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Abstract. The starting point in quantitative susceptibility mapping (QSM) is a

theoretical model that is used to map susceptibility distributions from magnetic field

measurements. It requires regularisation techniques to avoid artefacts in the resulting

image. The underlying problem is that the model was developed by starting with the

so-called Lorentz sphere on a microscopic scale. After averaging over a macroscopic

sample, it is assumed that the magnetic flux density vanishes in the center of the

sample. For the macroscopic problem of a homogeneous sphere in a uniform field, we

show that at the surface the normal component of the flux density is not continuous,

which contradicts Maxwell’s macroscopic theory. In this paper, we propose a model

consistent with macroscopic magnetic field theory, in which we image magnetisation

rather than susceptibility. This model is well-posed. Some simple but representative

numerical examples show that it allows for high-resolution images.
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1. Introduction

In Quantitative Susceptibility Mapping or QSM, the objective is to image the

susceptibility profile within a part of the human body [2], [4], [13], [16]. Its

development goes back more than 20 years ago [15] and QSM finds many applications in

neuroradiology and neuroimaging, such as MR venography, oxygen saturation imaging,

traumatic brain injury imaging, multiple sclerosis, and brain tumor imaging [11].

As is well known, the magnetic susceptibility is a constitutive parameter that

relates the magnetisation M to the magnetic field H (to avoid confusion, we refer

to H as the magnetic field and to B as the magnetic flux density). The spatial

domain data model that is used in QSM to retrieve this constitutive parameter is

obtained by starting from the classic field expression of a magnetic dipole [6] and

taking the microscopic Lorentz correction into account [8]. The model can also be

formulated in the spatial spectral domain (see [20], for example). In either case, the
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QSM problem of retrieving the susceptibility from magnetic field data is ill-posed and

requires regularisation [9]. A mathematical analysis of the QSM model, the effects of

particular regularisation strategies, and a discussion on the causes of streaking artefacts

in reconstructed susceptibility maps are given in [1].

In the present paper, we focus on the fundamental QSM model and show that

within this model the boundary condition for the magnetic flux density is violated.

Specifically, we show that the normal component of the magnetic flux density actually

jumps across a source-free interface, where the magnetisation exhibits a jump. Clearly,

this is not in accordance with Maxwell’s field theory.

Furthermore, in contrast to QSM, we propose to image the magnetisation of tissue

rather than its susceptibility. We call this Quantitative Magnetisation Mapping (QMM)

and we consider this mapping problem in the spatial domain. Similar to QSM, we assume

that only scalar magnetic field data in the direction of the background field (usually the

z-direction) is available. We show that in the QMM model the boundary conditions for

the magnetic field H and magnetic flux density B are not violated. Moreover, we show

that the QMM data operator is actually a shifted version of the QSM data operator and

that the ill-posedness of the QSM model does not carry over to the QMM model.

Having a tissue magnetisation map available from QMM, the corresponding

magnetic field can be determined. In case a model for the susceptibility function is

available from microscopic or quantum mechanical considerations, the susceptibility

function can be determined, because the magnetisation and the magnetic field are

known. The QMM model does not depend on the particular microscopic or quantum

mechanical susceptibility model that it used, since it reconstructs the macroscopic

magnetisation from which the corresponding magnetic field can be computed. The

susceptibility model is only required to relate the magnetisation to the magnetic field.

Figure 1 gives a schematic overview of QSM and QMM, illustrating the difference

between the two approaches.

This paper is organised as follows. In section 2, we briefly consider the basic QSM

model in the spatial domain and show a number of reconstruction results based on

simulated and analytical data. These results verify that the QSM operator is indeed

ill-posed and regularisation is required to obtain a unique and stable approximate

solution. Furthermore, we show that within the QSM model, the boundary condition

for the normal component of the magnetic flux density is not satisfied. Subsequently,

in section 3, we present our QMM approach and demonstrate that within the QMM

model the boundary conditions for the magnetic field H and magnetic flux density

B are satisfied at an interface between two media with a different magnetisation. In

section 4, numerical experiments demonstrating the performance of QMM are presented

as well. In addition, we discuss how a susceptibility function of a particular material or

tissue type can be reconstructed in QMM. Finally, in section 5, we compare the QSM

and QMM operators and show how they are connected. The conclusions can be found

in section 6.
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Figure 1. Schematic overview of the QSM procedure (left column) and the QMM

procedure (right column).

2. Quantitative susceptibility mapping without regularisation

For each location with position vector r = (x, y, z), the mathematical problem in QSM

is to solve the susceptibility χ(r) from the integral equation [20]

∆B(r) = −
∫

r′∈D
d(r−r′)χ(r′) dV. (1)

Here, D ∈ R3 is the domain where χ(r) 6= 0. Further, the integral −
∫

is a Cauchy principal

value integral and ∆B is measured magnetic flux density data due to the presence of a

nonzero susceptibility χ. Finally, d is the so-called dipole kernel, which is given by

d(r−r′) =
3(z−z′)2 − |r−r′|2

|r−r′|5
=

∂2

∂z2
1

|r−r′|
, (2)

for r 6= r′. If we substitute the right-hand side of (2) into (1) and interchange the order

of integration and differentiation, we obtain

∆B(r) =
∂2

∂z2
−
∫

r′∈D

1

|r−r′|
χ(r′) dV. (3)

Including the integration point r = r′ then leads to the integral equation

∆B(r) =
1

3
χ(r) +

∂2

∂z2

∫
r′∈D

1

|r−r′|
χ(r′) dV, (4)
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where we have used that the principal value of the integral is equal to −1
3
χ(r). Note

that in the spectral domain with spectral vector k = (kx, ky, kz), this equation becomes

algebraic, cf. [20],

∆̃B(k) =

[
1

3
− k2z

k · k

]
χ̃(k), (5)

where ∆̃B and χ̃ are the spectral domain counterparts of ∆B and χ, which is clearly

not invertible for all k ∈ R3 satisfying k2z = 1
3
k · k.

In the following section, our goal is to check the inversion of (4) in the spatial

domain. Specifically, we first solve a forward problem by computing data ∆B from QSM

equation (4) for a known susceptibility χ. Subsequently, we take this data as input and

try to retrieve the susceptibility again using the same QSM equation. Although we then

commit an “inverse crime” (see p. 154 of Colton and Kress [3]), this does allow us to

check how well the inverted susceptibility reproduces the input of the forward problem.

Finally, we also consider the case where we have analytic data for a homogeneous sphere

and use this data to reconstruct the susceptibility of the sphere again using the QSM

equation (4).

2.1. Iterative inversion based on circular convolutions

Equation (4) is a convolution type integral equation for the unknown magnetisation.

Zwamborn and Van den Berg [21] have shown that such an integral equation can

efficiently be solved using a weak form formulation together with the so-called

iterative CGFFT method. After a spatial discretisation procedure, the discrete spatial

convolution is computed as a circular convolution on an extended grid with zero padding.

Although sampling in each Cartesian direction is then doubled, the discrete convolution

is computed exactly. Here we follow a similar approach, but instead of using the

conjugate gradient method, we use BiCGSTAB [19] as an iterative solver, since it has

been shown that this method typically exhibits fast convergence for well-conditioned

convolution type operators [18]. We realise, of course, that the QSM system is severely

ill-conditioned, but for a fair comparison of QSM and QMM, we still use the BiCGSTAB

method in QSM. In the discretized formulation, we use a regular grid of 128×128×128

nonoverlapping subdomains (voxels) with a sampling width of 0.002 m. On each

subdomain we assume that the susceptibility χ is constant, and we replace the singular

Green function 1/4π|r−r′| by its spherical mean (weak form) [18]. In addition, we keep

the ∂2/∂z2 operator in front of the integral over D and replace it by a finite-difference

operator. The circular convolution is computed using 256 × 256 × 256 FFT samples

and a fixed number of 200 iterations is used in the BiCGSTAB method, which for the

current QSM problem is typically sufficient to obtain accurate field or susceptibility

approximations provided the BiCGSTAB-method converges, of course.
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2.2. Some simple test cases

First, we consider a discretised homogeneous sphere with radius a = 10 cm and

susceptibility χ = 1, and compute synthetic data using (4). Subsequently, we attempt to

retrieve the susceptibility from this data again using (4). In figure 2, we show the exact

model images χ (left column), the reconstructed images χmap (middle column), and their

difference χ−χmap (right column). In the first row we present the susceptibilities in the

cross-sectional plane z = 0. Here, the discrepancies between the exact and reconstructed

susceptibility are around 10%. In the second row we present the corresponding values

at the cross-section x = 0. These differences are enlarged by the presence of the

∂2/∂z2 operator in the z-direction. In the caption of the figure, we also present the

mean error over the 3D domain D, defined as mean error = ‖χ−χmap‖D / ‖χ‖D, where

‖ · ‖D is the Euclidean norm on D. We note that increasing the number of BiCGSTAB

iterations essentially does not lead to any further improvements in the reconstructions.

We can conclude that even in an “inverse crime” situation, application of the standard

QSM method in the spatial domain leads to reconstruction artefacts, which are also

documented in the QSM literature (see e.g. [1]).

Second, we again consider a homogeneous sphere, but this time a defect is present

inside the sphere. The defect is modeled as a smooth ellipsoid, where the susceptibility

is given by χdefect(r) = 1+exp(−x2/p2x−y2/p2y−z2/p2z), with px = 0.03, py = 0.006, and

pz = 0.02. The imaging results are presented in figure 3. Similar artefacts are detected,
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Figure 2. QSM method using numerical data: Exact susceptibility χ (left column),

reconstructed susceptibility χmap (middle column), and the difference χ−χmap (right

column). The mean error is 16%.
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Figure 3. QSM method using numerical data: Exact susceptibility χ (left column),

reconstructed susceptibility χmap (middle column), and difference χ−χmap (right

column). The mean error is 6.7%.
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Figure 4. QSM method using analytical data: Exact susceptibility χ (left column),

reconstructed susceptibility χmap (middle column), and difference χ−χmap (right

column). The mean error is 142%.
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but the reconstructed defect is clearly visible, although the shape is slightly distorted.

As a final test case, we use analytical field data for the homogeneous sphere. In

particular, for a sphere with radius a and a susceptibility χ = 1, equation (4) evaluates

to (see (16) of [14], and Appendix A)

∆B(r) =
a3

3

3z2 − |r|2

|r|5
, for |r| > a and ∆B(r) = 0, for |r| < a. (6)

Then, for these analytical data, the iterative inversion of the susceptibility from (4)

diverges. The resultant image after 200 iterations is shown in figure 4. This confirms

that the inversion in the spatial domain is ill-posed as well. In this regard, we mention

that the second equation of (6) shows that for a sphere, any constant susceptibility is

in the nullspace of the QSM operator

Aχ = −
∫

r′∈D
d(r− r′)χ(r′) dV (7)

for r ∈ D. Furthermore, Choi et al [1] stated that the solution of the QMS problem is a

linear superposition of the actual susceptibility corresponding to the compatible portion

of the data plus artefacts generated by the compatibility violators. They concluded that

proper exclusion of data compatibility violations may be necessary. An obvious culprit

in this case is that ∆B(r) in (6) jumps at the poles of the sphere (|r| = a and z = ±a in

(6)), which is contrary to macroscopic Maxwell theory. In absence of magnetic surface

sources, the normal component of the magnetic flux density at an interface should be

continuous.

In this paper we propose a different inversion strategy. Instead of mapping the

susceptibility, we propose to reconstruct the magnetisation within the domain of interest

from a knowledge of magnetic flux density. In the next section, we start with classical

Maxwell theory and formulate this reconstruction approach.

3. Quantitative magnetisation mapping

In a source-free smoothly varying medium, a static magnetic field satisfies the

homogeneous Maxwell equations

∇×H = 0 and ∇ ·B = 0, (8)

with magnetic field H and magnetic flux density B. In case the medium parameters

are not smooth and jump across a source-free interface, these equations have to be

supplemented by boundary conditions. In particular, the tangential components of H

and the normal components of B must continuous upon crossing the interface.

The relation between the magnetic flux density and the magnetic field is given by

the relation

B = µ0H + µ0M, (9)

where µ0 is the permeability of vacuum. The magnetisation is related to the magnetic

field, that is, M = M(H) and a constitutive relation describes how exactly M depends
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on the magnetic field H. This relation obviously depends on the magnetic properties of

the medium, but we leave this dependence unspecified for the moment.

We start by defining the background field as the field that is present when

magnetisation effects are ignored. This field is denoted by {Hb(r),Bb(r)} and for this

field we have the constitutive relation Bb = µ0H
b. Subsequently, we introduce the total

field as the field that is present in case magnetisation effects are taken into account. At

each location the total field is denoted by {H(r),B(r)}. In case M does not vanish on a

bounded domain D, the difference between the total magnetic field and the background

field is given by the integral equation, see e.g. [5],

H(r)−Hb(r) = ∇∇ ·
∫
r′∈D

1

4π|r− r′|
M(r′) dV, (10)

which holds for r ∈ R3. If the data [H(r) −Hb(r)] is known for r ∈ D (that is, data

inside the domain D is known), Friedman [5] has proven that in the Hilbert space of

vector functions L2(D), a unique solution for the magnetisation M exists. We note that

at this point the microscopic constitutive model is not important.

To check the continuity of the tangential components of the magnetic field at an

interface where the magnetisation jumps, we apply the curl-operator to this integral

equation. We observe that ∇ × H = ∇ × Hb, since the curl of the gradient term

vanishes on either side of the interface. Hence, at an interface with normal vector ν,

the tangential components of the total magnetic field ν ×H are continuous, since the

tangential components of the background magnetic field ν ×Hb are continuous.

In QSM practice, magnetic flux densities are measured instead of magnetic field

values. We therefore rewrite (10) in terms of the magnetic flux density. To this end,

we multiply both sides of (10) by µ0 and use relation (9) to arrive at the integral

representation

B(r)−Bb(r) = µ0M(r) + µ0∇∇ ·
∫
r′∈D

1

4π|r− r′|
M(r′) dV, (11)

which holds for r ∈ R3. For known data [B−Bb] in D, (11) is an integral equation for

the unknown magnetisation M in D. Since (9) is a linear relation and (10) has a unique

solution, there exist a unique solution of (11).

To check the continuity of the normal components of the magnetic flux density, we

use the relations

∇∇ · M(r′)

4π|r− r′|
= ∇×

[
∇× M(r′)

4π|r− r′|

]
+ ∇2 M(r′)

4π|r− r′|
(12)

and ∇2(4π|r − r′|)−1 = −δ(r − r′) with δ the Dirac function. With the help of these

relations, the integral representations for the magnetic flux density can also be written

as

B(r)−Bb(r) = µ0∇×
[
∇×

∫
r′∈D

1

4π|r− r′|
M(r′) dV

]
. (13)

At an interface (with normal vector ν) where the magnetisation jumps, continuity of

the normal component of B can now be verified by applying the div-operator to the
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representation of (13) for observation points located on either side of the interface.

This gives ∇ · B = ∇ · Bb, since the divergence of the curl vanishes at both sides

of the interface. From this observation, we conclude that at an interface where the

magnetisation M jumps, the normal component of the known magnetic flux density

ν · B is continuous, since the normal component of the background field ν · Bb is

continuous.

Finally, in QSM only the z-component of ∆B is known through measurements,

while polarisation effects are neglected. In our formulation we take this into account

as well, and rewrite the magnetisation as M = M iz. Ignoring polarisation effects, the

vector integral representations of (10) and (11) then simplify to the scalar equations

∆H(r) =
∂2

∂z2

∫
r′∈D

1

4π|r− r′|
M(r′) dV (14)

and

∆B(r) = M(r) +
∂2

∂z2

∫
r′∈D

1

4π|r− r′|
M(r′) dV, (15)

in which ∆H = Hz(r) − Hb
z (r) and ∆B = [Bz − Bb

z ]/µ0. Note that the definition of

∆B is slightly different from the one defined in the QSM model. In Appendix A we

show that for the special case of a homogeneous sphere, the tangential component of the

magnetic field and the normal component of magnetic flux density are indeed continuous

across the surface of the sphere when the above data models are used. Our objective

is now to reconstruct the magnetisation M from knowledge of ∆B and we refer to this

inverse problem as quantitative magnetisation mapping or QMM.

3.1. Some simple test cases

In this section, we consider the same test cases as discussed for the QSM model, but

instead of using QSM equation (4), we now consider the QMM equation (15). Again,

we use the BiCGSTAB method to solve the latter equation.

First, we consider the discretised homogeneous sphere with radius a = 10 cm

and magnetisation M = 1, and calculate numerically synthetic data using (15).

Subsequently, we use this data and the same model (15) to retrieve the magnetisation.

In this case, only 13 iterations are needed to reach an error criterion of 10−4. Per

iteration, the computation time on a Dell Precision Tower 5810 (Single core, 3.5 GHz,

64 GB) amounts to 1.1 second. The results are shown in figure 5. In the caption

of the figure, we also present the mean error over the 3D domain D, defined as

mean error = ‖M−Mmap‖D / ‖M‖D. We obtain almost perfect images with a mean

error of 0.3%. Comparing figures (2) and (5), we observe that the discrepancies in

the two reconstructions have a different structure. The discrepancies in QMM are

also much smaller than in QSM and are not even visible on the scale of the images

of the reconstructed magnetisation. Furthermore, the QMM reconstruction errors are

somewhat larger in the x-plane than in the z-plane and are visible as vertical lines due
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Figure 5. QMM method using numerical data: Exact magnetisation M (left column),

reconstructed magnetisationMmap (middle column), and the differenceM−Mmap (right

column). The mean error is 0.3%.

to the finite difference implementation of the ∂2/∂z2 operator. Increasing the number

of BiCGSTAB iterations from 13 to 20, the mean error is reduced further to 0.03%.

Second, we consider the homogeneous sphere with the spheroidal defect. The

imaging results are presented in figure 6. Again, these results were obtained within

13 iterations and the mean error did not change, which confirms our expectation that

the resolution achieved is the same over the whole observation domain.

Third, we use the analytical data for the homogeneous sphere. In contrast to the

divergent results of figure 4, for an error criterion of 10−4, the BiCGSTAB method

converges within 13 iterations. The results are shown in figure 7. Here, errors of half

the maximum value of the model magnetisation are visible, but only at the interface

of the sphere. The method shows the mismatch between the stair-case approximation

and the exact spherical boundary. These differences are magnified by the presence of

the ∂2/∂z2 operator. We further note that increasing the number of iterations reduces

the residual error in the equation in question, but the mean error between M and Mmap

does not significantly decrease. We also remark that, in this example, the jump in

the magnetisation is large compared to magnetisation changes encountered in practice.

For smaller magnetisation variations, the finite difference approximation of the ∂2/∂z2

operator is typically much better.

Our final example was not considered before and consists of a small sphere and

a rectangular shape with smooth edges embedded in a larger sphere as illustrated in

figure 8. The distance between the small sphere and the rectangular shape is equal to
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Figure 6. QMM method using numerical data: Exact magnetisation M (left column),

reconstructed magnetisation Mmap (middle column), and difference M−Mmap (right

column). The mean error is 0.3%.
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Figure 7. QMM method using analytical data: Exact magnetisation M (left column),

reconstructed magnetisation Mmap (middle column), and difference M−Mmap (right

column). The mean error is 7%.
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Figure 8. QMM method using numerical data: Exact magnetisation M (left column),

reconstructed magnetisation Mmap (middle column), and difference M−Mmap (right

column). The mean error is 0.3%.

the sampling width of 2 mm. The reconstructed magnetisation is shown in the middle

column of figure 8 and the difference between the exact and reconstructed magnetisation

is shown in the third column. We observe that without noise and other modelling errors,

QMM is able to provide high-resolution reconstructions. Reducing the sample width

results in reconstructions with an even higher resolution, although at the expense of

increasing computer memory and computation time.

4. Constitutive relation

As soon as the magnetisation M = M iz has been determined, the magnetic field H can

be calculated from (10) and the constitutive parameter of the material (susceptibility)

can be estimated by minimising some norm of the difference between M and H on the

domain D. For an isotropic medium, the constitutive relation M = χH, with χ the

susceptibility, can only be satisfied when H = Hziz. Fortunately, the magnetisation in

QSM practice is much smaller than the background magnetic field, and one can make

the approximation H ≈ Hb
z iz. Assuming that Hb

z 6= 0, the susceptibility can then be

obtained as

χ(r) = M(r)/Hb
z (r). (16)

In principle, this is the effective susceptibility at the observation point r. When detailed

information on a microscopic scale is desired, the constitutive relation of the material
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or tissue is required. This relation describes the response of the material to the local

magnetic field. Strictly speaking, finding such a relation requires a quantum mechanical

treatment and after averaging over a suitable domain, the continuum approximation of

M(r) at the observation point r is obtained. In other words, a priori knowledge about

tissue is required for inversion of a constitutive model. The question that remains is

whether a priori knowledge of the microscopic model is required for medical diagnostics,

and if so, which model should be used for a certain material or tissue type.

5. Comparison of the QSM and QMM operator equations

In QSM, the basic imaging equation can be written as

Aϕ = f, (17)

where ϕ is the unknown susceptibility χ, f is the data ∆B of QSM, and A is the QSM

operator given by (7). Finding ϕ from knowledge of f in D is an ill-posed problem

and requires regularisation [7]. Examples of regularisation approaches are Tikhonov

regularisation [17], total variation minimisation [12], or regularisation by analytical

continuation [10].

In terms of operator A, the QMM equation of interest is given by(
2

3
I + A

)
ϕ = f, (18)

where this time ϕ is the magnetisation M and f is the data ∆B of QMM. We observe

that the QMM operator 2
3
I + A is actually a shifted version of the QSM operator with

a shift given by the scaled identity operator 2
3
I. The ill-posed nature of QSM can be

traced back to the underlying physical model in which Lorentz correction annihilates

this shift and, loosely speaking, regularisation in QSM can be seen as an attempt to

restore the shift. Since such an approach may introduce regularisation artefacts and is

not necessary in QMM, we propose magnetisation imaging as an alternative to QSM.

6. Conclusions

It is well known that in QSM the problem of retrieving the susceptibility from knowledge

of the (z-component of the) magnetic flux density inside the domain of interest is an

ill-posed problem. In this paper we have shown that, in addition to this ill-posedness,

the magnetic flux density within the QSM model also does not satisfy the appropriate

boundary condition that should hold at an interface between two media with a different

magnetisation.

To avoid some of the difficulties associated with QSM, we have proposed an imaging

procedure that provides maps of the magnetisation instead of the susceptibility within a

region of interest. We call this imaging procedure quantitative magnetisation mapping or

QMM and we have shown that within the QMM model, the boundary conditions at the

interface between two different magnetic media for the magnetic field H and magnetic
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flux density B are satisfied. Moreover, a comparison of QMM and QSM shows that the

QMM operator is actually a shifted version of the QSM operator. More precisely, the

operator of QSM is an integral operator of the first kind, while the QMM operator is

an integral operator of the second kind [7]. Numerical experiments for elementary

three-dimensional structures have also been presented and show that in QMM the

magnetisation can be retrieved in just a few iterations of an iterative solver such as

BiCGSTAB. Furthermore, our simple imaging examples exhibit very high resolution

over the whole window of observation, which may have significant consequences for

medical diagnostics.

With a magnetisation map M at our disposal, the corresponding magnetic field H

can be determined from the integral representation that relates the magnetic field to

the magnetisation. Subsequently, if a parametric model M(H) is known from either

microscopic or quantum mechanical considerations, then the model parameters can be

determined by matching the model to the reconstructed magnetisation. Obviously, the

mapping procedure in QMM does not depend on a particular material or tissue model,

since it directly reconstructs the magnetisation from measured field data.

Finally, we mention that in this paper we have focused on the basic QSM and

QMM equations and we used simple 3D structures. We used either simulated or analytic

data sets to demonstrate some of the fundamental properties of the QSM and QMM

operators. In practice, however, we have to deal with measured data sets containing

noise and other (background) field perturbations. The performance of QMM on such

data sets will be investigated in future work.
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Appendix A. Homogeneous sphere in a uniform field

To check the continuity of the tangential magnetic field and the normal magnetic flux

density, we consider the special case of a homogeneous sphere that occupies the spherical

domain B with radius a and center at the origin r = 0. We assume that, inside the

sphere, the susceptibility χ is constant in the QSM model, and the magnetisation M is

constant in the QMM model. For both models, we use the relation

K(r) =
∂2

∂z2

∫
r′∈B

1

4π|r− r′|
dV =


a3

3

3z2 − |r|2

|r|5
, for |r| > a,

−1

3
, for |r| < a.

(A.1)

At the poles of the sphere, |r| = a and z = ± a in (A.1), and K is discontinuous in the

radial direction. When we approach the poles, the limiting values of K are

lim
|r| ↓ a
K(r) =

2

3
and lim

|r| ↑ a
K(r) = −1

3
. (A.2)

At the equator of the sphere, |r| = a and z = 0 in (A.1), and K is continuous in the

radial direction, where K = −1/3.

For the QSM model, we start with (4). Here, the magnetic flux density is obtained as

∆B = K(r)χ, for |r| > a, and ∆B = 0, for |r| < a. (A.3)

At the poles of the sphere, the limiting values of the magnetic flux density are

lim
|r| ↓ a

∆B(r) =
2

3
χ and lim

|r| ↑ a
∆B(r) = 0. (A.4)

At these pole locations, ∆B is pointing in a direction normal to the sphere, but it is

not continuous. The jumps amounts to 2χ/3. This contradicts the macroscopic theory

of Maxwell’s equations.

For the QMM model, we start with (14) and (15). The magnetic field is obtained as

∆H(r) = K(r)M, for |r| > a, and ∆H(r) = K(r)M, for |r| < a. (A.5)

At the equator of the sphere, K(r) is continuous in radial direction and we observe that

the tangential component of the magnetic field is indeed continuous. Furthermore the

magnetic flux density is given by

∆B(r) = K(r)M, for |r| > a, and ∆B(r) = M +K(r)M, for |r| < a. (A.6)

At the poles of the sphere, the limiting values of the magnetic flux density are

lim
|r| ↓ a

∆B(r) =
2

3
M and lim

|r| ↑ a
∆B(r) =

2

3
M, (A.7)

which shows that the normal component of the magnetic flux density is continuous as

well. Obviously, the QMM model is compatible with the macroscopic Maxwell equations.
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