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Abstract — In this paper, we present an optimal
circulant preconditioner for domain integral equa-
tions in electromagnetics. The preconditioner is the
best circulant fit to the discretized domain integral
operator as measured by the Frobenius norm. We
show that the discretized integral operators exhibit
a Toeplitz-like structure for inhomogeneous objects
and present an explicit expression for the elements
of the optimal circulant. The circulant matrix can
be used as an effective preconditioner in iterative
solvers, since its action on a vector can be computed
using the Fast Fourier Transform. Numerical exper-
iments illustrate the performance of the precondi-
tioner.

1 INTRODUCTION

In this paper, we consider scattering of one-
dimensional steady-state electromagnetic waves by
penetrable inhomogeneous objects occupying a
bounded domain in space. The objects are em-
bedded in a homogeneous background medium and
show dielectric contrast only. It is well known that
the problem of finding the electromagnetic field in
such a configuration can be formulated in terms
of an integral equation for the total electric field
strength inside the object. To approximately solve
this integral equation, we discretize the configura-
tion on a uniform grid and arrive at a system of
equations in which the system matrix has a Toeplitz
or Toeplitz-like structure. Matrix-vector multipli-
cations with the system matrix can therefore be
computed efficiently via the Fast Fourier Transform
(FFT). Consequently, iterative solvers like GMRES
and BiCGStab [1, 2] are often the solution methods
of choice, since the system matrix is only required
to form matrix-vector products in these methods.
To speed up the convergence rate of an iterative

solver, the original system matrix is usually pre-
conditioned and the resulting system is solved us-
ing an iterative solver. In this paper, we follow this
approach and develop dedicated circulant precon-
ditioners for electromagnetic scattering problems.
Since our preconditioners are circulant by construc-
tion, we can again use the FFT to compute the ac-
tion of a preconditioner on a vector. We show that
the preconditioners can be very effective and sig-
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nificantly reduce the number of iterations to reach
a certain prescribed error tolerance. Furthermore,
we also show that our preconditioner coincides with
the well known optimal circulant for Toeplitz sys-
tems if the object is homogeneous.

2 BASIC EQUATIONS

Consider a one-dimensional configuration showing
variation in the y-direction only. A penetrable slab
has a width d and occupies the domain Dsc = {y ∈
R; 0 < y < d}. The medium parameters of the
slab are given by the position dependent conduc-
tivity σsc(y) and permittivity εsc(y) and the slab is
embedded in a homogeneous background medium
with constant medium parameters σ and ε. The
slab shows no contrast in the permeability μ and
we set η = σ + jωε and ζ = jωμ. In this 1D con-
figuration, the electric field inside the slab satisfies
the integral equation

Ez(y)−k2b
∫ d

y′=0

G(y−y′)χ(y′)Ez(y
′) dy′ = Einc

z (y),

(1)
with y ∈ Dsc. In this equation, Einc

z is the known
incident electric field strength and kb is the wave
number of the background medium defined as

kb = (−ηζ)1/2 with Im(kb) ≤ 0. (2)

Furthermore, χ is the so-called contrast function
given by

χ(y) =
ηsc(y)

η
− 1, (3)

where ηsc(y) = σsc(y) + jωεsc(y), and G is the
Greens function of the homogeneous background
medium given by

G(y) =
exp(−jkb|y|)

2jkb
y ∈ R. (4)

To discretize the object equation, we introduce
the step size δy = d/N , with N ∈ Z+, and the grid
node coordinates

yn =
δy

2
+ (n− 1)δy, for n = 1, 2, ..., N . (5)

The grid nodes form the midpoints of the discretiza-
tion cells

Sk = {y ∈ R; (k − 1)δy < y < kδy} (6)
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and the contrast function is taken to be constant
within a discretization cell, that is, we have χ(y) =
χk if y ∈ Sk, k = 1, 2, ..., N .
To arrive at a system of equations for the to-

tal electric field strength within the slab, we first
require that Eq. (1) holds at the grid node coordi-
nates. Taking y = yn in Eq. (1), we obtain

Ez(yn)

− k2b

∫ d

y′=0

G(yn − y′)χ(y′)Ez(y
′) dy′ = Einc

z (yn),

(7)

for n = 1, 2, ..., N . Taking into account that the
contrast is constant within a discretization cell, the
above can be written as

Ez(yn)

− k2b

N∑
k=1

χk

∫
y′∈Sk

G(yn − y′)Ez(y
′) dy′ = Einc

z (yn).

(8)

Applying the midpoint rule to the integral over the
discretization cell results in

Ez(yn)− k2bδy
N∑
k=1

χkG(yn − yk)Ez(yk) = Einc
z (yn),

(9)
for n = 1, 2, ..., N . Finally, introducing the vectors

ez = [Ez(y1), Ez(y2), ..., Ez(yN )]
T (10)

and

eincz = [Einc
z (y1), E

inc
z (y2), ..., E

inc
z (yN )]

T , (11)

we can write the discretized object equation as

Kez = eincz with K = I−GX. (12)

Here, I is the identity matrix of order N , X is the
contrast matrix given by

X = diag(χ1, χ2, ..., χN ), (13)

and G is the spatial convolution matrix (Greens
matrix) given by

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

g0 g−1 · · · g2−N g1−N

g1 g0
. . . g2−N

...
. . .

. . .
. . .

...

gN−2
. . . g−1

gN−1 gN−2 · · · g1 g0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (14)

with

gn =
kbδy

2j
exp(−jkbδy|n|) (15)

for n = 0,±1,±2,±(N−1). Notice thatG is a com-
plex symmetric Toeplitz matrix of order N . The
action of this matrix on a vector can be computed
with FFTs by embedding this matrix in a circulant
of order 2N . Furthermore, since X is diagonal, we
conclude the action of the system matrix K on a
vector can be computed at FFT speed as well. Also
note that for an inhomogeneous slab the system ma-
trix K is not Toeplitz, but for a homogeneous slab
with a constant contrast χ we haveK = I−χG and
in this special case the system matrix is Toeplitz.

3 CONSTRUCTION OF THE PRECON-
DITIONER

As we have seen in the previous section, the sys-
tem that we need to solve is Kez = eincz , where the
system matrix is given by K = I −GX. We solve
this system with an iterative solver since the ac-
tion of matrix K on a vector can be computed via
FFTs [2]. We prefer to maintain this FFT speed
property when including a preconditioner for the
above problem. To this end, we introduce a pre-
conditioner whose action on a vector can also be
computed at FFT speed.
In particular, let M be a nonsingular matrix and

instead of solving Eq. (12), let us solve the precon-
ditioned system

M−1Kez = M−1eincz , (16)

with M a preconditioner of the form M = I − C,
where C is a circulant matrix of order N given by

C = argmin
Z circulant

‖GX− Z‖F, (17)

and ‖ · ‖F denotes the Frobenius norm. This cir-
culant is known as the optimal circulant precon-
ditioner and was introduced by T. Chan [3]. For
Toeplitz matrices, the elements of the optimal cir-
culant can be given explicitly in terms of the ele-
ments of the Toeplitz matrix. We now show that
this property carries over to the volume scattering
matrix GX. In particular, if the write the first
column of matrix C as c = [c0, c1, ..., cN−1]

T and
introduce the cumulative contrast values

si =

N−i∑
j=1

χj for i = 0, 1, ..., N − 1, (18)

then the elements of the optimal circulant are given
by

ci =
gN−i(s0 − si) + gisi

N
for i = 0, 1, ..., N − 1.

(19)
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Notice that for i = 0, we have

c0 = g0
s0
N

= g0
1

N

N∑
j=1

χj ,

showing that the elements on the main diagonal of
C are equal to the arithmetic average of the con-
trast values multiplied by the diagonal element of
G.
Formula (19) is obtained by essentially following

the same steps as for Chan’s preconditioner. We
start by writing out F = ‖GX − C‖2F in compo-
nents. This gives

F =
N∑
j=1

|g0χj − c0|2

+
N−1∑
i=1

N∑
j=N−i+1

|gN−iχj − ci|2

+
N−1∑
i=1

N−i∑
j=1

|giχj − ci|2,

(20)

where the first term on the right-hand side describes
the mismatch on the diagonal and the second and
third term describe the mismatch on the strictly
upper and lower triangular parts ofGX−C, respec-
tively. Taking the derivative of F with respect to ci
and setting the result to zero, we obtain Eq. (19).
Notice that the above optimal circulant reduces to
T. Chan’s preconditioner for Toeplitz matrices if
the scatterer is homogeneous since then X = χI
for some constant contrast coefficient χ and matrix
GX simplifies to the Toeplitz matrix χG.
Having found the elements of the circulant, we

now exploit the fact that a circulant matrix is di-
agonalized by the DFT matrix F. In particular, we
have C = FHDF, where D =

√
Ndiag(Fc) is a

diagonal matrix with the eigenvalues of matrix C
on its diagonal. With the help of this eigendecom-
position, we can write

M−1 = FH(I−D)−1F,

showing that the action of M−1 on a vector can be
computed at FFT speed as well.
Finally, we mention that an alternate expression

for the optimal circulant can be obtained from its
definition. Using the eigendecomposition, we have

‖GX−Z‖F = ‖GX−FHDF‖F = ‖FGXFH−D‖F,

since the Frobenius norm is unitarily invariant. The
last norm is minimized by taking D equal to the
diagonal of FGXFH . In other words, the norm
is minimized for D = d

(
FGXFH

)
, where d(A)
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Figure 1: Convergence history of unpreconditioned
GMRES for a homogeneous slab with d = 4λ0 and
a contrast χ = 128 (dip = 0).
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Figure 2: Convergence history of preconditioned
GMRES for a homogeneous slab with d = 4λ0 and
a contrast χ = 128 (dip = 0).

is a diagonal matrix with the diagonal entries of
matrix A on its diagonal. The optimal circulant
for GX can now also be written as

C = FHd
(
FGXFH

)
F. (21)

4 NUMERICAL RESULTS

In our numerical experiments, we consider a slab
located in vacuum. The width of the slab is d =
4λ0, where λ0 is the wavelength in vacuum. The
slab consists of three layers and all three layers have
a width d/3. Furthermore, the outer layers have a
contrast χ = 128, while the contrast of the middle
layer is given by

χmid = 128− dip,

where dip ≥ 0 is the magnitude of the dip in the
contrast profile.
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Figure 3: Convergence history of unpreconditioned
GMRES for an inhomogeneous slab with d = 4λ0

and dip = 8.
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Figure 4: Convergence history of preconditioned
GMRES for an inhomogeneous slab with d = 4λ0

and dip = 8

As a first example, let us consider a homoge-
neous slab and take dip = 0. The integral equation
is solved using the GMRES iterative solver with a
vanishing total field as an initial guess. The itera-
tion process is terminated as soon as the normalized
residual falls below 1e-10. Figure 1 shows the con-
vergence history of unpreconditioned GMRES for
this problem. We observe that it takes about 170 it-
erations to reduce the normalized residual to 1e-10.
If we now include our preconditioner (which coin-
cides with T. Chan’s preconditioner in this case),
we obtain a dramatic improvement as illustrated
in Figure 2. The normalized residual falls below
1e-10 after only four iterations of preconditioned
GMRES in this case.

Subsequently, we perturb the Toeplitz structure
of the object equation operator and take dip = 8.
The convergence histories of unpreconditioned and
preconditioned GMRES are shown in Figures 3 and

4, respectively. We observe that preconditioned
GMRES again outperforms unpreconditioned GM-
RES, but the number of iterations has increased
compared with the number of iterations required
for the homogeneous slab. Further experimenta-
tion shows that the performance of the precondi-
tioner worsens for increasing dip-values and im-
proves again if the width of the middle layer is de-
creased. Based on these results, we conclude that
the preconditioner is very efficient provided that
contrast variations with respect to the average con-
trast of the object are electrically not “too large.”
Presently, we are trying to find a criterion that
allows us to determine in a quantitative manner
for what contrast variations the circulant precondi-
tioner will be effective.

5 CONCLUSIONS

We have presented an explicit circulant precondi-
tioner for Toeplitz-like matrices that result from a
spatial discretization of the electric field domain in-
tegral equation. The preconditioner is very effective
for inhomogeneous objects provided that the con-
trast variations of the object are not “too large.”
In the extreme case of a homogeneous object, the
preconditioner dramatically improves the conver-
gence rate of an iterative solver and coincides with
the optimal circulant preconditioner of T. Chan
for Toeplitz matrices. Future work focuses on ex-
tending the present preconditioning technique to
scalar two- and three-dimensional scattering prob-
lems. The preconditioning technique may also be
very effective for two- and three-dimensional vecto-
rial problems. Such problems, however, are much
more complex, since the electric field integral equa-
tion then contains a gradient-divergence operator
and additional preconditioning techniques may be
required.
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