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Algorithms for blind source separation aim to compute beamformers that se-
lect a desired source while suppressing interfering sources, without specific
knowledge of the sources or the channel. The preceding chapters have de-
scribed algorithms based on direction finding: sources are separated based on
differences in spatial signature vectors (array response vectors). Such algo-
rithms need to know the parametric structure of the array response, therefore
they rely on calibrated arrays. A complementary class of algorithms uses
the structural properties of the source modulation, and try to reconstruct,
at the output of the beamformer, a signal that has this structure. A widely
used property for this is based on the fact that many sources are phase mod-
ulated, therefore have a constant modulus. The related Constant Modulus
Algorithms (CMAs) are studied in this chapter.

6.1 INTRODUCTION

In wireless communications, an elementary beamforming problem arises when
a number of sources at distinct locations transmit signals at nominally the
same carrier frequency and in the same time slot. The signals are received by
the base station, which is assumed here to contain an array of antennas. By
linearly combining the antenna outputs, the objective is to separate the signals
and remove the interference from the other signals. In many cases of channel
estimation and source separation, training sequences are available: a segment
of the signal of interest which is known. In this chapter, we consider “blind”
algorithms: a blind beamformer is to compute the proper weight vectors w;
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from the measured data only, without detailed knowledge of the signals and
the channel. Tt can do so by comparing properties of the signal at the output
of the beamformer to properties that the desired source signal would have at
this point.

For example, if we know that the desired source has an amplitude |sy|
constant to 1 for every sample index k (such a signal is called constant mod-
ulus or CM), then we can test this property for the output signal yj of the
beamformer, and define an error equal to the modulus difference |y |* — 1, as
in figure 6.1(a). Alternatively, we can estimate the best signal that has this
property based on the output of the beamformer, i.e., §; = \lyl_zl’ and give an
error equal to §; — yi- Here, §i is regarded as a good estimate of the source
signal, and it is used as a reference signal instead of si. This is an elementary
form of decision feedback, which could be refined further if we know that the
source belongs to a certain alphabet, e.g., {£1} for BPSK or {+1,+j} for
QPSK. See figure 6.1(b).

Throughout most of this chapter we assume a stationary situation with
essentially no delay spread (as compared to the inverse of the signal band-
widths), so that no equalization is required. With d sources and M receive
antennas, the situation is described by the simple data model

Xp = ASk + nyg (61)

where the vector x, is a stacking of the M antenna outputs (z;)r at discrete
time k, sy is a stacking of the d source signals (s;)r, and A is the M x d
array response matrix which describes the linear combinations of the signals
as received by the antennas. The M-dimensional vector ny is the additive
noise. A beamformer w takes a linear combination of the antenna outputs,
which is written as an inner product y; = w"x, where ™ denotes the complex
conjugate transpose. The beamforming problem is to find weight vectors, one
for each source, such that w}'x; = (s;) is equal to one of the original sources,
without interference from the others. For this to be possible, we need to make
(at least) the following assumptions, which are valid throughout the chapter:

1. M > d: more antennas than sources,
2. A has full column rank: its columns are linearly independent.

3. The power of the sources is absorbed in A (or a separate diagonal factor
B), therefore we may assume that all sources have equal, unit power.

4. ny, is white Gaussian noise, with covariance matrix E(nxn}) = oI,
where E denotes the expectation operator.

Constant Modulus algorithms have been widely studied. The specific aim
of this chapter is to look at algorithms that find the complete set of all beam-
formers (one for each impinging signal). The original Constant Modulus Al-
gorithm (CMA) [1] can find only a single signal. A 1992 extension (the CM
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Fig. 6.1 Blind adaptive beamforming structures: (a) based on modulus error, (b)
based on estimated output error.
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Array [2, 3]) is a multistage algorithm based on successive cancellation; it has
a poor performance. Currently there are two types of algorithms that can
find all signals:

1. the “Algebraic CMA” (ACMA) [4] and similar algorithms such as JADE
[5]: this is a non-iterative block algorithm acting on a batch of data
which computes jointly beamforming vectors for all constant modulus
sources as the solution of a joint diagonalization problem;

2. the “Multi-user Kurtosis” (MUK) algorithm [6]: an adaptive algorithm
which can be viewed as a bank of CMAs with an orthogonality constraint
between the beamformers.

Both algorithms are based on similar cost functions leading to 4-th order equa-
tions for the beamformer coeflicients, and in both algorithms, prewhitening
plays an important role. Qur aim is to put the two algorithms in a com-
mon framework so that they can be compared. To this end, we derive an
block-iterative version and an adaptive version of ACMA.

In a second part of the chapter, we study the application of CMA algorithms
to direction finding. In these approaches, we use both the structure of the
source s and the parametric structure of A, namely each column of A is
a vector on the array manifold associated to a certain direction-of-arrival
(DOA). By combining both properties, increased estimation accuracy and
robustness of the beamformers is obtained.

Notation We adopt the following notation:

complex conjugation,

T .
matrix or vector transpose,

" matrix or vector complex conjugate transpose,
1 matrix pseudo-inverse (Moore-Penrose inverse),
- prewhitened data,

vector of all Os,

E(-) mathematical expectation operator,

0

1 vector of all 1s,

)

© estimated value of a variable,

diag(a) a diagonal matrix constructed from the vector a,

vec(A) stacking of the columns of A into a vector,
® Schur-Hadamard product (entrywise multiplication),
® Kronecker product,

o Khatri-Rao product (column-wise Kronecker product):

AOB::[a1®b1 az®b2 ] (62)
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Fig. 6.2 (a) Single CM signal, (b) sum of two CM signals.

Notable properties are, for matrices A, B, --- and vectors a, b of compatible
sizes,

vec(ab”) = b®a (6.3)

(A®B)(C®D) = AC®BD (6.4)

vec(ABC) = (C" ® A)vec(B) (6.5)

vec(A diag(b)C) = (C"oA)b. (6.6)

6.2 THE CONSTANT MODULUS ALGORITHM

As mentioned, many communication signals have a constant modulus prop-
erty. For such signals, the amplitude |sg| is a constant, typically normalized
to 1, and all information is carried in the phase. If we have a single source
sk, and plot the (complex) samples in the complex plane, then all samples
will lie on the unit circle, see figure 6.2. On the other hand, if we have the
sum of two sources, (s1)r + a(s2)k, then the samples will in general not lie on
a circle, unless @ = 0 (or if there are very special relations between the two
sources—this is not possible if the two sources are independent). If a # 0,
then the received samples will be on a donut-shaped annulus.

The idea of modulus restoral is to play with the weights of a beamformer w
until the output y; = §; = W' x;, has the same property, |3;| = 1, for all k. If
that is the case, the output signal will be equal to one of the original sources
[1], up to an unknown phase factor which cannot be established blindly.

6.2.1 CMA cost function

Popular implementations of such a property restoral algorithm are found
by writing down a suitable cost function and minimizing it using stochas-
tic gradient-descent techniques. For example, for a sample vector x; we can
consider as cost function the expected deviation of the squared modulus of
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the output signal y, = wx, to a constant, say 1:
J(w) = E(lye[* - 1)* = E(w"x* — 1). (6.7)

This so-called CMA(2,2) cost function is simply a positive measure of the av-
erage amount that the beamformer output y;, deviates from the unit modulus
condition. The objective in choosing w is to minimize J and hence to make
Yy as close to a constant modulus signal as possible. Without additive noise,
if we manage to achieve J(w) = 0 then w reconstructs one of the sources.

A closed-form solution which will minimize the CM cost function (6.7)
appears to be impossible because it is a fourth-order function with a more
complicated structure. However, there are many ways in which we can iter-
atively search for the minimum of .J. The simplest algorithm follows from a
stochastic gradient-descent, similar to the derivation of the LMS algorithm by
Widrow [7]. In this case, we update w iteratively, with small steps into the
direction of the negative gradient,

wktD) = w® _ V()

where p is a small step size, and V(J;) = Vg J(w(®) is the gradient vector
of J(w) with respect to the entries of w (treated independently from w),
evaluated at the current value of w. Using complex calculus and the fact that
lyk|? = yryr = Wwxpx)w, it can be verified that the gradient is given by

V(Jk) E{(lys|* — 1) - V(w"x,x; W)}
2B{(|yxl” = 1) - xpxw}

2E{(lyel” — 1)Fexi} -

Replacing the expectation by an instantaneous estimate, as in LMS, shows
that we can find a minimizer w iteratively via

W(k"l‘l) — W(k) —_ /J/Xk Ek; yk = W(k)ka’ zk = (lyk|2 bt ]_)yk (68)

(absorbing the factor 2 in p). This iteration is called the Constant Modulus
Algorithm (CMA, Treichler Agee and Larimore 1983 [8, 1, 3]) and was first
introduced for the case of blind equalization. It has its roots in the work
of Sato [9] and Godard [10]. See [11, 12, 13] for overviews and a historical
perspective.

In comparison to the LMS algorithm, we see that the role of the update
error (in the LMS equal to the output error €, = yr — si) is here played by
2. In the LMS, we need a reference signal s; to which we want to have the
output converge. In CMA, however, the reference signal is not necessary, we
use the a priori information that |yx| = 1 in the absence of interfering signals.

We need to select a suitable step size p and an initial point w(®) for the
iteration. Unlike LMS, we cannot choose w(®) = 0 since this precisely se-
lects a local maximum of the cost function, but any other random vector will
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do. The maximal step size has not been theoretically derived. Because the
cost function involves fourth order moments, the gradient is much steeper
away from the optimum in comparison to LMS, and the maximal y that still
guarantees stability is smaller.

The constant modulus property holds for all phase-modulated and fre-
quency modulated signals, and for several types of signals in the digital do-
main, such as frequency-shift keying (FSK), phase-shift keying (PSK), binary-
shift keying (BPSK) and 4-QAM. For digital signals, the fact that the source
symbols are selected from a finite alphabet is an even stronger property that
can very well be exploited. Even for sources that are not constant modulus,
such as multi-level constellations (higher order QAM), the CMA can be suc-
cessfully applied. The algorithm has been widely used in modem equalization.

6.2.2 Variants of the adaptive CMA

Instead of the cost function in (6.7), a slightly different cost function is also
often considered, namely the “CMA(1,2)” cost function

J(w) = Eyel - 1)? = E(lw"xe] = 2. (6.9)
The associated update rule is given by [2]

wlktD) — (k) _ UXy Zk where 1y, := w(k)ka , 2k =Yk — YE

Y| '
(6.10)

In this case, the update error that controls the iteration is (y — ‘Z—‘) Compared

to the LMS, we see that |y7| plays the role of desired signal, see also figure

6.1(b). Ideally, yj, is constant modulus and the error is zero. An advantage of
this iteration is that the role of u is more closely related to that of LMS, facil-
itating its analysis close to convergence. It also allows to pose a “Normalized
CMA?” [14] similar to the Normalized LMS by Goodwin [15],

(k+1) . (k) o 5
w = w\' — Xk Zk (6.11)
lIxx?

where p is made data scaling independent by dividing by the instantaneous
input power. For the NLMS, this modification was obtained by computing the
optimal stepsize which would minimize the instantaneous error; it is known
that 0 < p < 2 is required for stability, although one would take p < 1 to
obtain a sufficiently smooth performance. The same range holds for NCMA.
A better but slightly more complicated “orthogonalization” version of CMA
was considered in [2] and became known as orthogonal CMA (OCMA, see
also [16]),

wiktl) = (k) _ pf{;lxk Zk (6.12)
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where Ry, is an estimate of the data covariance matrix R = E(xxx};). Usually
Ry, is estimated by a sliding window estimate

Rip = ARy + (1 — \)xpx), (6.13)

where 0 < A < 1 determines the exponential window size (the effective window
size is defined as 1/(1—\)). The inverse of Ry, can be efficiently updated using
techniques known from the RLS algorithm [15].

There are a few other CMAs, in particular the LS-CMA, which will be
discussed in section 6.4.2.

6.2.3 The CM Array

The CMA gives only a single beamformer vector. This is sufficient for blind
equalization applications, where the received signal consists of several tempo-
ral shifts of the same CM signal, and we do not have to recover all of them.
In contrast, the beamforming problem frequently asks for all possible weight
vectors that give back linearly independent CM signals, which is usually much
harder.

If we initialize the CMA with a random vector w(®), then the CMA tends
to converge to the strongest signal. However, this cannot be guaranteed:
for an initialization close enough to a weak signal, the algorithm converges
to that weaker signal.! This gives one way to find all signals: use various
initializations and determine if independent signals have been found.

A somewhat more robust algorithm is the so-called multi-stage CMA, also
called the CM Array. It was introduced in [2, 3], with analysis appearing
in [17, 18, 19]. The output of a first CMA stage results in the detection of
the first CM signal, and gives an estimate $; (k). This signal can be used as
a reference signal for an LMS algorithm to estimate the corresponding array
response vector a;, an estimate of the first column of A. The resulting update
rule is

afth =& 4 pynax(k) — a5 (k)] 51(k)

We can then subtract the estimated source signal from the original data se-
quence,
xi (k) = x(k) — 41" 41 (k)

and feed the resulting filtered data to a second CMA stage in order to detect
a possible second CM signal. This can be repeated until all signals have been
found. See figure 6.3.2

During the early days of CMA, only the reception of the strongest signal was desired, and
convergence to another signal was regarded as mis-convergence.

2The algorithm used in the CM Array in [17, 18, 19] is in fact based on the CMA(1,2) as
in equation (6.10).
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Fig. 6.3 The CM Array.

A problem with this scheme is that the LMS algorithm can converge only
after the first CMA has sufficiently converged. In the mean time, the second
CMA may have converged to the same signal as the first CMA (especially
if it is strong), and if the first LMS is not completely removing this signal,
the second stage will stay at this signal. Thus, it may happen that the same
signal is found twice, and/or that not all signals are found. A related problem
is that the CMA converges to a point close to the Wiener solution. Hence,
the estimate 8 (k) will always contain components of the other signals as well,
causing misadjustment in later stages. An analysis of the situation is given in
[17, 19].

Another problem is that the convergence speed may be slow (several hun-
dreds of samples), since we have a cascade of adaptive algorithms. It has been
proposed to use direction-finding algorithms such as MUSIC first to initialize
the cascade. An alternative approach is to augment the cost function with
additional terms that express the independence of the output signals, e.g., by
putting a constraint on the cross-correlation of the recovered signals [20, 21].
Algorithms for this are discussed in section 6.4. Some of the problems are
alleviated by prewhitening, which is discussed in the next section.

6.3 PREWHITENING AND RANK REDUCTION

6.3.1 Rank reduction

At this point, let us first make a small extension to our notation. Starting
from the data model x; = Asy + nyg, we assume that we have received N
sample vectors, k = 1,--- ,N. It is often convenient to collect the data in
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matrices:
X:[X15X2a"';XN]; S:[Slas2a"'7sN]a

and likewise for a noise matrix N, so that the model becomes
X=AS+N.

The objective is to recover all beamformers w;, i+ = 1,--- ,d, one for each
source. These can also be collected into a matrix W,

W = [wyq, -, W4, M xd.

In the noise-free case, we would like to achieve W*X = S. However, with no
other knowledge about S but the constant modulus property, there are two
causes of non-uniqueness:

1. The ordering of sources is arbitrary: we do not know which is “source
number 17, etcetera. Therefore the ordering of beamformers (columns
of W) is arbitrary: W will always have a permutation ambiguity.

2. The solution for each beamformer can be found only up to an arbitrary
phase, since the CM cost function is phase-blind.

This kind of non-uniqueness is common to all blind source separation prob-
lems. In the estimation of a beamformer, there may be one other cause of non-
uniqueness. Namely, additional “nullspace solutions” exist if the received data
matrix X is rank deficient: in this case there are beamformers wg such that
wy X = 0", Such solutions can be added to any beamformer w; and cause
non-uniqueness: two linearly independent beamformers (w; and w; + wo)
may still reconstruct the same signal. This is clearly undesired if our aim is
to reconstruct all independent signals, because the simplest way to detect if
independent signals have been obtained is to verify the linear independence
of the corresponding beamformers.

Nullspace solutions exist if the number of sensors is larger than the number
of sources (A tall), and if A is not full column rank. The former is simply
treated by a prefiltering operation that reduces the number of rows of X from
M to d, as we discuss here, whereas the latter case is hopeless, at least for
linear receivers.

We will use the underscore ( _ ) to denote prefiltered variables. Thus, let
X := F*X where F : M x d is the prefilter. Then

X=AS+N, where A :=F"A, N:=F"N.

This is essentially the same model as before, except X has only d channels
and A : d x d is square. The blind beamforming problem is now replaced by
finding a separating beamforming matrix T : d x d with columns t;, acting on
X. After T has been found, the beamforming matrix on the original data will
be W = FT. The associated processing structure is illustrated in figure 6.4.
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Fig. 6.4 Blind beamforming prefiltering structure.

For the purpose of dimension reduction, there are many suitable F: the only
requirement is that F*A should be full rank. To avoid noise enhancement,
we also want it to be well conditioned. This leads to the choice of F to have
orthogonal columns that together span the column span of A.

6.3.2 Whitening

Assume that the noise is white i.i.d. with covariance matrix R,, = E(nn") =
0?1. We can choose F such that the resulting data matrix X is white, as fol-
lows. Let Ry = L S| xx} = £ XX" be the noisy sample data covariance
matrix, with eigenvalue decomposition

R, - USP0" = [0 fj][ﬁ? HU] (6.14)
Here, U = [U, U,]is M x M unitary, and 32 is M x M diagonal (£ contains
the singular values of X/v/N). The d largest eigenvalues are collected into a
diagonal matrix 32 and the corresponding d eigenvectors into U, (they span
the “signal subspace”). In this notation, define F as

F=0U,3;". (6.15)
This prewhitening is such that R, := %&H is unity: R, = I, and at the
same time it reduces the dimension of X from M rows to d rows.

An important reason to choose a prefilter that whitens the output is that
the resulting A in the whitened domain is approximately unitary. Indeed, let
A =TUy x> AVi be an “economy-size” SVD of A (U4 is a submatrix of a
unitary matrix and has size M x d, V4 is size d x d and is unitary, and X4
is d x d diagonal and contains the singular values), then for a large number
of samples, Ry ~ Ry, where

2 2 H
R.=AA"+0I=[U, U4l ZaToT ] [ ol ]
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so that we can identify Uy; = Uy and X2 = X% + 0°1. Therefore,
A=F'A=31UTU,Z,V = (Z;'Z4)V}.

This shows that A is unitary if (£% +02I)~'/2% 4 = I, or a scalar multiple of
I, which is the case if there is no noise or if the singular values of A are all the
same (then A has orthonormal columns, which corresponds to well-separated
equal-powered sources). If this is not the case, then A is only approximately
unitary, but always better conditioned than A itself (the conditioning of a
matrix is the ratio of its largest and smallest singular value, preferably this is
a number close to 1).

It has sometimes been suggested to use a slightly different prewhitening
filter, F = U,3,!, where 4 = (£2 — 0°T)'/2 is an estimate of £ 4. This
would yield a unitary A. Care has to be taken to ensure that f)g i B
positive, e.g., by replacing o2 by a data-dependent estimate.

In the noise-free case, the optimal beamformer is T = A~ . The impor-
tance of having a unitary A-matrix is that the corresponding beamformer is
T = A is also unitary, hence has maximally independent columns. If our
aim is to find all independent sources in the data, it is very convenient to
know that the beamformers are orthogonal: if we have found one solution t;,
we can constrain the other solutions to be orthogonal to it, which is a sim-
pler constraint than requiring them to be linearly independent. If A is only
approximately unitary, e.g., in the presence of noise, then the orthogonality
condition on T has to be relaxed to being “well-conditioned”.

It is well recognized in adaptive filtering that moving to the whitened do-
main improves the convergence speed: this is often limited by the condition-
ing of the data covariance matrix, which becomes optimal after whitening. (A
disadvantage is that the noise is not longer white nor spatially independent.)
This is the motivation of introducing the factor R! in the OCMA in equation
(6.12).

6.3.3 Convergence to the Wiener beamformer

In a stochastic context, the Wiener beamformer is defined as the solution to
the linear minimum mean square error (LMMSE) problem

w = argmin E|w"x;, — 5;|2,
w

where si is known to the receiver. The solution is straightforward to derive,

Elw'x, —s;|? = wUE(xpxg)w" — w'E(x3)) — E(skx))w + E(|s¢[?)
= W RxW— Wirg, —To,w+r,
= (W—=Rlrgs)"Rux(W = Rlrys) + 75 —ro, R rys,
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where Ry is the data covariance matrix, and rys is the correlation of the
received data with the transmitted signal. Therefore, the optimal beamformer
is given by w = R 'ry,. Similarly, if a vector s of d sources is specified, the
collection of beamformers is W = R ' Rys, where Rys = E(x;s}). Assuming
the noise is independent from the signals, and the sources are i.i.d., we obtain
Ry = A and

W=R_'A. (6.16)

In a deterministic context, the Wiener beamformer based on sample data
is derived similarly as the solution to the Least Squares problem

W = argvglin WX —S |2 = (SXN)" = (L XX") 1 LXS".  (6.17)

(The subscript p indicates the Frobenius norm.) As N — o0, the determin-
istic Wiener beamformer converges to (6.16). The importance of the Wiener
beamformer is that it can be shown to maximize the Signal to Interference
and Noise Ratio (SINR) among linear receivers.

Suppose we act in the whitened domain: R, = I. The Wiener solution
is then T = A: each column t; of the beamformer is equal to the whitened
direction vector (a matched spatial filter). If we go back to the resulting
beamformer w; acting on the original (unwhitened) data matrix X, we find
(fori=1,---,d)

t; = a; = FHaZ- = w; = Ft; = FFHaZ = R;la,’ .

If the whitening did not involve a dimension reduction, the last step is clear.
But even if F is defined to reduce the dimension to the signal subspace the
result holds (assuming the noise is white i.i.d.), since

R,' =UX ?U" = U,X®,?U; +0 ?U,U; = FF" + ¢ U, U,

whereas ULa; = 0. Therefore, the beamformer in the original domain is
equal to the Wiener beamformer (6.16). In general, this is a very attractive
property.

Several algorithms can be shown to converge to the true a-vector or A-
matrix asymptotically, in case the number of samples N — oo or in case
the signal to noise ratio SNR — oo. Such algorithms, when applied in the
whitened domain, converge to Wiener beamformers. A caveat in the proof is
that, in the whitened domain, the noise covariance o2FF" is in general not
white anymore whereas many algorithms are based on this assumption. (For
well separated and equal powered sources, the resulting noise covariance is
still white.)

In summary, the prewhitening serves two purposes:
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1. The dimension reduction (from number of antennas M to number of
sources d) avoids the existence of additional “nullspace solutions”, which
facilitates the reconstruction of all independent signals.

2. The prewhitening will improve the conditioning of the problem: after
prewhitening, A is approximately unitary, therefore the beamformers in
the whitened domain are approximately orthogonal. This greatly facil-
itates the convergence of iterative algorithms to independent solutions,
and sometimes also guarantees the convergence to beamformers that are
close to the Wiener beamformer.

6.4 MULTI-USER CMA TECHNIQUES

6.4.1 OCMA and MUK

The CMA(2,2) cost function was shown in equation (6.7). The corresponding
adaptive algorithm (stochastic gradient) is

Wit = Wi — uXkZk, 26 = (lyel® — Dy

where y;, = w;x;, is the output of the beamformer using its current esti-
mate, and p is a small step size. We also introduced the OCMA in equation
(6.12) [2], which premultiplied the update term by Ry ! to make the algorithm
independent of the scaling of the data:

W1 = wg — pRI %12, zr = (Jyel” — Dyi - (6.18)

We can directly interprete this algorithm in terms of our prewhitening step.
Indeed, define t = RY/*w and x = Ry */*x. Premultiplying (6.18) with RY/?
leads to

thp1 =ty — UXp 2k, zi = (lys” — D

where y, = w,x; = t;x;. Therefore, OCMA is equal to the ordinary CMA,
but in the whitened domain. The algorithm is easily modified to update d
beamformers in parallel:

Tip1 = Th — px,2zy , 2y = (Yr OVr — 1) O ys

where y;, = Wpx; = T,x, and © denotes the Schur-Hadamard product
(entrywise multiplication). In spite of its appearance, the beamformers are
updated independently, and there is no guarantee that they converge to in-
dependent solutions. However, since T is supposed to be almost orthogonal
and therefore well-conditioned (linearly independent columns), it is straight-
forward to recondition T after each update.

A simple technique to restore the linear independence of the solutions is

to compute a singular value decomposition of T as T = Zajujv;‘, and to
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Given X = [x1,X2,---] and a stepsize y, compute beamformers W = F;, T,
output vector s = fok:

Initialize prewhitening filter F' using m prior input samples; T = Ijxq4.

For k=1,2,--- do

1. Update F, the prewhitening filter, using x; (fig. 6.11) (4dM + 3d%)
x = F"x;, the prewhitened input vector

2. y = T"'x, the current beamformer output vector (d?)
z=y Oy Oy (MUK-update)

orz=(y©y—1)®y (OCMA-update) (3d)

T=T—pxz" (d)

T = reorth(T), equation (6.20); or T = recond(T), equation (6.19) (d®)

3. Sk=y
4dM + d°> +5d7 |

Fig. 6.5 Multi-user CMAs: MUK and OCMA algorithm (in brackets the complexity
of a single update step).

replace the singular values of T that are below some threshold (e.g., smaller
than 0.5) by 1:

1, o; <05

Oj, Oj Z 0.5 (619)

T' = recond(T) := ZU-;'U]'V‘I; where o} = {
Experience by simulations shows that (¢) this reconditioning step is very ef-
fective, and (44) with good SNR it is rarely needed, even if sources are closely
spaced. The reasons for this have to do with the good conditioning of the
problem after prewhitening: the columns of the desired solution are almost
orthogonal.

A similar algorithm was proposed more recently, called the Multi-User
Kurtosis Algorithm (MUK) [6]. MUK is not specifically targeted for CM
signals, but aims to separate statistically independent non-Gaussian signals
by maximizing the absolute value of the kurtosis K (y) of the output, where
K(y) = E(Jy|*) — 2[E(Jy|*)]?. This is a Shalvi-Weinstein cost function [22] (in
this seminal paper, criteria were introduced which involve only the compu-
tation of the second- and fourth-order moments and do not pose restrictions
on the probability distribution of the input sequence). For sources with a
negative kurtosis, this leads to [6]

Tiy1 = Tr — px,zy, » Zy =Yk OV OV -
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Given data X, compute beamformers W and output S = W"X:

1. SVD: X =: UV (M2N)
Prewhitening filter: F = U, 3 Gt / VN
Prefiltering: X := F'X =V,vN

X
Data matrix inverse: X = Vi'/vV/N
Initialize: T = Ijxgq

2. Iterate until convergence:

S =T"X (d>N)

S =[5l (dN)

T = (sX")" (d’N)

T =recond(T), see equation (6.19) (d®)
3. W=FT

Fig. 6.6 LS-CMA in the whitened domain.

In [6], a condition that T should be orthogonal (rather than well-conditioned)
is maintained. This can be formulated as an orthogonal Procrustes problem,

T' = argmin || T - T'|]3
THT=1

of which the solution is [23]

T = Z ojuvy = T' = reorth(T) := Z u; vy (6.20)
J J

In [6], this solution is approximated by a QR factorization (this implements

a sequential reorthogonalization where each column of T' is made orthogonal

to the preceding columns). This does not optimize (6.20) and therefore may

be less effective, but is computationally simpler. Alternatively, orthogonality

of weight vectors may be enforced during adaptive processing by perturbation

analysis of small rotations, as illustrated, e.g., in [24] and in section 6.6.
Both algorithms are summarized in figure 6.5.

6.4.2 Least Squares CMA

In the context of block-iterative algorithms, many other solutions are possi-
ble. We may formulate the multi-user constant modulus problem as a Least
Squares problem

S = argmin ||[W"X - 8|2, S € CM, W full rank
S,W
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where CM denotes the set of constant modulus signals,
CM ={S|[sy| =1, alli,j}.

With an initial value for W, we can set up an Alternating Least Squares
procedure as before: (i) find the best matching S € CM, i.e., project WX
onto the set of CM signals, (i) find the best matching W, i.e., W™ = SX1,
Note that W"X = SX'X, so that the algorithm alternates between projecting
S onto the row span of X, and projecting it onto the set CM. The latter
projection is simply a scaling of each entry of S to unit-norm:

§= [ ] .
|Sij| ij
This algorithm was derived from the CMA by Agee [25], and called the LS-
CMA. A similar algorithm is well-known in the field of optics for solving the
phase-retrieval problem, where it is called the Gerchberg-Saxton algorithm
(GSA) [26]. The relation was pointed out in [27].

As stated in section 6.2, CMAs have significant problems in finding all
independent sources. E.g., LS-CMA has no capability to ensure that W has
full rank. As in the preceding section, this problem can be largely avoided
by working in the whitened domain, for which T is nearly orthogonal. In
the whitened domain, after T is computed, we need to verify its conditioning
and possibly improve it, as in equation (6.19). This leads to the algorithm
stated in figure 6.6. Although as a block algorithm it does not need many
samples, the convergence can be slow: typically 20 iterations or more are
needed, especially for small N. The reconditioning escape is typically needed
only about once during the iterations. A performance simulation will follow
later in section 6.5.5.

6.5 THE ANALYTICAL CMA*

In the preceding sections, we have discussed some of the adaptive and itera-
tive CMAs that have appeared in the literature. They have been derived as
solutions of certain optimization problems, e.g., the CMA(2,2) or CMA(1,2)
cost function. It is interesting to note that the CMA(2,2) also admits an
approximate solution that can be computed in closed form. In fact, given
a block of N > d? samples, the complete collection of beamformers for all
sources can be computed as the solution of a generalized eigenvalue problem.
The algorithm is called the Analytical CMA (ACMA) [4].

4The material in sections 6.5.1-6.5.3 was presented in similar form in [28, 29].
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6.5.1 Reformulation of the CMA (2,2) optimization problem

The CMA(2,2) cost function (6.7) was expressed in a stochastic framework.
Given a finite batch of N data samples, it is more convenient to pose the cost
function as a Least Squares problem:

1
R

The solution of this problem coincides with that of (6.7) as N — oc.
Using the Kronecker product properties (6.3) and (6.5), we can write |§;|?
as
85> = W™ (xpxp )W = (X ® x5)" (WO W).

We subsequently stack the rows (x5 ® x;)™ of the data into a matrix P (size
N x M?). Referring to the definition of the Khatri-Rao product in (6.2), we
see that P = [X o X]". Also introducing y = w ® w and 1 = [1,--- ,1]", we
can write (6.21) as

1 .
~ S (sl 1)?
k

%; [(xr @ x4)* (W@ w) — 1]

1 (6.22)
= —||Py—1]>2.
GlIPy - 1]

Thus, the CMA(2,2) optimization problem asks for the Least Squares solution
of a linear system of equations, subject to a quadratic constraint, namely
y=WQRW.

The linear system can be conveniently rewritten as follows. Let Q be any
unitary matrix such that Q1 = v/N[}], for example found by computing a

0
QR factorization of [1 P]. Apply Q to [1 P] and partition the result as

~H
Q1 P ::\/N[(l) ‘é ] . (6.23)
Then
_ -1 _ Py = 1
Py=1 & Q[ P][y]_o & {Gy -0 (6.24)
and therefore (6.22) can be written as
1 . .
~ 282 =12 = |y — 1] + || Gy | (6.25)
k

The second term of this expression requires y = w ® w to be in the nullspace
of matrix G, as much as possible. The first term puts a constraint which
avoids the trivial solution y = 0. By squaring (6.23) to eliminate Q, we
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obtain explicit expressions for p and a matrix C = G"G:

p = LP1I=LY,.x0x (6.26)
¢ = G"G=LP"P- LP"1.L1"P (6.27)
H
= &L @x) (& ®xk)" = [§ XpXn @3] [§ Dy Xn @3]

The former expression shows that p = + > X ® x5 = vec(+ Y XkX);) =
Vec(f{x), where Ry is the sample covariance matrix of the data. Thus, (for
Yy=WQRW) .

Py = wR,w (6.28)

and we see that the condition p"y = 1 in (6.24) is equal to requiring that the
average output power of the beamformer is 1.

Returning to (6.25), let y be the (structured) minimizer of this expression,
and define 8 = p™y. Equation (6.28) shows that it is the output power
of the beamformer corresponding to ¥ and hence 8 > 0. Regarding 8 as
some known fixed constant, we can add a condition that p"y = S to the
optimization problem without changing the outcome:

§ = agmin [p'y— 1+ Gy|? = argmin |31+ Gy
Y=WQRW Y=WwWRW
py=5 py=5
= argmin [|Gy|?.
Y=WRW
py=5

Since 3 is real and positive, replacing 8 by 1 will only scale the solution ¥ to
%y, and does not affect the fact that it has a Kronecker structure. Therefore,
it is possible to drop the first term in the optimization problem (6.25) and
replace it by a constraint Py = 1.

This constraint in turn motivates in a natural way the choice of a prewhiten-
ing filter F = U,3, ! as given in (6.15). Indeed, we derived in (6.28) that
Py = w"R,w. If we change variables to x = F*x and w = Ft, then R, =1
and

Py = w'Rxw = t"t = ||t]|2.

Moreover, (t ®@t)*(t®t) = t"t @ t"t = |[t||*. It thus follows that "y = 1 &
[t ®t| = 1. Hence, up to a scaling which is not important, the CMA(2,2)
optimization problem is equivalent to solving

t= argmin ||Gy|?® = argmin y"Cy (6.29)
y=t®t y=t®t
llyll=1 llyll=1

and setting w = F't.
As discussed in section 6.3, it is important to also incorporate a dimen-
sion reduction in the prewhitening filter. Without dimension reduction, the
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nullspace of G and C contain additional vectors which do not correspond to
valid solutions. The prefilter F reduces the dimension of x; from M to d, and
the corresponding matrix P := [X o X]" has size N x d®>. We assume that
N > d? so that P is ‘tall’, and G and C have a well-defined (i.e., overdeter-
mined) nullspace. It can be shown [30] that for sufficiently large N (at least
N > d?) the nullspace has dimension d and does not contain other solutions.

6.5.2 Solving the CMA(2,2) optimization problem

To solve the CMA(2,2) optimization problem in (6.29), it is required to numer-
ically optimize the minimization problem and find d independent solutions.
The solutions will be unit-norm vectors y that have the required Kronecker
structure and minimize || Gy ||?>. With noise, the solutions will not exactly be
in the approximate nullspace of G since in general this space will not contain
vectors with the Kronecker structure.

Instead of solving this problem, an alternative approach is to first find an
orthonormal basis Y = [y1,---,y4] for the the d-dimensional approximate
nullspace of G (or C),

Y = argmin || GY [|;, = argmin nygyi, (6.30)
YHY=I YHY=I

whose solution is the set of d least dominant eigenvectors of C. We can
subsequently look for a set of d unit-norm vectors t; ® t; that best spans the
same subspace,
T= in [|[Y—(ToT)A|Z.
arg min l (ToT)A|g

where T = [ty,---,tq] is the set of beamformers in the whitened domain,
ToT:=[t; ®ty, - ,tq @ ty4] denotes the Khatri-Rao product, and A is a
full rank d x d matrix that relates the two bases of the subspace.

Alternatively, we can formulate this as a joint diagonalization problem,
since (using (6.3)—(6.6))

Y= (ToT)A|} = ZHYi_(TOT))\i”% = Z”Yi_TAz’THulzr
i i

where A; is the i-th column of A, A; = diag()\;) is a diagonal matrix con-
structed from this vector, and Y; is a matrix obtained by unstacking y; into
a square d x d matrix such that vec(Y;) = y;; we have also used (6.6). The
latter equation shows that all Y; can be diagonalized by the same matrix T.
The resulting joint diagonalization problem is a generalization of the standard
eigenvalue decomposition problem, and can be solved iteratively (see section
6.5.4 ahead).

The preceding two-step approach gives an approximate but closed-form
solution to (6.29); the corresponding algorithm is called the Analytical CMA
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Given data X, compute beamformers W and output S =wW"X:

1. SVD: X =: ULV (M?N)
Prefiltering: X = f];lﬂ?x =V,
Q:%E(hgk ® x;)(Xy, ®Kk)H - [%ng ®§k][%2$k ®Kk]H (d4N)
EVD of C, let {y;} be the d least dominant eigenvectors. (£ d%

2. Y;=vecly; (i=1,---,d)

Find T to jointly diagonalize {Y;} as Y; = TA,;T" (i =1,---,d) (d%)
3. Scale each column of T to norm 1.

Set W =U,3;'T and § = T"X (d>N)

Fig. 6.7 Summary of ACMA.

(ACMA) [4]. An important advantage of this algorithm is that it provides
the complete set of beamformers as the solution of the joint diagonalization
problem. A second advantage is that in the noise-free case and with N >
d?, the algorithm produces the exact solution W = AMH_ The algorithm is
summarized in figure 6.7. The main complexity is in the construction of C.

6.5.3 Asymptotic analysis of ACMA

A detailed performance analysis of ACMA has appeared in [29, 31]. The most
important finding is that asymptotically, the solution converges to the Wiener
beamformer, for a large number of samples or for a high SNR. The derivation
is summarized in this subsection.

Recall the definition of C in equation (6.27). To analyze the nullspace of
Q, we consider a large number of samples, so that (¢} converges to C,

C=Ez®x)(zeox)" - E[zxex]Ezox]". (6.31)

where x;, = Asp+n,. Thus, C involves both 4th order and 2nd order statistics
of the data.

In general, for a zero mean random vector x = [z;], the fourth order cu-
mulant matrix is defined as

Ky = Z(lb ® ia)(ic ® id)H cum(ﬂ:a, Tp, T, i‘d) , (6‘32)
abcd

where i; is the ith column of the identity matrix I, and, for circularly sym-
metric variables, the cumulant function is defined by

Cum(xaajba Ze, i'd) = E(xafbmcz'd) - E(mafl_fb)E(xca_;d) - E(mafl_fd)E(i'bxc) .
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Therefore, (6.32) can be written compactly as
Ki=Ex®ex)(xex)" -Exe2x)Ex®x)" -Exx") ® E(xx") (6.33)

Cumulants have several important properties: for sums of independent sources
they are additive, the 4th order cumulant of Gaussian sources is K,, = 0, the
4th order cumulant of independent CM sources is Kg = —I. For the data
model x;, = Asy + n,, it thus follows that

Kx=[A®Al(-D[AcAJ"
and hence by combining (6.31) with (6.33), C is given by®

C = Ky + E&x") ®E(xx")
= [AcA](-I)[AcA]" + 1. (6.34)

where we also used that after prewhitening E(xx™) = I. Consequently, the
CMA(2,2) cost function (6.29) becomes asymptotically

argmin y"Cy = argmin y"{[AoA(-D[AoA" +T}y
y=t&t,|lyll=1 y=t&t,|lyll=1
= argmax y {[AocA]J[AcA]"}y. (6.35)

y=t®t,|ly[=1

ACMA first constructs a basis {yi,---,ya4} for the d nullspace vectors of C
without the constraint y =t ® t, which clearly are given by

span{y1,---,ya} = span[AoA] = span{a, ®a,, --,4;,®a,}.

As a second step, the joint diagonalization procedure is used to replace the
unstructured basis by one that has the required Kronecker product structure,
i.e., d independent vectors of the form t ® t within this column span. From
the above equation, we see that the unique solution is t; ® t; = a, ® a; (up to
a scaling to make t; have unit norm), and thus

tizgi; l:]-aad

Similar to section 6.3.3, the solution in the original (unwhitened) domain is
w; = R 'a;. We have just shown that as N — oo, the beamformers provided
by ACMA converge to the Wiener receivers (6.16). This is partly due to the
choice in prewhitening scheme, and partly due to the two-step solution of the
CMA(2,2) problem (6.29). In general, the exact solution of CMA(2,2) does
not lead to the Wiener solution, although it has already been observed by

5This analysis is not valid for BPSK sources, because they are not circularly symmetric.
For such sources, the ACMA has to be modified [32].
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Godard that that the solutions are often close. Quantitative evidence for this
is given in [33, 34, 35].

6.5.4 Joint diagonalization via iterative projection

Since the problem of joint diagonalization shows up in several other signal
processing applications, it has actually been well studied over the past decade
[36, 37, 38, 39, 5, 40, 41, 42, 43, 44, 4, 45, 46]. The algorithms are iterative,
e.g., using extensions of Jacobi iterations or QZ iterations. Generally the
performance of these algorithms is satisfactory although the speed of conver-
gence is often linear, and without an exact solution (i.e., in the noisy case)
the convergence to local minima cannot be avoided. The reason for good per-
formance is that a good starting point is available from the solution for only
two matrices, which reduces to a standard eigenvalue problem.
The joint diagonalization step in the ACMA can be written as

T = argmin || V,, — (To T)A|]Z (6.36)
lIt:]|=1

where V,, is an orthogonal basis for the nullspace of G. The unit-norm
constraint on the columns of T avoids a scaling indeterminacy between T and
A. Since A is invertible, the problem can also be written as

T= argmin [[V,M—(ToT)J|3. (6.37)
t;]| =1
{l\/I ynvertible

This is not entirely equivalent, but almost so since A is close to unitary.
However, a condition that M is invertible is needed to avoid finding repeated
solutions t; = t;.

As inspired by [44], the problem (6.37) can be solved iteratively using
Alternating Least Squares: (i) given an initial value for T, solve for M; (i)
for the new value of M, solve for T. Both steps are simple to implement: for
fixed T, solving for M gives

M= VEToT),
whereas for fixed M, solving for T gives

T = argmin [|[V,M — (T o T)||* = argmin |[|[Y — (T o T)|]?,
IIt:||=1 e

where Y = V,,M = V,, V(T o T) is the projection of the previous solution
onto the estimated subspace. The problem decouples into solving for the
individual columns of T:

t; = argmin |ly; — (£; ® t;)||* = argmin ||Y; — t,-t?”2 ,
[lt:]|=1 [[t:||=1
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Given data X = [x1, -+ ,xn], compute beamformer W and output s = W?xk:

1. Compute Rx = L+ 3, xix; (M?N)

Compute the EVD R, = UX?U" (M3)

Set the prewhitening filter F = U, 5,12 (dM)

2. Prefilter the data, x, = F"xy, (dMN)

C= % 2ok (X @ %) (%), ® Kk)H - Vec(ﬂx)vec(gx)H (d4N)

3. Compute V,,, the nullspace of € (< d®

4. Initialize T =1

Until convergence:

M=V, (ToT) (d*)

M’ = recond(M), equation (6.19) (d@®)

Y =V, M (d*)

t; =mi(yi), ¢=1,---,d, equation (6.38) )

5. Set W = FT and 8, = W'x;, (dMN)

Fig. 6.8 ACMA using iterative implementation of the joint diagonalization.

where Y; = vec™!(y;). The solution is given by an SVD of Y; and retaining
the dominant component, i.e.,

Yi = Zajuju;l, ti =u; = ’/Tl(yi) - (638)
J

We will denote this “projection onto rank-1” operation by t; = 71 (y;)-

The algorithm thus projects a prior solution t; ® t; onto the estimated sub-
space V,,, and then “projects” the result back onto the Kronecker structure
(the latter projection is non-linear). After each projection, the error is de-
creasing, therefore the algorithm converges monotonically to a local minimum.
As with most alternating projection algorithms, the speed of convergence is
only linear. Nonetheless, experience shows that in practice only a few iter-
ations are needed (two or three): the minimum error depends on the noise
level and is quickly reached.

The columns of T are processed independently. Therefore, there is a risk
that they converge to the same solution. To avoid this situation, the inde-
pendence of the solutions has to be monitored and corrected, if needed. The
easiest point to do this is to compute an SVD of M and recondition it if needed
(see equation (6.19)). The motivation for this is that, after prewhitening, T is
nearly unitary, hence the columns of T o T are nearly orthogonal. Therefore,
M = V(T oT) is expected to be nearly unitary: its singular values are close



6.5. THE ANALYTICAL CMA 25

to 1. On the other hand, if two columns of T converge to the same solution,
then a singular value of M gets close to 0.

The resulting iterative ACMA is summarized in figure 6.8. Also the com-
putational complexity of each step is indicated. Most of the work is done in
two steps: the SVD of X which has a complexity of M2N, and the construc-
tion of €, which has a complexity of d*N. The joint diagonalization step has
a complexity of order d* (independent of its implementation), which can be
neglected. Therefore, the total complexity is about (M2 + d*)N.

The computational complexity of the LS-CMA (figure 6.6) is dominated
by the two large inner products, T"X and SX, each of complexity d?N.
The whitening step has a complexity of M2N. With 25 iterations, the total
complexity is about (M2+50d?)N. In comparison, the ACMA is more efficient
than the LS-CMA algorithm if d < 7.

6.5.5 Comparison of ACMA to LS-CMA

Some performance results for the block-iterative methods are shown in figure
6.9. In the simulations, we took a uniform linear array with M = 4 antennas
spaced at half wavelengths, and d = 3 constant-modulus sources with direc-
tions [—10°,20°,30°] and amplitudes [1, .8, .9], respectively. (Recall that the
algorithms do not use knowledge of the array structure—the above informa-
tion just serves to specify the simulation data.) The noise power is determined
by the Signal to Noise Ratio (SNR), which is the SNR per antenna for the
strongest user.

We compare the performance of the prewhitened LS-CMA as in figure
6.6 (25 iterations), ACMA as in figure 6.7, and iterative ACMA as in figure
6.8 (2 or 3 iterations). For reference, we also show the performance of the
sample data LMMSE receiver, W = (SX)™ with known S. The performance
measure is the residual signal to interference plus noise ratio (SINR) at the
output of the beamformers. We only consider the SINR of the worst output
channel. The graphs show the performance as a function of Signal to Noise
Ratio (SNR), number of samples N, and angular separation between the 2nd
and 3rd source, respectively.

It is seen in figure 6.9 that all algorithms converge to the LMMSE receiver
for sufficiently large N or SNR and source separation. The panel at the
right shows the fraction of times that not all independent beamformers were
recovered (this was established by first verifying for each beamformer which
signal it recovers most strongly; these “failures” were omitted from the SINR
statistics). The algorithms have similar failure rate performance, which is
very small for sufficiently large N, SNR and source separation.

Figure 6.10 shows the convergence of the CMA(2,2) cost function (averaged
over all sources and over 800 monte-carlo runs), for various SNR levels. It is
seen that the LS-CMA converges much slower, and for large SNR may never
reach the minimum cost. Also note that LS-CMA does not aim to minimize
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Fig. 6.9 SINR performance and failure rate of ACMA, iterative ACMA, and
whitened LS-CMA, as function of SNR, IV and DOA separation.



6.6. ADAPTIVE PREWHITENING 27

Convergence of CMA(2,2) cost

N=50, M=4, d=3 800 MC runs

average CMA(2,2) cost

— ACMA-iter

— = LSCMA-white
O 10dB
x 20dB
+ 50dB M

0 5 10 15 20 25 30
iteration

Fig. 6.10 Average convergence of iterative ACMA and whitened LS-CMA iterations,
for various SNR levels.

the CMA(2,2) cost, rather it was derived to minimize the CMA(1,2) cost [25].
This explains that the convergence graph in figure 6.10 can be non-monotonic.

6.6 ADAPTIVE PREWHITENING

In the previous sections, the importance of the prewhitening step was high-
lighted. This has been recognized in the blind source separation community,
and algorithms have been devised to produce the filtering matrix F adap-
tively. In particular, the prewhitening step requires tracking the inverse of
a Cholesky factor of the data covariance matrix Ryx. Most of the proposed
prewhitening algorithms, however, consider the case d = M and therefore do
not implement the dimension reduction step. With dimension reduction, also
the dominant subspace has to be tracked: the d-dimensional column span of
F should span the d-dimensional principal column span of the data matrix X.
Again, there are many adaptive algorithms for subspace tracking, the most
popular being the PAST algorithm [47] and derivatives of it (a 1990 compre-
hensive overview of subspace tracking algorithms is [48]). Apparently the only
paper where these two steps are explicitly combined is a conference paper by
Douglas [49]. The derivation is as follows (throughout, it is assumed that the
subspace dimension d is known and fixed).
As explained in [47], PAST is based on the idea that the minimizer U of

J(U) = E|x - UU"x|]?, U: Mxd

is equal to an orthonormal matrix whose columns span the principal subspace
of E(xx"). To map this into a practical algorithm, a number of modifica-
tions are made. First, the problem is converted into a Least Squares problem,
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Given X = [x1,x2,---] and an exponential forgetting factor 0 < A < 1,
adaptively compute a prewhitening filter F, = oUW}, and a prewhitened
output X = [x;,X,,---], where x, = Fixi, U is an orthonormal basis
tracking the d-dimensional column span of X, and a2 W; W3 — (UR,U)™!
Initialize:
U =1I,xq, W =0 "I4xq, where § is very small
2
a” =0
Update:
for k=1,2,--- do
1. v=U"x (dM)
y =W'v (d)
u=Wy (d?)
_ 1
e=x—Uv (dM)
2
zZ=e— @Uk (dM)
_ 1 H
U = U+ e 2k (M)
3. (= 1 1
,\+|Iy|\2+\/X\//\+¥Iy||2 (2)
W= (W - Cuy”) (@)
4. a? =X’ +1
X = ay |
4dM + 3d*

Fig. 6.11 Adaptive prewhitening filter [49].
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min ", [|x; — UU"x;||?. Next, to obtain an adaptive algorithm, the contri-
butions of the received samples to the cost function are exponentially scaled
down by a scalar A, where 0 < A <1, which gives after k£ samples

k
J(Ug) =) M |x; — U Upx1*.

i=1

Finally, to enable a simple solution to this problem, the vector Uy x; which
depends on the unknown Uy, is replaced by v; = U} ;x;, which depends on
the previous estimate of U and does not adapt with k. Thus, the cost function
used in PAST for subspace tracking is

k
T(Uk) = Y Nl — Uil
i=1
This has the form of a standard adaptive Least Squares problem. The solution
U}, minimizing this cost is

Uy, = Ry (k)RS ()

where . .
Ry (k) = Z Me-igvit Ry (k) = Z Moty vt (6.39)

i=1 i=1

and can be found by the RLS-like algorithm [47]

Vi = II_cl—1xk
ey = x;—U_1vy (the subspace error)
R —1
-1
ky, = Ry A(k T AL (Kalman gain)
R A -|: V?R; (k — ].)Vk R
R'(k) = 3[Rk -1) —kevi Ry (k- 1)]
Uy = Up_1+ ekk;;I .

(6.40)
This is the PAST algorithm for principal subspace tracking; its complexity is
of order dM. Similar to other subspace tracking algorithms of this complexity,
the update of Uj_; consists of a rank-1 update in the direction of the subspace
error vector ey, i.e., the component of x; outside the estimated subspace.
Although Uy will converge to an orthonormal matrix for ¥ — oo and
A =1, this does not ensure the orthonormality of Uy at every step. As shown
in [24], the update step for Uy can be slightly modified with a second-order
term such that the update takes the form of a Householder transformation,
which ensures that U, Uy = U} ;Uy_;. Indeed, let

_ llexl?
2

Zp = €

Up—_1ks
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and define the Householder transformation

H
Ui = (I - 2z’“—z’“2> Ui
[zl

then (since e}, Uj_; = 0")

H
Zkkk
1+ 0.25]|ex|? ||k I

Uy =Up_1 +

which is close to the update in (6.40), but ensures the orthonormality of Uy
provided the iteration is started with an orthonormal matrix Ujy.

The output of the subspace tracking step is a sequence of d-dimensional
vectors v, = Uj_; X, where Uy is an M x d-dimensional matrix whose
columns span the estimated principal subspace of X. At convergence, the
updates on Uy, are only small, of order ||eg||?>. Therefore, v is approximately
stationary and f{v(k) is a meaningful estimate of the covariance matrix of vy.

Subsequently, as described in [49], v can be whitened by an adaptive filter
W, of size d x d such that yj := W),_, vj has covariance matrix E(yzy}) =1,
ie., WRy (k) Wy, =1 or, with estimated quantities,

W, W, =R, (k). (6.41)

Therefore, Wy, is a square-root factor of R7*(k). Since RJ'(k) is obtained
via a rank-1 update (6.40), a rank-1 update for Wy, can be found in closed
form as well [50]. Indeed, substituting (6.41) in the update for Ry (k) gives

H 1 kaI;: ) H
W W, =W _((I-——F _ W 6.42
Wi = X We ( Nt e Ve (6.42)

where y;, = W,_;vi. Let By be a symmetric square-root factor of the term
in braces, then (6.42) implies

1

VA

The square-root factor By, is found as

H A H
B, — (I_ ykyg) N L
llyll Ayl Myl

W, W;_1B;.
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and together this gives the following update [50]:

wy = Wiy

0 - L (i) !

* el Al )~ A+ el + VA2 + yel?
W, = %(kal — Ceugyy) -

A final point is that, due to the definition of Ry (k) in (6.39), it converges to
1/(1 — MRy instead of Ry. Rather than modifying all the above equations
to take this into account, we can simply scale the resulting whitened output
vector yj by a factor ay, where o} is computed recursively in a similar way
as Ry, namely

ok =Xaj_; +1, oo =0.

The resulting algorithm is summarized in figure 6.11. Its complexity is of
order dM. The output of the filter is x;, = ay W}, U xx.

6.7 ADAPTIVE ACMA

Recall figure 6.8, which summarizes the iterative version of ACMA. To make
this block-algorithm adaptive, the following ingredients are needed:

1. Adaptive implementation of the prewhitening filter F,
2. Adaptive tracking of the nullspace of C,

3. Adaptive update of the joint diagonalization, or alternatively, of the
rank-1 mapping of each subspace vector.

The adaptive prewhitening was discussed in section 6.6.

For the second item, ideally we would track the unwhitened C and apply a
prewhitening operation F to C after each update to find a consistent estimate
of € and its nullspace. An update of Cis straightforward to derive from its
definition in equation (6.27), but it would cost order M* per update, which is
too much. Applying (Fj ® F}) to the left and right of this matrix after each
update would be even more costly. Therefore, we have to assume that the
prewhitening filter Fj, changes only slowly, and track the whitened (¢} using
whitened update vectors X;, ® x,. This leads to a complexity of order d*,
which is still too much in comparison to the existing adaptive CMAs which
have complexity d?. Thus, we will avoid to construct and store Q, but will
directly update its nullspace using the update vectors of C.

6.7.1 Adaptive tracking of €

First we derive an update equation for C. So far, C was defined only in
terms of a given batch of N samples, but we would like to convert this into an
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exponential window (A-scaling). As before, let P be an N x d? dimensional
matrix with rows y; := (X, ® x;,)", where x,, is the received (whitened)
sample at time k. For simplicity of notation, we will drop the underscores in
this subsection from now on, since all data will be in the whitened domain.
According to equation (6.27)

1

C::N

H 1 H H
PP- mP 117P.
Comparing this matrix to

171 1P ]

N 1 H H
Mz:;[yk] 1 yl=0 PP P]:[PH1 PP (6-43)

we see that N € is equal to the Schur complement Mj 5 — Mg,lele,g.

An adaptive update rule for C can be derived from an adaptive update
rule for M, where we scale previous estimates with A, with 0 < A < 1. Thus
let M}, and C;, be defined as

k H

. [1 - ar  py P:P
M::l—)\E:)\k’[]l i:;[’“ k] Cj:=Nj — —2k
k= )ifl Yz'[ yil pr Ny k k ay,

then My, is an unbiased estimate of M, due to multiplication with the factor
(1 —X), and Cy, is an unbiased estimate of C. The update rule for My, which
follows from this equation is

M) = AM;_; + (1— ) [ylk] 1oy

so that
[ ar Py ] _ [ Aag—1 + (1= A) Apj_1 + (1= Nyy
pr N Apr—1+ (1= Nyr ANg_1 + (1= Nyryy
and
H
C. = Nj — PrPy
Ak A H H
= ACi-1 + 7 Pr-1Pp1 T (1= A)yryy

— =Ppr1 + (1= Nyelpr-1 + (1= Nyel”

11— = =02 _ 0=y H
= ACr-1 + [V DPk-1] l ( _2\(1_)\)0”“ A a_’“A_2 [p“i’{k ] .
Qg Qp—1 ag k=1
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Using ap = Aag—1 + (1 — A), it follows that the 2 x 2 matrix in the update is
actually of rank 1, namely equal to

1-A —(1=X) =X _ 1 =
Xk _()\ ) A = k-1 )\(1 — )\) 1 1’6_1
(873 op_1 A Qp—1 o,
so that we remain with a one-dimensional update
Ci = ACho1 + XA =N - (Y& —Pr—1/0k—1)(Yr — Pr—1/0k—1)"

(527
=: ANCy_1 + Bkckcf.
(6.44)
Therefore, the vector by which to update Cy_; is equal to a scaling of the
modified data vector

Ck =X, ®X), — Pr—1/0k—1 (6.45)
where pr_1 and ay_; are updated as
Pt = Apk-1 + (1 — N)x, ® x4, ar =Aag—1+(1—N). (6.46)

Note that py is an exponentially-weighted unbiased estimate of the mean of
X, ® X;,, which matches its use in equation (6.26), whereas oy, converges to 1
and is only relevant during the initialization phase of the algorithm.

6.7.2 Adaptive tracking of the nullspace of ¢}

Subspace tracking is well studied in signal processing, and a variety of algo-
rithms has been derived. Algorithms can be classified in several ways:

1. Subspace: Principal components versus minor subspace (or nullspace)
tracking, or both,

2. Rank determination: a specified subspace dimension or a specified error
threshold,

3. Complezity: for d-dimensional subspaces in an M-dimensional space,
algorithms of order M2d, d?M, down to dM have been reported

4. Strategy: exact (deterministic), gradient descent (stochastic), etc.

The paper [48] gives an overview; the most reliable algorithm seems to be
Karasalo’s, with complexity d2M.

In the case of an adaptive version for ACMA, we have to track the nullspace
of Q, which is a d-dimensional nullspace in a d?>-dimensional space. The
lowest complexity that can be achieved for this case is of order d®. To remain
competitive with CMA and MUK, a higher complexity cannot be tolerated.
Therefore only nullspace tracking algorithms of order dM are applicable. The
most popular algorithms in this context are based on the PAST algorithm [47],
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For a sequence of M-dimensional vectors c1, ¢2, - - -, compute adaptive estimates
of an orthonormal basis Vj, of the d-dimensional nullspace:

]H

Initialize V1 = [Iaxa  Oax (m—d)

for k=1,2,--- do

y=Vick (dM)
z=V,y (dM)
P=ck—2z

1

b= alE = [P0z

O AT T

$—1
T = ——7F
llyll®
w=7/Bs+ op
Vig1 = Vi — 2%%0 (2dM)

4dM

end

Fig. 6.12 Adaptive nullspace tracking using NOOJA [51].

which as described in section 6.6 is derived from an iterative optimization of
the cost function

J(V) Ellc — VV¥c|?

tr(C) — 2tr(VFCV) + tr(VICVV"V)

(6.47)

where V is the estimated subspace, ¢ is the data vector, in our context given
by equation (6.45), and C = E(cc"”) is the matrix from which the subspace
has to be determined. Minimization of the cost function will produce an
orthogonal basis for the principal subspace, whereas maximization leads to a
basis of the nullspace (in this case normalization constraints on V are needed
to avoid trivial solutions).

As discussed in section 6.6, the PAST algorithm follows from an Alter-
nating Least Squares implementation of the optimization problem: compute
the vector yx = Vj_;ci using the previous estimate of V, then optimize
Zle Me~t||e; — Vy;||? over V, where ) is the forgetting factor. This resulted
in an RLS-type algorithm.

In an alternative approach in [51], a gradient descent algorithm is derived
from (6.47):

Vk = Vk—l - ,BkVJ(Vk_l) (6.48)
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where [y, is a step size and V ;(V_1) the gradient of J(V) evaluated at Vi_1:
Vi(V)=(-2C+CVV" +VV'C)V.

By taking B < 0, the cost function is maximized and an estimate of the
nullspace is obtained. In [51], V is constrained to be orthonormal (V*V =
I), and a variable step size (3 is selected such that it optimizes the cost in
every step (since the cost function (6.47) with 'V replaced by Vy, from (6.48)
is quadratic in Sk, it can be computed in closed form). Subsequently, the
gradient is approximated by replacing C by an estimate based on the current
sample, cic),, which leads to

Vi :=Vi_1 — Bopt,k(—Ck + Vi—1¥E) Y% - (6.49)

After this update step, the new basis Vi needs to be orthonormalized again,
which is done by setting

Vi := Vi(VEVe) "2,

Since (6.49) represents a rank-1 update, the normalization can be computed
efficiently in closed form using a Householder reflection, similar as in sec-
tion 6.6. The resulting algorithm is called “Normalized Orthogonal OJA”
(NOOJA) [51], and is summarized in figure 6.12. It is interesting to note
that it is of complexity 4dM, and scaling-independent: if the input data cg
is multiplied by a scalar, then the resulting Vy, is unchanged. Although there
are a few alternative algorithms for minor subspace tracking [52, 53, 54, 55],
this algorithm currently seems to be one of the fastest and more reliable (e.g.,
some of the other algorithms perform poor for high SNR). A disadvantage is
that the subspace estimate remains jittery in steady state, because the large
stepsize tends to emphasize the instantaneous noise. Therefore, instead of
taking the maximal stepsize Bqptk, typically a fraction of this step size is
used.

6.7.3 Adaptive update of the joint diagonalization

Using the preceding nullspace tracking algorithm in our application, we can
update the basis V,, of the nullspace of C given the update vector ¢ in (6.45).
The final step is an efficient implementation of the joint diagonalization. Af-
ter the subspace update, the iterative ACMA (figure 6.8) uses the previous
estimate of the beamformers, T, and continues with the following three steps:

M = V, (ToT)
Y = V,M=V,V(ToT)
ti = 7Tl(Yi): 1':177d
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This projects T o T onto the estimated subspace, resulting in Y, and sub-
sequently maps the columns of Y back to the Kronecker-product structure,
resulting in new estimates of the columns t; of T. However, the complexity
of the projection is too high (order d* instead of d®).

Therefore, the following modification is introduced: instead of updating
the basis V,,, we compute T o T and regard it as the current estimate of
the subspace basis (i.e., set V,, = T o T). Using this basis, the subspace
update is performed, giving Y, and then the result is mapped back to the
Kronecker-product structure. In this context, the update performed by the
NOOJA algorithm is interpreted as a Householder reflection which tries to
make T o T orthogonal to the current update vector cy.

The last step of the algorithm is the mapping of the columns y; of Y to a
Kronecker-product structure, y; =: t; ® t;, or equivalently,

Y; = t;t;

where vec(Y;) = y;- An SVD can be used to estimate t; as the dominant
singular vector, as was done in the nonadaptive version in figure 6.8, but it
would cost order d® per subspace vector, or d* in total. Since we need only the
dominant singular vector, we can instead apply a power iteration [23]. The
general form of an iterative step in the power iteration is

Vk—i-l:Yvk; k:].,Q,---

where the iteration is initialized by a randomly selected vector vo. However,
the best choice of an initial point is the previous estimate for t;, and in this
case, a single step of the iteration is sufficient to give a good improvement, of
the estimate. The complexity of one update step is d? per subspace vector,
or d® in total.

6.7.4 Summary of the resulting algorithm

The resulting algorithm is summarized in figure 6.13. As indicated, the com-
plexity of the algorithm is of order 4dM + 6d3. This is comparable to the
complexity of OCMA and MUK (figure 6.5), which was computed as order
4dM + d® + 5d?, where the term d® is contributed by the reorthogonalization
step, which perhaps can be implemented cheaper. Therefore, the complexity
is at most a factor d worse, where d is small (typically d < 5).

6.7.5 Comparison of MUK with Adaptive-ACMA

To compare the performance of the MUK algorithm with the Adaptive-ACMA
derived in this section, we show two sets of simulations. In the first, a sta-
tionary scenario is considered, whereas in the second, the source powers and
array response vectors are time varying.
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Given data X = [x1,X2,- -], compute beamformers W}, = F; T}, and output

~ H
Sk = Wpxy:

Initialize prewhitening filter F' using about 5M prior input samples;

T:Idxd:PZOaazo

for k=1,2,--- do

1.

Update F, the prewhitening filter, using x;, (fig. 6.11)
x = F"xy, the prewhitened input vector

Compute the update vector ¢ for C:
c=X®x—p/a
P=Ap+(1-X)X®x
a=da+(1-X)
Compute Y =ToT
Regard Y as a basis of the nullspace of C, and
update it using c (fig. 6.12)
fori=1,---,ddo
Y; = vec ™ (y:)
t; = Y;t; (one step of a power iteration)

ti =t /||t
end
T =recond(T), equation (6.19)
Sr = T'x

(4dM + 3d?)

(d”)

(d*)

(4d°)
(d*)

(d*)

(@) |
440 + 6d

Fig. 6.13 Adaptive implementation of ACMA.
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Fig. 6.14 Average convergence and failure rate of MUK and Adaptive-ACMA—
stationary channel.

6.7.5.1 Stationary channel Entirely similar to section 6.5.5, we take a
uniform linear array with M = 4 antennas, d = 3 constant-modulus sources
with directions [—10°,20°,30°] and amplitudes [1, .8, .9]. The SNR is 10 dB
per antenna for the strongest user.

Figure 6.14(a) shows the worst SINR among the users, averaged over 600
monte-carlo runs, as a function of the sample index. Since not always all
independent users are recovered, figure 6.14(b) shows the percentage of failed
cases. These cases are not used in the SINR statistics. The dotted reference
curve is formed by ACMA acting on a growing block of samples (no forgetting
factor ).

For Adaptive-ACMA, the first 20 samples are used to initialize the adaptive
prewhitening filter. The convergence speed depends on A, the plot shows
the results for A = 0.995. A smaller A\ gives faster initial convergence but
a lower steady-state performance. The final SINR level is also determined
by the nullspace tracking algorithm. NOOJA with optimal step size is a
“greedy” algorithm which quickly tracks the subspace, but this also results
in a more noisy output. Instead of the optimal step size Bopt,x, We have used
0.3Bopt,k Which gives a smoother performance at the expense of initial tracking
speed. To verify that the nullspace tracking error is a limiting factor in the
steady state, we also implemented a version where Cy, is formed as in (6.44)
and its nullspace computed using SVD (dotted reference curve “Adaptive-
ACMA(SVD)” in the figure; for this algorithm also the rank-1 truncation is
performed using SVD).

For MUK, the performance behavior dependents on A due to the adap-
tive prewhitening, and also strongly depends on the value of the step size u,
therefore three values are shown; the value p = 0.05 gives a remarkably similar
performance to Adaptive-ACMA in this scenario both in convergence speed
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Time-varying source characteristics
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Fig. 6.15 (a) SNR and (b) conditioning of a time-varying channel (example).
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Fig. 6.16 Example tracking behavior of MUK and adaptive-ACMA—time-varying
channel. For each beamformer the output SINR corresponding to each source is shown.

and in asymptotic SNR. The experience is that for higher SNRs, Adaptive-
ACMA will outperform MUK by a few dB.

6.7.5.2 Time-varying channel To test the tracking behavior of the adap-
tive algorithms, the preceding scenario is made time-varying. Specifically,
the source amplitudes 3; are varied in sinusoidal patterns with randomly se-
lected periods, with a maximum of 3 periods over the simulated time interval
(N = 1500 samples). An example is shown in figure 6.15(a). The direction
vectors {a;} of each source are not selected on an array manifold, instead
each entry of each a; is a unimodular complex number with a linear phase
progression, causing at most one cycle per interval. The condition number
of the resulting channel matrix AB = [a;01,--,a484] is plotted in figure
6.15(b).
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Fig. 6.17 Performance of MUK and adaptive-ACMA in a time-varying scenario: (a)
average output SINR, (b) average number of port swaps per interval (1500 samples).

The output SINR for each beamformer is shown in figure 6.16 for MUK and
Adaptive ACMA, respectively. Each panel corresponds to a beamformer wy;,
1 =1,---,d, and the jth curve in a panel corresponds to the SINR behavior
of the jth source, i.e., related to a;3;. For this example, MUK experienced
a case of “port swapping” around sample number 1000, i.e., a beamformer
suddenly starts to track a different source. This can occur if two sources
come too close or if the scenario changes faster than the algorithm can track.
The fluctuations in the output SINR of the tracked source obviously also
follow the fluctuations in the input SNR.

Figure 6.17(a) shows the average output SINR of each source for MUK
and Adaptive ACMA as a function of SNR, where the average is over time,
over the three sources, and over 300 monte carlo runs, each with different
randomly varying channels (there has been no attempt to detect and remove
“failed cases”). Finally, figure 6.17(b) shows the average number of times that
a port swap occurred in a data run of N samples. The performance of MUK
is sensitive to the choice of stepsize u: a larger p gives faster tracking and
resulted in better output SINR, but also gave more port swaps: usually at
least once per data set. Both algorithms are performance limited at high SNR
due to the time-variation in the observation window, but overall, Adaptive-
ACMA is better in this particular scenario. Since this is a new algorithm, it
is unclear whether this is observation holds in general.

6.8 DOA ASSISTED BEAMFORMING OF CONSTANT
MODULUS SIGNALS

In some applications the sensor array is assumed to be calibrated, i.e., it is
known parametrically as a function of a vector parameter 8. One typical
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example is when 6 represents the direction of arrivals (DOAs) of the received
signals. DOA estimation has been thoroughly studied for arbitrary signals.
For a good overview of DOA estimation for arbitrary signals we refer the
reader to [56] and [57], or indeed some of the other chapters in this book.
When the signals have a constant modulus the number of nuisance parameters
(i-e., the signal parameters) is reduced by a factor of two, since the amplitudes
are constant. As we will see this enables a much more accurate estimation
of the direction of arrival of the signals and consequently leads to a better
separation.

The literature on DOA estimation of CM signals is relatively sparse. The
most common approach is to separate the sources based on the CM property,
followed by estimating the direction of each recovered signal. Initially this has
been done using the CM Array [58, 19, 59], but as mentioned in preceding
sections, the CM Array is recursive in nature and requires many hundreds of
samples to obtain convergence. Very good results on small numbers of sam-
ples have been obtained by first estimating the channel matrix using ACMA,
and subsequently obtaining a decoupled DOA estimation problem where the
estimated steering vectors are projected onto the model based steering vectors
[60].

Maximum Likelihood estimation for the joint CM signals estimation and
DOA estimation is the optimal way. For the trivial case of a single source
it had been shown to be equivalent to L; beamforming, which is more ro-
bust than the classical L beamformer [61]. For more than a single source a
computationally attractive approach has been suggested in [62, 63].

The Cramer Rao Bound (CRB) gives a lower bound on the variance of
any unbiased estimator, and is an important measure for the efficiency of es-
timators. It has been widely used for estimating the performance bound of
DOA estimation. The additional information brought by the CM assump-
tion has been computed in [60, 64]. In this section we present some of these
results: the Cramer Rao lower bound, a description of the Maximum Likeli-
hood algorithm, and simulation results presenting the various methods and
the robustness to mis-modeling.

6.8.1 Data model

For the purpose of this section, we have to extend the previously used data
model x(t) = As(t) + n(t) to include a parametrically known channel matrix
A. Since now we cannot place the unknown source amplitudes into A, we
also have to introduce a gain factor B, which leads to

x(t) = A(0)Bs(t) + n(?) (6.50)

where
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A(0) =[a(b1),--- ,a(04)], where a(f) is the array response vector for a
signal from direction 6, and 6@ = [0y, - ,04] is the DOA vector of the
sources (for simplicity, we assume 1 parameter per source),

B = diag(B) is the gain matrix, with parameters 8 = [B1,---, B4 ,
where 3; € R T is the amplitude of the i-th signal as received by the
array.

As usual in DOA estimation, we require that the array manifold satisfies the
uniqueness condition, i.e., every collection of M vectors on the manifold is
linearly independent.

As before, we assume that all sources have constant modulus. Unequal
source powers are absorbed in the gain matrix B. Phase offsets of the sources
after demodulation are part of the s;(t). Thus we can write s;(t) = e/%®),
where ¢;(t) is the unknown phase modulation for source i, and we define
o(t) = [p1(t), -+ ,pa(t)]" as the phase vector for all sources at time t. We
further assume that the noise is Gaussian and spatially white with covariance
matrix R, = 02I = vI, where v is the known noise variance as received on
a single antenna.

6.8.2 Likelihood function

Based on the model and assuming N received sample vectors collected in a
matrix X, we can derive the likelihood function. For deterministic CM signals
in white Gaussian noise the likelihood function is given by

N
L(X|®,0,8) = W exp {—% > eH(k)e(k)} , (6.51)
2 k=1
where
e(k) = x(k) — ABs(k), (6.52)
and
& = [$(1),..., (N . (6.53)

Let £L(X|®,0) = log L(X|®,0,3). After omitting constants we obtain the
log-likelihood function

N
L(X[#,0,8) =~ 3" le(®)]. (6.54)
k=1

6.8.3 Cramer-Rao Bound

The Cramer Rao Bound (CRB) is a lower bound on the estimation variance of
any unbiased estimator. Its derivation from the log-likelihood function follows
along standard lines [65]. Indeed, the CRB is given by the main diagonal of
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the inverse of the Fisher Information Matrix (FIM). In turn, the FIM specifies
the “sensitivity” of the log-likelihood function (regarded as cost function) to

changes in the parameters,
_ oL ,0L. 1
FN_E{GP %o }

where p is a vector which collects all parameters,
pP= [¢(1)Ta ot ad)(N)T’ oTa ﬂT]T .

For the case at hand, this can be worked out in closed form as follows [60].
Partition the FIM as
Fiu Fio ]

Fy= [ F, Fa

where the partitioning follows the partitioning of p into vec(®) followed by
[0; B]. Then

(6.55)

Ho 0 A} B
Fi1 = , Fio= : : (6.56)
0 Hy Ay EL
Al ) ) AN AT
Fy = E;: ,---, Ex ], F22—[A ~ ], (6.57)
where
o
H H H
Ay = EB_B(W) = —2Im(S;B"D"ABS;)
E. = Ef5(5gm)" = —2Im(S;A"ABS))
I = BEg(g)" = %Zglee(S;‘BHDHDBsk)
A = EZ(%)" = 23N Re(SEA"DBS;)
T = EZE(5H)" = IYiLiRe(SpA"ASy)
and

S, = dags(k). D= |00, 0]

To give closed-form expressions for the inverse of the FIM, we use the following

general result for block-partitioned matrices (which can be easily derived by
inverting an LDU factorization):

R | |ears 1
Fy1 Fao 0 I (Fao — Fo F'Fio)t| [-FauF' 1
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Thus let

= o= N - N -
[ . 212 ] i=FF Fia = l L=t AkalAZ 2= ArHy IEZ ]

1]

Eor Ea S EHIIAT Y EH'ER
and
T = =
O = Fay — Fy F [ Fpy = [ oA ] - [ Su S ] (6.58)
—21 —22
so that
[ H;' 0
(Fyu = +
| 0 Hy'
. . ‘I’_l |:A1H1_1a' o JANH]_VI:|
H—iAT H—iET Elel e ’ENH;V1
| - N NN ~N
H'A] H'E;
(Fy )iz = — : : P! (6.60)
Hy'Ay Hy'Ey
AH! -, AnH
-1\ _— _gy-1 154 ) ) NILyN
(Fy )21 v |: E1H1_1 R ENH]_VI :| (6.61)
T A" 2y Ep )7
Fyl)e=0"1= —| o : 6.62
(B (|2 5] |5 2o (6.62)

We assumed that the Hy, are invertible, which would follow from the indepen-
dence condition on the array manifold and the independence of the sources.

The CRB on the parameters is given by the diagonal elements of FI_VI.
Using the partitioned matrix inversion formula again on (6.62), the CRB for
DOAs and amplitudes follows as

CRBN(B) = diag(‘I’fl)n
= diag [(T — E11) — (A" = E12)(T — E32)"L(A — Ey)]
and

CRBN(,B) = diag(\Il_l)zg
= diag [(¥T —Epn) - (A —E2)T —E11) A" - 512)]71
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Similarly, the bound on the estimation variance of the signal phases follows
as

CRBy (¢(k)) = diag{H,;l [I+ AT ENw [ %}’: ] H,;l]} . (6.65)

Note that the number of samples and the quality of DOA estimation affects
the bound only through the matrix ¥—!.

6.8.4 CM-DOA algorithm based on ACMA initialization

To estimate the parameters of the model, we have to minimize the negative
log-likelihood function (6.54), which is a Least Squares problem:

min || X — A(6)B(8)S(®) |5 -

In spite of the simple appearance, it cannot be solved in closed form. A
simple technique in such cases is to revert to Alternating Least Squares types
of algorithms (as in some of the preceding sections): estimate S(®), then
estimate A(6), etc. Based on this idea, the following ad-hoc technique gives
surprisingly good results:

1. Blindly estimate a matrix A, using the CM assumption on S. This step
can be done by ACMA;

2. Estimate the directions which best fit the matrix A.

The second step can be carried out for each column of A separately: let
A = [a;,...,34] be the estimate of the mixing matrix, then solve for each
source 1 .

0; = argmin||4; — a(6)3 ||*
This problem can be decoupled. The optimal value for 8 is 3 = a(f)'a;, and
after eliminating 3, the estimate for 6; is given by

;= argmin | (1—a(8)a(®)") 4|

which can be converted into

) |ai'a(6)|
0; arg max @) (6.66)
Equation (6.66) simply describes a maximization of the projection of the esti-
mated vector onto the array manifold. The computational complexity of this
method is not very large compared to other DOA estimation methods, and
can be ignored in view of the complexity of the first step.
Various other suboptimal methods for combining existing DOA and CM
estimators have been proposed. E.g., in [66] the ESPRIT algorithm for DOA
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estimation is suboptimally combined with ACMA. The problem in such an
approach is the choice of weighting of the two properties: without a good
weighting, the solution may be worse than the best single method by itself,
and finding the proper weighting is a hard problem. Often, the simple two-
step approach gives equally good results. Another advantage of the simple
CM-DOA method is that it is applicable to arbitrary array configurations: it
does not use the special array structure required by ESPRIT.

6.8.5 Deterministic maximum likelihood techniques

In general, Maximum Likelihood techniques are more complex but are ex-
pected to give better results. A deterministic ML approach for DOA esti-
mation of CM signals was derived in [63]. It is based on the Least Squares
formulation of the log likelihood in equation (6.54):

N
p=argmin Y |le(k)|? (6.67)

The Newton scoring method (where we replace the Hessian by its expected
value for better numerical performance) to find the minimum is the iteration

pmt) = p(M _ AR (p™M)VL(p™)

where A < 1is a suitable step size, F  is the FIM, which is the expected value
of the Hessian, and VL(p(™) is the gradient, with components VoL, VoL,
and VgL. These are given by

Vo £ = %‘fk) _ %Im (S(k)"B"A%e(k)) . (6.68)
N
Vol = % = %;Re (S"(k)B"D"e(k)) (6.69)
and N
Vsl = g—g = %ZRe (S™(k)A%e(K)) (6.70)
k=1

The Newton update direction v is given by v = Fy' VL. Thisis a d(N +2)x 1
vector function of the parameters. Explicit expressions for the components of
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1. Find an initial estimate po for the parameters using the suboptimal algo-
rithm in section 6.8.4.

2. For n =0,1,--- until convergence do
a. Estimate the Newton direction v using (6.71)
b. Compute A by A = arg min, —£(p™ — pv)
c. Update the parameters using p,4+1 = p™ — Av

end

Fig. 6.18 Deterministic ML DOA estimation and source separation for constant
modulus sources.

v are given by:

Mgy = Hy Ve L+
Yy AH; Ve L~ VoL
Y BH Ve L - Val
g1 VoLl — Zf\; AiHi_lvd>(i)£

Vel — il EiH Vg L

[ Hy'ap H'Ep J@!

(V)e,ﬂ =

(6.71)
where (v) 4 ;) are the components related to the phase parameters, and (v)g g
are the components related to the DOAs and signal power parameters. Note
that the matrices Hy are of size d x d and therefore their inversion is simple,
and that there is no dependence of v on the noise variance v.

We thus arrive at the algorithm in figure 6.18 [63]. The step size parameter
A in the algorithm is selected such that it minimizes the likelihood function,
and can be obtained by a standard one-dimensional optimization method (cf.
[67]), using the good initialization A9 = 1 which is optimal for the quadratic
approximation of the likelihood.

The computational complexity of an update step of the scoring algorithm
can be estimated as O ((d® + Md)N) [63], and can be reduced by optimizing
the order of operations in the computation. This puts the algorithm in the
class of moderate complexity algorithms: harder than eigenspace methods
or polynomial rooting algorithms, but lower than multidimensional search
methods. Since it can be used with an arbitrary array geometry, it is appealing
in many cases where specific assumptions on the array geometry are not valid.
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Fig. 6.19 First experiment: (a) DOA estimation accuracy vs. SNR, (b) SINR vs.
SNR.

6.8.6 Simulation results

We finish the section by some simulations demonstrating the efficiency of the
CM-DOA estimation methods. We have used an M = T7-element Uniform
Linear Array (ULA), and d = 3 sources with varying angle separations.

The first experiment tests the performance as function of the input signal
to noise ratio (SNR). The three sources had equal power and were located
at —5°,0°,5°, the number of samples was N = 30, and the SNR was varied
from 5 to 50 dB. Figure 6.19 shows the results for various techniques: ACMA
followed by a 1-dimensional DOA search as in section 6.8.4, the same technique
followed by the ML estimation as described in figure 6.18, and (in dashed lines)
the ESPRIT algorithm [68] which uses the ULA structure. As seen in figure
6.19, the use of the CM property gives an order of magnitude improvement in
the DOA estimate. In terms of output Signal to Interference and Noise Ratio
(SINR), ACMA and ESPRIT are about equal, but the MLE is 3-5 dB better.
The number of iterations required for the MLE was about 5 for large SNRs,
and 15-20 for smaller SNRs (10 dB and below).

A second experiment tests the performance as a function of the angle sep-
aration between the sources, in a case with near-far problems. We have used
N =40 samples. The central source is fixed at 0° while the two other sources
are located at —A°, A°, where A is changed from 4° to 30°. The Signal to
Interference Ratio (SIR) of the central source is at —20 dB below the strong
sources, and the SNR for the weak source is 20 dB. This tests the near-far
robustness of the method. Figure 6.20 presents the standard deviation of the
DOA estimate and the output SINR for the weak source.

For small separations, the CM-initialized techniques lead to better DOA es-
timates than ESPRIT. However, for large separations the ESPRIT algorithm
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SINR vs. signal separation
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Fig. 6.20 Second experiment: (a) DOA estimation accuracy vs. separation, (b)
SINR vs. separation.

tends to have better output SINR performance than ACMA. The MLE out-
performs the other techniques, with a significant 3-5 dB advantage at small
separations, which demonstrates the importance of exploiting both the array
structure and the CM property.

6.9 CONCLUDING REMARKS

In this chapter, we studied algorithms for the blind separation of multiple
constant modulus signals. The challenge was to find the complete set of all
beamformers (one for each impinging signal). For a small batch of samples,
ACMA is currently the only algorithm that can reliably do this. For a mov-
ing window of samples (sample-adaptive techniques), only algorithms which
adaptively prewhiten the data and recondition the orthogonality of the beam-
formers are reliable. One example is the MUK algorithm. We have derived an
adaptive implementation of ACMA which was shown to be more reliable than
MUK in a rapidly time-varying scenario, at a similar computational complex-
ity. The robustness and performance of this algorithm in more general cases
(e.g., varying number of sources) still needs to be established.

If the aim is to estimate the directions of arrival of the sources, algorithms
which also exploit the constant modulus property have been shown to give a
significant performance improvement at reasonable computational costs over
algorithms which only consider the array manifold (e.g., the ESPRIT algo-
rithm). This is in particular true at small angular separations of the sources.
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