SIGNAL PROCESSING (October 22, 1998)

Blind separation of BPSK sources with residual
carriers

Alle-Jan van der Veen

Abstract— Blind separation of instantaneous mixtures of binary sources
with egual carrier frequencies has been studied before. For independent
sources, it may be reasonable to assume that their carrier frequencies are
not exactly identical, so that a residual carrier is present after demodula-
tion to baseband. We show how this can be used to separate the sources. If
thereceiving antenna array is centro-symmetric and there isno multipath,
then the performance of the algorithm can be significantly improved.
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I. INTRODUCTION

Several techniques have been devel oped to estimate and sep-
arate linear superpositions of signalsimpinging onto an antenna
array. They can broadly be characterized as (1) those that use
propertiesof the channel, such asaparametrized multipath model
and a known or structured antenna array, and (2) those that use
propertiesof thesignals. Some of the propertiesused inthelatter
category are training (known source symbols), constant modu-
lus and finite al phabet of the source symbols, cyclo-stationarity,
and statistical independence. For each of these, several methods
are availableto estimate the mixing matrix. Typical schemesare
based on cost-function optimization using gradient-search or it-
erative techniques. Such methods are very much dependent on
accurate initial points. There are also noniterative (algebraic)
methods that are based on weak assumptions such as statistical
independence of the sources (e.g., JADE [1], ICA [2], CAN-
DECOMP [3]). These are very powerful in their generality but
may reguire many samples beforethe higher-order statistics con-
verge.

For short data bursts, we areinterested in algebraic algorithms
inwhich the mixing matrix isfound as the best-fitting solution to
a set of agebraic equations which pose conditions on every in-
dividual sample. For constant-modulus signals, a successful al-
gorithm is the Analytic Constant Modulus Algorithm (ACMA)
[4], which solves an overdetermined set of quadratic equations.
The algorithm has been specialized to separate superpositions of
binary {1} or {0,1} signals[5]. In the present paper, we con-
sider binary sourcesand explorewaysto account for thefact that
carrier frequencies are not always 100% identical.

In the case of digital signals from independent sources, it is
reasonableto assumethat the carriersare slightly different. E.g.,
suppose that the sources are modulated to 900 MHz and that the
carriers are the same up to some 5-6 orders of magnitude. After
demodulation to baseband using the nominal carrier, each of the
sources will have aresidua carrier of up to £5 kHz, say. If the
sources have abandwidth of 20 kHz, then we can expect aphase
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Fig. 1. Beamforming scenario

roll in the order of +90° per symbol. Hence, the BPSK model
s« O {£1} istoo naive in this case. Since the constant modu-
lus property isstill valid, we can revert to the ACMA to separate
the sources. However, we can also try to separate them based on
these small differencesin residual carriers.

M odern-day communication systems use acommon reference
signal, so that the residual carrier is typically much smaller, re-
portedly around 500 Hz or less. As shown in the simulations,
theresidual carrier methods proposed herealready work oncethe
phase shift between thefirst and last symbol in the data batch is
more than £180°. For sources with a bandwidth of 20 kHz and
adifferencein carriers of 500 Hz, this amounts to a data batch
of 20 samples. We can envision systemswhere co-channel users
are deliberately shifted by such small amounts, in order to fa
cilitate separation. This can be regarded as a special instance
of separation by “coding-induced cyclo-stationarity”, and such
schemes have been proposed e.g., in [6-8].1

Notation

Vectors are denoted by boldface, matrices by capitals. Over-
bar (") denotes complex conjugation, T is the matrix transpose,
U the matrix complex conjugate transpose, and T is the matrix
pseudo-inverse (Moore-Penrose inverse). |y, isthe mx miden-
tity matrix, 0 and 1 are vectorsfor which al entriesare equal to 0
and 1, respectively. [ isthe Kronecker product, ¢ isthe“Khatri-
Rao” product, which is a column-wise Kronecker product:

anB apB

AB= | auB a2B , AoB=[ayb; aylh,

Two notable propertiesare: vec(ABC) = (CT 0 A)vec(B), vec(ab®) =

b0 a, where the vec-operator indicates astacking of the columns
of amatrix into avector.
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Il. DATA MODEL

A source model for a unit-modulus BPSK source with some
residual carrier is

s=[s]O0BPSK < s O{+1-pe?¥} (k=1,---,N).

D
Here, sis arow vector, f is the unknown residua carrier fre-
guency of the source and 3 accountsfor aninitia phase (]3| = 1).
We consider a scenario as depicted in figure 1, where M anten-
nas receive linear superpositions of d BPSK sources. Suppose
we have collected a data block X = [x1---xn] OC™™N, If the
multipath delay spread is small relative to the sampling period,
then X is described by the standard model

X =AS= a8+ -+ adsu,

where al 5 0 BPSK. We assume that d < M, and that A and
Shave full rank d. The objectiveis to retrieve al (nontrivial)
BPSK signalspresentin X, i.e. to find acollection of d complex
beamforming vectors w that lead to linearly independent BPSK

signals
s=wX

of theform (1). A solution{wy,---,wg} is collected in a beam-
forming matrix W = [wy ---wq]. Sinceshasasign ambiguity, we
can recover f fromsonly upto aliasing: f O [-.25,.250] Alias-
ing does not preclude demodulation.

To avoid nonuniqueness of w in cased < M (X is rank defi-
cient and arbitrary vectors from the left null space of X could be
added), wefirst replace X by any full rank d matrixV = [vy -+ -vn]
that has the same row span, for example as obtained from asin-
gular value decomposition (SVD) of X:

X=UxV

inwhichU 0CM¥ andV 0C %N areisometric, and = (0 R 9d
isdiagonal. NotethatV = " 1U"X, so that 21U " can be viewed
as a pre-beamformer.? After this step we look for all d linearly
independent vectorst such that

t/ = s BPXK.

Since Aand Sare assumedto havefull rank d, thisequation hasat
least d solutions{ty, ---,tq} which together form the columns of
adxdmatrix T. If asufficient number of samplesaretaken, then
it is known for the constant modulus case that generically there
are precisely d solutions (unique up to arbitrary initial phase)
[4], and by extension, this applies to the BPSK decomposition
aswell. With T in hand, the beamforming matrix W on the orig-
ina dataisgivenby W=UZ"1T.

I11. SEPARATION USING CONSTANT MODULUS
Principle

A first property that we can useto separate BPSK sourceswith
residual carriersistheir constant modulus:

s&=1

IMain differences are that we do not consider equalization, and that we treat
the frequency offsets as unknown parameters.

2This step is also used to eliminate some of the additive noise. In this paper,
we will not analyze noise effectsin detail.

%=1 = (k=1,---)N).
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Thisleads to the ACMA [4] for the separation of constant mod-
ulus (CM) sources, which is summarized below for future refer-
ence. Substituting s, = t"v, we obtain

tVivit=1 <« WOv)Htot)=1 (k=1,---,N)
which can be compactly written as
Py=1, where P:=(VoV), y:=tOt. (2

(Here, ‘00’ is the Kronecker product and ‘¢’ denotes a column-
wise Kronecker product.) Matrix P has size N xd?, and we as-
sumeN > d?. To solvefor t, we have to solve an overdetermined
linear system iny, wherey is subject to a quadratic constraint,
y=t0Ot.

Any solution of the linear system in (2) can be written as

y=01y1+0zy2+---+05ys  (01=1) ©)

where y; is a particular solution of the system, the other yy are
a basis of the null space of P, and -1 is the dimension of this
space. A convenient way to find the basis goes viaa QR factor-
ization of [1 P)]:

SR @
0o P [

(Matrix P hassizeN-1xd? but can betruncated to d?xd2.) This

replaces Py = 1 by Py = 0, plusanonessential scaling condition

represented by the first row. Thus, {y1,---,Ys} isabasisfor the

null space of P and can be found by an SVD of P.

An important result is that, for sufficiently independent con-
ditions, 8 = d once N > d?—d [4]. The remaining problem is
to find out which linear combinations of the {yy} lead to avec-
tor y that can be written asy = t 0 t. The latter problem is con-
veniently rephrased by working with a matrix Y = tt". For any
matrix, we can form a vector by simply stacking its columns,
and conversely, we can “unvec” vectorsinto matrices. A notable
property isthat tt” < t O t. Thus, applying the unvec operation
to every yi in (3) then leads to the equivalent

ttH= a1Y1+aoYo+ -+ O5Ys.

Hence, the problemisto form linear combinations of known ma-
trices Yy such that the result is rank-1 hermitian, so that it has a
factorization as tt”. In the present case, there are & = d matri-
ces, and we are looking for al d solutionsty,k=1,---,d to the
problem: weareinfact trying to rewritethe given arbitrary “ma-
trix basis’ { Y} asarank-one matrix basis{tktE}. Thety arethe
columns of the beamforming matrix T.

Thelucky situation that we have & = d meansthat we can turn
the argument around: we can write each matrix Yy as somelinear
combination of the rank-one basis:

Yi = Matat?+ Atots + -+ Aiatat g (k=1,---,d).

After collecting the coefficients into diagonal matrices, Ay =
diag[Ak1, -+, Akg), it follows that the Y satisfy the equations

Y1 = TATP

Q)

Yy = TAgTY
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where al Ay's are diagonal. Thus, the matrices{ Y} are similar
by congruenceto diagonal matrices, and can bejointly diagonal-
ized. Thisisessentially ageneralized eigenvalue problem. Sev-
era agorithmsare available, e.g., based on Jacobi iterations|[1,
3,4,9-12]. Since we usually have agood starting point from the
eigenvalue problem of a pair of matrices,® such iterations usu-
ally converge extremely fast, in two or three iterations, beitto a
local optimum. After finding T, the beamformer on the original
dataisgiven by W =UZ"1T.

Details

A detail in the above algorithm is that we can use hermitian
symmetry propertiestomapy =t [t to areal vector y': thereis
adataindependent unitary matrix J. with asimple structure such
that Joy’ =y withy’ real. Thisreducesthe number of variablesin
y to d? real parameters. Notethat Py = 1 = (PJ.)y’ = 1. Since
therowsof P haveasimilar structureasy, itisseenthat P’ = PJ.
isalsorea. Thus, P'y' = 1 can be solved in the real domain, the
basis matrices Yy are complex hermitian by construction, so that
the Ak in (5) are rea -vaued.

In retrospect, it is essential in the above agorithm that 6 = d:
the null space dimension of P is equal to the number of sources.
In general, the fact that there are d solutions to the beamform-
ing problem allows only to derive that d > d. A (weak) argu-
ment says that, for “sufficient excitation” by the sources and A
full rank, we can expect d = d, since random matrices have full
rank with probability 1. In our case, we have much more struc-
tured sourcesthan in the CM case. The only thing we can prove
easily isthat (i) the null space dimension of P is equal to that
of Se Sand is independent of the actual A-matrix, since PY =
VoV = (TTOT Y (Se 9 with T invertible, (ii) the null space
dimension of So Sistoo high if two sources have the sasmeresid-
ual carrier frequencies f;, leading to failure of thea gorithm, (iii)
for d = 2, thisis essentialy the only exception. For d > 2, the
analysis becomes exceedingly complex.

There are important other applications where the Y-basis is
larger than the rank-1 basis. This then leads to significant com-
plications that have not yet been well studied.

IV. SEPARATION USING RESIDUAL CARRIERS
QOutline

The above constant modulus property does not use the more
pertinent structurethat isavailablefor BPSK sourceswith resid-
ual carriers, cf. equation (1). If instead of s we look at 2, we
find

s = B¢,
Similar as before, substitute s, = tv. In terms of Kronecker

products, we can rewrite the equation as [vi O vi] T (t 0't) = B2,
or after complex conjugation, [vi v (tOt) = B?¢¢. If wecol-

o= ej41'[f

3Thisisthe caseif, for the selected pair (i, j), Y; isinvertible and the eigenval -
ues AjATL of YY1 are distinct.

lect the row vectors [vi [ vi]”in amatrix P as before, we obtain

|
S |-

Py=p2| . |, whereP:=(VoV)", y:=tOt, |¢=1.

(6)
Apart from a somewhat different definition of P and y, the main
difference with the CM problem is the fact that right-hand side
generated by @isunknown. However, ¢ can readily be estimated
using shift-invariance ideas from harmonic analysis, leading to
an ESPRIT-type algorithm [13)]. Let

IV =[O, IP:=[0 Ina],

then P := JWP and P@ := J@ P aretwo shiftsof P, and sat-
isfy

1 )
| o _ | &
Ply=pg?| . |, P@y=@|" (7)
A !
so that
Py = gp@y. (8)

Hence, pisageneralized eigenvalueof thematrix pencil (P, P(2)),
and y is its corresponding eigenvector. We expect d solutions
that satisfy the equation. If the eigenvalues {@}¢; aredistinct,
the corresponding eigenvectors{y;} idz 4 areunique up to scaling,
and can directly befactored asy; = tj t;.* Asbefore, thet; form
the columns of the matrix T, and the beamforming matrix W on
the original datais given by W = US1T. The @ allow to esti-
mate the residual carriers, up to diasing, since @ = exp(j4rf;).
(Recall that the aliasing isinherent in the problem definition and
does not preclude demodulation.)

Details

The current definition of y asy = t ( t has repeated entries: it
can be regarded as a vectorization of the symmetric matrix ttT,
which has only 3d(d + 1) distinct complex variables. The re-
peated entries in y should be removed. Let y' be the reduced-
size vector with unique entries, then there is a data independent
reconstruction matrix Js : d2 x 3d(d + 1) with a smple struc-
ture such that sy’ = y. Note that Py = (PJs)y’. Thusif we let
P’ = PJs, then we can solve the reduced-size problem

P/(l)y/ — cpP’(Z)y’ ,

where P’ P/(2) ¢ (N-2)x3d(e+1)

If N> 2d(d+ 1), then the matrices P'™) and P'® are rectan-
gular (tall), and the eigenvalue problem is known as a singular
pencil problem. Such problemsrequire special attentionin cases
where one of the matrices is singular: this should be avoided.
Similarly asbefore, V =T"Sand P =V oV = (TUO T (Se
S), sothat therank of P’ isonly dependent on the sourcesand not
on the particular A-matrix (assumingitisfull rank). Again, P'is

(©)

4This factorization is easily obtained by going to the matrix domain: Y, =
vec™}(yi) = tit] . An SVD can be used to verify that it isrank 1.



singular if two sources have the same frequencies (up to alias-
ing); for d = 2, thisisthe only defective case. The general case
again defiesanalysis, but generically, one expectsthat P’ hasfull
rank as long as frequencies are different (up to aliasing).

With P full rank and rectangular (tall), there are several ways
to solve Py’ = @P'(@y’. We could look at the eigenvalue de-
composition of P@TPD) | but this is not fully correct: it pro-
duces 1d(d + 1) eigenvalues out of which we have to select d.
(The spurious extra eigenvectors do not satisfy (9).) The correct
way to solve the pencil is to reduce the problem dimension by
looking at the intersection of the column spans of PV and P'(?)|
asfollows.

Assume there are d solutions to (9), and let Y := [y] ---y}]

contain the d eigenvectors. Then P(DY = PAYd, where d =
diag[q], i.e,
] _o.

PO pe) { _JCD

Thus, [P P@]has(at least) ad-dimensional null space. Gener-

ically, the dimension will be precisely d once the matrix is suffi-
ciently tall, i.e, N-1>d(d+ 1) —d, or N > d?. Assuming this,
abasisfor the null space can be computed using an SV D, which
then produces matrices F and G of size d(d + 1) xd such that

| -0

Since the basisis determined only up to multiplication by anon-
singular d xd matrix M, it follows that

PO ) [ F

s (10)

F=YM, G=YOM.

Consequently,
F'G =M1oMm

so that @ and M~ can befound as the eigenvalues and eigenvec-
tors, respectively, of FTG. Finally, the eigenvectors satisfying
(9) are given by
[YV1yal = FM7

From eachy;, the corresponding y; = Jsy; is recovered, and sub-
sequently factored asy; = t; O t; to retrievethe beamforming ma-
trix T.

The resulting algorithm is summarized in figure 2. It requires
N > d? samplesand produces both beamforming vectorsand de-
modulation frequencies. It fails when two eigenvalues are the
same, i.e., two signals have precisely the same carrier frequency,
sincein that case [PV P'(2)] has anull space dimension which
istoo large, rendering the subsequent procedure invalid. There
appears to be no easy solution to this problem.

Discussion

As can be guessed from comparing (6) to (2), the differencein
accuracy to the constant modul us-based solution turns out to be
only marginal. The main benefitin solving (6) isthat it leadsto a
somewhat simpler and more standard eigenvalue problemin the
final step, and the fact that estimates of residual carrier frequen-
cies are available, which simplifies recovery of the source sym-
bols after beamforming. The main step is the computation of an
SVD of [P P(@], acomplex matrix of size (N-1) xd(d + 1).
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Fig. 3. A centro-symmetric array

In contrast, ACMA requires computation of an SVD of a real-
valued matrix of comparable size, which takes only about 1/4 of
the amount of operations.

Although the source symbols are real-valued, thisis not very
well used by the procedure. In analogy to the situation without
residual carrier (see[5]), we would hope for some form of real-
valued processing, doubling of dimensions, and use of the fact
that || = 1. How to exploit the additional structurewithout mak-
ing further assumptions remains an open question.

Another challenge at this point would be to combine both the
constant modulus property (Jsd? = 1) and the residual carrier
structure (2 = B2¢). At present, thisisnot possible because dif-
ferent parameter vectorsare used: t 0t and t [ t, respectively.

V. SEPARATION USING RESIDUAL CARRIERS AND A
CENTRO-SYMMETRIC ARRAY

Outline

Thesituation becomesmoreinteresting if we can assumeaddi-
tional structureon A. Supposethat (i) thearray iscentro-symmetric
(seefigure 3) and (ii) that there is no multipath. Such assump-
tionsare often madefor direction finding algorithmssuch as (unitary)-
ESPRIT [14]. Thesymmetry of thearray carriesoverintoasym-
metry of the array manifold vectors, under assumption (ii) equal
to the columns of A:

where we have placed the zero phase reference in the center of
thearray. It follows that

X=AS O [MNX=AS

S0 that _ _
XoMX = (AOA)(S09

XoX = (AOA)(S¢YS).

Thefactor A Aisthesamein both expressions. Thus, dueto the
centro-symmetric property we can now try to find vectors of the
formy = wJw that reconstruct rows of So Sand Se Sof theform
[111--]andBl @ ¢ -], respectively. Thisgivestwice as
many conditions on the same parameter vector aswe had before.
Again, Xisrank deficient whend < M, whichleadsto anonunique-
nessin w that hasto be avoided. Since[X MX]=A[S § has
rank d, a suitable preprocessing step is to compute the SVD

[X MX]=UzM Ve,
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1. Estimate row(X):
a. Compute SVD(X): X =:UxV
b. Estimated =
c. Truncate U, Z, V to thisrank.
2. Solve the pencil problem (9):
aP:=(VoV)s

b. P =3P, P = 32p!

eY:=JFM1

c. S:= WX

Given amatrix X = AS+ N. An estimate of SO BPK is obtained as follows:

rank(X) from Z: the number of signals

c.UseSVDto fmd the d-dimensional null space [
d. Eigenvalue decomposition F1G =: MM

3. Find the beamforming vectors and the source signals
a. Using SVD, factor each columny of Y asy =:t Ot
b. Using the resulting matrix T, set W := UZ 1T

The entries of @ specify theresidual carrier frequencies.

) of [P P

Fig. 2. Algorithm Rescar, for separating BPSK sourceswith residual carriers.

inwhichU OC™ % and [V; V,) OC N areisometric, and £ [
IR *d jsdiagonal. Singular vectors are unique up to unimodular
scaling (if singular values are not repeated). Since [I‘IX X] =
UZ]V, Vilbutalso[MX X]=TMUZ[V; Vs, weseethatthere
isaunimodular scaling of the columnsof U androwsof [V V5]
such that

nu=u, vi=VWn=V.
Assume that we take the SVD in thisway. Denote as before by
T the nonsingular d xd beamforming matrix such that TV = S,
thenUZ = AT ItfollowsfromNU =U,MA=Atha T=T so
that T isreal-valued.

We can now set up conditions for constant modulus and for
residual carriersusing asinglereal-valued vector y = tIt, where
t isone of the columns of T. Sincet =t, equations (2) and (6)
can immediately be combined. Thus define

PL=(VoV)Y, P=(VoV)Y, y=t0Ot,
theny satisfies
1 1
@ (@=e*).

Ply = 1 ) sz = 62 )

The shift invariance of the second condition leads to Pél)y =
(Ppéz)y Sincey isrea and |¢| = 1, we can also set up a con-

jugated set of conditions of the form I5(22)y = (pl5(21)y which can
be combined with the second condition into a single eigenvalue

problem
PV y
o |

Finally, if we map the first condition Pry = 1 to Py = 0 as be-
fore (cf. (4)), then we can combine all conditions into a single

(11)

:
y=¢o F—>2(1)

eigenvalue problem

P, 0
0 =
)|y = @ 2|y
F>2 PZ
o Pay = ¢Rgy, y=tOt. (12)

Equation (12) now playstherole of (8). A solution of the eigen-
value problem produces{@} and {y;}, from which the frequen-
cies f; and beamforming vectors t; can be obtained. The latter
are collected in amatrix T, after which the beamforming matrix
on the original datais givenby W =U>"1T.

Details

The matrix [X MX] can be mapped to areal matrix: there are
dataindependent unitary matrices Q1 and Qz with simple struc-
tures such that Q{{X MX]Q; isreal-valued [14]. Thus, the com-
putation of the SVD of [X MX] can be carried out in the real do-
main and T will be real-valued without further effort.

Sincet isreal, y =t Ot can be parametrized by avector y' con-
sisting of 1d(d + 1) real parameters. There is a reconstruction
matrix Js such that y = Jsy’. Moreover, Js is such that P; = P1Js
isreal-valued as we had before. The same holdsfor P’ Thefirst
condition is thus mapped into Py’ = 0 with P, real.

It is also possible to map the second condition to real-valued
matrices. Indeed, since|g| =1, aCaery transformation provides
aone-to-onemapping of @toA = j = 1 o ® whichisreal. The corre-
sponding eigenvalue problem (11) is mapped to (see appendix)

_(p(z) - P(l)) p(l) + p(z)

| | —

p2-p |77 p @ |
| |

P :=red(P;), P :=imag(P,).

The same holdsfor the primed quantities after transformation by



Js. Thus, (12) istransformed into

5 0
0 Py
pPO_p@ |Y = M g @ |y
P,{(Z) _ P,{(l) Pil(l) + Pi’(z)
= Py = ARy (13)

where P4, P4 0 R 4N-D*3d(d+1) - As before, the singular pencil
problem is solved by looking for the null space of [P, Pg] and
solving the reduced d-dimensional eigenvalue problem, cf. (10)
and the subsequent equations.

Discussion

In summary, the additional assumptionsthat thearray iscentro-
symmetric and that thereis no multipath allowsto (i) find amore
accurate subspace filter U, based on 2N vectors, (ii) construct
roughly 4 times as many conditions on y, which consists of half
asmany real parameters. Thus, we expect asignificant improve-
ment in accuracy over the previous schemes. The computational
complexity is determined by the SVD of [P, P§], area matrix
of size4(N-1) xd(d+1). Becauseit isreal, the complexity is
the same asthat of the previousresidual carrier algorithm in sec-
tion 1V, or four timesthe complexity of the ACMA insectionlll,
although some reduction in complexity is possible.

VI. SIMULATIONS

The performance of the algorithms discussed above is illus-
trated by meansof afew simulations. Inthe basic simulation set-
up, wetook d = 3 BPSK sources, located at angles[-15°,0,15°]
and with normalized residual frequencies [-0.15,0,0.15]. The
antenna array consisted of auniform linear array of M = 4 sen-
sors, spaced at % (This array configuration was chosen to en-
able a comparison to the ESPRIT algorithm.) The sources have
equal unit power, thearray hasunit gain, and complexi.i.d. white
Gaussian noise is added with variance 62. N = 20 samples are
taken, at symbol-spaced sampling rate.
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(but estimated residual frequencies) defined by

Wopt = [Wl,opt Wd,opt] )
Wi opt = R;r{iai ) Ran,j = 0%Im +AAD_aiaiD-

The frequencies are estimated after beamforming in the same
way asfor the ACMA and ESPRIT algorithm.

Figure 4(a) features the performances as function of SNR. It
is seen that for the above-mentioned parameter settings, the per-
formance of ACMA is similar to that of Rescar, whereas there
is a 3 dB performance improvement if the centro-symmetry is
used. Although Rescar+c uses 4 times more conditions, it is not
much more accurate than ACMA +c, whose conditionsare asub-
set. Withrespect to SINR, the performancesare closeto optimal.
The performance of ESPRIT+c is significantly lower, but thisis
strongly dependent on the angle separation, as we will see |ater.

Figure 4(b) shows the performance as a function of N, the
number of samples. The SIR-performance of both ACMA and
Rescar-based algorithms saturate, because they are biased by the
noise (just as Wy is biased). The biasis natural because condi-
tions are put on the output of the beamformer, although another
sourceof biasisdueto thesquaring of thedata. The BER ratesgo
up because the frequency estimates do not sufficiently improve
for growing N. This suggests the use of a more advanced fre-
guency estimator.

In figure 4(c), the frequency separation between the sources
is varied: the residual frequencies are taken to be [-A¢,0,A¢].
The minimum frequency separation that is needed for Rescar
is 0.025. For this value, the phase difference between the first
and last sample is precisely 0.025N = 0.5, or 180°. This result
seems to generalize: it has been verified for other values of N
that the minimum frequency separation required is % ACMA
also needs some frequency separation, otherwise it will fail be-
cause the null space dimension of P becomes too large. Use of
the centro-symmetric structure lowersthe minimumin all cases.
Note that when As = 0.25, two frequencies are the essentially
the same due to aliasing, so that the algorithms fail in that case
aswell. The performancedrop of Rescar+cisfeltinawider fre-
guency region. Thisis likely due to the mapping of @to A: in

Thealgorithmsthat aretested are* ACMA’ (sectionlil), ‘ ACMA+bis region two of the eigenval ues become very large and go to

(same, but using the centro-symmetric structure of the array by

acting on [X MX]), ‘Rescar’ (section 1V), ‘Rescar+c’ (section

infinity.
Infigure4(d), wevary the angl e separation between the sources.

V), and‘ESPRIT+c’, whichisUnitary-ESPRIT and actson [X MX] This shows that the relatively inferior performance of ESPRIT

[14].°

Three performance criteria are shown. The first is the maxi-
mal residual signal-to-interferenceratio (SIR) at the output of the
beamformer, which is obtained by inspection of W-A, where W
isthe estimated beamforming matrix. The second isthe signal to
interference plus noise ratio after beamforming (SINR), and the
third isthe bit error rate (BER) after beamforming and demodu-
lation. Inthelatter case, estimatesfor theresidual carriersfor the
ACMA and ESPRIT algorithms are obtained using a single shift
invariance property for each recovered signal independently.

For reference, plots show in dotted lines the performance of
the ‘optimal’ SINR-maximizing beamformer with known A, ¢

5Although the ESPRIT algorithm is primarily known as a direction-finding al-
gorithm, itsfinal step is an eigenvalue decomposition of which the eigenvalues
providethe usual direction estimatesand the eigenvector matrix isthebeamform-
ing matrix T.

in the previous graphs is in fact much dependent on the sepa-
ration in angles between the sources. The angle dependence of
the other algorithms is due to the change in condition numbers
of A; for separationslarger than 30°, the conditioning is close to
1 and the performance flattens out. For well-separated sources,
ESPRIT can improve in SIR performance even over the non-
blind case (known Sand { f;}), becauseit uses structure of the A-
matrix. However, the possible improvement in SINR and hence
in BER isonly small.

VIlI. CONCLUSION

We have proposed two new algorithmsfor the blind separation
of nonconvolutive BPSK sources based on differencesin resid-
ual carriers, and compared them to ACMA and ESPRIT. Both
new algorithms inherently estimate the residual carriers. The
second algorithm al so exploits centro-symmetry of the array and
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Fig. 4. Performance of blind separation algorithms. (a) Dependence of SIR, SINR and BER on noise power and (b) on the number of samples.
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Fig. 4. [cont'd] (c) Dependence on frequency separation and (d) on angle separation.
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absence of multipath, and combines with the constant-modulus
property of the constellation. In most cases, the performance of
the proposed a gorithms is rather similar to ACMA, without or
with using centro-symmetry respectively. To insure good per-
formance, angle separation and frequency separation should be
above certain minimum values that areinversely proportional to
M and N, respectively. The minimum frequency separation can
also be lowered by subsampling the array outputs. Similarly, the
minimum angle separation can be lowered by using arrays with
longer baselines.

The new algorithms have a computational complexity that is
4 timesthat of ACMA. The main reason to prefer the new algo-
rithmsover ACMA would bethat thefinal eigenvalueproblemis
standard and easier to implement, and that estimates of theresid-
ual carriersaredirectly available, facilitating subsequent demod-
ulation. On the other hand, they are not applicable to modula-
tions other than BPSK.

Among possible extensions of this work, we could mention

— Study convolutive channels, including the effect of 1Sl due
to the pulse shape function, since without blind equalization
this will introduce an apparent source with the same carrier
frequency, for which the current algorithms fail,

— Systematic study of the impact of noise, and derivation of an
optimal prewhitening.
APPENDIX
. CAYLEY TRANSFORMATION
Consider the equation Ax = @Bx, withx real and || = 1. Then

(B=A)x
(B+A)x

(1-9@Bx
(1+@)Bx

so that L
j(B-A)Xx = j175(B+A)X

Define A = j 172, then A isreal and x isreal, whence

oo -

This set of equations contains the conjugate equation Bx = (pgx
aswell.

rea (B+ A)

[ -imag(B-A)
imag(B+ A)

rea(B-A)
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