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Abstract—In this paper, we present an efficient dedi-
cated electrical properties tomography algorithm (called
first-order current density EPT) that exploits the particular
radio frequency field structure, which is present in the
midplane of a birdcage coil, to reconstruct conductivity
and permittivity maps in this plane from B̂+

1 data. The
algorithm consists of a current density and an electrical
properties step. In the current density reconstruction step,
the induced currents in the midplane are determined by
acting with a specific first-order differentiation operator
on the B̂+

1 data. In the electrical properties step, we
first determine the electric field strength by solving a
particular integral equation, and subsequently determine
conductivity and permittivity maps from the constitutive
relations. The performance of the algorithm is illustrated
by presenting reconstructions of a human brain model
based on simulated (noise corrupted) data and of a
known phantom model based on experimental data. The
method manages to reconstruct conductivity profiles with-
out model related boundary artefacts and is also more
robust to noise because only first-order differencing of
the data is required as opposed to second-order data
differencing in Helmholtz-based approaches. Moreover,
reconstructions can be performed in less than a second,
allowing for essentially real-time electrical properties
mapping.

Index Terms—Magnetic resonance imaging, electrical
properties tomography, dielectric tissue properties, B̂+

1

field

I. INTRODUCTION

The main objective of Electrical Properties Tomog-
raphy (EPT) is to retrieve the conductivity and
permittivity of tissue from B+

1 data as measured by

Submitted 5th Feb, 2018 to IEEE Transactions on Computational
Imaging

P.S. Fuchs and R.F. Remis are with the Circuits and Systems group
at the Delft University of Technology, Mekelweg 4, 2628CD Delft,
The Netherlands. Stefano Mandija, P.R.S. Stijnman and C.A.T. van
den Berg are with Centre of Image Sciences at the University Medical
Center Utrecht, Utrecht, The Netherlands. W.M. Brink is with the
C.J. Gorter Center for High Field MRI at the Leiden University
Medical Center, Leiden, The Netherlands. (correspondence e-mail:
P.S.Fuchs@tudelft.nl)

an MRI scanner. Knowledge about these parameters
is extremely important in a wide variety of clinical
applications. The conductivity is of potential impor-
tance as an endogenous biomarker in oncology [1]
and acute stroke imaging [2], [3], for example, and
the conductivity along with the electric field strength
is also required to determine the Specific Absorption
Rate (SAR) inside the human body [4] – [6].

Many different EPT methods have been devel-
oped over the years ranging from local differential
equation approaches (see [7] – [12], for example) to
methods that use global integral Green’s tensor field
representations in an optimization setting to find
the dielectric tissue maps at the Larmor frequency
of operation [13], [14]. The local differential-based
EPT methods are direct noniterative reconstruction
methods, often based on the Helmholtz equation
for the radio frequency (RF) magnetic field. Stan-
dard Helmholtz-based EPT (MR-EPT) [8]requires a
constant dielectric profile and second-order spatial
differentiation of the data. Care must be taken
when implementing this differentiation operation to
mitigate noise amplification [3], [15], [16]. On the
other hand, in the global integral-based approach
the dielectric tissue parameters are determined in
an iterative manner by minimizing an objective
function. Here, integral operators act on the data,
which makes the method more robust to noise. A
disadvantage of the global approach is that it is more
complex to implement than a direct method and
its computational costs are generally much higher.
However, strongly inhomogeneous tissue profiles
are easily incorporated in a global method and
regularization can be added to the objective function
to further suppress the effects of noise.

A number of EPT methods have been devel-
oped for two-dimensional datasets [13], [16], [19],
whereas there are also methods that work on fully
three-dimensional B̂+

1 data sets [14], [20]. We shall
focus on two-dimensional measurements, as it has
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been shown [21] that the RF field is essentially E-
polarized in the midplane of a birdcage coil, mean-
ing that the electric field strength is mainly directed
in the longitudinal z-direction, while the magnetic
field strength has transverse x- and y-components
only. In this paper, we present a dedicated EPT
method that exploits this particular field structure.

In particular, in our first-order induced current
EPT method (foIC-EPT) we exploit the structure of
the RF field and obtain the induced current density
by acting with a particular first-order differential
operator on collected B̂+

1 data. Since this operation
provides us with an image of the currents that are
induced in tissue that is present in the (mid)plane of
interest, we call this step the induced current recon-
struction step of our method. We note that current
density imaging in the context of the Helmholtz
equation has also been investigated in [22], for
example.

In the second electrical properties step of our
method, the conductivity and permittivity maps are
reconstructed by first computing the electric field
strength and subsequently employing the constitu-
tive relations between the induced currents and the
electric field strength. Our foIC-EPT can therefore
be seen as a hybrid method, in which a local
differentiation operator is used to obtain the currents
and a global integral operator is used to obtain the
electric field.

Similar to most of the EPT approaches mentioned
above, the foIC-EPT method relies on the transceive
phase approximation [17] to obtain conductivity
and permittivity reconstructions from B̂+

1 data. The
effects of this approximation on the reconstructions
is presently not fully understood and application of
this approximation may result in reconstruction er-
rors. A possible reconstruction strategy for iterative
volume-integral EPT methods that overcomes this
drawback has been reported in [18], however.

Finally, we note that foIC-EPT is a dedicated EPT
method, in the sense that it exploits the particular
field structure that is present in the midplane of a
birdcage coil. This makes the method very efficient
and it produces images of the induced current den-
sity and conductivity and permittivity maps with
no boundary artefacts related to any underlying
assumptions on the electrical property distribution
and essentially in real time even on a standard PC
or laptop (e.g. on an Intel i5 PC with 8Gb of RAM).

II. INDUCED CURRENT DENSITY IMAGING

In this section, we describe the induced current step
of our EPT algorithm. This step is based on the
observation presented in [21] that the RF field in
the midplane of a birdcage coil is essentially E-
polarized. We therefore follow [13], [19], and [21]
and consider E-polarized RF fields governed by the
Maxwell equations

−∂xB̂y + ∂yB̂x + µ0Ĵ
ind
z = 0, (1)

∂yÊz + jωB̂x = 0, (2)

and

−∂xÊz + jωB̂y = 0, (3)

where Ĵ ind
z = (σ + jωε)Êz is the induced current

density. This density can be imaged in a straight-
forward manner from available B̂+

1 data where B̂+
1

is given by

B̂+
1 =

B̂x + jB̂y

2
. (4)

Specifically, introducing the operator

∂− = ∂x − j∂y, (5)

we have

∂−B̂+
1 =

1

2

[
∂xB̂x + ∂yB̂y − j

(
∂yB̂x − ∂xB̂y

)]
(6)

and using equation (1) and ∂xB̂x + ∂yB̂y = 0, we
arrive at

Ĵ ind
z =

2

jµ0

∂−B̂+
1 . (7)

This is our basic imaging formula. Since it is based
on the first-order Maxwell system, only first-order
differentiation operators act on B̂+

1 data and since
there are no additional (higher-order) differentia-
tion operations in the following second step of
our method (see Section III), the entire method
only contains first-order differentiation operators,
as opposed to EPT techniques which are based
on second-order (Helmholtz) equations, where a
second-order differentiation operator (Laplacian) is
applied to the data. The above imaging formula is
therefore less sensitive to perturbations or noise and,
since the differentiation kernel is smaller, boundary
artefacts related to the discrete nature of the finite
differencing kernel are also less severe compared
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with second-order approaches. Lastly, no assump-
tions on the electrical properties have been made
in the definition of the induced currents, whereas
Helmholtz based methods have to assume constant
dielectric parameters.

III. ELECTRICAL PROPERTIES
RECONSTRUCTION

Up to this point, we have addressed imaging of the
induced current density inside the human body. This
density depends on the external sources through
the fields that are excited by these sources. The
conductivity and permittivity parameters are intrin-
sic properties of tissue that do not depend on the
external sources. To retrieve the tissue parameters,
we therefore have to take the presence of the
external sources into account. To this end, we set
up a volume-integral scattering formalism (see, for
example, [23] – [25]) and define the incident RF
field {B̂inc

x , B̂inc
y , Ê inc

z } as the field that is present
in an empty (air-filled) birdcage coil. The scattered
magnetic field {B̂sc

x , B̂
sc
y , Ê

sc
z } is introduced as the

difference between the total field and the incident
field. Specifically,

{B̂sc
x , B̂

sc
y , Ê

sc
z } = {B̂x, B̂y, Êz}

− {B̂inc
x , B̂inc

y , Ê inc
z } (8)

and the scattered electric field due to the presence of
the body is given by (see [23] – [25], for example)

Êsc
z (ρ) = jωµ0

∫
ρ′∈D
Ĝ(ρ− ρ′) Ĵ sc

z (ρ
′) dV. (9)

This integral representation holds for all observation
points in the midplane of the body coil. Further-
more,

Ĝ(ρ) = − j
4
H

(2)
0 (k0|ρ|) (10)

is the Green’s function of the homogeneous back-
ground medium (air) with k0 = ω/c0 its correspond-
ing wave number and H

(2)
0 the Hankel function of

the second kind and order zero. Finally, Ĵ sc
z is the

scattering source given by

Ĵ sc
z =

{
Ĵ ind
z − jωε0Êz for ρ ∈ D,

0 for ρ /∈ D,
(11)

where D is the body domain. Substituting this scat-
tering source (Eq. (11)) in the integral representation
of Eq. (9), using the imaging equation (7), and

the definition of the scattered electric field strength
(Êsc

z = Êz − Êinc
z ), we find that the electric field

satisfies

Êz(ρ) + k20

∫
ρ′∈D
Ĝ(ρ− ρ′) Êz(ρ

′) dV = f̂(ρ), (12)

where the right-hand side is given by

f̂(ρ) = Ê inc
z (ρ)− 2ω

∫
ρ′∈D
Ĝ(ρ− ρ′) ∂−B̂+

1 (ρ
′) dV

(13)

and ρ ∈ D. Observe that the right-hand side f̂ of
Eq. (12) is known and with ρ ∈ D, Eq. (12) is an
integral equation for the electric field strength in D
which can be solved iteratively using the general-
ized minimal residual (GMRES) solver, for example
[26]. Also note that local noise effects in ∂−B̂+

1 are
smoothed or smeared out through integration over
the body domain. Smoothing is predominantly local,
however, because of the singularity of the Green’s
function at ρ′ = ρ.

After solving integral equation (12), we have
the electric field strength at our disposal and the
conductivity and permittivity maps at frequency ω
can be determined by using the constitutive relation

Ĵ ind
z (ρ) = [σ(ρ) + jωε(ρ)] Êz(ρ), (14)

for ρ ∈ D, since both Ĵ ind
z (ρ) and Êz(ρ) are

now known. Explicitly, by equating the real and
imaginary parts of the above equation, we obtain
the conductivity profile

σ(ρ) =
2

µ0|Êz(ρ)|2
Im
[
Ê∗z (ρ) ∂

−B̂+
1 (ρ)

]
, (15)

while the permittivity profile is given by

ε(ρ) =
−2

ωµ0|Êz(ρ)|2
Re
[
Ê∗z (ρ) ∂

−B̂+
1 (ρ)

]
, (16)

where the asterisk denotes complex conjugation.
Note that the conductivity and permittivity can only
be retrieved at points ρ ∈ D where the electric field
strength does not vanish.

Our overall electrical properties tomography ap-
proach can now be summarized as follows:

FIRST-ORDER INDUCED CURRENT DENSITY EPT
ALGORITHM (FOIC-EPT)

* Input:
• B̂+

1 field data
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• The z-component of the incident electric
field strength Ê inc

z

1) Induced current step: Determine the induced
electric current density using equation (7).

2) Electrical properties step:
• Solve integral equation (12) for the elec-

tric field strength.
• Determine the conductivity and permittiv-

ity maps using equations (15) and (16).
Note that the z-component of the incident electric
field strength is not required to carry out induced
current step 1, but is required to carry out electrical
properties step 2.

IV. SIMULATION AND EXPERIMENT

In this section, we illustrate the performance of
foIC-EPT using simulated and measured B̂+

1 data.
Specifically, we apply foIC-EPT to simulated B̂+

1

data collected inside the head of the female body
model Ella of the IT’IS foundation [27] and corrupt
this data with noise. Subsequently, we apply the
foIC-EPT algorithm to measured B̂+

1 data obtained
for a cylindrical inhomogeneous phantom.

A. Imaging based on simulated data

The head model of the IT’IS foundation has a voxel
size of 2.5 mm3 isotropic and the conductivity and
permittivity maps of the slice that coincides with
the midplane of the birdcage coil are shown in
Fig. 1. The coil and corresponding incident field are
simulated by positioning 16 line sources uniformly
on a circle that is concentric to the head model.
The radius of this circle is 34 cm and the line
sources operate in quadrature mode at a frequency
of 128 MHz, which corresponds to the operating
frequency of a 3T MRI scanner. The simulation was
performed at the same resolution as the phantom
(2.5 mm3 isotropic), and the simulation was pro-
grammed in MATLAB 2015b (The MathWorks,
Inc., Natick, Massachusetts, United States) using an
in-house simulation code. Furthermore, we corrupt
the B̂+

1 data by complex white Gaussian noise such
that we have a Signal-to-Noise Ratio (SNR) of
20 dB (100 on a linear scale).

Since the conductivity and permittivity maps of
the body model are known in this example, we
can numerically compute the exact induced current
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Fig. 1: Conductivity map in S/m (left) and relative
permittivity map (right) of the center slice head
model.

density within our slice of interest. The magnitude
of this current density is shown in Fig. 2 (left), while
the reconstruction based on imaging formula (7) is
shown in Fig. 2 (middle). The pointwise relative
error between the numerically computed induced
current density and the reconstructed density is
shown in Fig. 2 (right). We observe that the largest
errors occur near the interfaces between different
tissue types, especially at the outer regions of the
head. Furthermore, there is a large error in the
center of the reconstruction, which is due to a
low E-field at this location, that exacerbates the
presence of noise in the data. Sensitivity to noise
is not as severe as in Helmholtz-based approaches,
however, since in the latter approaches a second-
order differentiation operator (Laplacian) acts on the
data, while in our induced current step only the first-
order derivative of collected B̂+

1 data is computed.
For differencing a first order forward kernel was
used, which would lead to single voxel boundary
artefacts if the measured data would be perfectly
masked to the size of the head. However, in this
simulation this mask was chosen one voxel larger
to remove this purely numerical error.

To suppress the effects of noise that is present
in the input data, we now first filter this data
using a five-point (5 × 5) Gaussian image filter
with mean zero and variance 2. This will lead
to some loss of spatial resolution, but will reduce
the noise amplification effect due to differentiation
of the data. A median filter has also been applied
and works well in preserving edge information in
high SNR regions, but creates artefacts in low SNR
regions due to the nonlinear nature of the filter and
the smooth nature of the B+

1 map.
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Fig. 2: Magnitude of the exact induced current
density Ĵ ind

z in the center slice of the Ella head
model (left), magnitude of the reconstructed current
density using imaging formula (7) on noisy B̂+

1 data
(middle), and the pointwise relative error of the
reconstructed induced current density (right). The
left and middle density plots have been normalized
with respect to max |Ĵ ind

z |. The colorbar refers to
the error plot.
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Fig. 3: Magnitude of the exact induced current
density Ĵ ind

z in the center slice of the Ella head
model (left), magnitude of the reconstructed current
density using imaging formula (7) on filtered noisy
B̂+

1 data (middle), and the pointwise relative error
of the reconstructed induced current density (right).
The left and middle density plots have been normal-
ized with respect to max |Ĵ ind

z |. The colorbar refers
to the error plot.

Subsequently, we apply equation (7) on the fil-
tered data to obtain the reconstructed induced cur-
rent density as shown in Fig. 3 (middle) along with
the exact current density and pointwise relative error
shown in Fig. 3 (left) and Fig. 3 (right), respectively.
The quality of our one-step imaging result has
clearly improved and we therefore use the filtered
B̂+

1 data to carry out the electrical properties step
of foIC-EPT (step 2 of the foIC-EPT algorithm).
Specifically, we use the filtered B̂+

1 data to compute
the right-hand side f̂ of equation (12) as given by
equation (13). Having this right-hand side available,

0
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0.15

0.2

Fig. 4: Magnitude of the exact electric field strength
Êz in the center slice of the Ella head model
(left), magnitude of the reconstructed electric field
strength based on filtered B̂+

1 data (middle), and the
pointwise relative error of the reconstructed electric
field strength (right). The left and middle field
strength plots have been normalized with respect to
max |Êz|. The colorbar refers to the error plot.

we solve the integral equation of equation (12)
using the GMRES algorithm. It takes about ten
iterations to arrive at a normalized residual of 10−6

(matrix size 256 × 256) and the resulting electric
field strength is shown in Fig. 4 (middle). The cor-
responding exact electric field strength is shown in
Fig. 4 (left) and the pointwise relative error between
the exact and reconstructed electric fields is shown
in Fig. 4 (right). Overall, the electric field strength
is fairly well reconstructed, except at the center of
the slice, where the magnitude of the exact electric
field strength essentially vanishes. For antennas in a
birdcage setting and operating in quadrature mode,
it is well known that the magnitude of the electric
field strength is small in a neighborhood of the
center of the slice (see [13], for example) and it
is difficult to accurately reconstruct this field based
on noisy B̂+

1 input data [28].
Having reconstructed the electric field strength

from B̂+
1 data, we can determine the conductivity

and permittivity maps using equations (15) and (16),
respectively. The reconstructed conductivity map is
shown in Fig. 5 (right), while the reconstructed
permittivity map is shown in Fig. 6 (right). Recon-
structions of the conductivity and permittivity maps
based on noiseless B̂+

1 data are shown in Fig. 5
(middle) and Fig. 6 (middle), respectively, thereby
highlighting the effects of noise on the conductivity
and permittivity reconstructions. In particular, for
noisy data smooth reconstructions are obtained due
to filtering and for both noiseless and noisy data the
error is maximum around the center of the slice,
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Fig. 5: Original (left) and reconstructed conductivity
maps in S/m based on noiseless (middle) and noisy
(right) B̂+

1 data.
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Fig. 6: Original (left) and reconstructed relative
permittivity maps based on noiseless (middle) and
noisy (right) B̂+

1 data.

since the error in the reconstruction of the electric
field strength is maximum in this neighborhood
and the magnitude of the electric field strength
is small at this location as well. A low E-field
leads to induced electric currents Ĵ ind

z that give a
small to negligible contribution to the B̂+

1 field and
reconstructing the conductivity and permittivity at
such locations is therefore very challenging. Finally,
we mention that it takes our implementation of the
overall foIC-EPT algorithm less than a second to
retrieve the conductivity and permittivity maps from
the collected B̂+

1 data on an Intel i5 PC with 8Gb
of RAM.

B. Imaging based on measured data
In this experiment, we use a 1.5% agar based cylin-
drical phantom filled with saline water to validate
our foIC-EPT method. The phantom consists of an
inner and an outer cylinder with conductivities given
by 0.95 S/m and 0.45 S/m, respectively, and a pho-
tograph of the phantom is shown in Fig. 7 (top). The
conductivities were independently obtained using
the Stogryn equation [29]. A 3T MRI System (In-
genia, Philips) and a 16 channel head coil (Philips
Medical Systems, Best, The Netherlands) were used

TABLE I: Sequence parameters used for the phan-
tom experiment

Parameters SE sequence AFI sequence Unit
FoV 200× 200× 2.5 200× 200× 9 [mm3]
Resolution 2.5× 2.5× 2.5 2.5× 2.5× 3 [mm3]

Rep. time (TR) 1000 TR1: 50 [ms]TR2: 250
Echo Time (TE) 5 2.7 [ms]
Water-fat shift / 0.3

1400
0.9
480 [ pixels

Hz ]Bandwidth
Flip angle 90 65 [◦]
Signal averages 10 10 [#]

to obtain the B̂+
1 data shown in Fig. 7 (bottom). The

amplitude of the B̂+
1 field was measured using the

Actual Flip-angle Imaging (AFI) method [30], while
the transceive phase was measured using two single
Spin Echo (SE) sequences with opposing readout
polarities [3], [7], [17], [31]. Both sequences were
carried out with 10 signal averages, and the field of
view is centered at the middle of the coil. Parameter
settings of the measurement sequences can be found
in Table 1. Furthermore, the phantom was placed
at the center, and the system’s body coil was used
for transmitting, while a head coil was used for
reception. To remove the impact of the complex
sensitivity of the head coil, the receive array data
was phase-referenced to the body coil using a built-
in routine. In this way, the transmit and receive
phase of the birdcage coil determines the observed
transceive phase [3], [7], [17], [31]. Subsequently,
the transceive phase approximation was applied [3],
[7], [17], [31] to obtain an approximate B̂+

1 phase
from the measured transceive phase. Finally, the
SNR of the measured data is 17.75 dB (approx.
60 on a linear scale) and 18.75 dB (approx. 75 on
a linear scale) for the amplitude and phase scans,
respectively.

Having the complex B̂+
1 data map available, we

use the foIC-EPT algorithm to reconstruct the con-
ductivity and permittivity maps of the phantom by
essentially following the same steps as in the previ-
ous subsection. In particular, first the data is filtered
using a Gaussian filter and subsequently the induced
current density Ĵ ind

z is determined using the imaging
formula of equation (7). The magnitude of the
reconstructed current within the reconstruction area
is shown in Fig. 8 (left). In addition, we simulated
the B̂+

1 field using the Sim4Life software package
(ZMT, Zurich, Switzerland) and reconstructed the
in silico induced currents using equation (7). The
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Fig. 7: Photograph of the phantom (top), the masked
amplitude of the measured B̂+

1 field (bottom left),
and the masked measured transceive phase (bottom
right).

Fig. 8: Magnitude of the induced current based on
measured data (left) and magnitude of the in silico
induced-current based on simulated data (right).

magnitude of the in silico induced current is shown
in Fig. 8 (right). Clearly, there is a mismatch at the
center of the inner compartment and at its boundary.
This mismatch will be discussed further below in
combination with the conductivity reconstruction
and is also investigated in [18].

To carry out the second step of our reconstruction
method, the incident electric field in the imaging
plane of interest is required to determine the right-
hand side of equation (12). This field was computed
using the Sim4Life software package (ZMT, Zurich,

Switzerland) obviously using the same configuration
as for the in-silico induced current simulations.
Having determined the field vector f̂ , we solve the
integral equation for the total electric field using the
GMRES iterative solver. For this particular configu-
ration, it takes the solver a fraction of a second on an
Intel i5 PC with 8 Gb of RAM to solve the integral
equation in six iterations reaching a normalized
residual of 10−6. With the electric field strength now
at our disposal, we can determine the conductiv-
ity and permittivity profiles of the phantom using
equations (15) and (16) . The reconstructions are
shown in the top row of Fig. 9 along with Helmholtz
reconstructions shown in the bottom row of Fig. 9.
The Helmholtz reconstructions were obtained using
a smoothed phase-only implementation from [16],
[17] that employs a 7×3 finite differencing kernel.

We observe that foIC-EPT provides a good over-
all reconstruction and jumps in the conductivity
profile are well resolved. Only small local dips are
present in the conductivity profile near the center
of the inner cylinder and to the lower right of
the center of the imaging area. These local dips
correspond to locations where the reconstructed
induced current density is small as well (see Fig. 8
(left)). Preliminary studies indicate that these dips
are due to the application of the transceive phase
approximation, but further testing is necessary to
confirm these findings. Nevertheless, a good overall
agreement with the exact conductivity profile is
obtained when using foIC-EPT even in case the
transceive approximation is applied. The Helmholtz-
based approach, on the other hand, suffers from rip-
ple or edge effects as is evident from the ring-shaped
anomaly around the inner cylinder. Such effects
are typically observed in standard Helmholtz-based
reconstruction approaches as discussed in [8], [16],
and [17], for example. The foIC-EPT method does
not suffer from such boundary artefacts and is able
to reconstruct the piecewise-constant conductivity
profile.

The permittivity reconstructions obtained with
foIC-EPT and MR-EPT are shown in Figs. 9b and
9d, respectively. In both cases, the reconstructions
are poor compared with the quality of the conduc-
tivity reconstructions. This should not come as a
surprise, however, since permittivity reconstructions
are generally very sensitive to perturbations and
noise in the data especially at 3T. More reliable per-
mittivity reconstructions are probably obtained at 7T
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(b) foIC-EPT relative permittivity reconstruction.
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(d) MREPT relative permittivity reconstruction.

Fig. 9: Reconstructed conductivity maps in S/m and reconstructed relative permittivity maps. The true
conductivity of the inner cylinder is 0.95 S/m, while the outer cylinder has a conductivity of 0.45 S/m.
The true relative permittivity of the inner and outer cylinder is estimated to be around 80.

or even higher field strengths. Finally, we mention
that for this phantom experiment the computation
times of foIC-EPT and the Helmholtz approach are
0.041 seconds and 0.027 seconds, respectively, on a
standard PC with an Intel i5 (3.1GHz) and 8Gb of
RAM.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a two-step electri-
cal properties tomography technique (foIC-EPT) to
reconstruct the conductivity and permittivity maps
of tissue based on B̂+

1 data collected within the
midplane of a birdcage coil. The first step consists of
reconstructing the induced currents in the midplane

of the coil using measured B̂+
1 data. From the

first-order Maxwell equations it follows that these
currents can be obtained by acting with a particular
first-order differential operator on the collected data.
Since only first-order differentiation operators are
involved, foIC-EPT is less sensitive to noise com-
pared with (Helmholtz) approaches, where second-
order differential operators act on the data.

Having obtained the induced currents from step 1,
step 2 consists of computing the electric field in-
side the plane of interest by solving a particular
integral equation. Iterative solvers are particularly
well suited for this task, since the integral that
appears in this equation is a spatial convolution
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integral and FFTs can be used to compute matrix-
vector products at “FFT-speed.” Computationally,
this is the most expensive part of the foIC-EPT
method, but the examples presented in this paper
and additional numerical testing indicates that when
the GMRES iterative solver is used, typically less
than ten iterations are required to reach an error
level of 10−6.

After solving the integral equation, the conductiv-
ity and permittivity maps can be determined using
the induced current density from step 1 and the
constitutive relations. For realistic reconstruction
problems using simulated or measured data, the
complete reconstruction procedure (step 1 and 2)
requires a fraction of a second to complete on a
standard PC with an Intel i5 processor running at
3.2 GHz and having 8 Gb of RAM. This is a sig-
nificant speed up compared with other optimization-
based volume integral equation approaches such as
CSI-EPT [13] or the method presented in [14],
which typically require tens of seconds or even
minutes to arrive at two-dimensional reconstructed
conductivity and permittivity maps. We conclude
that exploiting field structure in foIC-EPT results in
a significant speed up, but also makes the method
more restrictive than general volume integral ap-
proaches, which do not rely on any particular field
structure.

Furthermore, in contrast with the CSI-EPT for-
mulation, we only formulate a volume integral
equation for the electric field and take the induced
currents as given by Eq. (7) into account. This is
different from CSI-EPT, where the contrast and con-
trast source (product of the contrast and the electric
field) are both unknown and iteratively updated.
Here, we already know the induced currents by
exploiting the E-polarized field structure.

As opposed to Helmholtz-based approaches,
foIC-EPT, as well as other volume-integral recon-
struction methods, can handle jumps in the conduc-
tivity and permittivity profiles. No assumptions on
the homogeneity of the object have to be imposed
and no ripple or edge effects as in Helmholtz-based
approaches are observed. However, what foIC-EPT
has in common with some other non-Helmholtz-
based EPT reconstruction methods is that recon-
structions may be poor in regions where the ampli-
tude of the electric field is low. To remedy this situ-
ation, active or passive shimming techniques can be
applied as discussed in [13] and [19], for example.

What the present foIC-EPT method also has in com-
mon with many other EPT reconstruction methods is
that it relies on the transceive phase approximation,
which introduces errors in the reconstructions as
well. Numerical simulations and actual experiments
indicate that this approximation is responsible for
local dips in the reconstructed tissue profiles, but
further testing is required. Present and future work
focuses on developing an iterative volume-integral
EPT reconstruction method that does not rely on the
transceive approximation. Preliminary results are
promising and have been presented in [18]. More-
over, local dips and variations in reconstructed tissue
profiles may also be reduced or even eliminated
by incorporating additional regularization strategies
such as Total Variation (see [13], for example) into
an EPT reconstruction method. Future work will
focus on the implementation of such regularization
techniques as well.
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