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Abstract— Localization using Ultra Wide Band (UWB) signals
can show large errors. Due to Non-Line-of-Sight (NLOS) propa-
gation and low signal to nosie ratio (SNR), it is possible to expect
that the first arriving path and the strongest path are not equal
to each other. This problem can be modeled as a multihypothesis
problem. We base our decision on matched subspace detectors.
The case where we deal both with Time of Arrivals (TOA) and
Angle of Arrivals (AOA) is also studied.

I. INTRODUCTION

Ultra Wide Band (UWB) technology has a strong potential
for positioning in indoor environments [?]. Positioning is a
mature field with variety of techniques available. However, in-
door environments and UWB technology pose new challenges
and require development of new positioning techniques. Some
problems that indoor positioning brings can be outlined as
non-line-of-sight (NLOS) propagation, power limitations due
to FCC, and difficulties caused by high sampling rates [?].
Also a far field assumption may not be valid anymore.

Typically, positioning is based on two steps. The first
step gives estimates of angle-of-arrival (AOA), time-of-arrival
(TOA), time-difference-of-arrivals (TDOA), or signal-strength
(SS) from channel measurements. The second step uses these
parameters to obtain the final position. Nevertheless, a direct
approach like the one in [?] is possible among other variations.

One important aspect of UWB systems is that due to NLOS
and low SNR we may not always have that the strongest
arriving path is also the earliest arriving path. In such a case
a decision has to be made between these two parameters. The
inequality of the first arriving path and the strongest path can
either be due to NLOS or low SNR. If the problem is addressed
only at a single channel then there is not much room for
making the right decision. However when we put these pairs
of estimates from every channel together then we show in this
paper that it is possible to improve the positioning performace.
The idea is based on the fact that estimated parameters at every
base station should correspond to a consistent location. As
long as we assume that either the early arriving or the strongest
path is correct or relatively more accurate, then it is possible
to form a multihypothesis decision problem. Since the test
statistic of Matched Subspace Detectors (MSD) [?] is a good
estimate of goodness of fit, we base our decision on matched
subspace detectors. If in addition to time delay estimation,
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Fig. 1. Four base stations with multiple ranges towards the mobile station

we have the associated AOAs then again a decision has to be
made for every early arriving and strongest path so that the
correct or the more accurate parameter pairs are chosen.

Large error performance of UWB ranging systems has been
studied in detail in [?], [?]. It is mentioned in [?] that due to
low SNR, the Cramer Rao Lower Bound (CRLB) gives very
optimistic bounds and hence large errors should be added into
the performance study. However no solution was proposed in
[?] for reducing the errors due to problems caused by large
errors. Depending on the correlator threshold it is shown that
there can be three types of large errors: early delay estimation,
late delay estimation and a miss. Since missing a signal is not
desirable we may choose to set the threshold of the correlator
at a low level. In such a case we will have, due to noise many
false estimates. The aim of this paper is to detect these false
estimates.

The organization of this paper is as follows. In the following
section we introduce the channel models and the correlating
receiver. In the next section we develop the idea of matched
TOA detection. Later we extend the results to joint angle and
delay estimation. Finally we provide the computer simulations.

1-4244-1370-2/07/$25.00 ©2007 IEEE



II. CHANNEL MODELS AND THE RECEIVER

Consider the following multipath channel model

x(t) =
L∑
`=1

α`s(t− τ`) + n(t) (1)

where x(t) denotes the received signal at the base station
and n(t) denotes thermal noise, multiuser interference and
narrowband interferences. We assume that the signal s(t) is
known. Rrs(τ) denotes crosscorrelation of signal template
with the multipath channel and is given as

Rxs(τ) =
∫
x(t)s(t− τ)dt. (2)

In such a case, a detector can be constructed

τ̂ = arg max
τ

|Rxs(τ)| s.t., |Rxs(τ)| > γ (3)

which picks the strongest peak above the threshold. Instead
we can also pick the earliest path that is above the threshold.
Note that if, due to noise, the early arriving peak and the
strongest peak are not equal to each other then we need to
choose between them. In most high SNR and LOS propagation
scenarios the first arriving path and the strongest path will be
the same.

For simplicity we assume that either the strongest path or the
early arriving path is correct. The problem is making the right
decision. Then a solution to this problem is as follows. We use
the fact that all the solutions should correspond to a consistent
location. We could very well use a GLRT approach however
it requires the computation of MLs several times hence it is
not practical. Instead we use the linearized versions of ranges.

III. PROPOSED SOLUTION

Every TOA estimate is directly mapped to range estimates
by using the propagation speed at the medium. Let us assume
we have L base stations, (xk, yk) denote the coordinates of the
kth base station while xm, ym denote the unknown coordinates
of the mobile station. rk denotes the range from the mobile
station to base station k. For the kth base station we have the
following equation:

r2k = (xm − xk)2 + (ym − yk)2. (4)

By substracting the first equation from the kth we obtain the
following well known set of equations

b = Hθ + w (5)

H = 2


x21 y21
x31 y31
. .
xL1 yL1

 θ =
[
xm
ym

]
(6)

b =


x2

2 + y2
2 − x2

1 − y2
1 − r22 + r21

x2
3 + y2

3 − x2
1 − y2

1 − r23 + r21
...

x2
L + y2

L − x2
1 − y2

1 − r2L + r21

 (7)

where xkl = xk−xl. The estimate of the true location is given
as:

θ̂ = (HTH)−1HTb (8)

Note that in general b /∈ R(H). The idea is to choose the
hypothesis for which b is closest to R(H). For this purpose
we propose the use of matched subspace detectors [?]. From
here the matched subspace detector can be written as:

L =
‖PHb‖
‖P⊥Hb‖

> γ (9)

where

PH = H(HTH)−1HT (10)

P⊥H = I−H(HTH)−1HT (11)

The idea behind the use of a matched subspace detector
is simple. If a signal is present then there must be a strong
component of b inR(H) and we simply check the SNR for the
signal subspcae and the noise subspace. However this can only
be used for detecting a single signal. In order to extend it to
multiple cases, then our detector chooses between the strongest
dissimilarity. In other words, if there is large misalginment of
the vector b from the spaceR(H) then it will not be preferred.
Matched subspace detectors measure the dissimilarity between
the signal and the model.

Let us for simplicity assume that we have the early-strongest
ambiguity in two base stations only, then

r̂1 ∈ {c1, d1} (12)
r̂2 ∈ {c2, d2} (13)

the range estimates at each of these base stations take two
possible values.

We desire to choose the correct range difference measure-
ment. In such a case we need to choose between 4 hypotheses:

H11 : Pair c1, c2 correct (14)
H12 : Pair c1, d2 correct (15)
H21 : Pair d1, c2 correct (16)
H22 : Pair d1, d2 correct (17)

whre Hij denotes that the ith estimate is chosen from the first
base station and the jth estimate is chosen from the second
base station. In a similar manner, since the range differences
enter only the vector b, we label the vector depending on the
enumeration: bij means we constructed the vector by choosing
the ith estimate from the first base station and the jth estimate
from the second base station.

Then the dissimilarity measure for the parameter is

Lij =
‖PHbij‖
‖P⊥Hbij‖

(18)

We base the decision on the following criterion

{̂i, ĵ} = arg max
i,j

Lij (19)

Hence the true hypothesis is Hîĵ



In general if we have K base stations the there will be
2K possible variations. Testing for such large number of
hypotheses with ML is intractable. However by using the
closed form solution and the proposed matched subspace
detectors the problem becomes more feasible.

IV. LINEAR ARRAY

Until now we assumed that the matrix H is full rank,
however the case where we have a linear array is also relevant.
In the case of a linear array the matrix H is not full rank. Let
the SVD of H be given as:

H = UΣVT (20)

and U = [u1u2]. Then the following projection operator gives
the projection operators

PH = U1UT
1 (21)

P⊥H = U2UT
2 (22)

V. AOA+TOA CASE

In this section we consider the case where we want to
choose between the right pair of direction of arrivials and
time of arrivals belonging seperately to the strongest and first
arriving paths. This is an extension to the previous section
where we had only TOA information.

From the following we need to develop an algorithm that
can incorporate all the knowledge. A simple combination of
various estimates of TOA and AOA, is the following [?]:

b = Hθ + w (23)

where

H =



1 0
0 1
1 0
0 1
. .
. .
. .
1 0
0 1


θ =

[
xm
ym

]
b =



x1 + r1 cos(θ1)
y1 + r1 sin(θ1)
x2 + r2 cos(θ2)
y2 + r2 sin(θ2)

.

.

.
xL + rL cos(θL)
yL + rL sin(θL)


(24)

In the above notation θk is the angle of arrival estimation of the
kth base station and rk is the corresponding range estimate.

The estimate is a simple LS and can be obtained as:

θ̂ = (HTH)−1HTb (25)

We assume that there are available pairs from the first
base station (c1, α1), (c2, α2) and for the second base station
(d1, β1}, {d2, β2). The first terms c1, c2, d1, d2 are estimated
ranges and α1, α2, β1, β2 are the corresponding angles.

Then we obtain the following hypothesis:

H11 : Pairs (c1, α1), (d1, β1) correct (26)
H12 : Pairs (c1, α1), (d2, β2) correct (27)
H21 : Pairs (c2, α2), (d1, β1) correct (28)
H22 : Pairs (c2, α2), (d2, β2) correct (29)

As before the detector for the right pairs is given as the part
that maximizes the following SNR expression:

Lij =
‖PHbij‖
‖P⊥Hbij‖

(30)

We base the decision on the following criterion

{̂i, ĵ} = arg max
i,j

Lij (31)

VI. SIMULATIONS

In order to test the performance of the multihypoth-
esis detector we performed extensive computer simula-
tions for the TOA only case. In the first set of sim-
ulations the locations of the five base stations were:
(0, 0), (0, 10), (10, 0), (10, 10), (17, 12). The mobile station
was put in near field point (3, 3). We choose the scales so
that they can represent a realsitic indoor geometry. First we
assumed that there is a path ambiguity only in two of the base
stations and this large error is common in the sense that it
is represented with the same parameter a, (d1 = c1 + a and
d2 = c2 + a). We changed this bias parameter and Fig. 2
shows the probability of detection for the right hypothesis. As
can be seen from the figure, the probability of correct decision
converges to 1 as we increase the value of the paramter from
1 to 10 (noise variance is set to 1). From here we can say that
when the number of biased base stations is low good detection
of large errors is possible.

To test the full capacity of the algorithm we performed
another set of simulations where the base stations are located
as (0, 0), (0, 10), (10, 0), (10, 10). In this scenario every base
station has an ambiguity on the early arriving and strongest
path. We set the noise variance to one and the path offset on
each base station is set to 10. In this case one may expect a
good performance however a degeneracy occurs and as can be
seen from Fig. 3 we do not have good probability of detection.

To test the non-degenerate case we set the noise variance to
0.1 and performed simulations for bias terms as (1, 2, 3, 4). In
Fig.4 we see that again good probability of detection can be
obtained. This result agrees with the first set of simulations.
We have also tested the high noise variance case where the
noise variance is set to 1. In Fig. 5 we see that now there is
almost homogeneous distribution between the hypothesis and
the probability of detection decreases. However we must note
that in that case noise variance and bias terms are very close
to each other hence it is expected not to have very accurate
detection.

VII. CONCLUSION AND DISCUSSIONS

Large errors are an important deteriorating element for
UWB localization. We have showed that in general it is
possible to improve positioning accuracy by adopting a simple
detector based on the fact that range estimates should point
to consistent point as the estimate of mobile location. The
decision is based on the best fitting pair of estimates that
represent the ranges. In simulations we observed that for large
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Fig. 2. Probability of choosing the right hypothesis with respect to the
parameter ’a’
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Fig. 3. Histogram for decision statistics of hypothesis under 10000 trials,
degenerate case

errors it is very easy to distinguish between correct ranges and
incorrect ranges. While when the errors are smaller and hence
it is more difficult to make the right decision. However, as the
errors are smaller, the errors in positioning will be smaller. In
conlcusion large errors are easy to separate. We performed all
the simulations in 2D for simplicity, however extension to 3D
is easy.

We must note that we used `2 norm instead of `1 norm. It
is possible to pose the same decision problem with `1 norm
and as a parameter estimation problem to solve the problem.
We can also use the extensions discused in [?].
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