
Nonlinear Modified Newton Minimization of

Reduced-Order Objective Functions for

Two-Parameter Inversion Problems

R. F. Remis∗

Abstract — We present a modified Newton mini-
mization scheme for two-parameter inversion prob-
lems. Starting point is a so-called reduced-order
objective function which measures the discrepancy
between measured data and model-order reduction
scattered field data. This objective function is min-
imized on a specified range of permittivity and
conductivity values and a nonlinear transformation
turns this constraint minimization problem into an
unconstraint one. A backtracking procedure to ob-
tain proper step lengths is implemented as well and
a numerical example illustrates the performance of
the method.

1 INTRODUCTION

In this paper we present a modified Newton ap-
proach for two-parameter electromagnetic inversion
problems. We try to find the conductivity and
permittivity of an object by inverting measured
electromagnetic data through a Newton-type min-
imization procedure. Starting point of our method
is an objective function which measures the discrep-
ancy between the measured and modeled data. In-
stead of minimizing this objective function directly,
we first construct a reduced-order objective func-
tion that approximates the original objective func-
tion on a domain of permittivity and conductivity
values of interest. To find the medium parame-
ters of the object, we subsequently minimize the
reduced-order objective function using a modified
Newton approach. Gradients and Hessians appear-
ing in Newton’s scheme can be computed at low
computational costs, since it is the reduced-order
objective function that is minimized instead of the
full original objective function [1].
The reduced-order objective function approxi-

mates the original objective function on a pre-
scribed domain of interest, and we therefore have to
make sure that the medium parameter values gen-
erated by the Newton’s method stay within the do-
main of interest as iteration proceeds. To this end,
we transform our constraint minimization problem
to an unconstraint problem using a nonlinear trans-
formation [2]. Furthermore, to obtain a sufficient
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decrease of the objective function, a backtracking
procedure based on the so-called Armijo condition
is implemented [3]. The performance of the method
is illustrated through a numerical example in which
we try to find the effective medium parameters of
an inhomogeneous object.

2 BASIC EQUATIONS

We consider E-polarized electromagnetic fields in a
configuration that is invariant in the z-direction. A
penetrable object occupies a bounded domain Dobj

in the xy-plane and is illuminated by an incident
electromagnetic field. The background medium is
lossless and has a permittivity εb and a permeabil-
ity μ0. It is well known that the total electric field
strength inside the object satisfies the so-called ob-
ject equation

Ez(x)−
ik2b
4

∫
x′∈Dobj

H
(1)
0 (kb|x− x′|)χ(x′)Ez(x

′) dA

= Einc
z (x),

(1)

with x ∈ Dobj, while at a receiver location xr /∈
Dobj, we have the data equation

Esc
z (xr) =

ik2b
4
H

(1)
0 (kb|xr − x′|)χ(x′)Ez(x

′) dA.

(2)
In the above equations, kb is the wave number of
the background medium, χ is the contrast function

of the object, and H
(1)
0 is the Hankel function of

the first kind and order zero.

Suppose now that the contrast function can be
written as

χ(x) = ζχp(x), (3)

where ζ is an unknown complex-valued contrast co-
efficient and χp(x) is a known contrast profile func-
tion. Substitution of Eq. (3) in the object and data
equation and subsequently discretizing the result-
ing expressions on a uniform grid with step size δ,
we obtain the discretized object equation

(I− ζGP)u = uinc, (4)
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and the discretized data equation

usc = γrζr
TPu, (5)

where γr = i(kbδ)
2/4. In these equations, I is the

identity matrix, G is the discretized convolution
operator, andP is the discretized counterpart of the
contrast profile function. Furthermore, u contains
the total field approximations within the object,
while vector r is a discretized version of the data
operator. Finally, incident electric field strength
values are stored in vector uinc. In particular, with
an incident field generated by a line source located
at x = xs and having a source signature f(ω), the
incident field vector is given by

uinc = γss with s = vec
[
H

(1)
0 (kb|xij − xs|)

]
,

where γs = iωμbf(ω)/4. Substituting this incident
field in the discretized object equation and solving
for the total field u, we obtain

u = γs(I− ζGP)−1s

and the discretized data equation becomes

usc = γζrTP(I− ζGP)−1s, (6)

where γ = γrγs. Introducing the vectors x = r + s
and y = r−s, the data equation can also be written
in terms of two monostatic source/receiver setups
as

usc =

γζ

4

[
xTP(I− ζGP)−1x− yTP(I− ζGP)−1y

]
.

(7)

3 THE REDUCED-ORDER OBJECTIVE
FUNCTION

Let Esc;m
z denote the scattered electric field

strength measured at the receiver location. We can
try to find the medium parameters of the object by
minimizing the objective function

F =
|Esc;m

z − usc|2
|Esc;m

z |2 . (8)

In this paper, however, we follow a more efficient
approach and first construct an accurate reduced-
order model for the modeled scattered field. We
then minimize a reduced-order objective function
following a modified Newton approach.

The reduced-order models are computed by ex-
ploiting the P-symmetry of matrix GP in a

Lanczos-type algorithm. These models are given
b by [1]

usck =

γζ

4
eT1

[
ax(Ik − ζTx;k)

−1 − ay(Ik − ζTy;k)
−1

]
e1,

(9)

where e1 is the first column of the k-by-k identity
matrix Ik, ax = xTPx, ay = yTPy, and Tx;k and
Ty;k are tridiagonal matrices of order k obtained
after k iterations of the Lanczos algorithm with vec-
tors x and y as starting vectors. The order k of the
model is much smaller than the order of the origi-
nal system and it can be shown that usck is actually
a [k − 1/k] Padé approximant of usc around ζ = 0.
To determine the order of the model, we first

write the contrast coefficient as

ζ = εr − 1 + i
σ

ωεb
, (10)

and we assume that lower and upper bounds for
the permittivity and conductivity can be given such
that the permittivity εr and conductivity σ of the
object satisfy

εr;min ≤ εr ≤ εr;max and σmin ≤ σ ≤ σmax.

These ranges for the permittivity and conductivity,
together with Eq. (10), specify our domain of in-
terest A in the complex ζ-plane. We now require
that the order of the model is such that usck ≈ usc

for all ζ ∈ A. How to select k for a given domain
of interest is discussed in [4].
Having the reduced-order model for the scattered

field available, we introduce the discrepancy

dsck = Esc;m
z − usck

and we try to find the medium parameters of the
object by minimizing the reduced-order objective
function

Fk =
|dsck |2
|Esc;m

z |2 (11)

on A, our domain of interest.

4 A MODIFIED NEWTON MINIMIZA-
TION APPROACH

To arrive at Newton-type updating schemes, we
start with a Taylor expansion of the reduced-order
objective function. With ζ = ζr + iζi, we have

Fk(ζr + δζr, ζi + δζi) = Fk(ζr, ζi)

+ gT
ζ δz

+
1

2
δzTZζδz

+ higher order terms,

(12)
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where δz = [δζr, δζi]
T . Explicit expressions for the

gradient g and Hessian Zζ are given in [1].
It is well known, of course, that to obtain the

update, we need to solve Newton’s equation

Zζδz = −gζ .

Before doing so, however, we first take into account
that we are looking for contrast values ζ belong-
ing to the domain A only. To this end, we trans-
form our constraint minimization problem into an
unconstrained one by using the nonlinear transfor-
mation [2]

εr(η) = εr;min + (εr;max − εr;min)
η2

η2 + 1
,

for −∞ < η <∞, and

σ(ξ) = σmin + (σmax − σmin)
ξ2

ξ2 + 1
,

with −∞ < ξ < ∞. Considering now the reduced-
order objective function as a function of η and ξ
and setting m = [η, ξ]T , we have

Fk(m+ δm) = Fk(m) + gT δm+
1

2
δmTZδm

+ higher order terms,

(13)

where δm = [δη, δξ]T . The gradient and Hessian
are given by

g = Dgζ and Z = DZζD,

respectively, and in the above equations

D =

2

(
(εr;max − εr;min)

η
(η2+1)2 0

0 σmax−σmin

ωεb

ξ
(ξ2+1)2

)
.

Newton’s equation now becomes

ZζDδm = −gζ ,

provided we are not in a false minimum introduced
by the nonlinear transformation.
Now if Zζ is positive definite, the solution of New-

ton’s equation provides us with a descent direction.
However, if the Hessian is not positive definite, the
update direction is not necessarily a descent direc-
tion. To remedy this situation, we first compute
the eigendecomposition of the Hessian and obtain

Zζ = sXΛXT

with XTX = XXT = I2 and Λ = diag(λ+, λ−).
It can be shown that λ+ is always positive, but λ−

may become negative (see [1]). We “cure” this situ-
ation by replacing the Hessian in Newton’s equation
by the modified Hessian

Zmn
ζ = sXΛmnXT ,

where Λmn = diag(λ+, |λ−|). The modified Newton
update direction is given by

δm̃ = D−1X(Λmn)−1XTp

and substitution of this direction in the Taylor ex-
pansion of Eq. (13) shows that the above update
vector leads to a reduction of the objective func-
tion provided that δm̃ is sufficiently small. Notice
that at points where λ− > 0, we have Zmn

ζ = Zζ

and our modified Hessian reduces to the original
Hessian Zζ .

4.1 Backtracking

To obtain a sufficient decrease of the objective func-
tion, we introduce a step length νn in the direc-
tion δm. In other words, the update equation is
given by

mn = mn−1 + νnδm̃n.

Sufficient decrease of the objective function is de-
scribed by the so-called Armijo condition [3]

Fk(m+ νδm) ≤ Fk(m) + cνgT δm,

where c is a small positive number (usually one sets
c = 10−4). Since Newton methods have a natural
unit step length, we start the backtracking proce-

dure with a step length ν
(1)
n = 1. Next, we test

if the Armijo condition is satisfied. If so, we ter-
minate the backtracking procedure. Otherwise, we
construct a quadratic interpolation polynomial in

ν on the interval [0, ν
(1)
n = 1]. Using all avail-

able information, namely, Fk(mn−1), gT δm, and
Fk(mn−1 + δm), the interpolation polynomial is
given by[

Fk(mn−1 + δm)− Fk(mn−1)− gT δm
]
ν2

+ gT δm ν + Fk(mn−1)

and the new step length ν
(2)
n is obtained as the min-

imizer of this polynomial, that is,

ν(2)n = − gT δm

2[Fk(mn−1 + δm)− Fk(mn−1)− gT δm]
.

If this new step length satisfies the Armijo condi-
tion, we terminate backtracking. If the Armijo con-
dition is not satisfied, we construct a cubic inter-
polation polynomial in ν using Fk(mn−1), g

T δm,
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II

I

Figure 1: A source (triangle left) and receiver (tri-
angle right) symmetrically located above an inho-
mogeneous block. The distance between the upper
boundary of the block and the source/receiver unit
is λ0/2.

Fk(mn−1 + δm), and Fk(mn−1 + ν
(2)
n δm) as in-

terpolation data. The new step length ν
(3)
n is the

minimizer of this polynomial. If this step size still
does not satisfy the Armijo condition, we start iter-
ating using a cubic interpolation polynomial based
on Fk(mn−1), gT δm, and the objective function
values for the latest two step lengths.

5 NUMERICAL RESULTS

We apply our reduced-order Newton scheme to find
effective conductivity and permittivity values of an
inhomogeneous block. The configuration is shown
in Figure 1. An inhomogeneous block is embed-
ded in a vacuum domain and consists of two ho-
mogeneous subdomains. A source/receiver unit is
symmetrically located above the block and the dis-
tance between the upper boundary of the block and
the source/receiver unit is λ0/2, where λ0 is the
wavelength in the background medium. The side
length of the block is either λ0/3 (small block) or
λ0 (large block). The true medium parameters in
each subdomain are given in Table 1 and we look
for effective permittivity and conductivity values
in the range 1 ≤ εr ≤ 9 and 0 ≤ σ ≤ 10 mS/m.
Table 1 shows the effective medium parameters ob-
tained with our modified Newton scheme. Effective
medium parameters for both the small and the large
block have been determined starting from an initial
guess that is obtained by inspecting the reduced-
order objective function (see [4]) on a coarse grid.
We observe that in this case the method produces
reasonable effective permittivity values, but effec-

Conductivity Eff. med. par. Eff. med. par.
Permittivity small block large block

εr;I = 6 εr;ef = 4.1 εr;ef = 5.10

εr;II = 4
σI = 8 · 10−3 σef = 7.3e-03 σef = 1.0e-02

σII = 5 · 10−3

εr;I = 4.75 εr;ef = 4.0 εr;ef = 4.5

εr;II = 4
σI = 5.5 · 10−3 σef = 5.7e-03 σef = 9.6e-03

σI = 5 · 10−3

εr;I = 6 εr;ef = 4.1 εr;ef = 5.2

εr;II = 4
σI = 0 σef = 1.7e-03 σef = 1.7e-03

σI = 0

Table 1: Results effective inversion inhomogeneous
block

tive conductivity values may be less reliable. Using
multiple frequency data or carrying out additional
measurements using multiple sources and receivers
may improve the effective inversion results. In ad-
dition, the effective medium parameters should be
source/receiver independent. Future work focuses
on finding conditions under which reliable effective
medium parameters can be found.
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