coordinates from the linear set of equations. Never-
theless when we perform Gaussian elimination the noise terms
enter the equations in a squared manner. Indeed squaring noise
only causes error. This also makes exact analytical analysis
difficult and in the literature there is only approximate analysis
of noise [1], [5]. In this paper, we show that it is possible also
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to make the noise terms appear linear at the price of increasing
the number of unknowns. What we mean is that when we write
down the equations there are no noise terms that are squared.

II. REVIEW OF CLASSICAL TOA CLOSED FORM

LOCALIZATION ALGORITHMS

In this section we will review the classical methods of
TOA closed form localization. In the following equations,
x, y denote the Cartesian coordinates of the mobile station
and xl, yl, xk, yk denote the coordinates of the base station
labeled with l and k respectively andxkl = xk − xl and
ykl = yk−yl. rl andrk are the distances of the mobile station
to the base stations labeled withl and k and rkl = rk − rl.
We consider a 2D scenario for ease of development. Extention
to 3D is straightforward. For simplicity we consider the case
of 4 base stations. It assumed that exact knowledge of the
locations of base stations is available. First we introducethe
least squares closed for localization for TOA from [6]. The
distance equations are:

r2
l = (x − xl)

2 + (y − yl)
2 (1)

r2
k = (x − xk)2 + (y − yk)2 (2)

By subtracting the pair of equations from eachother we obtain
the following set of equations:

bTOA = HTOAθTOA (3)
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In a practical setting, the ranges in the vectorbTOA are
replaced with their estimates and the noisy vector becomes
b̂TOA. Note that since the ranges appear quadratically in the
vectorbTOA, the noise on the vector becomes non-Gaussian
and biased. The initial estimate of the location is obtainedvia
simple least squares as follows:

θ̂TOA = (HT
TOAHTOA)−1

H
T
TOAb̂TOA (6)

There are many other possibilities yet this approach will be
our benchmark. Indeed some authors prefer to make first



order approximations to the quadratic terms and then proceed
with these simplified models. Nevertheless the algorithms
always become dirty in the sense that we can not get rid of
nonlinearities.

In the next section we will formulate a novel way of
Gaussian elimination applied to TOA measurements.

III. T HE PROPOSED ALGORITHM

Consider the following set of equations for ranges where
we do not introduce noise yet:

r2
l = (x − xl)

2 + (y − yl)
2 (7)

r2
k = (x − xk)2 + (y − yk)2 (8)

By subtracting the second equation from the first we obtain

(rk − rl)(rk + rl) = (x − xk)2 + (y − yk)2 (9)

− (x − xl)
2 − (y − yl)

2

With simple algebraic manipulations, we obtain the following
set of equations

r2
l = (x − xl)

2 + (y − yl)
2 (10)

r2
k = (x − xk)2 + (y − yk)2 (11)

2xklx + 2ykly + rklrk + rklrl = x2
k + y2
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l (12)

The unknowns in these equations arex, y, rk, rl. Now this
may sound strange. Why should we call ranges as unknowns?
Indeed we never measure the exact ranges. We always estimate
a parameter which has also some uncertainty. Of course we
may give a certain region of values where we are almost
sure that the true range is. In other words, measured ranges
obtained from the channel are random variables with some
mean value and variance. So we must never treat them as
exact deterministic parameters.

Compared to the previous case we have a small increase in
the number of unknowns. This is the price we paid. In matrix
form the equations are written as follows:

b = Hθ (13)
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In this formulation the vectorb is exact. It consists only
from the coordinates of the base stations. But the matrixH

must be replaced with its estimated version asĤ. Because it

consists of the range differences. As we said earlier ranges
are random variables hence the matrixĤ partially consists of
random variables. We again do not know the exact matrix but
nevertheless we can describe its statistical behavior since it
consists of range differences and we assume that we know the
statistical behavior of ranges. And note that ranges enter the
matrix in an additive manner. There are no squaring operations.
This is what we mean when we say that noise terms are made
linear, although some may vies them as multiplicative. In the
end this does not make any difference in the development of
the optimal algorithms.

Until now we treated the vectorθ as comletely unknown.
But this is not true again. Indeed we know the statistical
behavior of some of its parameters. The ranges are described
with some mean value and variance. In addition to this fact
the coordinatesx, y and the ranges are not independent.
We must use all of these information if we aim to solve
the problem completely. Indeed we will use the statistical
knowledge about ranges but we will ignore the dependence
between the unknown coordinates and the ranges.

In the next section we provide a very simple algorithm
which will later be improved.

A. Simple Closed Form Localization

In this case part ofθ is actually observed. To exploit this,
we can pose the following optimization problem:

minimize ‖b− Ĥθ‖2
2 (16)

subject toAθ = r̂ (17)
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For theℓ2 norm the problem has an explicit solution given
as

θ̂ = θ1 − (ĤT
Ĥ)−1

A
T [A(ĤT

Ĥ)−1
A

T ]−1(Aθ1 − r̂)
(19)

where

θ1 = (ĤT
Ĥ)−1

Ĥ
T
b (20)

The problem with this approach is we do not exploit the
uncertainty in the matrix̂H and the constraints do not account
for the uncertainties in the ranges. Nevertheless it is a good
trade-off between computational complexity and positioning
accuracy. It is just the case when we have only point estimates
of the parameters but not variances. Then what is the algorithm
to handle the case where we know also the variance of range
estimates. This will be answered in the next section.



B. Localization with TOA as a robust stochastic least squares
problem

In this section we assume that we have estimates of ranges
and their variances. In other words we have second order
description of the uncertainties in the ranges. How should we
use that information in an efficient way. As remarked earlier
ranges appear both in the matrixH and the unknownsθ.
The good thing is that now we can describe the second order
statistical behavior of the matrixH and the unknownsθ.

r̂i = r̄i + ni (21)

So we know r̄i and we knowE{n2
i } and E{.} denotes

expectation operation.
The question now is to find an algorithm that can handle

uncertainties in the matrixH. It turns out that the proposed set
of equations can be solved via robust stochastic least squares
method. The basic idea is to minimize the expected value of
the least squares cost function.

minimize E
{

‖b− Ĥθ‖2
2

}

(22)

subject tolk ≤ rk ≤ uk k = 1, 2, 3, 4 (23)

This is a constrained robust stochastic least squares problem.
Note that we have handled the uncertainties in the matrixH

via expectation operation, and uncertainties in the unknowns
via convex constraints. This reduces the problem to a convex
optimization problem which can be efficiently and reliably
solved.

By using the well known results from robust stochastic
optimization [7], our optimization problem takes the following
form:

minimize ‖b− H̄θ‖2
2 + θT

Pθ (24)

subject tolk ≤ rk ≤ uk k = 1, 2, 3, 4 (25)

whereH̄ = E{Ĥ} andP = E{UT
U}.
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andnij = ni − nj .
The upper and lower boundsuk, lk are obtained from the

standard deviation of noise on the range measurementrk.

IV. CRLB A NALYSIS

In this section we provide the CRLB without derivation.
Since it follows directly from [8]. The elements of the Fisher
information matrix are given as follows:

[I(θ)]ij =
[∂µ(θ)

∂θi

]T
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(27)

The parameters in the expression are given as follows

θ = [x y]T (28)
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Now we can fix the variances on thex and y coordinates
as follows

var{θ̂i} ≥ [I−1(θ)]ii (33)

V. SIMULATIONS

In order to test the performance of the proposed algorithms
we performed extensive computer simulations. In the first set
of simulations we tested the performance of the TOA based
algorithms in the near field and in the far field. The coordinates
of the base stations were fixed throughout the simulations to
(0, 0), (0, 10), (10, 0), (5, 5), (10, 10). We change the location
of the mobile station from(15, 15) to (300, 300). In all the
simulations we change the noise variance and use the RMS as
the measure of performance. In the below notationx, y denotes
the coordinates of the mobile station andx(i), y(i) denote the
estimate at theith simulation.

RMSE =
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(x(i) − x)2 + (y(i) − y)2 (34)

We repeated the simulation 10000 times for every noise
variance. Figure 1 and Figure 2 show the performance for
the near filed case.

In order to test the performance of the constrained
robust stochastic least squares algorithm we performed
extensive computer simulations. The coordinates of the
base stations were fixed throughout the simulations to
(0, 0), (0, 10), (10, 0), (5, 5), (10, 10). The location of the mo-
bile station was fixed to(15, 15). In all the simulations the
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Fig. 1. RMSE for localizations with TOA for the case where mobile station
is at (15, 15)
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Fig. 2. RMSE for localization with TOA for the case where mobile station
is at (300, 300)

noise variance on each range measurement was fixed for all
base stations. We performed 100 Monte-Carlo simulations for
each noise variance. Fig. 3 and Fig. 4 show the comparison
with CRLB. We see from the simulations that the proposed
algorithm has a guarantee of convergence but does not achieve
CRLB.

VI. A CKNOWLEDGEMETS

We have used the cvx toolbox for implementing the con-
strained robust stochastic least squares optimization problem.

REFERENCES

[1] Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic
location,” IEEE Transactions on Signal Processing, vol. 42, no. 8, pp.
1905–1915, Aug. 1994.

[2] J. O. Smith and J. S. Abel, “Closed-form least-squares source location
estimation from range-difference measurments,”IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 35, no. 12, pp. 1661–1669,
Dec. 1987.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Standard deviation of noise

E
st

im
at

io
n 

va
ria

nc
e

Comparison of variance with the CRLB for the x coordinate

Fig. 3. Comparison of estimation variance for the x coordinate with CRLB

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Standard Deviation of noise

E
st

im
at

io
n 

va
ria

nc
e

Comparison of variance with the CRLB for the y coordinate

Fig. 4. Comparison of estimation variance for the y coordinate with CRLB

[3] R. Schmidt, “Least squares range difference location,”IEEE Transactions
on Aeorospace and Electronic Systems, vol. 32, no. 1, pp. 234–242, Jan.
1996.

[4] Y. Huang, J. Benesty, G. W. Elko, and R. M. Mersereau, “Real-time
passive source localization: A practical linear-correction least-squares
approach,”IEEE Transactions on Speech and Audio Processing, vol. 9,
no. 8, pp. 943–956, Nov. 2001.

[5] K. W. Cheung, H. C. So, W. K. Ma, and Y. T. Chan, “Least squares
algorithms for time-of-arrival-based mobile location,”IEEE Transactions
on Signal Processing, vol. 52, no. 4, pp. 1121–1128, Apr. 2004.

[6] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location,” IEEE Signal Processing Magazine, pp. 24–40, July 2005.

[7] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge:
Cambridge University Press, 2004.

[8] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. New Jersey: Prentice Hall, 1993.


