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Blind separation of BPSK sources with residual
carriers

Alle-Jan van der Veen

Abstract— Blind separation of instantaneous mixtures of binary sources
with equal carrier frequencies has been studied before. For independent
sources, it may be reasonable to assume that their carrier frequencies are
not exactly identical, so that a residual carrier is present after demodula-
tion to baseband. We show how this can be used to separate the sources. If
the receiving antenna array is centro-symmetric and there is no multipath,
then the performance of the algorithm can be significantly improved.

Keywords: blind source separation, constant modulus algo-
rithm, residual carrier, blind beamforming

I. INTRODUCTION

Several techniques have been developed to estimate and sep-
arate linear superpositions of signals impinging onto an antenna
array. They can broadly be characterized as (1) those that use
properties of the channel, such as a parametrized multipath model
and a known or structured antenna array, and (2) those that use
properties of the signals. Some of the properties used in the latter
category are training (known source symbols), constant modu-
lus and finite alphabet of the source symbols, cyclo-stationarity,
and statistical independence. For each of these, several methods
are available to estimate the mixing matrix. Typical schemes are
based on cost-function optimization using gradient-search or it-
erative techniques. Such methods are very much dependent on
accurate initial points. There are also noniterative (algebraic)
methods that are based on weak assumptions such as statistical
independence of the sources (e.g., JADE [1], ICA [2], CAN-
DECOMP [3]). These are very powerful in their generality but
may require many samples before the higher-order statistics con-
verge.

For short data bursts, we are interested in algebraic algorithms
in which the mixing matrix is found as the best-fitting solution to
a set of algebraic equations which pose conditions on every in-
dividual sample. For constant-modulus signals, a successful al-
gorithm is the Analytic Constant Modulus Algorithm (ACMA)
[4], which solves an overdetermined set of quadratic equations.
The algorithm has been specialized to separate superpositions of
binary {±1} or {0 � 1} signals [5]. In the present paper, we con-
sider binary sources and explore ways to account for the fact that
carrier frequencies are not always 100% identical.

In the case of digital signals from independent sources, it is
reasonable to assume that the carriers are slightly different. E.g.,
suppose that the sources are modulated to 900 MHz and that the
carriers are the same up to some 5–6 orders of magnitude. After
demodulation to baseband using the nominal carrier, each of the
sources will have a residual carrier of up to ±5 kHz, say. If the
sources have a bandwidth of 20 kHz, then we can expect a phase
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Fig. 1. Beamforming scenario

roll in the order of ±90 � per symbol. Hence, the BPSK model
sk ∈ {±1} is too naive in this case. Since the constant modu-
lus property is still valid, we can revert to the ACMA to separate
the sources. However, we can also try to separate them based on
these small differences in residual carriers.

Modern-day communication systems use a common reference
signal, so that the residual carrier is typically much smaller, re-
portedly around 500 Hz or less. As shown in the simulations,
the residual carrier methods proposed here already work once the
phase shift between the first and last symbol in the data batch is
more than ±180 � . For sources with a bandwidth of 20 kHz and
a difference in carriers of 500 Hz, this amounts to a data batch
of 20 samples. We can envision systems where co-channel users
are deliberately shifted by such small amounts, in order to fa-
cilitate separation. This can be regarded as a special instance
of separation by “coding-induced cyclo-stationarity”, and such
schemes have been proposed e.g., in [6–8].1

Notation

Vectors are denoted by boldface, matrices by capitals. Over-
bar (¯) denotes complex conjugation, T is the matrix transpose,
∗ the matrix complex conjugate transpose, and † is the matrix
pseudo-inverse (Moore-Penrose inverse). Im is the m × m iden-
tity matrix, 0 and 1 are vectors for which all entries are equal to 0
and 1, respectively. ⊗ is the Kronecker product, � is the “Khatri-
Rao” product, which is a column-wise Kronecker product:

A⊗B � ��	 a11B a12B · · ·
a21B a22B · · ·

...
...

. . .


�� � A � B ��� a1⊗b1 a2 ⊗b2 · · · ���
Two notable properties are: vec � ABC ����� CT ⊗A � vec � B � , vec � ab∗ ���
b̄⊗a, where the vec-operator indicates a stacking of the columns
of a matrix into a vector.
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II. DATA MODEL

A source model for a unit-modulus BPSK source with some
residual carrier is

s ��� sk � ∈ BPSK ⇔ sk ∈ {±1 · βe j2π f k} (k � 1 � · · · � N) �
(1)

Here, s is a row vector, f is the unknown residual carrier fre-
quency of the source and β accounts for an initial phase (|β| � 1).
We consider a scenario as depicted in figure 1, where M anten-
nas receive linear superpositions of d BPSK sources. Suppose
we have collected a data block X ��� x1 · · ·xN � ∈ |C M×N. If the
multipath delay spread is small relative to the sampling period,
then X is described by the standard model

X � AS � a1s1 � · · · � adsd �
where all si ∈ BPSK. We assume that d ≤ M, and that A and
S have full rank d. The objective is to retrieve all (nontrivial)
BPSK signals present in X, i.e. to find a collection of d complex
beamforming vectors w that lead to linearly independent BPSK
signals

s � w∗X

of the form (1). A solution {w1 � · · · � wd} is collected in a beam-
forming matrix W ���w1 · · ·wd � . Since s has a sign ambiguity, we
can recover f from s only up to aliasing: f̂ ∈ � − � 25 � � 25〉. Alias-
ing does not preclude demodulation.

To avoid nonuniqueness of w in case d � M (X is rank defi-
cient and arbitrary vectors from the left null space of X could be
added), we first replace X by any full rank d matrixV ��� v1 · · ·vN �
that has the same row span, for example as obtained from a sin-
gular value decomposition (SVD) of X:

X � UΣV

in which U ∈ |C M×d and V ∈ |C d×N are isometric, and Σ ∈ ||R d×d

is diagonal. Note that V � Σ−1U∗X, so that Σ−1U∗ can be viewed
as a pre-beamformer.2 After this step we look for all d linearly
independent vectors t such that

t∗V � s ∈ BPSK �
Since A and S are assumed to have full rank d, this equation has at
least d solutions {t1 � · · · � td} which together form the columns of
a d ×d matrix T . If a sufficient number of samples are taken, then
it is known for the constant modulus case that generically there
are precisely d solutions (unique up to arbitrary initial phase)
[4], and by extension, this applies to the BPSK decomposition
as well. With T in hand, the beamforming matrix W on the orig-
inal data is given by W � UΣ−1T .

III. SEPARATION USING CONSTANT MODULUS

Principle

A first property that we can use to separate BPSK sources with
residual carriers is their constant modulus:

|sk| � 1 ⇔ sks∗
k � 1 � k � 1 � · · · � N ���

1Main differences are that we do not consider equalization, and that we treat
the frequency offsets as unknown parameters.

2This step is also used to eliminate some of the additive noise. In this paper,
we will not analyze noise effects in detail.

This leads to the ACMA [4] for the separation of constant mod-
ulus (CM) sources, which is summarized below for future refer-
ence. Substituting sk � t∗vk, we obtain

t∗vkv∗
kt � 1 ⇔ � v̄k ⊗ vk � ∗ � t̄ ⊗ t ��� 1 � k � 1 � · · · � N �

which can be compactly written as

Py � 1 � where P : ��� V̄ � V � ∗ � y : � t̄ ⊗ t � (2)

(Here, ‘⊗’ is the Kronecker product and ‘ � ’ denotes a column-
wise Kronecker product.) Matrix P has size N × d2, and we as-
sume N ≥ d2. To solve for t, we have to solve an overdetermined
linear system in y, where y is subject to a quadratic constraint,
y � t̄ ⊗ t.

Any solution of the linear system in (2) can be written as

y � α1y1 � α2y2 � · · · � αδyδ � α1 � 1 � (3)

where y1 is a particular solution of the system, the other yk are
a basis of the null space of P, and δ − 1 is the dimension of this
space. A convenient way to find the basis goes via a QR factor-
ization of � 1 P � :

Q∗ � 1 P ���! r11 rT
12

0 P̂ " � (4)

(Matrix P̂ has size N−1×d2 but can be truncated to d2 ×d2.) This
replaces Py � 1 by P̂y � 0, plus a nonessential scaling condition
represented by the first row. Thus, {y1 � · · · � yδ} is a basis for the
null space of P̂ and can be found by an SVD of P̂.

An important result is that, for sufficiently independent con-
ditions, δ � d once N # d2 − d [4]. The remaining problem is
to find out which linear combinations of the {yk} lead to a vec-
tor y that can be written as y � t̄ ⊗ t. The latter problem is con-
veniently rephrased by working with a matrix Y � tt∗. For any
matrix, we can form a vector by simply stacking its columns,
and conversely, we can “unvec” vectors into matrices. A notable
property is that tt∗ ↔ t̄ ⊗ t. Thus, applying the unvec operation
to every yk in (3) then leads to the equivalent

tt∗ � α1Y1 � α2Y2 � · · · � αδYδ �
Hence, the problem is to form linear combinations of known ma-
trices Yk such that the result is rank-1 hermitian, so that it has a
factorization as tt∗. In the present case, there are δ � d matri-
ces, and we are looking for all d solutions tk � k � 1 � · · · � d to the
problem: we are in fact trying to rewrite the given arbitrary “ma-
trix basis” {Yk} as a rank-one matrix basis {tkt∗

k}. The tk are the
columns of the beamforming matrix T .

The lucky situation that we have δ � d means that we can turn
the argument around: we can write each matrix Yk as some linear
combination of the rank-one basis:

Yk � λk1t1t∗
1 � λk2t2t∗

2 � · · · � λkdtdt∗
d � � k � 1 � · · · � d �$�

After collecting the coefficients into diagonal matrices, Λk : �
diag � λk1 � · · · � λkd � , it follows that the Yk satisfy the equations

Y1 � TΛ1T∗

...
Yd � TΛdT∗

(5)
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where all Λk’s are diagonal. Thus, the matrices {Yk} are similar
by congruence to diagonal matrices, and can be jointly diagonal-
ized. This is essentially a generalized eigenvalue problem. Sev-
eral algorithms are available, e.g., based on Jacobi iterations [1,
3,4,9–12]. Since we usually have a good starting point from the
eigenvalue problem of a pair of matrices,3 such iterations usu-
ally converge extremely fast, in two or three iterations, be it to a
local optimum. After finding T , the beamformer on the original
data is given by W � UΣ−1T .

Details

A detail in the above algorithm is that we can use hermitian
symmetry properties to map y � t̄⊗ t to a real vector y % : there is
a data independent unitary matrix Jc with a simple structure such
that Jcy %�� y with y % real. This reduces the number of variables in
y to d2 real parameters. Note that Py � 1 ⇔ � PJc � y %&� 1. Since
the rows of P have a similar structure as y, it is seen that P %�� PJc

is also real. Thus, P % y %'� 1 can be solved in the real domain, the
basis matrices Yk are complex hermitian by construction, so that
the Λk in (5) are real-valued.

In retrospect, it is essential in the above algorithm that δ � d:
the null space dimension of P̂ is equal to the number of sources.
In general, the fact that there are d solutions to the beamform-
ing problem allows only to derive that δ ≥ d. A (weak) argu-
ment says that, for “sufficient excitation” by the sources and A
full rank, we can expect δ � d, since random matrices have full
rank with probability 1. In our case, we have much more struc-
tured sources than in the CM case. The only thing we can prove
easily is that � i � the null space dimension of P̂ is equal to that
of S̄ � S and is independent of the actual A-matrix, since P∗ �
V̄ � V �(� T−1 ⊗ T−∗ �)� S̄ � S � with T invertible, � ii � the null space
dimension of S̄ � S is too high if two sources have the same resid-
ual carrier frequencies fi, leading to failure of the algorithm, � iii �
for d � 2, this is essentially the only exception. For d # 2, the
analysis becomes exceedingly complex.

There are important other applications where the Y-basis is
larger than the rank-1 basis. This then leads to significant com-
plications that have not yet been well studied.

IV. SEPARATION USING RESIDUAL CARRIERS

Outline

The above constant modulus property does not use the more
pertinent structure that is available for BPSK sources with resid-
ual carriers, cf. equation (1). If instead of sks∗

k we look at s2
k , we

find

s2
k � β2φk � φ � e j4π f �

Similar as before, substitute sk � t∗vk. In terms of Kronecker
products, we can rewrite the equation as � vk ⊗vk � T � t̄⊗ t̄ �*� β2φk,
or after complex conjugation, � vk ⊗vk � ∗ � t⊗ t ��� β̄2φ̄k. If we col-

3This is the case if, for the selected pair + i , j - , Yi is invertible and the eigenval-
ues Λ jΛ−1

i of YjY−1
i are distinct.

lect the row vectors � vk ⊗ vk � ∗ in a matrix P as before, we obtain

Py � β̄2

����	 1
φ̄
...

φ̄N−1


 ��� � where P : ��� V � V � ∗ � y : � t⊗t � |φ| � 1 �
(6)

Apart from a somewhat different definition of P and y, the main
difference with the CM problem is the fact that right-hand side
generated by φ is unknown. However, φ can readily be estimated
using shift-invariance ideas from harmonic analysis, leading to
an ESPRIT-type algorithm [13]. Let

J . 1 / : ��� IN−1 0 � � J . 2 / : ��� 0 IN−1 � �
then P . 1 / : � J . 1 / P and P . 2 / : � J . 2 / P are two shifts of P, and sat-
isfy

P . 1 / y � β̄2

����	 1
φ̄
...

φ̄N−2


���� � P . 2 / y � β̄2

����	 φ̄
φ̄2

...
φ̄N−1


���� (7)

so that
P . 1 / y � φP . 2 / y � (8)

Hence, φ is a generalized eigenvalue of the matrix pencil � P . 1 / � P . 2 / � ,
and y is its corresponding eigenvector. We expect d solutions
that satisfy the equation. If the eigenvalues {φi}d

i 0 1 are distinct,
the corresponding eigenvectors {yi}d

i 0 1 are unique up to scaling,
and can directly be factored as yi � ti ⊗ti.4 As before, the ti form
the columns of the matrix T , and the beamforming matrix W on
the original data is given by W � UΣ−1T . The φi allow to esti-
mate the residual carriers, up to aliasing, since φi � exp � j4π fi � .
(Recall that the aliasing is inherent in the problem definition and
does not preclude demodulation.)

Details

The current definition of y as y � t ⊗ t has repeated entries: it
can be regarded as a vectorization of the symmetric matrix ttT ,
which has only 1

2 d � d � 1 � distinct complex variables. The re-
peated entries in y should be removed. Let y % be the reduced-
size vector with unique entries, then there is a data independent
reconstruction matrix Js : d2 × 1

2 d � d � 1 � with a simple struc-
ture such that Jsy %�� y. Note that Py �1� PJs � y % . Thus if we let
P %2� PJs, then we can solve the reduced-size problem

P % . 1 / y % � φP % . 2 / y % � (9)

where P % . 1 / � P % . 2 / ∈ |C . N−1 / × 1
2 d . d 3 1 / .

If N # 1
2 d � d � 1 � , then the matrices P % . 1 / and P % . 2 / are rectan-

gular (tall), and the eigenvalue problem is known as a singular
pencil problem. Such problems require special attention in cases
where one of the matrices is singular: this should be avoided.
Similarly as before, V � T−∗S and P∗ � V � V �4� T−∗ ⊗T−∗ �)� S �
S � , so that the rank of P % is only dependent on the sources and not
on the particular A-matrix (assuming it is full rank). Again, P % is

4This factorization is easily obtained by going to the matrix domain: Yi 5
vec−1 + yi - 5 titT

i . An SVD can be used to verify that it is rank 1.
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singular if two sources have the same frequencies (up to alias-
ing); for d � 2, this is the only defective case. The general case
again defies analysis, but generically, one expects that P % has full
rank as long as frequencies are different (up to aliasing).

With P % full rank and rectangular (tall), there are several ways
to solve P % . 1 / y % � φP % . 2 / y % . We could look at the eigenvalue de-
composition of P % . 2 / †P % . 1 / , but this is not fully correct: it pro-
duces 1

2 d � d � 1 � eigenvalues out of which we have to select d.
(The spurious extra eigenvectors do not satisfy (9).) The correct
way to solve the pencil is to reduce the problem dimension by
looking at the intersection of the column spans of P % . 1 / and P % . 2 / ,
as follows.

Assume there are d solutions to (9), and let Y : �6� y %1 · · ·y %d �
contain the d eigenvectors. Then P % . 1 / Y � P % . 2 / YΦ, where Φ �
diag � φi � , i.e., � P % . 1 / P % . 2 / �  Y

−YΦ " � 0 �
Thus, � P % . 1 / P % . 2 / � has (at least) a d-dimensional null space. Gener-
ically, the dimension will be precisely d once the matrix is suffi-
ciently tall, i.e., N − 1 ≥ d � d � 1 � − d, or N # d2. Assuming this,
a basis for the null space can be computed using an SVD, which
then produces matrices F and G of size 1

2 d � d � 1 � × d such that� P % . 1 / P % . 2 / �  F
−G " � 0 � (10)

Since the basis is determined only up to multiplication by a non-
singular d × d matrix M, it follows that

F � YM � G � YΦM �
Consequently,

F†G � M−1ΦM

so that Φ and M−1 can be found as the eigenvalues and eigenvec-
tors, respectively, of F†G. Finally, the eigenvectors satisfying
(9) are given by � y %1 · · ·y %d �$� FM−1 �
From each y %i, the corresponding yi � Jsy %i is recovered, and sub-
sequently factored as yi � ti ⊗ti to retrieve the beamforming ma-
trix T .

The resulting algorithm is summarized in figure 2. It requires
N # d2 samples and produces both beamforming vectors and de-
modulation frequencies. It fails when two eigenvalues are the
same, i.e., two signals have precisely the same carrier frequency,
since in that case � P % . 1 / P % . 2 / � has a null space dimension which
is too large, rendering the subsequent procedure invalid. There
appears to be no easy solution to this problem.

Discussion

As can be guessed from comparing (6) to (2), the difference in
accuracy to the constant modulus-based solution turns out to be
only marginal. The main benefit in solving (6) is that it leads to a
somewhat simpler and more standard eigenvalue problem in the
final step, and the fact that estimates of residual carrier frequen-
cies are available, which simplifies recovery of the source sym-
bols after beamforming. The main step is the computation of an
SVD of � P % . 1 / P % . 2 / � , a complex matrix of size � N −1 � ×d � d � 1 � .

−∆ϕ

∆ϕ

0

x3x4

x2
x1

Fig. 3. A centro-symmetric array

In contrast, ACMA requires computation of an SVD of a real-
valued matrix of comparable size, which takes only about 1/4 of
the amount of operations.

Although the source symbols are real-valued, this is not very
well used by the procedure. In analogy to the situation without
residual carrier (see [5]), we would hope for some form of real-
valued processing, doubling of dimensions, and use of the fact
that |φ| � 1. How to exploit the additional structure without mak-
ing further assumptions remains an open question.

Another challenge at this point would be to combine both the
constant modulus property (|sk|2 � 1) and the residual carrier
structure (s2

k � β2φk). At present, this is not possible because dif-
ferent parameter vectors are used: t̄ ⊗ t and t ⊗ t, respectively.

V. SEPARATION USING RESIDUAL CARRIERS AND A

CENTRO-SYMMETRIC ARRAY

Outline

The situation becomes more interesting if we can assume addi-
tional structure on A. Suppose that � i � the array is centro-symmetric
(see figure 3) and � ii � that there is no multipath. Such assump-
tions are often made for direction finding algorithms such as (unitary)-
ESPRIT [14]. The symmetry of the array carries over into a sym-
metry of the array manifold vectors, under assumption � ii � equal
to the columns of A:

ΠĀ � A � Π � �	 0 1
. .

.

1 0


 �
where we have placed the zero phase reference in the center of
the array. It follows that

X � AS ⇒ ΠX̄ � AS̄

so that
X � ΠX̄ � � A ⊗ A �)� S � S̄�
X � X � � A ⊗ A �)� S � S ���

The factor A⊗A is the same in both expressions. Thus, due to the
centro-symmetric property we can now try to find vectors of the
form y � w⊗w that reconstruct rows of S � S̄ and S � S of the form� 1 1 1 · · · � and β2 � 1 φ φ2 · · ·� , respectively. This gives twice as
many conditions on the same parameter vector as we had before.

Again, X is rank deficient when d � M, which leads to a nonunique-
ness in w that has to be avoided. Since � X ΠX̄ ��� A � S S̄ � has
rank d, a suitable preprocessing step is to compute the SVD� X ΠX̄ �7� UΣ �V1 V2 � �
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Given a matrix X � AS � N. An estimate of S ∈ BPSK is obtained as follows:
1. Estimate row � X � :

a. Compute SVD(X): X � : UΣV
b. Estimate d � rank � X � from Σ: the number of signals
c. Truncate U, Σ, V to this rank.

2. Solve the pencil problem (9):
a. P % : ��� V � V � ∗Js

b. P % . 1 / : � J . 1 / P % � P % . 2 / : � J . 2 / P %
c. Use SVD to find the d-dimensional null space 8 F

−G 9 of �P % . 1 / P % . 2 / �
d. Eigenvalue decomposition F†G � : M−1ΦM
e. Y : � JsFM−1

3. Find the beamforming vectors and the source signals
a. Using SVD, factor each column y of Y as y � : t ⊗ t
b. Using the resulting matrix T , set W : � UΣ−1T
c. S : � W∗X

The entries of Φ specify the residual carrier frequencies.

Fig. 2. Algorithm Rescar, for separating BPSK sources with residual carriers.

in which U ∈ |C M×d and �V1 V2 � ∈ |C d×2N are isometric, and Σ ∈
||R d×d is diagonal. Singular vectors are unique up to unimodular
scaling (if singular values are not repeated). Since �ΠX̄ X �*�
UΣ �V2 V1 � but also �ΠX̄ X �:� ΠŪΣ � V̄1 V̄2 � , we see that there
is a unimodular scaling of the columns of U and rows of �V1 V2 �
such that

ΠŪ � U � V1 � V̄2 � : V �
Assume that we take the SVD in this way. Denote as before by
T the nonsingular d × d beamforming matrix such that T∗V � S,
then UΣ � AT∗. It follows from ΠŪ � U, ΠA � Ā that T � T̄ so
that T is real-valued.

We can now set up conditions for constant modulus and for
residual carriers using a single real-valued vector y � t⊗t, where
t is one of the columns of T . Since t � t̄, equations (2) and (6)
can immediately be combined. Thus define

P1 ��� V̄ � V � ∗ � P2 ��� V � V � ∗ � y � t ⊗ t �
then y satisfies

P1y � ��	 1
1
...


�� � P2y � β̄2

��	 1
φ̄
...


�� � � φ � e j4π f ���
The shift invariance of the second condition leads to P . 1 /2 y �
φP . 2 /2 y. Since y is real and |φ| � 1, we can also set up a con-

jugated set of conditions of the form P̄ . 2 /2 y � φP̄ . 1 /2 y which can
be combined with the second condition into a single eigenvalue
problem ;

P . 1 /2

P̄ . 2 /2 < y � φ

;
P . 2 /2

P̄ . 1 /2 < y � (11)

Finally, if we map the first condition P1y � 1 to P̂1y � 0 as be-
fore (cf. (4)), then we can combine all conditions into a single

eigenvalue problem����	 P̂1
0

P . 1 /2

P̄ . 2 /2


 ��� y � φ

����	 0
P̂1

P . 2 /2

P̄ . 1 /2


 ��� y

⇔ PAy � φPBy � y � t ⊗ t � (12)

Equation (12) now plays the role of (8). A solution of the eigen-
value problem produces {φi} and {yi}, from which the frequen-
cies fi and beamforming vectors ti can be obtained. The latter
are collected in a matrix T , after which the beamforming matrix
on the original data is given by W � UΣ−1T .

Details

The matrix � X ΠX̄ � can be mapped to a real matrix: there are
data independent unitary matrices Q1 and Q2 with simple struc-
tures such that Q∗

1 � X ΠX̄ � Q2 is real-valued [14]. Thus, the com-
putation of the SVD of �X ΠX̄ � can be carried out in the real do-
main and T will be real-valued without further effort.

Since t is real, y � t⊗t can be parametrized by a vector y % con-
sisting of 1

2 d � d � 1 � real parameters. There is a reconstruction
matrix Js such that y � Jsy % . Moreover, Js is such that P %1 � P1Js

is real-valued as we had before. The same holds for P̂ %1. The first
condition is thus mapped into P̂ %1y % � 0 with P̂ %1 real.

It is also possible to map the second condition to real-valued
matrices. Indeed, since |φ| � 1, a Cayley transformation provides
a one-to-one mapping of φ to λ � j 1−φ

1 3 φ which is real. The corre-
sponding eigenvalue problem (11) is mapped to (see appendix);

− � P . 2 /i − P . 1 /i �
P . 2 /r − P . 1 /r < y � λ

;
P . 1 /r � P . 2 /r

P . 1 /i � P . 2 /i < y �
Pr : � real � P2 � � Pi : � imag � P2 �$�

The same holds for the primed quantities after transformation by
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Js. Thus, (12) is transformed into����	 P̂ %1
0

P % . 1 /i − P % . 2 /i

P % . 2 /r − P % . 1 /r


 ��� y � λ

����	 0
P̂ %1

P % . 1 /r � P % . 2 /r

P % . 1 /i � P % . 2 /i


 ��� y

⇔ P %Ay % � λP %By % (13)

where P %A � P %B ∈ ||R 4 . N−1 / × 1
2 d . d 3 1 / . As before, the singular pencil

problem is solved by looking for the null space of � P %A P %B � and
solving the reduced d-dimensional eigenvalue problem, cf. (10)
and the subsequent equations.

Discussion

In summary, the additional assumptions that the array is centro-
symmetric and that there is no multipath allows to � i � find a more
accurate subspace filter U, based on 2N vectors, � ii � construct
roughly 4 times as many conditions on y, which consists of half
as many real parameters. Thus, we expect a significant improve-
ment in accuracy over the previous schemes. The computational
complexity is determined by the SVD of � P %A P %B � , a real matrix
of size 4 � N − 1 � × d � d � 1 � . Because it is real, the complexity is
the same as that of the previous residual carrier algorithm in sec-
tion IV, or four times the complexity of the ACMA in section III,
although some reduction in complexity is possible.

VI. SIMULATIONS

The performance of the algorithms discussed above is illus-
trated by means of a few simulations. In the basic simulation set-
up, we took d � 3 BPSK sources, located at angles � −15 � � 0 � 15 �=�
and with normalized residual frequencies � −0 � 15 � 0 � 0 � 15 � . The
antenna array consisted of a uniform linear array of M � 4 sen-
sors, spaced at λ

2 . (This array configuration was chosen to en-
able a comparison to the ESPRIT algorithm.) The sources have
equal unit power, the array has unit gain, and complex i.i.d. white
Gaussian noise is added with variance σ2. N � 20 samples are
taken, at symbol-spaced sampling rate.

The algorithms that are tested are ‘ACMA’ (section III), ‘ACMA+c’
(same, but using the centro-symmetric structure of the array by
acting on � X ΠX̄ � ), ‘Rescar’ (section IV), ‘Rescar+c’ (section
V), and ‘ESPRIT+c’, which is Unitary-ESPRIT and acts on � X ΠX̄ �
[14].5

Three performance criteria are shown. The first is the maxi-
mal residual signal-to-interference ratio (SIR) at the output of the
beamformer, which is obtained by inspection of W∗A, where W
is the estimated beamforming matrix. The second is the signal to
interference plus noise ratio after beamforming (SINR), and the
third is the bit error rate (BER) after beamforming and demodu-
lation. In the latter case, estimates for the residual carriers for the
ACMA and ESPRIT algorithms are obtained using a single shift
invariance property for each recovered signal independently.

For reference, plots show in dotted lines the performance of
the ‘optimal’ SINR-maximizing beamformer with known A, σ

5Although the ESPRIT algorithm is primarily known as a direction-finding al-
gorithm, its final step is an eigenvalue decomposition of which the eigenvalues
provide the usual direction estimates and the eigenvector matrix is the beamform-
ing matrix T .

(but estimated residual frequencies) defined by

Wopt ���w1 > opt · · · wd > opt �
wi > opt � R−1

nn > iai � Rnn > i � σ2IM � AA∗ − aia∗
i �

The frequencies are estimated after beamforming in the same
way as for the ACMA and ESPRIT algorithm.

Figure 4(a) features the performances as function of SNR. It
is seen that for the above-mentioned parameter settings, the per-
formance of ACMA is similar to that of Rescar, whereas there
is a 3 dB performance improvement if the centro-symmetry is
used. Although Rescar+c uses 4 times more conditions, it is not
much more accurate than ACMA+c, whose conditions are a sub-
set. With respect to SINR, the performances are close to optimal.
The performance of ESPRIT+c is significantly lower, but this is
strongly dependent on the angle separation, as we will see later.

Figure 4(b) shows the performance as a function of N, the
number of samples. The SIR-performance of both ACMA and
Rescar-based algorithms saturate, because they are biased by the
noise (just as Wopt is biased). The bias is natural because condi-
tions are put on the output of the beamformer, although another
source of bias is due to the squaring of the data. The BER rates go
up because the frequency estimates do not sufficiently improve
for growing N. This suggests the use of a more advanced fre-
quency estimator.

In figure 4(c), the frequency separation between the sources
is varied: the residual frequencies are taken to be � −∆ f � 0 � ∆ f � .
The minimum frequency separation that is needed for Rescar
is 0.025. For this value, the phase difference between the first
and last sample is precisely 0 � 025N � 0 � 5, or 180 � . This result
seems to generalize: it has been verified for other values of N
that the minimum frequency separation required is 1

2N . ACMA
also needs some frequency separation, otherwise it will fail be-
cause the null space dimension of P̂ becomes too large. Use of
the centro-symmetric structure lowers the minimum in all cases.
Note that when ∆ f � 0 � 25, two frequencies are the essentially
the same due to aliasing, so that the algorithms fail in that case
as well. The performance drop of Rescar+c is felt in a wider fre-
quency region. This is likely due to the mapping of φ to λ: in
this region two of the eigenvalues become very large and go to
infinity.

In figure 4(d), we vary the angle separation between the sources.
This shows that the relatively inferior performance of ESPRIT
in the previous graphs is in fact much dependent on the sepa-
ration in angles between the sources. The angle dependence of
the other algorithms is due to the change in condition numbers
of A; for separations larger than 30 � , the conditioning is close to
1 and the performance flattens out. For well-separated sources,
ESPRIT can improve in SIR performance even over the non-
blind case (known S and { fi}), because it uses structure of the A-
matrix. However, the possible improvement in SINR and hence
in BER is only small.

VII. CONCLUSION

We have proposed two new algorithms for the blind separation
of nonconvolutive BPSK sources based on differences in resid-
ual carriers, and compared them to ACMA and ESPRIT. Both
new algorithms inherently estimate the residual carriers. The
second algorithm also exploits centro-symmetry of the array and
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Fig. 4. Performance of blind separation algorithms. + a - Dependence of SIR, SINR and BER on noise power and + b - on the number of samples.
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Fig. 4. [cont’d] + c - Dependence on frequency separation and + d - on angle separation.
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absence of multipath, and combines with the constant-modulus
property of the constellation. In most cases, the performance of
the proposed algorithms is rather similar to ACMA, without or
with using centro-symmetry respectively. To insure good per-
formance, angle separation and frequency separation should be
above certain minimum values that are inversely proportional to
M and N, respectively. The minimum frequency separation can
also be lowered by subsampling the array outputs. Similarly, the
minimum angle separation can be lowered by using arrays with
longer baselines.

The new algorithms have a computational complexity that is
4 times that of ACMA. The main reason to prefer the new algo-
rithms over ACMA would be that the final eigenvalue problem is
standard and easier to implement, and that estimates of the resid-
ual carriers are directly available, facilitating subsequent demod-
ulation. On the other hand, they are not applicable to modula-
tions other than BPSK.

Among possible extensions of this work, we could mention

– Study convolutive channels, including the effect of ISI due
to the pulse shape function, since without blind equalization
this will introduce an apparent source with the same carrier
frequency, for which the current algorithms fail,

– Systematic study of the impact of noise, and derivation of an
optimal prewhitening.

APPENDIX

I. CAYLEY TRANSFORMATION

Consider the equation Ax � φBx, with x real and |φ| � 1. Then� B − A � x � � 1 − φ � Bx� B � A � x � � 1 � φ � Bx

so that
j � B − A � x � j 1−φ

1 3 φ � B � A � x
Define λ � j 1−φ

1 3 φ , then λ is real and x is real, whence −imag � B − A �
real � B − A � " x � λ  real � B � A �

imag � B � A � " x �
This set of equations contains the conjugate equation B̄x � φĀx
as well.
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