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Abstract: Electrical properties tomography (EPT) is an imaging method that uses a magnetic res-
onance (MR) system to non-invasively determine the spatial distribution of the conductivity and
permittivity of the imaged object. This manuscript starts by providing clear definitions about the data
required for, and acquired in, EPT, followed by comprehensively formulating the physical equations
underlying a large number of analytical EPT techniques. This thorough mathematical overview
of EPT harmonizes several EPT techniques in a single type of formulation and gives insight into
how they act on the data and what their data requirements are. Furthermore, the review describes
machine learning-based algorithms. Matlab code of several differential and iterative integral methods
is available upon request.

Keywords: electrical properties tomography (EPT); conductivity; permittivity; inversion; magnetic
resonance imaging (MRI)

1. Introduction

The electrical properties (EPs; conductivity σ and permittivity ε) of tissue have the
potential to be used as biomarkers in many clinical applications. Tissue EPs depend on
the tissue structure and composition. The conductivity varies largely as a function of
fluid volumes and ionic concentrations, while the permittivity is largely influenced by
the cellular membrane extent [1]. Cancer causes local changes of EPs relative to healthy
tissues. The EPs of benign tissue compared to tumors are significantly different and have
been reported to offer advantages in separating them from each other [2–4]. Similarly, the
conductivity in cerebral ischemia is significantly decreased [5,6]. Conductivity measure-
ments can therefore be helpful for better characterization of brain tumors [7,8], but they
have also shown promising results for pelvic tumors [9], breast cancer [10] and ischemic
stroke [11,12]. Knowledge of the EPs additionally allows for the calculation of the elec-
tromagnetic (EM) fields inside tissue. This makes them interesting for a wide range of
clinical applications, such as electroencephalography (EEG) and electrocardiography (ECG)
measurements to accurately localize internal electrical activities, deep brain stimulation to
mitigate Parkinson’s disease symptoms, radio frequency (RF) ablation to remove arrhyth-
mic genesis foci and RF hyperthermia for cancer treatment [13]. Additionally, they are
critical to accurately determine the specific absorption rate (tissue heating) induced by EM
waves [1].

Several EP mapping approaches are explored to map the electrical properties of tissue
in vivo. Electrical impedance tomography (EIT), for example, uses electrode mounting to
detect currents injected into the sample [14]. This method is cost-effective and yields high
temporal resolution, but poor spatial resolution due to the ill-posed nature of the inverse
problem [13,15]. Magnetic induced tomography (MIT) applies an oscillating magnetic field
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to induce eddy currents in the object and detects the resulting magnetic fields outside the
object [16]. However, it suffers from the same issues as EIT. Magnetic resonance electrical
impedance tomography (MR-EIT) utilizes MRI to detect the magnetic field induced by the
probing current [17]. This provides higher spatial resolution, but has a poor signal-to-noise
ratio due to limitations on the amount of current injection [13,18,19]. Hall effect imaging
(HEI) induces currents through surface electrodes and detects the emitted acoustic wave to
reconstruct EPs [20]. This also has the potential to reach high resolution images, but all of
the current injection based methods may suffer from shielding artifacts of non-conductivity
tissue. Magneto-acoustic tomography with magnetic induction (MAT-MI) circumvents this
shielding problem by inducing acoustic signals with time varying magnetic fields which
are detected with ultrasound measurements [21]. However, methods that involve acoustic
measurements are often limited to the surface of the object.

Electrical properties tomography (EPT) non-invasively images the conductivity and
permittivity maps (simultaneously) in vivo from the radio frequency field signals obtained
with MRI. The method does not require electrode mounting, does not induce additional
external energy other than the inherent RF fields, and the RF fields can easily penetrate
into most biological tissue. It uses a standard MRI system with regular RF coils. This
concept was first introduced in 1991 by Haacke et al. [22] and first demonstrated in 2003 by
Wen et al. [23]. The topic, however, only recently gained considerable interest by various
research groups [1,13,19,24].

Several review papers discuss existing methods and review clinical
applications [1,13,19,24]. These reviews, however, do not discuss the mathematical method-
ology in depth, which hampers the overview in terms of intrinsic assumptions. Here,
however, a mathematical description of the acquired MR data and several differential and
integral EPT approaches are described more thoroughly to give clear insights into the
relations and differences between a large number of methods. This review thereby allows
accurate comparisons between different methods and outlines their relative strengths and
weaknesses. Extensions and generalizations are also mentioned. The EPT approaches are
harmonized in terms of mathematical formulation, while maintaining as much as possible
the structure of the original implementations to keep the transition from this manuscript to
the references straightforward.

This review manuscript is organized as follows. First, general RF background infor-
mation is presented together with a general formulation of an acquired MR image, which
are necessary to understand some of the problems arising in EPT data acquisition. Second,
some fundamental EPT equations are presented, from which the bulk of the analytical
EPT approaches can be derived. The subsequent two sections discuss a large number of
physical model-based EPT strategies, starting with methods that are based on transmit field
data, followed by receive field-based methods. The review continues with a discussion
about training-based EPT approaches. Finally, a general discussion is provided and EPT
reconstruction examples are presented.

2. Phasor Representations for the RF Field

In EPT, knowledge about the RF field within the body is used to retrieve the dielectric
properties (conductivity and permittivity) of tissue. This RF field is called the B1 field and
phasors are typically used to describe its behavior. What may lead to confusion is that
there are actually two time conventions in common use to represent the RF field in terms
of phasors. In particular, for a given time-domain RF field B1(r, t) operating at a frequency
ω > 0, phasors are introduced via the representation

B1(r, t) = Re
[
B̂1(r,−iω) exp(−iωt)

]
(1)

or alternatively the representation

B1(r, t) = Re
[
B̂1(r, iω) exp(iωt)

]
(2)
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is used to describe the RF field. The vector B̂1(r,−iω) is the phasor of the RF field when the
time factor exp(−iωt) is used, while B̂1(r, iω) is the phasor of the RF field in the situation
where a time factor exp(iωt) is used.

For a given time convention, the phasor that corresponds to a given RF field is
unique, and, since the time-domain RF field B1(r, t) is real-valued, the phasors of the two
representations are related by

B̂∗1 (r,−iω) = B̂1(r, iω), (3)

where the asterisk denotes complex conjugation. In other words, for a given RF field, the
phasors of the two representations are the complex conjugate of each other. We note that if
Equation (2) is used to represent RF fields, the letter j is often used for the imaginary unit
instead of the letter i. We adopt this notation here as well and write the representation of
Equation (2) as

B1(r, t) = Re
[
B̂1(r, jω) exp(jωt)

]
. (4)

Unless otherwise stated, we use the phasor representation of Equation (4) to describe the
RF field.

Suppose now that we orient our reference frame such that the static background field
B0 is directed in the longitudinal z-direction (B0 = ±B0(r)iz, B0(r) > 0) and we have
available a transverse RF field with x- and y-components only. The corresponding phasor
of this RF field is given by

B̂1(r, jω) = B̂1;x(r, jω)ix + B̂1;y(r, jω)iy, (5)

which can be written as

B̂1(r, jω) = B̂+
1 (r, jω) + B̂−1 (r, jω) (6)

with

B̂+
1 (r, jω) = B̂+

1 (r, jω)(ix − jiy) and B̂−1 (r, jω) =
[
B̂−1 (r, jω)

]∗
(ix + jiy), (7)

where we have introduced the B̂+
1 and B̂−1 fields defined as

B̂+
1 (r, jω) =

B̂1;x(r, jω) + jB̂1;y(r, jω)

2
(8)

and

B̂−1 (r, jω) =

[
B̂1;x(r, jω)− jB̂1;y(r, jω)

2

]∗
, (9)

respectively. Substitution of Equation (6) into Equation (4) leads to the time-domain RF
field decomposition

B1(r, t) = B+
1 (r, t) + B−1 (r, t) (10)

with

B+
1 (r, t) = Re

[
B̂+

1 (r, jω) exp(jωt)
]

and B−1 (r, t) = Re
[
B̂−1 (r, jω) exp(jωt)

]
. (11)

Finally, we decompose the scalar B̂+
1 and B̂−1 fields into their real and imaginary parts as

B̂±1 = Re
(

B̂±1
)
+ j Im

(
B̂±1
)
.

Using these decompositions in Equation (7) and substituting the results in the field expres-
sions for B+

1 (r, t) and B−1 (r, t) as given by Equation (11) gives

B+
1 (r, t) = Re

(
B̂+

1
)[

cos(ωt)ix + sin(ωt)iy
]
+ Im

(
B̂+

1
)[
− sin(ωt)ix + cos(ωt)iy

]
(12)
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and

B−1 (r, t) = Re
(

B̂−1
)[

cos(ωt)ix − sin(ωt)iy
]
+ Im

(
B̂−1
)[

sin(ωt)ix + cos(ωt)iy
]
. (13)

From the above expressions, we observe that the B+
1 vector traces out a circle in the

transverse xy-plane and the radius of this circle is given by |B+
1 | = |B̂+

1 |. The B−1 vector
also traces out a circle but this circle has a radius |B−1 | = |B̂−1 | and is traversed in the
opposite direction compared with the direction in which the circle of the B+

1 field is
traversed. Since in both cases the fields trace out a circle in the transverse plane, the B+

1
and B−1 fields are called circularly polarized.

The direction of rotation depends upon the direction of the static background field. In
particular, assume that our reference frame is such that the static B0 field is in the negative
z-direction: B0 = −B0(r)iz with B0(r) > 0. From Equations (12) and (13), we observe that
in this case the B+

1 and B−1 fields rotate, respectively, in a left- and right-handed manner
about the B0 field. When the background field is directed in the positive iz-direction, the
situation is reversed and the circularly polarized fields B+

1 and B−1 rotate, respectively, in a
right- and left-handed manner about the B0 field.

To summarize, any transverse RF field can be decomposed into two circularly polar-
ized fields, where one is polarized in a left-handed manner with respect to background
field, while the other is polarized in a right-handed manner with respect to the background
field. Explicitly, we have

B1(r, t) = Blh
1 (r, t) + Brh

1 (r, t), (14)

where Blh
1 (r, t) and Brh

1 (r, t) rotate in a left- and right-handed manner about the B0 field,
respectively. In the case that this background field is in the negative iz-direction, we have

Blh
1 (r, t) = B+

1 (r, t) and Brh
1 (r, t) = B−1 (r, t),

while if the background field is in the positive iz-direction we have

Blh
1 (r, t) = B−1 (r, t) and Brh

1 (r, t) = B+
1 (r, t).

2.1. Transmit and Receive Fields

As is well known, a circularly polarized RF field that operates at the Larmor frequency
and that also rotates in a left-handed manner about the B0 field influences the orientation of
the magnetization, which ultimately leads to measurable MR signals. During transmission
then, the left-handed circularly polarized part of the RF field, Blh

1 , is of interest. In the
case that the background field is in the negative iz-direction, it is the scalar B̂+

1 field that
determines Blh

1 , while, if the background field is in the positive iz-direction, it is the scalar
field B̂−1 that determines Blh

1 .
Now, in the MRI literature, the left-handed circularly polarized RF field is always

described in terms of a scalar B̂+
1 field, which seems to contradict the above observation

that this field is described by B̂−1 in the case that the static background field is in the positive
iz-direction. It is important, however, to realize that the scalar B̂+

1 and B̂−1 fields are defined
in terms of phasors that correspond to a particular time factor that is used to represent the
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RF field. Moreover, the phasors of the same RF field that correspond to the two different
time factors are the complex-conjugate of each other (Equation (3)). Consequently, we have

B̂+
1 (r, jω) =

B̂1;x(r, jω) + jB̂1;y(r, jω)

2

=
B̂1;x(r, iω) + iB̂1;y(r, iω)

2
(writing i instead of j)

=
B̂∗1;x(r,−iω) + iB̂∗1;y(r,−iω)

2
(using Equation (3))

=

[
B̂1;x(r,−iω)− iB̂1;y(r,−iω)

2

]∗
= B̂−1 (r,−iω)

and

B̂−1 (r, jω) =

[
B̂1;x(r, jω)− jB̂1;y(r, jω)

2

]∗

=
B̂∗1;x(r, jω) + jB̂∗1;y(r, jω)

2

=
B̂1;x(r,−jω) + jB̂∗1;y(r,−jω)

2
(using Equation (3))

=
B̂1;x(r,−iω) + iB̂1;y(r, iω)

2
= B̂+

1 (r,−iω) (writing i instead of j).

In other words, the B̂+
1 field always describes a left-handed circularly polarized field pro-

vided that the phasors of Equation (4) are used for B0 defined in the negative z-direction,
while the phasors of Equation (1) have to be used for B0 defined in the positive z-direction.
Since transmitting a left-handed circularly polarized field operating at the Larmor fre-
quency enables us to manipulate the magnetization, the B̂+

1 field is often referred to as the
transmit field. Similarly, received signals can be expressed in terms of the right-handed
circularly polarized field Brh

1 , which is completely described by the B̂−1 field if the phasors
of Equation (4) are used in its definition for B0 defined in the negative iz-direction and the
phasors of Equation (1) are used if the background field is in the positive iz-direction. For
this reason, the B̂−1 field is often referred to as the receive field.

2.2. MR Imaging

The transmit field can be written in polar form as B̂+
1 =

∣∣B̂+
1

∣∣ exp(jϕ̂+), where
∣∣B̂+

1

∣∣ is
the amplitude or magnitude of the transmit field and ϕ̂+ ∈ (−π, π] its phase. Similarly, the
receive field can be written in polar form as B̂−1 =

∣∣B̂−1
∣∣ exp(jϕ̂−), with

∣∣B̂−1
∣∣ its amplitude

and ϕ̂− ∈ (−π, π] its phase. Note that, to define a phase that is unique, we have restricted
the transmit phase ϕ̂+ and the receive phase ϕ̂− to the principle branch (−π, π]. Spatial
information is encoded into the signal using magnetic field gradients, applied after the B̂+

1
field has tipped the magnetization into the transverse plane. Due to the interaction with the
body, the transmit field has a spatial dependence, denoted B̂+

1 (r). The polar decomposition
is used to express the acquired spatially dependent MR image as [13,19,24,25]

I(r) = $0(r) sin
(
γτ
∣∣B̂+

1 (r)
∣∣) exp

[
jϕ̂+(r)

]
B̂−;∗

1 (r), (15)

with $0 the proton density, γ the gyromagnetic ratio and τ the RF pulse duration and where
B̂−;∗

1 is the complex conjugate of B̂−1 . In this simplified expression for the acquired MR
image, system dependent factors and contrast terms that underlie an MR image, such as T1
and T2 relaxation, are ignored. Of the transmit and receive fields, only the magnitude of the
transmit field shows a non-linear impact on the MR image. This non-linear relation allows
for the direct measurement of the transmit magnitude by combining images from different
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scans such that confounding factors cancel. However, the acquired phase is always the
superposition of the phases of B̂+

1 and B̂−;∗
1 , called the transceive phase, which can not

be disentangled from measurements and are therefore difficult to determine exactly. It
has been observed that at 1.5 and 3 T the transmit phase closely resembles the phase of
B̂−;∗

1 (see also the example given in Figure 1), and in those cases the transmit phase is
therefore typically estimated as half the transceive phase: this is termed the transceive
phase assumption [23,26]. Similarly, the (magnitude of the) receive field is weighted by
the proton density, which is also difficult to disentangle. If the proton-density is not
negligible, the proton-density or magnitude of the receive field can be extracted from
their product term based on symmetry patterns of the transmit and receive fields in the
case of a symmetrical object and imaging setup [27,28]. Additionally, the proton-density
could be removed via suitable modeling based on image segmentation [27]. However,
knowledge of the transmit phase, receive phase or receive magnitude individually is not
always necessary, but could also potentially be determined through EPT.

Transmit mode

−90◦−180◦

Tx

ix

iy

iz

Receive mode

−180◦−90◦

Rx

ix

iy

iz

|B̂+
1 | |B̂−1 | |B̂+

1 | |B̂−1 |

0

0.5

1

·10−6
[T]

ϕ̂+ ϕ̂− ϕ̂+ ϕ̂−

−180

−90

0

90

180
[◦]

Figure 1. The transmit and receive mode of a tuned 16 rung 7 T MR head coil loaded with the Duke
body model [29] and their corresponding transmit and receive fields (magnitude and phase).
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2.3. Transmit and Receive Fields in Terms of Measurable Quantities

Consider a multi-element RF antenna with P transmit and Q receive channels. The
transmit field from channel p (B̂+

1p) measured at receive channel q can then be written in
measurable (known) and unknown terms as

B̂+
1p =

∣∣∣B̂+
1p

∣∣∣ exp
[
j
(

ϕ̂+
p − ϕ̂−q

)]
exp

(
jϕ̂−q

)

=
∣∣∣B̂+

1p

∣∣∣ exp
(

jϕ̂±pq

)
exp

(
jϕ̂−q

)

= B̂+;TRX(p,q)
1p exp

(
jϕ̂−q

)
(16)

with ϕ̂±pq = ϕ̂+
p − ϕ̂−q the transceive phase (note that ϕ̂− is sometimes defined as the

argument of B̂−;∗
1 , such that the transceive phase is given by ϕ̂± = ϕ̂+ + ϕ̂−), ϕ̂+

p the
absolute transmit phase of transmit channel p and ϕ̂−q the absolute receive phase of receive

channel q. The term B̂+;TRX(p,q)
1p =

∣∣∣B̂+
1p

∣∣∣ exp
(

jϕ̂±pq

)
is the measurable term, while exp

(
jϕ̂−q

)

is the unknown term. Note that this formulation is applicable for RF coils in general with
P = Q = 1, while the subsequent two formulations in terms of relative transmit phases are
only applicable for multi-element RF arrays with P > 1 and/or Q > 1. The transmit field
from channel p can be written in terms of relative phase distributions as

B̂+
1p =

∣∣∣B̂+
1p

∣∣∣ exp
[
j
(

ϕ̂+
p − ϕ̂+

r

)]
exp

(
jϕ̂+

r
)

=
∣∣∣B̂+

1p

∣∣∣ exp
(

jϕ̂+
pr

)
exp

(
jϕ̂+

r
)

= B̂+;rel(p,r)
1p exp

(
jϕ̂+

r
)

(17)

with ϕ̂+
pr = ϕ̂+

p − ϕ̂+
r the transmit phase of channel p relative to the reference transmit

phase ϕ̂+
r of channel r. B̂+;rel(p,r)

1p =
∣∣∣B̂+

1p

∣∣∣ exp
(

jϕ̂+
pr

)
is the measurable term, while exp(jϕ̂+

r )

is the unknown term. Additionally, the receive phase can also be written in a similar
formulation. The measurable term is, however, weighted by the proton density. For the
conjugate of the receive field, we have

B̂−;∗
1q =

∣∣∣$0B̂−1q

∣∣∣ exp
[
j
(
−ϕ̂−q + ϕ̂−r

)]∣∣∣$−1
0

∣∣∣ exp
(
−jϕ̂−r

)

=
∣∣∣$0B̂−1q

∣∣∣ exp
(

jϕ̂−rq

)∣∣∣$−1
0

∣∣∣ exp
(
−jϕ̂−r

)
(18)

with ϕ̂−rq = ϕ̂−r − ϕ̂−q the receive phase of reference channel r relative to channel q.∣∣∣$0B̂−1q

∣∣∣ exp
(

jϕ̂−rq

)
is the measurable term,while

∣∣∣$−1
0

∣∣∣ exp(−jϕ̂−r ) is the unknown term.
In summary, we use the phasor representation of Equation (4) to describe the RF

field and orient the B0 field in the negative iz-direction such that B̂+
1 enables the manip-

ulation of magnetization. Furthermore, we describe the transmit and receive fields with
Equations (8) and (9), such that B̂+

1 and B̂−1 described by the phasor representation of Equa-
tion (4) correspond to the B̂−1 and B̂+

1 fields described by the phasor representation of
Equation (1), respectively. Additionally, the MR image can be described by Equation (15),
which shows that the transmit and receive field phases, as well as the proton density and
the receive field magnitude, are entangled and therefore not directly available from MR
acquisitions. Instead of making assumptions about the acquirable data to obtain absolute
transmit or receive field maps, the transmit and receive fields can also be expressed in
terms of known (directly derived from measurements) and unknown terms, as depicted in
Equations (16)–(18).
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3. Fundamental EPT Equations

Physical model-based EPT approaches all rely on a few fundamental equations from
which their central equations are derived. To derive and understand the approaches,
knowledge about the Maxwell’s equations, the Helmholtz equation and the scattering field
formalism is required. These are summarized below.

3.1. First-Order Differential Equations: Maxwell’s Equations

Maxwell’s equations for time-harmonic fields are given by

−∇× Ĥ(r) + η(r)Ê(r) = − Ĵext(r), and (19)

∇× Ê(r) + ζ(r)Ĥ(r) = 0, (20)

with η(r) = σ(r) + jωε(r) and ζ(r) = jωµ(r), which are, respectively, the per-unit-length
admittance and impedance of the medium. Here, σ, ε, µ and ω are the conductivity,
permittivity, permeability and angular (RF) frequency, respectively. Additionally, in the
MR setting, Ĵext is an external current density distribution present on the MR coil that
generates the EM fields. Since these sources are located outside the body and since the
permeability of biological tissue is assumed to be constant and equal to that of vacuum, the
RF field inside the body satisfies the Maxwell equations

−∇× B̂(r) + µ0η(r)Ê(r) = 0, and (21)

∇× Ê(r) + jωB̂(r) = 0, (22)

with B̂ = µ0Ĥ. Furthermore, introducing the vectors

i+ =
1
2
(ix + jiy) and i− =

1
2
(ix − jiy)

we have for the transmit and receive fields the expressions B̂+
1 = i+ · B̂ and B̂−;∗

1 = i− · B̂.
Similarly, we define Ê+

1 = i+ · Ê and Ê−;∗
1 = i− · Ê and introduce the differentiation

operators (Wirtinger derivatives)

∂+ = i+ ·∇ =
1
2
(∂x + j∂y) and ∂− = i− ·∇ =

1
2
(∂x − j∂y). (23)

Taking the inner product of i+ and the second Maxwell equation now gives an explicit
expression for the transmit field, while taking the inner product of i−, and this second
Maxwell equation gives an explicit expression for the receive field. Explicitly, we have

B̂+
1 =

1
ω

(
∂+Ez − ∂zÊ+

1
)

and B̂−;∗
1 = − 1

ω

(
∂−Ez − ∂zÊ−;∗

1

)
. (24)

These relations tell us that the B̂+
1 and B̂−;∗

1 fields result from a difference between transverse
variations of the longitudinal electric field (as determined by the Wirtinger derivatives) and
longitudinal variations of the transverse Ê+

1 and Ê−;∗
1 fields. These equations are used as a

starting point in the EPT method discussed in Section 4.7. For completeness, we mention
that, if a similar procedure is followed for the first Maxwell equation, we obtain

Ê+
1 =

1
jµ0η

(
∂+Bz − ∂z B̂+

1
)

and Ê−;∗
1 = − 1

jµ0η

(
∂−Bz − ∂z B̂−;∗

1

)
. (25)

3.2. Second-Order Differential Equation: The Generalized Helmholtz Equation

Since the objective is to obtain the dielectric tissue parameters from magnetic field
data, a second option is not to consider the electric field at all and to eliminate this field
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from the source-free first-order Maxwell system as given by Equations (21) and (22). To
this end, we take the curl of Equation (21) and obtain

−∇×∇× B̂ + µ0∇× (ηÊ) = 0. (26)

Since

∇×∇× B̂ = ∇∇ · B̂−∇2B̂

and

∇× (ηÊ) = ∇η × Ê + η∇× Ê =
1

µ0

∇η

η
× (∇× B̂)− jωηB̂,

Equation (26) can be written as

−∇∇ · B̂ +∇2B̂ +
∇η

η
× (∇× B̂)− ηζB̂ = 0.

Finally, taking the divergence of the second Maxwell equation (Equation (22)), we get
∇ · B̂ = 0 and substituting this result in the above equation, we obtain the generalized
Helmholtz equation

∇2B̂ +
∇η

η
×
(
∇× B̂

)
+ k2B̂ = 0, (27)

where k = (−ηζ)1/2 = (ω2µ0ε− jωµ0σ)1/2 is the complex wave number with Im(k) ≤ 0.
Note that, for homogeneous media, η is constant and the second term on the left-hand side
vanishes. In this case, we have the Helmholtz equation

∇2B̂ + k2B̂ = 0. (28)

Taking the inner product of the vector i+ and Equation (28) gives the Helmholtz equation
for the B̂+

1 field
∇2B̂+

1 + k2B̂+
1 = 0, (29)

which serves as a starting point for the EPT methods discussed in Sections 4.1–4.3, 5.1 and 5.2.
It is important to realize that the above Helmholtz equation is valid for homogeneous
media (η is constant) only. For general inhomogeneous media (η is not constant), we have
the generalized Helmholtz equation (Equation (27)). Dotting this equation with the vector
i+, we end up with the generalized Helmholtz equation for the B̂+

1 field given by

∇2B̂+
1 + i+ ·

[
∇η

η
×
(
∇× B̂

)]
+ k2B̂+

1 = 0. (30)

This equation serves as a starting point for the EPT methods discussed in Sections 4.4–4.6,
but with the second term on the left-hand side rewritten in terms of B̂+

1 and B̂z. Specifically,
in the EPT methods of Sections 4.4 and 4.5, the generalized Helmholtz equation is rewritten
in terms of the gradient of B̂+

1 and B̂z, while, in the methods of Section 4.6, the generalized
Helmholtz equation is written as a convection–reaction equation.

3.2.1. The Gradient-Type Generalized Helmholtz Equation

Let us first consider rewriting the generalized Helmholtz equation (Equation (30)) in
terms of the gradient of the B̂+

1 field and B̂z, the z-component of the magnetic field. As a
first step, we introduce the vector g = η−1∇η and write g+ = i+ · g. The second term on
the left-hand side in Equation (30) can now be written as
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i+ ·
[
∇η

η
×
(
∇× B̂

)]
= i+ ·

[
g ×

(
∇× B̂

)]
= g ·

(
∂+B̂−∇B̂+

1
)

= gx(∂
+ B̂x − ∂x B̂+

1 ) + gy(∂
+B̂y − ∂y B̂+

1 ) + gz(∂
+ B̂z − ∂z B̂+

1 ).

Since

∂+B̂x − ∂x B̂+
1 = −j(∂+ B̂y − ∂y B̂+

1 ) =
1
2

j(∂y B̂x − ∂x B̂y),

this can be written as

i+ ·
[
∇η

η
×
(
∇× B̂

)]
= (jgx − gy)

1
2
(∂y B̂x − ∂x B̂y) + gz(∂

+B̂z − ∂z B̂+
1 ). (31)

Furthermore, using∇ · B̂ = 0, we have

1
2
(∂y B̂x − ∂x B̂y) = j∂x B̂+

1 + ∂y B̂+
1 +

1
2

j∂z B̂z (32)

and substituting this relation in Equation (31) leads to

i+ ·
[
∇η

η
×
(
∇× B̂

)]
= − f+ ·∇B̂+

1 − h+ ·∇B̂z

with

f+ = 4g+i− + gziz and h+ = −gzi+ + g+iz.

With this result, we end up with the gradient-type generalized Helmholtz equation

∇2B̂+
1 − f+ ·∇B̂+

1 − h+ ·∇B̂z + k2B̂+
1 = 0. (33)

3.2.2. The Generalized Helmholtz Equation as a Convection–Reaction Equation

To arrive at the convection–reaction form of the generalized Helmholtz equation as
used in EPT, we return to Equation (32) and rewrite this equation as

1
2
(∂y B̂x − ∂x B̂y) = j∂x B̂+

1 + ∂y B̂+
1 +

1
2

j∂z B̂z = j
(

2∂−B̂+
1 +

1
2

∂z B̂z

)
. (34)

Substitution of this result in Equation (31) gives

i+ ·
[
∇η

η
×
(
∇× B̂

)]
= −β+ · g,

where

β+ = (2∂−B̂+
1 +

1
2

∂z B̂z)ix + j(2∂− B̂+
1 +

1
2

∂z B̂z)iy + (∂z B̂+
1 − ∂+B̂z)iz. (35)

The generalized Helmholtz equation now becomes

∇2B̂+
1 − β+ · g + k2B̂+

1 = 0.

Dividing this equation by η and using the definition of vector g, we arrive at our final form

u∇2B̂+
1 + β+ ·∇u− ζ B̂+

1 = 0 (36)

with u = η−1. Equation (36) is the generalized Helmholtz equation in convection–
reaction form, where u∇2B̂+

1 − ζ B̂+
1 is the reaction component and β+ is the convective

field. Observe that the components of the convective field are directly related to the



Diagnostics 2021, 11, 176 11 of 37

dielectric medium parameters and the z-component of the electric field strength via (cf.
Equations (24) and (25))

2βx = jµ0ηÊz, 2βy = j2βx = −µ0ηÊz, and βz = −jµ0ηÊ+. (37)

These relations are used as a starting point in the EPT methods discussed in Sections 4.7
and 4.8.

3.2.3. Helmholtz Equations for the Receive Field

For completeness, we mention that a similar procedure can be carried out for the B̂−1
field. In particular, taking the inner product of the vector i− and Equation (27), we end up
with

∇2B̂−;∗
1 + i− ·

[
∇η

η
×
(
∇× B̂

)]
+ k2B̂−;∗

1 = 0, (38)

which is the generalized Helmholtz equation for B̂−;∗
1 . This equation can also be written in

terms of gradients of the B̂−;∗
1 field and B̂z as

∇2B̂−;∗
1 − f− ·∇B̂−;∗

1 − h− ·∇B̂z + k2B̂−;∗
1 = 0, (39)

with

f− = 4g−i+ + gziz and h− = −gzi− + g−iz,

where we introduce g− = i− · g, or as a convection–reaction equation as

u∇2B̂−;∗
1 + β− ·∇u− ζ B̂−;∗

1 = 0, (40)

with

β− = (2∂+ B̂−;∗
1 +

1
2

∂z B̂z)ix − j(2∂+B̂−;∗
1 +

1
2

∂z B̂z)iy + (∂z B̂−;∗
1 − ∂−B̂z)iz.

For the vectorial Helmholtz equation of Equation (28), dotting with the vector i− gives

∇2B̂−;∗
1 + k2B̂−;∗

1 = 0, (41)

which is the Helmholtz equation for the B̂−;∗
1 field in the case of homogeneous media.

3.3. Volume Integral Equations

The fundamental integral equations are obtained through a scattering formalism by
exploiting the linearity of Maxwell’s equations. Specifically, the total electromagnetic field
in the presence of an object in an MR coil is denoted by

{
Ê, Ĥ

}
, and this field is written as

the sum of an incident and scattered field as
{

Ê, Ĥ
}
=
{

Êinc, Ĥinc
}
+
{

Êsca, Ĥsca}, (42)

where the incident field is defined as the field that is present in an empty (air-filled) RF coil.
This incident field is generated by an external current density distribution Ĵext representing
the MR coil that occupies the bounded source domain S. The governing equations for the
incident field are

Êinc =
(

k2
0 +∇∇·

)
Âext and Ĥinc = η0∇× Âext, (43)

with k0 = ω/c0 the wave number of the background medium, c0 the electromagnetic wave
speed of free space and η0 = jωε0 the admittance of the background medium. In the above
field expressions, the vector potential Âext is given by
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Âext(r) = η−1
0

∫

r′∈S
Ĝ
(
r− r′

)
Ĵext(r′

)
dV,

where Ĝ(r) is the Green’s function of the background medium given by

Ĝ(r) =
exp(−jk0|r|)

4π|r| , for r 6= 0.

When there is an object present, scattered fields will be generated due to an induced
scattering current density distribution Ĵsca having the object domain D as its support. The
scattered fields are given by

Êsca =
(

k2
0 +∇∇·

)
Âsca and Ĥsca = η0∇× Âsca, (44)

where the vector potential Âsca is given by

Âsca(r) = η−1
0

∫

r′∈D
Ĝ
(
r− r′

)
Ĵsca(r′

)
dV

with Ĵsca = (η − η0)Ê the scattered current density distribution. Note that the scattering
current density and consequently the scattered field vanish if the object is absent (η = η0)
and the total electromagnetic field is equal to the incident field. Finally, we mention that
the B̂+

1 field can be obtained from the vector potential as

B̂+
1 = B̂+;inc

1 + B̂+;sca
1 with B̂+;inc

1 =
ω

c2
0
∇̃ · Âext and B̂+;sca

1 =
ω

c2
0
∇̃ · Âsca, (45)

where ∇̃ = iz∂+ − i+∂z. The dielectric tissue parameters only influence B̂+;sca
1 , that is, the

effects of the medium parameters on the B̂+
1 field have been separated from the excited

incident B̂+
1 field. These relations are used as starting point for the EPT methods discussed

in Sections 4.9–4.11.

4. EPT Methods Requiring Transmit Field Mapping

This section discusses analytical EPT approaches based on transmit field mappings.
The section starts with direct local differential methods and roughly transitions to end with
forward global integral methods. More specifically, the EPT methods discussed in this
section are

• Section 4.1: Helmholtz-based EPT (H-EPT)
• Section 4.2: Simplified H-EPT (SH-EPT)
• Section 4.2.1: Poisson-based Conductivity Mapping (P-CM)
• Section 4.3: Local Maxwell tomography (LMT)
• Section 4.4: Modified dual-excitation EPT (MDE-EPT)
• Section 4.5: Gradient-based EPT (G-EPT)
• Section 4.6: Convection–reaction EPT (CR-EPT)
• Section 4.6.1: Phase-only convection–reaction conductivity mapping (PCR-CM)
• Section 4.7: Transverse EPT (T-EPT)
• Section 4.8: First-order induced-current EPT (foIC-EPT)
• Section 4.9: Variational Born iterative method EPT (VBIM-EPT)
• Section 4.10: Global Maxwell tomography (GMT)
• Section 4.11: Contrast source inversion EPT (CSI-EPT)

Other methods that do not require transmit field mapping are discussed in Section 5.
Machine-learning approaches are discussed in Section 6.
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4.1. Helmholtz-Based EPT

Helmholtz-based EPT (H-EPT) assumes a homogeneous medium (∇η = 0) and is
based on the Helmholtz equation (Equation (29)) [22,23,30]. Explicitly, assuming that the
B̂+

1 field is known, the tissue parameters are determined from

∇2B̂+
1

B̂+
1

= −k2 (46)

and the definition of the wave number as

σ =
1

ωµ0
Im

(
∇2B̂+

1

B̂+
1

)
and ε =

−1
ω2µ0

Re

(
∇2B̂+

1

B̂+
1

)
. (47)

This explicit method is extremely simple, easy to implement and fast to compute.
However, the homogeneity assumption results in errors at tissue boundaries; the second-
order derivative that acts on the data makes the method sensitive to noise [31–33]; and
the method requires knowledge of the absolute transmit phase which is not directly
available. To mitigate noise effects, filtered Laplacians with increased kernel size can
be used, however, this leads to a severe numerical boundary error propagation [32,34].
The second-order differential has been reduced to first-order derivatives in an alternative
formulation based on Gauss’ integral theorem, but image segmentation is required to
implement this method [35,36]. Since the absolute transmit phase is in practice unavailable,
it is typically estimated with the transceive phase assumption. However, since the Laplacian
of a variable is the divergence of the gradient of the variable, this assumption can be
prevented with multiple acquisitions from a multi-element array. This system namely
allows for the determination of the gradient of the transmit phase of a reference transmit
channel (∇ϕ̂+

r ) from relative transmit phases [37] or the gradient of the receive phase of
the receive channel (∇ϕ̂−q ) from transceive phase measurements [27].

4.2. Simplified H-EPT

Simplified H-EPT (SH-EPT) derives the conductivity and permittivity independently
from the phase and magnitude of the B̂+

1 , respectively [8,35]. Starting point is again the
Helmholtz equation (Equation (29)) for the B̂+

1 field. However, here the polar decomposi-
tion of B̂+

1 is substituted, which gives

∇2
∣∣B̂+

1

∣∣
∣∣B̂+

1

∣∣ − |∇ϕ̂+|2 + j

(
2
∇
∣∣B̂+

1

∣∣
∣∣B̂+

1

∣∣ ·∇ϕ̂+ +∇2 ϕ̂+

)
= −k2 (48)

and, equating the real and imaginary parts in the above equation, we obtain

σ =
1

ωµ0

(
2
∇|B̂+

1 | ·∇ϕ̂+

∣∣B̂+
1

∣∣ +∇2 ϕ̂+

)
and ε =

−1
ω2µ0

(
∇2
∣∣B̂+

1

∣∣
∣∣B̂+

1

∣∣ − |∇ϕ̂+|2
)

. (49)

Finally, assuming that ∇2 ϕ̂+ >> 2
∇|B̂+

1 |·∇ϕ̂+

|B̂+
1 | , we obtain

σ =
1

ωµ0
∇2 ϕ̂+. (50)

Note that, if the Helmholtz equation accurately describes the behavior of the B̂+
1 field and if

the above approximation holds, then only the phase of the B̂+
1 field is required to determine

the conductivity. We remark that , if we write the B̂−1 field in polar form as well and follow
similar steps as for the B̂+

1 field, we obtain from the Helmholtz Equation (41)
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σ = − 1
ωµ0
∇2 ϕ̂−,

where ϕ̂− is the phase of the B̂−1 field. Consequently, if the transceive phase ϕ̂± = ϕ̂+ − ϕ̂−

is available, we have

σ =
1

2ωµ0
∇2 ϕ̂±.

Similarly, the assumption
∇2|B̂+

1 |
|B̂+

1 | >> |∇ϕ̂+|2 results in

ε =
−1

ω2µ0

∇2
∣∣B̂+

1

∣∣
∣∣B̂+

1

∣∣ . (51)

Clearly, in this case only the magnitude of the B̂+
1 field is required to determine

the permittivity.
This EPT method is similar to H-EPT, but allows for conductivity or permittivity

mapping without requiring the availability of both the magnitude and phase of the B̂+
1 field

if the corresponding additional assumptions hold. The validity of these assumptions need
to be investigated further. If only one of the EP maps is required, this approach enables,
for example, shorter acquisition times or an increase in signal-to-noise ratio (SNR) of the
transmit field map.

4.2.1. Poisson-Based Conductivity Mapping

Poisson-based conductivity mapping (P-CM) considers Equation (50) as a Poisson
equation for the phase. More precisely, in P-CM, we consider the Poisson equation

∇2φ̂+ = ωµ0σ

on R3 and observe that the right-handed side has the object domain D as its support.
Requiring that ϕ̂ decays sufficiently fast at infinity (|ϕ̂| decreases as 1/|r| uniformly in
r/|r| as |r| → ∞), we have

φ̂+(r) = −ωµ0

∫

r′∈D
ĜP
(
r− r′

)
σ
(
r′
)

dV (52)

where ĜP(r) is the 3D static Green’s function given by

ĜP(r) =
1

4π|r| , for r 6= 0.

In P-CM, we assume that the phase of the transmit field ϕ̂+ is known within the object, let
r ∈ D in Equation (52), set φ̂+(r) = ϕ̂+(r) for r ∈ D and retrieve a conductivity profile by
minimizing Equation (52) in a least-squares sense.

P-CM is an integral formulation of the methods described in [38,39]. Its global inte-
gral approach has an inherent noise suppression effect which makes this method more
robust to noise than local differentiation methods. Additionally, the minimization process
allows for the inclusion of regularization as well. However, the method has an increased
computational complexity compared to differential Helmholtz-based EPT approaches.
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4.3. Local Maxwell Tomography

The simplified form of Local Maxwell Tomography (LMT) assumes the availability of
a multi-element array and substitutes the polar decomposition of the B̂+

1 field as presented
in Equation (16) into the Helmholtz equation (Equation (29)) [40]. We then obtain

∇2B̂+;TRX(p,q)
1p

B̂+;TRX(p,q)
1p

= 2


∇ϕ̂±pq − j

∇
∣∣∣B̂+

1p

∣∣∣
∣∣∣B̂+

1p

∣∣∣


 ·∇ϕ̂−q +

(∣∣∣∇ϕ̂−q
∣∣∣
2
− j∇2 ϕ̂−q

)
− k2. (53)

This local equation is assumed to hold inside the object domain D and can be written as

aT(r)x(r) = b(r) with r ∈ D, (54)

with

a(r) =




2∂x ϕ̂±pq(r)− 2j
∂x

∣∣∣B̂+
1p(r)

∣∣∣∣∣∣B̂+
1p(r)

∣∣∣

2∂y ϕ̂±pq(r)− 2j
∂y

∣∣∣B̂+
1p(r)

∣∣∣∣∣∣B̂+
1p(r)

∣∣∣

2∂z ϕ̂±pq(r)− 2j
∂z

∣∣∣B̂+
1p(r)

∣∣∣∣∣∣B̂+
1p(r)

∣∣∣
1
1




, x(r) =




∂x ϕ̂−q (r)
∂y ϕ̂−q (r)
∂z ϕ̂−q (r)∣∣∣∇ϕ̂−q (r)
∣∣∣
2
− j∇2 ϕ̂−q (r)

−k2(r)




,

and

b(r) =
∇2B̂+;TRX(p,q)

1p (r)

B̂+;TRX(p,q)
1p (r)

,

Requiring that Equation (54) holds at N different locations with position vectors rn ∈
D, n = 1, 2, ..., N (e.g., with N the total number of pixels/voxels and rn the position vector
of the center of the nth pixel/voxel), we obtain the set of equations aT(rn) x(rn) = b(rn) for
n = 1, 2, ..., N, which can be written as an underdetermined system Ax = b, where A is an
N-by-5N matrix given by

A =




aT(r1)
aT(r2)

. . .
aT(rN)


 (55)

and
x =

[
xT(r1), xT(r2), ..., xT(rN)

]T and b =
[
b(r1), b(r2), ...b(rN)

]T . (56)

Since there are five unknowns associated with each point of interest rn, at least five linearly
independent transmit field measurements are carried out, producing the set of equations
Aix = bi, i = 1, 2, ..., I, where I ≥ 5 is the total number of transmit field measurements. The
total set of field equations can now be written as




A1
A2
...
AI


x =




b1
b2
...
bI


 (57)
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and this square (I = 5) or overdetermined (I > 5) system is solved in the least-squares
sense to obtain vector x. Finally, the EPs at location rn can be obtained by equating the fifth
entry in x(rn) to −k2(rn).

This method requires no knowledge of the unavailable absolute transmit phase. How-
ever, since there are multiple unknowns for each point of interest, several independent
transmit field measurements are required, which are typically only available on 7 T MRI
systems, to derive a unique solution. The amount of required transmit fields can be re-
duced by extending the method with receive field measurements. The same procedure as
described above can be carried out for the receive field in terms of measurable quantities,
as presented in Equation (18), and, under the assumption of homogeneous proton density,
a similar equation may be derived [40]. When more field maps are available, this last
assumption can be prevented and the gradient and Laplacian of the proton density can also
be determined [40]. LMT can be further generalized to also take the spatial variations of the
tissue EPs into account, such that it becomes free from object and field assumptions. This,
however, comes at the cost of increasing the number of unknowns and therefore requiring
a larger amount of transmit and/or receive field maps [41].

4.4. Modified Dual-Excitation EPT

Modified dual-excitation EPT (MDE-EPT) uses Equation (33) as a starting point and it
assumes that the gradient of the z-component of the magnetic flux density vanishes [28].
We then obtain

∇2B̂+
1 = f ·∇B̂+

1 − k2B̂+
1 = 4∂−B̂+

1 g+ + gz∂z B̂+
1 − k2B̂+

1 . (58)

This local equation is assumed to hold inside the object domain D and can be written as

aT(r) x(r) = b(r), r ∈ D, (59)

where a(r) and x(r) are 3-by-1 vectors given by

a(r) =




∂− B̂+
1 (r)

∂z B̂+
1 (r)

B̂+
1 (r)


 and x(r) =




4g+(r)
gz(r)
−k2(r)




and b(r) = ∇2B̂+
1 (r). Requiring that Equation (59) holds at N different locations with

position vectors rn ∈ D, n = 1, 2, ..., N, leading to a system of equations Ax = b, where
the N-by-3N matrix A, the 3N-by-1 vector x and the N-by-1 vector b are of similar form
as in LMT (cf. Equations (55) and (56)). Since there are three unknowns (g+(rn), gz(rn),
and −k2(rn)) associated with each point of interest rn, at least three linearly independent
transmit field measurements are carried out, producing the set of equations Aix = bi,
i = 1, 2, ..., I, where I ≥ 3 is the total number of transmit field measurements. The total
set of field equations can now again be written as Equation (57) and this square (I = 3)
or overdetermined (I > 3) system is solved in the least-squares sense to obtain vector
x. Finally, the EPs at location rn can be obtained by equating the third entry in x(rn) to
−k2(rn).

This approach does not require homogeneity of the object, which allows for improved
tissue boundary reconstructions. However, since there are three unknowns, at least three
independent transmit fields are required. Additionally, the method is restricted to regions
with spatially invariant z-component of the magnetic field. Note that the original form, dual-
excitation EPT, assumed knowledge of the unavailable x- and y-components of the magnetic
fields [42] and therefore required only two linearly independent excitations/measurements
to determine the EP maps. MDE-EPT, however, can be extended by including Equation (39),
again under the assumption of vanishing gradient of the z-component of the magnetic
field, into the system of equations. The name dual-excitation is then again justified, in the
sense that two independent excitations result in four equations if both the transmit and
receive fields are acquired [43].
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4.5. Gradient-Based EPT

Gradient-based EPT (G-EPT) continues from Equation (58) and writes it in terms of
absolute and relative transmit phases with respect to a reference element, as presented in
Equation (17) [44–48]. We then obtain

∇2B̂+;rel(p,r)
1p = −2j∇B̂+;rel(p,r)

1p ·∇ϕ̂+
r − B̂+;rel(p,r)

1p

(
−|∇ϕ̂+

r |2 + j∇2 ϕ̂+
r

)

+ 4
(

∂−B̂+;rel(p,r)
1p + jB̂+;rel(p,r)

1p ∂− ϕ̂+
r

)
g+

+
(

∂z B̂+;rel(p,r)
1p + jB̂+;rel(p,r)

1p ∂z ϕ̂+
r

)
gz − k2B̂+;rel(p,r)

1p , (60)

with ϕ̂+
r the unknown absolute transmit phase of reference channel r. First, the gradient g+

is determined. Similar to LMT and MDE-EPT, the above equation is written in the form

aT(r)x(r) = b(r) with r ∈ D, (61)

where

a(r) =




B̂+;rel(p,r)
1p (r)

∂x B̂+;rel(p,r)
1p (r)

∂y B̂+;rel(p,r)
1p (r)

∂z B̂+;rel(p,r)
1p (r)




,

x(r) =




|∇ϕ̂+
r (r)|2 − j∇2 ϕ̂+

r (r) + 4j∂− ϕ̂+
r (r)g+(r) + j∂z ϕ̂+

r (r)gz(r)− k2(r)
−2j∂x ϕ̂+

r (r) + 4g+(r)
−2j∂y ϕ̂+

r (r)− 4jg+(r)
−2j∂z ϕ̂+

r (r) + gz(r)


,

and b(r) = ∇2B̂+;rel(p,r)
1p (r). Equation (61) is required to hold at N different locations of

interest with position vectors rn ∈ D, n = 1, 2, ..., N, leading to a system of equations
Ax = b, where the N-by-4N matrix A, the 4N-by-1 vector x and the N-by-1 vector b are of a
similar form as in LMT and MDE-EPT (cf. Equations (55) and (56)).

Since there are four unknowns associated with each point of interest (the elements of
vector x(rn)), at least four linearly independent transmit field measurements are carried out
and these produce the set of equations Aix = bi, i = 1, 2, ..., I, with I ≥ 4 the total number
of transmit field measurements. The total set of equations can now again be written as in
Equation (57) and this square (I = 4) or overdetermined (I > 4) system is solved in the
least-squares sense to obtain vector x. From this vector, g+(rn) can be determined from the
second or third entry of x(rn).

Second, the gradient is integrated using the definition g+ = ∂+ ln(η) and an additional
least-squares minimization process, where seed points (point belonging to a subdomain of
the object domain where the EPs are known) are used to obtain absolute EP maps.

The additional integration step in G-EPT acts as a low-pass filter and makes the
approach relatively robust to noise. Additionally, using the relative phase has the benefit
that influences of receive field, chemical shift, magnetic susceptibility and eddy currents
on the phase are mitigated. The method, however, requires multiple transmit elements
as well as knowledge of seed points to derive absolute EP maps. The seed points can be
derived by surrounding the object with a gel with known EPs, (dubbed boundary informed
G-EPT) [48]. Additionally, since the transverse gradients of the absolute phase of the
reference channel can also be derived from x(2) and x(3) in the first step of G-EPT, the
seed points can be selected in an automated fashion by using the Helmholtz-based EPT
approach in homogeneous regions (dubbed automated G-EPT) [47].
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4.6. Convection–Reaction EPT

Convection–reaction EPT (CR-EPT) [49–51] assumes that the B̂+
1 field is known and

solves the generalized Helmholtz equation in convection–reaction form (Equation (36)), for
convenience repeated here,

u∇2B̂+
1 + β+ ·∇u− ζ B̂+

1 = 0, (62)

in a least-squares sense for the inverse admittance parameter u under the assumption
of invariance of the z-component of the magnetic flux density in the convective field
(Equation (35)), and derives the tissue parameters as

σ = Re
(

1
u

)
, and ε =

1
ω

Im
(

1
u

)
. (63)

This method is again not restricted to regions with homogeneous tissue structures,
does not require seed points and does not require a multi-element array. However, the ab-
solute transmit phase is again required, which is not directly available from measurements
but can be accurately estimated for many cases as half the transceive phase. Furthermore,
the method is restricted to regions with spatially invariant z-component of the magnetic
field. Additionally, the method suffers from a reconstruction artifact in the region with
low convective field.

4.6.1. Phase-Only Convection–Reaction Conductivity Mapping

Phase-only convection–reaction conductivity mapping (PCR-CM) [52] simplifies the
generalized Helmholtz equation in convection–reaction form (Equation (36)) by dividing it
by B̂+

1 and assuming∇
∣∣B̂+

1

∣∣ = 0 and ∇B̂z = 0, which gives

u
(
−
∣∣∇ϕ̂+

∣∣2 + j∇2 ϕ̂+
)
+ β̃+ ·∇u− ζ = 0, (64)

with

β̃+ = 2j∂− ϕ̂+ix − 2∂− ϕ̂+iy + j∂z ϕ̂+iz.

The same procedure can be performed for the generalized Helmholtz equation in convection–
reaction form in terms of receive fields (Equation (40)), which yields

u
(
−
∣∣∇ϕ̂−

∣∣2 − j∇2 ϕ̂−
)
+ β̃− ·∇u− ζ = 0, (65)

with

β̃− = −2j∂+ ϕ̂−ix − 2∂+ ϕ̂−iy − j∂z ϕ̂−iz.

The addition of these two equations gives

u
(
−
∣∣∇ϕ̂±

∣∣2 − 2∇ϕ̂+ ·∇ϕ̂− + j∇2 ϕ̂±
)
+ β̃± ·∇u− 2ζ = 0, (66)

with

β̃± =
[
∂y
(

ϕ̂+ + ϕ̂−
)
+ j∂x ϕ̂±

]
ix −

[
∂x
(

ϕ̂+ + ϕ̂−
)
+ j∂y ϕ̂±

]
iy + j∂z ϕ̂±.

In the case that Im
(

β̃±
)
· Re(∇u) >> Re

(
β̃±
)
· Im(∇u), the imaginary part of this equa-

tion can be written as a convection–reaction equation in terms of the resistivity ρ = σ−1 as

ρ∇2 ϕ̂± +∇ϕ̂± ·∇ρ− 2ωµ0 = 0, (67)

which can be solved in a least-squares sense. This equation is in the form of a convection–
diffusion–reaction equation with zero diffusion term. A diffusion term would act as a
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low-pass filter and increases numerical stability of the approach. To suppress spurious
oscillations, an artificial diffusion term c∇2ρ is typically added to the fundamental equation,
where c is an empirically determined constant diffusion coefficient. The conductivity σ is
finally retrieved as the inverse of the resistivity ρ.

This method can be seen as a generalized version of phase-only Helmholtz-based EPT
implementation as discussed in Section 4.2, which allows for large spatial variations of the
tissue conductivity. However, the method has an increased computational complexity and
the required assumptions do not hold for high field strengths.

4.7. Transverse EPT

Transverse EPT (T-EPT) [53] assumes that the RF field has a so-called E-polarized
field structure within a certain transverse plane, by which we mean that longitudinal
variations of the transverse electric field and the longitudinal variation of the magnetic
field essentially vanish within this plane (∂zÊx = ∂zÊy = 0, and ∂z B̂z = 0 for z = constant).
Usually, the plane z = constant is taken to be the midplane of a birdcage coil, since it has
been observed that the RF field has an approximate E-polarized field structure within this
midplane [54]. Note that, for two-dimensional configurations with no spatial variations
in the z-direction and a z-directed external electric current source, the E-polarized field
structure is exact.

Taking the E-polarized field assumption into account, it follows from Maxwell’s
equations that (cf. Equations (24) and (37))

4
jµ0

∂− B̂+
1 = ηÊz and B̂+

1 =
1
ω

∂+Êz, within the plane z = constant. (68)

In T-EPT, these two equations are combined into a single normalized functional given by

F
(
Êz, η

)
=

∥∥∥ 4
jµ0

∂−B̂+
1 − ηÊz

∥∥∥
2

D∥∥∥ 4
jµ0

∂− B̂+
1

∥∥∥
2

D

+

∥∥∥B̂+
1 − 1

ω ∂+Êz

∥∥∥
2

D∥∥B̂+
1

∥∥2
D

, (69)

where ‖ · ‖D is an L2-norm defined on D. Ths functional is iteratively minimized in an
alternate fashion using conjugate-gradient-type update formulas for Êz, followed by a
direct update of η. This two-step update procedure is repeated until convergence or a
maximum number of iterations is reached. Finally, the conductivity and permittivity
reconstructions follow from the reconstructed admittance η as

σ = Re(η) and ε =
1
ω

Im(η). (70)

In the remainder of this manuscript, these multi-step inversion methods are summarized
in a listing (see Listing 1 for the update process of T-EPT).

This method has no second-order but only first-order derivatives that act on the
measurement data, increasing noise robustness. Additionally, the method computes the
z-component of the electric field strength, which can be helpful in SAR computations. How-
ever, the method is restricted to regions where the RF field is approximately E-polarized,
such as in the midplane of a birdcage RF coil.
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Listing 1. Transverse EPT (T-EPT).

• Given initial guesses η̃[0] for the admittance and Ẽ[0]
z for the electric field strength

• For n = 1, 2, ...

(a) Fix the admittance η̃[n−1] and update the electric field strength according to the update
formula

Ẽ[n]
z = Ẽ[n−1]

z + α[n]v[n]

where α are the update coefficients and v the Polak-Ribière update directions [55].

(b) Update the admittance according to

η̃[n] =
4

jµ0

Ẽ[n]∗
z ∂− B̂+

1∣∣∣Ẽ[n]
z

∣∣∣
2 .

(c) Stop if objective function is smaller than user specified tolerance level, or if maximum
number of iterations has been reached.

• End

4.8. First-Order Induced-Current EPT

First-order induced-current EPT (foIC-EPT) considers E-polarized RF fields and thus
assumes that the electric field strength is mainly directed in the longitudinal z-direction [56].
For E-polarized fields, we have (cf. Equations (37) and (44))

ηÊz =
4

jµ0
∂−B̂+

1 and Êsca
z = −ζGA

{
ηÊz

}
− k2

0GA
{

Êz
}

, (71)

where we introduce the vector potential operator

GA{x}(r) = η−1
0

∫

r′∈D
Ĝ
(
r− r′

)
x
(
r′
)

dV.

Combining these two equations, together with the linearity of Maxwell’s equations (see
Equation (42)), gives

Êinc
z − 4ωGA

{
∂−B̂+

1
}
= Êz + k2

0GA
{

Êz
}

, (72)

which can be solved for the z-component of the electric field strength, if its incident
component is known. Finally, the conductivity and permittivity can be derived via

σ = Re

(
4

jµ0

Ê∗z ∂−B̂+
1

|Êz|2

)
and ε =

1
ω

Im

(
4

jµ0

Ê∗z ∂−B̂+
1

|Êz|2

)
. (73)

This approach has only first-order derivatives that act on the measured transmit field
data, and an integral formulation for the electric field strength determination, making
the method robust to noise. However, the method is again restricted to a region with an
E-polarized field structure. Additionally, the method requires knowledge of the incident
field, which cannot be measured directly. Incident fields are typically estimated from a
simulation setup or from a reference scan of a phantom with known EPs. Note that the
formulation is presented as a three-dimensional problem, but, in the case of an E-polarized
field structure, it can be simplified to a two-dimensional setting. Cauchy-based EPT shares
a lot of similarities with foIC-EPT, but the electric field strength is derived via a Cauchy
integral which allows for the computation of the EPs in a direct manner through complex
analysis [57–60].
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4.9. Variational Born Iterative Method EPT

The variational Born iterative method EPT (VBIM-EPT) is a volumetric integral method
that iteratively updates the tissue parameters based on improved estimations of the transmit
field by solving forward and inverse problems [61,62]. Given knowledge of the incident
fields and an initial estimation for the contrast function, the electric field strength is derived
from (cf. Equations (42) and (44))

Êinc(r) = Ê(r)−
(

k2
0 +∇∇·

) ∫

r′∈D
Ĝ
(
r− r′

)
χ
(
r′
)
Ê
(
r′
)

dV, (74)

with χ = (η − η0)η
−1
0 . Equation (74) is a forward problem. Based on the derived electric

field strength and the estimated contrast function, an estimate of the scattered part of the
transmit field is computed as (cf. Equation (45))

B̃+;sca
1 (r) =

ω

c2
0
∇̃ ·

∫

r′∈D
Ĝ
(
r− r′

)
χ
(
r′
)
Ê
(
r′
)

dV, (75)

and the residual δB̂+;sca
1 is derived according to δB̂+;sca

1 = B̂+
1 − B̂+;inc

1 − B̃+;sca
1 . The residual

in the contrast function is then determined by solving

δB̂+;sca
1 (r) =

ω

c2
0
∇̃ ·

∫

r′∈D
Ĝ
(
r− r′

)
δχ
(
r′
)
Ê
(
r′
)

dV (76)

for δχ, which is an inverse problem. The contrast function is then updated as χ[n+1] =
χ[n] + δχ. Based on this new estimation of the contrast function, the procedure is repeated
until a convergence criterion has been reached (see Listing 2). Finally, the conductivity and
permittivity maps are derived via

σ = −ωε0 Im(χ), and ε = ε0 Re(χ + 1) (77)

This method does not apply any derivatives on the measured transmit field. Instead,
it makes use of an integral formulation, making the method noise robust. However, the
method requires knowledge of the incident fields, and solving the forward and inverse
problems iteratively is computationally prohibitively expensive.
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Listing 2. Variational Born Iterative Method-EPT (VBIM-EPT).

• Given initial guesses χ̃[0] for the contrast function
• For n = 1, 2, ...

(a) Fix the contrast function to χ̃[n−1] and determine the electric field strength Ẽ[n] by
solving Equation (74) for Ê (solve the forward problem).

(b) Knowing contrast function χ̃[n−1] and corresponding electric field strength Ẽ[n],

compute the scattered magnetic flux density B̃+;sca;[n]
1 according to Equation (75).

(c) Compute the residual δB̂+;sca;[n]
1 according to

δB̂+;sca;[n]
1 = B̂+

1 − B̂+;inc
1 − B̃+;sca;[n]

1 .

(d) Fix the data residual to δB̂+;sca;[n]
1 and the electric field strength to Ẽ[n] and determine

the contrast residual δχ[n] by solving Equation (76) for δχ (solve the inverse problem).

(e) Update the contrast function according to the update formula

χ̃[n] = χ̃[n−1] + δχ[n].

(f) Stop if δB̂+;sca;[n]
1 is smaller than user specified tolerance level, or if maximum number

of iterations has been reached.

• End

4.10. Global Maxwell Tomography

Global Maxwell tomography (GMT) is a volumetric integral method that iteratively
updates the tissue parameters based on improved estimations of the transmit field by
solving a forward problem and minimizing an objective function [63–65]. GMT makes use
of the identity [66]

(
k2

0 +∇∇·
) ∫

r′∈D
Ĝ
(
r− r′

)
ŵ
(
r′
)

dV = ∇×∇×
∫

r′∈D
Ĝ
(
r− r′

)
ŵ
(
r′
)

dV − ŵ, r ∈ D,

and transforms the electric field integral representation of Equation (74) into a current
density volume integral representation, given by

η0χ(r)Êinc(r) = (1 + χ(r)) Ĵsca(r)− χ(r)∇×∇× η−1
0

∫

r′∈D
Ĝ
(
r− r′

)
Ĵsca(r)dV. (78)

Given knowledge of the incident field and an initial contrast function, this equation is
solved for the scattered current density distribution (a forward problem), which is used
to estimate the scattered component of the transmit field B̃+;sca

1 via Equation (45). An
objective function is introduced

F(χ) =

∥∥∥B̂+;sca
1 − B̃+;sca

1
(

Ĵsca(χ)
)∥∥∥

2

D∥∥∥B̂+;sca
1

∥∥∥
2

D

. (79)

Based on its gradient with respect to χ the contrast function is updated. This process is
iterated until a convergence criterion has been reached (see Listing 3). Finally, the EPs are
derived from the contrast function via Equation (77).

This method is similar to VBIM-EPT, but removes the inverse problem in every
iteration. Even though a computational expensive inverse problem is removed, the method
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remains computationally expensive since the gradient updates typically require a large
amount of iterations. The presented formulation still requires knowledge of the absolute
transmit phase; however, this has been addressed by reformulating the objective function
to only consider the magnitude of the transmit field or, in the case of a multi-element
transmit system, by reformulating it in terms of magnitude and relative phases [64,65].

Listing 3. Global Maxwell Tomography (GMT).

• Given initial guess χ̃[0] for the contrast function
• For n = 1, 2, ...

(a) Fix the contrast function to χ̃[n−1] and determine the scattered current density
distribution J̃sca;[n] by solving Equation (78) for Ĵsca (solve the forward problem).

(b) Fix the scattered current density distribution to J̃sca;[n] and update the contrast function
according to the update formula

χ̃[n] = χ̃[n−1] + β[n]d[n].

where β are the update coefficients and d the Polak-Ribière update directions [55]

(c) Stop if objective function of Equation (79) is smaller than user specified tolerance level,
or if maximum number of iterations has been reached.

• End

4.11. Contrast Source Inversion EPT

Contrast-Source Inversion EPT (CSI-EPT) formulates the inversion problem as a purely
optimization problem in which a single functional is iteratively minimized [67,68]. CSI-EPT
combines the multiplication of the contrast function and the electric field strength into a
single variable, the so-called contrast source ŵ = χÊ. The scattered electric field strength
is then given by (cf. Equation (44))

Êsca(r) =
(

k2
0 +∇∇·

) ∫

r′∈D
Ĝ
(
r− r′

)
ŵ
(
r′
)

:= GE{ŵ}(r),

and the scattered transmit field operator is then given by (cf. Equation (45))

B̂+;sca
1 (r) =

ω

c2
0
∇̃ ·

∫

r′∈D
Ĝ
(
r− r′

)
ŵ
(
r′
)

:= GB{ŵ}(r),

which are used to set up an objective functional (cf. Equation (74))

F(ŵ, χ) =

∥∥χÊinc − ŵ + χGE{ŵ}
∥∥2
D∥∥χÊinc

∥∥2
D

+

∥∥∥B̂+;sca
1 − GB{ŵ}

∥∥∥
2

D∥∥∥B̂+;sca
1

∥∥∥
2

D

, (80)

which is minimized in a two-step “fix-one-minimize-for-the-other” update process. First,
the contrast function is fixed and the contrast source is updated from the gradient of the
cost function with respect to ŵ. Once the contrast source is updated, the electric field
strength is calculated as

Ê = Êinc + GE{ŵ},

and the contrast function is updated by solving the least-squares problem
∥∥χ̃Ẽ− w̃

∥∥2
D,

which gives

χ =
ŵ · Ê∗
∣∣Ê
∣∣2 ,
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or by fixing the contrast source and updating the contrast function from the gradient of the
cost functional with respect to χ. This two-step update procedure is iteratively repeated
until a stopping criterion has been reached (see Listing 4). Finally, the tissue parameters
are derived from the contrast function via Equation (77).

This approach only applies fast forward computations and does not have to solve
any forward problem as in VBIM-EPT or GMT. However, since the approach typically
still requires a lot of iterations, the method remains time consuming compared to direct
methods such as H-EPT. Additionally, the transmit phase remains required, which can only
be accurately approximated in specific cases. Naive [69–72], two-dimensional [73–78],
magnitude-based [79] and segmented [80,81] implementations have been proposed to
improve for example convergence or applicability.

Listing 4. Contrast Source Inversion-EPT (CSI-EPT).

• Given initial guesses χ̃[0] and w̃[0] for the contrast function and contrast source, respectively
• For n = 1, 2, ...

(a) Fix the contrast function to χ̃[n−1] and update the contrast source according to the
update formula [67]

w̃[n] = w̃[n−1] + α[n]v[n].

(b) Compute the corresponding electric field strength Ê[n] according to

Ẽ[n] = Êinc + GE

{
w̃[n]

}
.

(c) Compute the contrast function according to

χ̃ =
w̃ · Ẽ∗
∣∣Ẽ
∣∣2 ,

or fix the contrast source to w̃[n] and update the contrast function according to the
update formula [67]

χ̃[n] = χ̃[n−1] + β[n]d[n].

(d) Stop if objective function of Equation (80) is smaller than user specified tolerance level,
or if maximum number of iterations has been reached.

• End

5. EPT Methods Not Requiring Transmit Field Mapping

The previously discussed EPT approaches can be extended with receive fields. How-
ever, there are also methods that do not require transmit fields. The followin EPT ap-
proaches are discussed in this section:

• Section 5.1: Single-acquisition EPT (SA-EPT)
• Section 5.2: Image-based EPT (I-EPT)

5.1. Single-Acquisition EPT

Single-acquisition EPT (SA-EPT) [82] rewrites the Helmholtz equation for the receive
field (Equation (41)) as
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∇2B̂−;∗
1

B̂−;∗
1

=

∇ ·
(

B̂−;∗
1
∇B̂−;∗

1
B̂−;∗

1

)

B̂−;∗
1

,

=
∇B̂−;∗

1

B̂−;∗
1

· ∇B̂−;∗
1

B̂−;∗
1

+∇ ·
(
∇B̂−;∗

1

B̂−;∗
1

)
= −k2, (81)

which shows that knowledge of the rate of change of the field is sufficient to derive the EPs.
By introducing the receive field of channel q relative to reference channel r as

B̂−;∗
1qr =

B̂−;∗
1q

B̂−;∗
1r

, (82)

we obtain through the Laplacian of the relative receive field [82]

∇2B̂−;∗
1qr =

B̂−;∗
1q

B̂−;∗
1r

(∇2B̂−;∗
1q

B̂−;∗
1q

− ∇
2B̂−;∗

1r

B̂−;∗
1r

)
− 2∇B̂−;∗

1qr ·
∇B̂−;∗

1r

B̂−;∗
1r

,

= −2∇B̂−;∗
1qr ·
∇B̂−;∗

1r

B̂−;∗
1r

, (83)

since each element measures the same EPs. This local equation is assumed to hold inside
the object domain D and can be written as

aT(r) x(r) = b(r), r ∈ D, (84)

where a(r) and x(r) are 3-by-1 vectors given by

a(r) =



−2∂x B̂−;∗

1qr (r)
−2∂y B̂−;∗

1qr (r)
−2∂z B̂−;∗

1qr (r)


 and x(r) =




∂x B̂−;∗
1r

B̂−;∗
1r

(r)
∂x B̂−;∗

1r
B̂−;∗

1r
(r)

∂x B̂−;∗
1r

B̂−;∗
1r

(r)




and b(r) = ∇2B̂−;∗
1qr (r). Equation (84) is required to hold at N different locations of interest

with position vectors rn ∈ D, n = 1, 2, ..., N, leading to a system of equations Ax = b, where
the N-by-3N matrix A, the 3N-by-1 vector x and the N-by-1 vector b are of a similar form

as in LMT, MDE-EPT and G-EPT (cf. Equations (55) and (56)). Once the ∇B̂−;∗
1

B̂−;∗
1

term is

obtained, the tissue parameters can be determined from Equation (81).
This method does not require absolute transmit field data, but relies only on relative

receive fields which are directly available. This results in the elimination of specific artifacts,
since common terms for the different elements can be eliminated. These receive fields can
be derived from a single acquisition; however, this requires a multi-element array with a
minimum of four receive elements, since at least three linearly independent relative receive
fields are required to determine a unique solution. Additionally, since the gradient term is
derived in a minimization process based on second-order derivatives and an additional
divergence is applied on the gradient term, the method relies on third-order derivatives
giving strong dependence on the SNR of the images.

5.2. Image-Based EPT

Image-based EPT (I-EPT) uses the acquired MR image directly for the reconstruction
of the tissue parameters. For a low flip angle α = γτ

∣∣B̂+
1

∣∣, we have sin α ≈ α, thus the MR
image for any low-flip-angle sequence is essentially given by (cf. Equation (15))

I = $0γτB̂+
1 B̂−;∗

1 . (85)
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In I-EPT, information from this image is used, instead of estimated transmit or receive
fields. The relevant equation applied to this image is derived by multiplying Equation (29)
with B̂−;∗

1 and Equation (41) with B̂+
1 and adding them together, which gives

∇2
(

B̂+
1 B̂−;∗

1

)
+ 2k2B̂+

1 B̂−;∗
1 − 2∇B̂+

1 ·∇B̂−;∗
1 = 0. (86)

By taking B̂+
1 B̂−;∗

1 =

(√
B̂+

1 B̂−;∗
1

)2
and defining a =

√
B̂+

1 B̂−;∗
1 and b =

√
B̂−;∗

1
B̂+

1
, we obtain

∇2a2 + 2k2a2 − 2∇ a
b
·∇(ab) = 0,

and by using the product rule of the scalar Laplacian (∇2a2 = 2a∇2a + 2∇a ·∇a) and
dividing by 2a2, we find

∇2a
a

+ k2 +
1
a2

(
∇a ·∇a−∇ a

b
·∇(ab)

)

︸ ︷︷ ︸
(∗)

= 0. (87)

The underbraced term denoted by (∗) is an error term that can be simplified to

1
4

∣∣∣∣∇ ln B̂−;∗
1

B̂+
1

∣∣∣∣
2

[83] and can be neglected when B̂+
1 and B̂−;∗

1 are similar to each other. This

results in the following Helmholtz equation

∇2
√

B̂+
1 B̂−;∗

1√
B̂+

1 B̂−;∗
1

= −k2. (88)

Equation (88) remains valid when the B̂+
1 B̂−;∗

1 term is multiplied by a constant, since it
drops out of the equation. The variables in front of the B̂+

1 B̂−;∗
1 term in Equation (88) are

relatively constant throughout space in regions where the Helmholtz equation applies, and
the image as described in Equation (85) can therefore be applied in Equation (88).

This method does not require the acquisition of transmit and receive fields, which
results in reduced scan time and an increase in SNR, since the image SNR is greater
than that of transmit or receive field maps. Additionally, in this formulation, the errors
resulting from B̂+

1 and B̂−1 differences are reduced to a first-order effect with respect to
the difference compared to the conventional H-EPT method. A zero echo-time sequence
has been proposed due to its immunity to eddy current and static magnetic field (B0)
inhomogeneity-induced phase changes, as well as its speed and SNR efficiency [83]. The
method has also been proposed with a fast spin echo sequence together with a T2 relaxation
pattern between echoes to increase noise robustness [84]. A generalized image-based EPT
form which includes the gradient of the EPs has also been proposed [85].

6. Data Driven Deep Learning Approaches for Solving Inverse Problems

Solving inverse problem by data-driven deep learning approaches is an emerging
field with recent examples from the fields of gravitation [86], radioastronomy [87], medical
imaging reconstruction [88] and electromagnetics [89,90]. The basic advantage of these
data-driven approaches is that it allows insertion of more tailored a priori information about
the specific inverse problem under study. A key aspect is the learning-based approach
where during a training phase deep neural networks learn to perform a specific task in
the inverse process by feeding them with many ground truth examples. After training
the neural network, the inference is extremely fast, sometimes only a few seconds. This
constitutes a clear computational gain over more conventional iterative approaches to solve
inverse problems. Other advantages include a higher level of tolerance to noise on the
input data and a higher flexibility on the required input data as neural networks can act as
learned surrogate models.
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6.1. Convolutional Neural Networks

The most popular for image processing and reconstruction are convolutional neural
networks (CNN) [91–93]. These neural networks employ convolutions in their architecture
whose kernels are optimized during training for their given task. The training phase is a
very computationally intensive process involving the backpropagation of the errors during
the training (in fact, a large scale optimization process itself) over the various weights
between the nodes (often >1 million) in the network. This process takes place on a GPU
and is facilitated by mature software packages that are able to exploit the parallel nature of
the GPU in an efficient manner.

To obtain an idea on what information a trained CNN triggers, it is insightful to
process an input image through the trained network and generate the output of the various
units in the layers as images (so-called feature maps) comprising of local and global
predictive information to perform the task it was trained for. Although CNNs are also
heavily used for classification problems such as image segmentation, for use in the EPT
reconstruction, only the regression task is relevant. In a regression CNN, where the famous
U-NET [93] is a prime example, an encoder and the image information is processed by
various convolutional kernels and pooling operations and fed through activation layers
which constitute non-linear elements and are essential for the ability to learn. During the
downsampling path, spatial contextual information is learnt. In regression problems, this
is followed by the decoder where convolution and upsampling takes place to recover the
spatial information of the desired output matrix size. In fully convolutional networks,
the architecture solely employs operations such as convolution, pooling, activation and
upsampling. Avoiding fully connected layers makes the inference much faster as fewer
weights are needed, and the network can work regardless of the original image size. Skip
connections short-circuiting corresponding layers in the encoder and decoder such as in
the popular U-NET [93] are essential to recover fine-grained spatial information lost in the
pooling or downsampling layers.

6.2. Deep Learning for EPT Reconstruction: Single Feedforward Approaches

An important distinction can be made between deep learning inverse approaches
where single feed forward networks are employed and hybrid approaches where deep
neural networks are themselves embedded in the iterative optimization process of solving
the inverse problem. In principle, both approaches can be applied to EPT. Using the feedfor-
ward approach, Mandija et al. [94] employing convolutional neural networks demonstrated
that deep learning EPT (DL-EPT) can reconstruct more noise robust dielectric parameter
maps than conventional Helmholtz based EPT. An essential element of this feed forward
approach is that the network constitutes a surrogate EPT reconstruction model implicitly
learnt from the training data and takes the measured complex transmit field information
as the input. This learning-based approach creates more flexibility than state-of-the-art
MR-EPT techniques, which require electromagnetic quantities dictated by electromagnetic
first principles which are not accessible with MRI. As example, in DL-EPT, a feedforward
network can be trained with MR accessible quantities (e.g., the transceive phase) only.
Interestingly, Mandija et al. [94] demonstrated that, also for a deep learning approach,
almost all predictive features to reconstruct electrical conductivity are contained in the
transceive phase maps in accordance with our insight from electromagnetic principles
underpinning conventional EPT.

6.3. Training Data and Generalization to Unseen Data

Essential of course is the availability of training data which can nowadays be easily
generated by electromagnetic simulations including realistic RF coil models, phantoms
and body models. In this way, a high degree of a priori knowledge, such as the specific
MRI coil setup, can be introduced. The advantage of using this simulation-based approach
to generate the training transmit field data with superimposed artificial noise, is that
the ground truth is available. However, in silica training data might not reflect realistic
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experimental conditions. Therefore, approaches that employ training data reconstructed
with more conventional EPT reconstruction schemes are also used [95]. In the work of
Gavazzi et al. [96], a 3D patch neural network approach was used where the receptive field
is more local (size of the 3D patch) forcing it to perform dielectric parameter estimation
from more local B̂+

1 magnitude and phase information. A further advantage is that it can
work with varying matrix size of the input data. A key question is of course how a single
feed forward neural network approach behaves when it is tested on unseen input data
that was not directly included in the training data, e.g., pathologic tissue with different
dielectric parameter values or in the presence of motion artifacts on the B̂+

1 maps. An
obvious mitigation is to augment the training data sufficiently (e.g., part of the transmit
maps can be artificially corrupted with motion artifacts) to obtain more robust results.

6.4. Deep Learning EPT: Integrating Deep Learning into Iterative EPT Schemes

Another option to improve the generalization to unseen data is to retain the physics in
the reconstruction framework while still benefiting from the advantages of deep learning.
A first approach was published for EPT by Leijsen et al. [97], who demonstrated that
initial estimates provided by deep learning led to better convergence for 3D CSI-EPT.
This integration can be further improved. New hybrid approaches are now emerging
in medical image construction where neural networks are embedded in conventional
iterative reconstruction schemes [98–102]. The physics related to the reconstruction problem
is still explicitly included by means of a physics-based forward operator (e.g., Fourier
transform in case of MR image reconstruction). Experiences from the medical image
reconstruction demonstrated that this leads to much better generalization to unseen data
in the training [100]. The neural networks can be inserted in the iterative procedure for
various tasks. For example, neural networks can be trained to learn regularization filters
much more tailored to the specific application than applying standard regularization
kernels [101]. Alternatively, the networks can be used to perform the update task, i.e.,
determining the update direction based on the data mismatch and the regularization
term [98]. Employing such an approach, the convergence is often much faster as a priori
information on the optimization landscape is learned in the training phase, enabling faster
convergence. These hybrid approaches should also be possible to combine with iterative
EPT schemes such as 3D CSI-EPT where the physics is included by a forward operator
(e.g., Green’s function approach) linking a certain electrical property distribution to the
measured data (B̂+

1 magnitude and transceive phase information). Such a methodology
would be an ideal scenario as it would harvest the power of deep learning to accelerate
reconstruction and include tailored a priori information from the learning phase, while still
retaining to the physics-based modeling and the data consistency.

6.5. Outlook

It is clear that deep learning offers much benefit for EPT in terms of achieving higher
quality reconstructions. The feedforward approaches using CNNs have demonstrated clear
potential in terms of noise robustness, flexibility on inputs and computational speed. A key
question is the generalization to data not encountered in the training. Interestingly, also in
EPT’s sister field of Quantitative Susceptibility Mapping deep learning improves the quality
of susceptibility reconstruction over conventional methodology [103,104]. Promising results
have been achieved here on the generalization issue. An attractive alternative might
be the integration of learned networks into a conventional iterative EPT approach as
occurs in medical image reconstruction. This still retains the physics, offering better
generalization, while also being able to include more a priori information and providing
faster reconstructions.

7. Discussion and Conclusions

This paper presents a mathematical analysis of a large number of different methods
for EPT, each with their own relative strengths and weaknesses. By comparing the results
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from each approach, one can make a number of general statements, the most important of
which are listed below.

7.1. Approach Description

EPT approaches can be sorted into several different categories. These categories can
give some general insight into how the methods work, and what kind of restrictions exist.
Here, we sort the methods into three categories.

• Differential methods or integral methods
• Local methods that reconstruct the EPs at a specific location by only taking the informa-

tion from the direct neighbourhood into account, or global methods that take the whole
imaging domain into account to reconstruct the EP maps as a whole

• Direct methods that act directly on the data to reconstruct the EPs, also called backward
methods since they run ‘backwards’ from the measured field map to the underlying
EPs, or forward methods that employ forward models or solve forward problems in the
inversion scheme and act ‘indirectly’ on the data

For each of the transmit field-based methods discussed in the manuscript, the ap-
proach descriptions are assigned in Table 1.

7.1.1. Differential vs. Integral

A general observation is that differential approaches have an inherent noise amplifica-
tion, while integral approaches are more noise robust due to the inherent low-pass filtering
properties of the relevant integrals. The higher is the order of the differentials acting on
the data, the larger is the noise amplification. A comparison between a second-order
differential approach and an integral approach is shown for simulated three-dimensional
noisy data (SNR = 100, as defined in [94]) in Figure 2. It shows that integral methods are
in essence more noise robust and that typical noise reduction implementations such as
regularization do not overcome this disadvantage.

σ
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H-EPT︷ ︸︸ ︷

3-pt 7-pt

CSI-EPT︷ ︸︸ ︷
Standard Regularized

0

1.25

2.5
[S/m]

ε r

1

40

80
[-]

(a) (b) (c) (d) (e)

Figure 2. Direct differential method and forward integral method comparison on simulated three-
dimensional noisy data (SNR = 100) from a 7 T head coil. Methods are three-dimensional implemen-
tations without and with noise suppression in the form of using a larger differential kernel [32] or by
including multiplicative total variation regularization [73]. True model (a), Helmholtz-based EPT
with a 3-point kernel (b), Helmholtz-based EPT with a 7-point kernel (c), standard contrast source
inversion EPT (d) and regularized contrast source inversion EPT (e). Conductivity (top row) and
relative permittivity (bottom row).

7.1.2. Local vs. Global

A commonality among many approaches is that there appears to be a trade-off between
having an adverse noise effect in local methods due to higher-order derivatives (second
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order and up) acting on the data or having the bias effect of the EM field structure in
global methods. A comparison between two-dimensional implementations of local and
global approaches that assume knowledge of the complex transmit signal is shown for
simulated two-dimensional noiseless data in Figure 3. The reconstructions of the local
method H-EPT shows boundary errors due to assumed homogeneity of the underlying
tissue, but the method is accurate in regions which have locally spatially invariant tissue
properties. The reconstructions of the global methods (T-EPT, foIC-EPT and CSI-EPT) take
the inhomogeneity of the EPs into account, but suffer from a bias related to the low electric
field strength (low convective field). Additionally, global methods have the potential to
reach local minima in their optimization process.

σ
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[S/m]

ε r
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80
[-]

(a) (b) (c) (d) (e)

Figure 3. Local method and global methods comparison on simulated two-dimensional noiseless
data from a 7 T head coil. Methods are two-dimensional implementations. True model (a), Helmholtz-
based EPT (b), Transverse EPT (c), first-order Induced-Current EPT (d) and contrast source inversion
EPT (e). Conductivity (top row) and relative permittivity (bottom row).

Global methods allow for the inclusion of regularization in the optimization problem
which can be employed to correct for the bias, resolve local minima or improve noise
robustness.

7.1.3. Direct vs. Forward

A general observation is that direct methods are relatively fast, while forward methods
tend to be computational expensive and time consuming, especially those that require the
results of forward and/or inverse problems iteratively. Forward methods have yet to be
demonstrated to be clinically feasible. Forward methods, however, typically simultaneously
reconstruct additional field maps, such as the electric field strength which would be useful
for SAR computations.

7.2. Data Requirements

EPT approaches can also be categorized on which type of data they require, or what
kind of assumptions about the data are required. For each of the transmit field-based
methods discussed in the manuscript, data requirements are assigned in Table 2.

7.2.1. Measurable and Non-Measurable Data

For accurate reconstruction of the EPs, ideally measurements of all three components
of the B1 field would be possible. However, the z-component cannot be measured. Addi-
tionally, the x- and y-components cannot be acquired in a direct fashion, and determination
would require the absolute transmit field as well as the absolute receive field. The absolute
magnitude of the transmit field can be acquired in a direct fashion, while the absolute trans-
mit phase and absolute receive field can not. Measured phases are always a superposition
of the transmit and receive phase, and the magnitude of the receive field is always weighted
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by the proton-density. This data unavailability is one of the fundamental challenges that
makes EPT complicated.

EPT approaches that assume availability of the complex transmit field typically esti-
mate the absolute transmit phase by applying the transceive phase estimation (TPA), while
methods that incorporate absolute receive fields go hand-in-hand with homogeneity or
symmetry assumptions to eliminate the proton-density bias. To bypass these assumptions,
solutions are often sought by reformulating the problem in terms of only directly-available
field quantities. With regular RF coils, this comes down to formulating the inverse problem
in only magnitude data or (in combination with) transceive phase data. However, with
multi-element RF coil arrays, the acquisition of relative fields are possible, by dividing the
complex signal measured in an element by the signal obtained in a particular reference
element. This allows the derivation of the (gradient of the) transmit (and receive) phase,
as well as EPT formulations based on the relative phase, instead of absolute or transceive
phase, or formulations based on receive fields only. Additionally, this type of coil can
eliminate specific artifacts since common terms for the different channels can be eliminated.
However, the acquisition of multiple B̂+

1 fields requires lengthy scans which can compro-
mise patient comfort, throughput or SNR. Moreover, these multi-element RF coil elements
are not yet widely available in clinical settings. About 50% of clinical MR scanners have a
field strength of 1.5 T and have a body coil with a single transmit channel. About 45% of
clinical MR scanners have a field strength of 3 T, of which the older ones have the same
arrangement, and the newer one typically have two independent transmit channels that
can produce different degrees of elliptically polarized RF fields. High field scanners, such
as 7 T scanners, can have up to eight transmit channels with independent magnitude and
phase control; however, there are only about 100 of these worldwide available.

Integral methods often require knowledge of the incident electric and magnetic field
strength which are inaccessible with MRI. Typically, a reference scan from a phantom with
known EPs or a simulation setup is used for estimation of the incident fields. However,
since the incident fields are dependent on the loading of the coil, they are to a certain level
patient-specific. Patient-specific coil–subject interactions remain unknown and a source of
error.

7.2.2. Field/Object Structure

The inverse problem in EPT can be significantly simplified by assuming local homo-
geneity of the object. Methods that apply this local homogeneity assumption (LHA) are
most often used in clinical studies due to their simplicity and ease of implementation.
These methods however suffer from significant errors at tissue boundaries where the LHA
is violated, making them impractical in regions with small tissue structures. For larger
tissue structures, tissue segmentation can be used to improve boundary reconstructions.

The EPT problem can also be simplified by assuming an E-polarized field structure, i.e.,
assuming negligible (gradients of the) longitudinal component of the magnetic flux density,
sometimes in combination with the assumption of vanishing (gradients of the) transverse
components of the electric fields strength. This approximation is typically applied in the
transverse midplane of a birdcage coil, where they are relatively small [13].

7.3. State Of Development

One might select a method based on different criteria, for example based on the SNR
level, on the availability of multiple transmit or receive elements or incident fields, or
whether or not the region of interest contains a homogeneous medium, a low electric field
region or E-polarized fields. Due to the large number of EPT approaches with a large
variety in requirements, assumptions and complexity, and since the EPT field is relatively
new, most methods are not at the stage of clinical use yet (see Table 3). To facilitate
development, comparison and prototyping of EPT approaches, MATLAB code of the
approaches presented in Figures 2 and 3 is available upon request from the corresponding
author.
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Table 1. Approach description for the EPT approaches as described in this manuscript.

H-EPT SH-EPT LMT MDE-EPT G-EPT CR-EPT T-EPT foIC-EPT VBIM-EPT GMT CSI-EPT SA-EPT I-EPT

Differential (order) 3(2) 3(2) 3(2) 3(2) 3(2) 3(2) 3(1) 3(1) 7 7 7 3(3) 3(2)
Integral 7 7 7 3 7 7 7 3 3 3 3 7 7
Local 3 3 3 3 3 7 3 3 7 7 7 3 3
Global 7 7 7 7 3 3 3 3 3 3 3 7 7
Direct (backward) 3 3 3 3 3 3 3 3 7 7 7 3 3
Forward (indirect) 7 7 7 7 7 7 3 3 3 3 3 7 7

Table 2. Data requirements for the EPT approaches as described in this manuscript. Note that data requirements can be influenced by extensions or generalizations of the methods.

H-EPT SH-EPT LMT MDE-EPT G-EPT CR-EPT T-EPT foIC-EPT VBIM-EPT GMT CSI-EPT SA-EPT I-EPT

B̂1 term B̂+
1

∣∣B̂+
1

∣∣, ϕ̂+
∣∣B̂+

1

∣∣, ϕ̂±pq B̂+
1

∣∣B̂+
1

∣∣, ϕ̂+
pr B̂+

1 B̂+
1 B̂+

1 B̂+
1 B̂+

1 B̂+
1

∣∣B̂−1
∣∣, ϕ̂−pq B̂+

1 B̂−;∗
1

Multi-element array 7 7 3 3 3 7 7 7 7 7 7 3 7
Incident fields 7 7 7 7 7 7 7 3 3 3 3 7 7
Seed Points 7 7 7 7 3 7 7 7 7 7 7 7 7
∇η = 0 3 3 3 7 7 7 7 7 7 7 7 3 3

∇
∣∣B̂+

1

∣∣ = 0 7 3 7 7 7 7 7 7 7 7 7 7 7
∇ϕ̂+ = 0 7 3 7 7 7 7 7 7 7 7 7 7 7

∂x B̂z = 0 7 7 7 3 3 3 7 7 7 7 7 7 7

∂y B̂z = 0 7 7 7 3 3 3 7 7 7 7 7 7 7

∂z B̂z = 0 7 7 7 3 3 3 3 3 7 7 7 7 7

∂zÊx = 0 7 7 7 7 7 7 3 3 7 7 7 7 7

∂zÊy = 0 7 7 7 7 7 7 3 3 7 7 7 7 7

B̂+
1 = B̂−;∗

1 7 7 7 7 7 7 7 7 7 7 7 7 3

Table 3. Type of experiments performed for the EPT approaches as described in this manuscript. The table is constructed to the best of the authors knowledge. For references, see the main
text.

H-EPT SH-EPT LMT MDE-EPT G-EPT CR-EPT T-EPT foIC-EPT VBIM-EPT GMT CSI-EPT SA-EPT I-EPT

Simulation 3 3 3 3 3 3 3 3 3 3 3 3 3
Phantom 3 3 7 7 3 3 7 3 7 3 3 3 3
in vivo 3 3 7 7 3 7 7 7 7 7 7 7 3
Clinical 7 3 7 7 7 7 7 7 7 7 7 7 7
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Abbreviations
The following abbreviations are used in this manuscript:

CR-EPT Convection–reaction EPT
CSI-EPT Contrast source inversion EPT
DL-EPT Deep-learning EPT
ECG Electrocardiography
EEG Electroencephalography
EM Electromagnetic
EP Electrical property
EPT Electrical properties tomography
foIC-EPT First-order induced-current EPT
G-EPT Gradient-based EPT
GMT Global Maxwell tomography
H-EPT Helmholtz-based EPT
I-EPT Image-based EPT
LMT Local Maxwell tomography
MDE-EPT Modified dual-excitation EPT
MR Magnetic resonance
MRI Magnetic resonance imaging
P-CM Poisson-based conductivity mapping
PCR-CM Phase-only convection–reaction conductivity mapping
RF Radio Frequency
SA-EPT Single-acquisition EPT
SH-EPT Simplified H-EPT
SNR Signal-to-noise ratio
T-EPT Transverse EPT
VBIM-EPT Variational Born iterative method EPT
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