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1 Introduction

Assessment of the specific absorption rate (SAR) due to elec-
tromagnetic (EM) fields in human tissue is relevant in many 
applications such as hyperthermia [9, 10, 16], telecommu-
nications [23], and high field MRI [5, 8, 21, 30, 35]. How-
ever, for reliable SAR assessment, knowledge of the electric 
properties (EPs) of biological tissues is required (in particu-
lar, the conductivity σ and permittivity ε) and the electric field 
strength must be known as well. This information is usually 
not directly available and therefore has to be determined by 
other means. In MRI, various implementations of electric 
properties tomography (EPT) methods have been developed 
to extract this information from the B+

1  field [1, 12, 13, 19, 
24, 33, 34, 36]. This field is accessible to measurement and 
present-day EPT methods attempt to reconstruct the electric 
tissue parameters from measured B+

1  field maps, while the 
corresponding electric field strength is determined by forward 
modeling in which the reconstructed conductivity and permit-
tivity profiles serve as a model for the patient’s anatomy.

One of the drawbacks of the EPT methods mentioned 
above is that these methods typically suffer from reconstruc-
tion artifacts especially near tissue boundaries. These arti-
facts occur mainly because currently used EPT methods are 
based on local field equations (either Maxwell’s equations 
or Helmholtz’s equation) and do not take the electromag-
netic boundary conditions into account. Furthermore, these 
methods are very sensitive to noise or other perturbations 
in the data, since differential operators act on measured B+

1  
field data. Different studies have focused on minimizing the 
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reconstruction artifacts by using either the gradient of EP 
profiles in conjunction with a multi-channel transmit/receive 
array RF coil [20] or arbitrary-shaped kernels based on voxel 
position [15]. However, these ad hoc solutions are still based 
on a local differential operator approach, which may yield 
less accurate SAR predictions due to potential reconstruction 
errors in the EP profiles that immediately affect the com-
puted electric field strength in the forward modeling step.

As an alternative to local EPT methods, we have recently 
proposed an iterative contrast source inversion EPT method 
(CSI-EPT) [2], which is based on global integral repre-
sentations for the electromagnetic field [2, 3]. The electro-
magnetic boundary conditions are then automatically sat-
isfied and reconstruction results near tissue interfaces are 
significantly improved [2]. Furthermore, CSI-EPT is less 
sensitive to noise since in CSI-EPT integral operators act 
on measured field data (instead of differential operators as 
in local EPT methods) and CSI-EPT reconstructs the elec-
tric field strength inside the region of interest as well. This 
latter property makes CSI-EPT an ideal candidate for SAR 
reconstructions based on B+

1  field data, since it attempts to 
simultaneously reconstruct the EP profiles and the electric 
field strength within the human anatomy.

The electromagnetic wave field inside the human body 
is obviously a fully vectorial three-dimensional wave field. 
However, as earlier described by van de Bergen [31], the 
electromagnetic field in the central transverse plane of a 3T 
or 7T body coil can be treated as a two-dimensional wave 
field where only Hx, Hy, and Ez, are present. The case where 
only Hx, Hy, and Ez are considered is also referred to as the 
TM-polarized case. Reconstructing the SAR distribution 
based on two-dimensional instead of three-dimensional 
fields obviously leads to significant speedups in computa-
tion time and may even allow for online SAR reconstruc-
tions. Our approach is therefore to reconstruct the SAR dis-
tribution in the neighborhood of the central transverse plane 
of a body coil using a two-dimensional CSI-EPT recon-
struction method. To validate our approach, we compare the 
reconstructed profiles, electric fields, and SAR distributions 
with 3D models and fully vectorial 3D FDTD simulations. 
We use a static field of 3T in all numerical experiments. The 
approach is equally applicable for 7T or other static back-
ground field strengths, as long as the two-dimensional field 
approximation in the central slice remains valid.

2  Methods

2.1  The CSI‑EPT method

In this section, we briefly discuss the main features of the 
CSI-EPT method. The method is fully described in [2] and 
further mathematical details can be found in [27] and [28].

As a starting point, we first write the RF field {E, B+
1

} 
that is present in the MR system as a superposition of the 
electromagnetic background field and the scattered field. 
The background field {Eb, B+;b

1 } is the field that is pre-
sent within the MR system in the absence of a dielectric 
object or body, whereas the scattered field {Esc, B+;sc

1 } is 
the field induced by the object or body. The object occu-
pies a bounded domain D and is characterized by a con-
ductivity σ(r), a permittivity ε(r), and a permeability µ(r), 
with r = (x, y, z) the position vector. In this work, we have 
ignored relative permeability variations as they are con-
sidered negligible for biological tissue [7]. In practice, the 
background field {Eb, B+;b

1 } can be acquired by forward 
modeling.

Using the linearity of Maxwell’s equations, the scattered 
electric field at a point with position vector r can be written 
as [27] 

while the scattered B+;sc
1  can be written as

In these equations, GEJ denotes the Green’s tensor relat-
ing the electric current to electric field and the tensor G+;HJ 
relates the electric current to the B+

1  field. Furthermore, w is 
the contrast source given by

where χ = η/ηb − 1 is the contrast function, with 
η(r) = σ(r)− iωε(r), and ηb = −iωε0.

Obviously, the goal is to reconstruct the contrast func-
tion χ and the electric field E based on B+

1  data. A solution 
to this inverse problem is formulated by iteratively mini-
mizing the cost function given by

where

and

where we have introduced the operator Ĝ+;HJ{w} as
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∫

r′∈D

GEJ
(

r, r′
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w
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The subscript [n] in (5) and (6) represents the iteration 
number. The CSI method updates both the contrast source 
(w[n]) and the contrast function (χ [n]) using a two-step updat-
ing procedure. In the first step, the contrast function is fixed 
(χ = χ [n−1]) while the contrast source (w[n]) is updated by 
minimizing Eq. (5). In the second step, a new contrast func-
tion (χ [n]) is obtained by using the updated contrast source 
w[n] from the first step. Moreover, the electric field corre-
sponding to the updated w[n] can be computed by

with

Finally, the contrast function is then obtained by mini-
mizing Eq. (6) with respect to χ; hence, the new contrast 
function is computed as

The overbar in Eq. (10) denotes the complex conjugate. 
The iterative process is terminated once the cost function, 
Eq. (4), reaches a user-specified tolerance level. Elsewhere 
we reported a more detailed description of the CSI-EPT 
algorithm [2] which includes the multiplicative total vari-
ation factor for noise suppression and the ability to include 
more than one B1 data set in the iterative process.

2.2  3D and 2D electromagnetic modeling

We have performed 3D field simulations using in-house 
developed finite-difference time domain (FDTD) tools 
[25] and the 3T body coil model as described in [29]. The 
coil was tuned at 128 MHz (i.e., the Larmor frequency at 
3T) and was driven in quadrature mode. The female body 
model (Ella) from the virtual family provided by IT’IS [6] 
has been used, and the assigned conductivity and permittiv-
ity values are based on [11] at 128 MHz. The tissue density 
values reported in [14] were used for SAR computations. 
The computed SAR by 3D field simulations serves as a 
benchmark to which the 2D simulations will be compared.

The 2D simulations (for a TM-polarized configuration) 
were conducted using the integral equation method. In 
the TM-polarized configuration, the electric field vector is 
parallel to the invariance direction. The fields were gener-
ated by 16 RF line sources driven at 128 MHz, which cor-
responds to an operating frequency of the RF body coil in 
a 3T MR system. The line sources were located on a circle 
(R = 0.34 m) symmetrically positioned around the female 
pelvis model with an isotropic voxel size of 2.5 mm. A 

(8)E[n] = Eb(r)+ ĜEJ
{

w[n]
}

(9)ĜEJ{w}(r) =

∫

r′∈D

GEJ
(

r, r′
)

w
(

r′
)

dV .

(10)χ [n] =
w[n]Ē[n]

E[n]Ē[n]
.

homogeneous medium (free space) is taken as a back-
ground model. In the current implementation, we have 
assumed exact knowledge of the B+

1  phase.
The CSI-EPT algorithm is implemented as we previ-

ously described in [2]. The CSI-EPT software code was 
implemented in MATLAB (MathWorks, Natick, Massachu-
setts, USA). The computational time for 5000 iterations of 
the presented method, with a grid size of 2.5 mm, is around 
110 s on an Intel Core i7 operating at 1.9 GHz. Further-
more, SAR1g and SAR10g, representing the average SAR 
over a mass of 1 and 10 g, respectively, are computed based 
on [4] and take approximately 20 and 10 s, respectively.

We have compared the results for the mid-plane slice 
(z = 0 cm) as the 2D modeling is likely to be a valid 
approximation in this region. However, we have also 
explored the reconstruction at two off-central slices (i.e., 
z = +7.5 cm and z = −2.5 cm).

3  Results

To test the SAR reconstruction results of our algorithm, we 
first compute the fully three-dimensional electromagnetic 
field inside the 3D Ella body model using FDTD and focus 
on the field and SAR distributions in three slices located at 
z = 0 cm (midplane), z = +7.5 cm, and z = −2.5 cm. The 
conductivity and permittivity profiles within these three 
slices are shown in Fig. 1, while the magnitude of the Car-
tesian components of the corresponding 3D electric field 
strength is shown in Fig. 2. In these figures, the amplitudes 
of the field components Ex and Ey are normalized with 
respect to the maximum amplitude of the Ez field of the cor-
responding slice. We observe that Ez is the dominant field 
component in all three slices indicating that it is reasonable 
to assume a two-dimensional E-polarized field structure in 
and around the midplane of the body coil. The field is not 
exactly two-dimensional, of course, which is particularly 
noticeable for the x-component of the electric field strength 
(first column of Fig. 2). This component vanishes for a two-
dimensional E-polarized field, but it clearly does not in the 
fully three-dimensional case especially around the center 
of the slices and within the slice located closed to the legs 
(slice at z = −2.5 cm). These deviations from 2D are due to 
anatomical variations in the longitudinal z-direction, which 
are especially large around the slice located at z = −2.5 
cm, since here we transited from the torso to the upper legs. 
Finally, the 3D- and 2D-normalized 

∣

∣B+
1

∣

∣ maps of the mid-
plane slice are shown in Fig. 3a, b, respectively. We observe 
that both maps have a similar field pattern, apart from some 
local differences mainly at the central region. This observa-
tion again confirms that it is reasonable to assume that the 
electromagnetic field essentially has a two-dimensional 
E-polarized field structure in the midplane of the body coil.
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In practice, the measured B+
1  field is not known exactly, 

of course, and we therefore contaminate the 2D-simulated 
B+
1  field with additive Gaussian noise (SNR 20). This field 

now serves as an input for our CSI-EPT algorithm. The 

reconstructed conductivity and permittivity maps obtained after 
5000 iterations of the CSI-EPT algorithm are shown in Fig. 4a, 
b, respectively. We note that these results were obtained by 
incorporating multiplicative total variation regularization into 

Fig. 1  Target electric conduc-
tivity (left) and permittivity 
maps (right) of the midplane 
slice (top row), the slice at 
z = +7.5 cm (middle row) and 
the slice at z = −2.5 cm (bot-
tom row)

Fig. 2  |Ex|,
∣

∣Ey

∣

∣, and|Ez| (left to 
right) distributions in the mid-
plane slice (top row), the slice 
at z = +7.5 cm (middle row), 
and the slice at z = −2.5 cm 
(bottom row). The |Ex|,

∣

∣Ey

∣

∣ field 
distributions are normalized 
with respect to the maximum 
amplitude of the corresponding 
|Ez| field distribution

Fig. 3  Normalized 
∣

∣B
+
1

∣

∣ field 
distribution in the midplane 
slice based on 3D FDTD (a) 
and the 2D integral equation 
method (b)
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our CSI-EPT algorithm (for details, see [2]) to suppress the 
effects of noise in the data. From Fig. 4a, b, we observe that 
the conductivity and permittivity reconstructions are in good 
agreement with the target maps of Fig. 1a, b. Furthermore, 
in Fig. 4c, the reconstructed |Ez| field is shown which is used 
together with the reconstructed conductivity map of Fig. 4a to 
determine the SAR distribution as reconstructed by CSI-EPT.

Figure 5a shows the voxel-wise SAR distribution based 
on 3D field simulations, while the SAR10g and SAR1g are 
depicted in Fig. 5d, g, respectively. In Fig. 5b, e, h (second 
column of Fig. 5), the computed SAR distributions based on 
the 2D field simulations are shown, which are in good agree-
ment with the distributions based on the 3D simulations (1st 
column of Fig. 5). Only slight deviations are observed on 
the right bottom part of the anatomy. Finally, the CSI-SAR 
reconstructions using only B+

1  field information are shown in 
Fig. 5c, f, i (third column of Fig. 5). As mentioned above, 
this B+

1  field is contaminated with additive Gaussian noise 
(SNR 20). Comparing the different reconstructed SAR dis-
tributions with the 3D (first column of Fig. 5) and 2D (sec-
ond column of Fig. 5) SAR distributions, we observe that the 
CSI-SAR reconstructions are in good agreement with the 
3D- and 2D-modeled SAR distributions. The relative error 
between the reconstructed SAR distributions based on CSI-
EPT and 3D FDTD is shown in the fourth column of Fig. 5.

The SAR distributions within the non-central slices are 
depicted in Fig. 6 (slice at z = +7.5 cm) and Fig. 7 (slice 
at z = −2.5 cm). The reconstructed SAR distribution of the 
transversal slice at z = +7.5 cm, where |Ez| is the dominant 

Fig. 4  The reconstructed conductivity (a) and permittivity (b) maps 
after 5000 iterations of the CSI-EPT algorithm. c The normalized |Ez|

Fig. 5  The normalized voxel-based SAR distribution (top row), the 
normalized SAR10g distribution (middle row), and the SAR1g distribu-
tion (bottom row) of the midplane slice (z = 0  cm). The distributions 
based on 3D FDTD field simulations are shown in (a, e, i), while the 
distributions based on a 2D integral equation approach are shown in 

(b, f, j). The reconstructed SAR distributions based on CSI-EPT are 
presented in (c, g, k). The relative error between the reconstructed 
SAR distributions based on CSI-EPT and 3D FDTD is shown in (d, 
h, l)
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field, is in good agreement with the SAR distributions cal-
culated by 3D and 2D forward modeling as shown in the 1st 
and 2nd column of Fig. 6, respectively. In the fourth column 
of Fig. 6, the relative error between the reconstructed SAR 
distributions based on CSI-EPT and 3D FDTD is shown. 
However, the SAR reconstruction within the slice located at 
z = −2.5 cm, where the transverse electric field components 
were not negligible, shows a discrepancy in the central region 

in a comparison between the 1st and 3rd column of Fig. 7. The 
discrepancy is due to the fact that transverse electric fields are 
not considered in a 2D approach, and discrepancies in recon-
structed SAR may therefore appear in regions where these 
transverse fields are not negligible. However, comparison of 
the 1st and 3rd column of Fig. 7 still shows a good agreement 
outside the central region as confirmed by the relative error 
shown in the fourth column of Fig. 7.

Fig. 6  The normalized voxel-based SAR distribution (top row), the 
normalized SAR10g distribution (middle row), and the SAR1g distri-
bution (bottom row) of the slice at z = +7.5  cm. The distributions 
based on 3D FDTD field simulations are shown in (a, e, i), while the 
distributions based on a 2D integral equation approach are shown in 

(b, f, j). The reconstructed SAR distributions based on CSI-EPT are 
presented in (c, g, k). The relative error between the reconstructed 
SAR distributions based on CSI-EPT and 3D FDTD is shown in (d, 
h, l)

Fig. 7  The normalized voxel-based SAR distribution (top row), the 
normalized SAR10g distribution (middle row), and the SAR1g distri-
bution (bottom row) of the slice at z = −2.5  cm. The distributions 
based on 3D FDTD field simulations are shown in (a, e, i), while the 
distributions based on a 2D integral equation approach are shown in 

(b, f, j). The reconstructed SAR distributions based on CSI-EPT are 
presented in (c, g, k). The relative error between the reconstructed 
SAR distributions based on CSI-EPT and 3D FDTD is shown in (d, 
h, l)
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4  Discussion

Hot spots are a potential risk of high field clinical MRI; 
prediction of SAR distribution may help to reduce this 
hazard and is thus essential for MRI quality assurance and 
patient safety. In this paper, we have exploited the CSI-EPT 
method to reconstruct electric field and tissue properties 
and investigated the performance to reconstruct SAR dis-
tributions based on B+

1  information only. This method takes 
the integral representations for the electromagnetic field as 
a starting point, and the electric field and tissue parameters 
are obtained by iteratively minimizing an objective func-
tion which measures the discrepancy between measured 
and modeled data and the discrepancy in satisfying a con-
sistency equation known as the object equation.

Numerical results illustrate that SAR distributions can be 
reconstructed based on B+

1  information using a 2D imple-
mentation of CSI-EPT. In general, a good performance 
was observed for slices where the transverse components 
of the electric field were negligible. These results clearly 
illustrate the ability of CSI-EPT to reconstruct SAR distri-
butions within slices where Ez is the dominant field com-
ponent, which is in general the case for the midplane slice 
of an RF body coil model [31]. Our studies indicate, how-
ever, that a two-dimensional field approximation may also 
be applied for off-central transverse slices (see Fig. 6). In 
such cases, a 2D implementation of CSI-EPT would yield 
reliable SAR reconstruction as well. Unfortunately, it is not 
a priori known on which off-central slices, the transverse 
components of the E-field are negligible and we therefore 
restrict ourselves to the midplane slice when we use a 2D 
implementation of CSI-EPT. Despite this restriction, the 
current 2D implementation of CSI-EPT seems to be a prom-
ising tool to improve current SAR assessment, since a good 
agreement was observed between reconstructed SAR distri-
butions and 3D FDTD-based SAR distributions. As can be 
seen from Figs. 5, 6, and 7, the reconstructed voxel-based, 
10 and 1 g SAR distributions show a good overall agree-
ment. To quantify the error in all three cases, we have com-
puted the relative error between the two-dimensional recon-
structed SAR based on CSI-EPT (third column in Figs. 5, 
6, and 7) and the true SAR distribution as determined by 
the full 3D FDTD model (first column in Figs. 5, 6, and 
7). We observe that the error is small throughout the slice 
except in some highly isolated regions. These error regions 
occur mainly because the size of the hot spots is not pre-
cisely predicted by our 2D model. Our model does indicate, 
however, where hot spots can be expected and gives a good 
overall qualitative indication of the SAR distribution within 
the slices of interest. Moreover, CSI-EPT is applicable at all 
fields strength and is not limited to the demonstrated perfor-
mance at 3T.

In its present form, the CSI-EPT algorithm takes per-
turbed B+

1  field as input and effects due to noise are sup-
pressed by incorporating multiplicative total variation 
regularization into the CSI-EPT algorithm (see [2]). Addi-
tional uncertainties in the B+

1  phase may also be taken into 
account [2]. In practice, measurements of the B+

1  phase are 
based on assumptions regarding the object and coil geom-
etry [17, 32] and this transceive phase assumption can be 
considered as an uncertainty in the B+

1  phase as well. These 
uncertainties can be taken into account in CSI-EPT by 
modifying the objective function in a similar manner as in 
[26]. However, in a number of recent studies [18, 19, 24, 
37], the transceive phase assumption is avoided by using 
multiple independent transmit/receive channels. This opens 
up possibilities for EPT reconstruction and local SAR esti-
mation [18, 37, 38] free of assumptions regarding the B+

1  
phase. Although we have presented reconstruction results 
for a quadrature coil configuration only, CSI-EPT is actu-
ally suitable for various antenna settings and can therefore 
benefit from multiple independent transmit/receive systems 
as exploited in [18, 37, 38] for assumption-free phase data.

The applicability of the EPT method to electric prop-
erties mapping has recently been confirmed in a series of 
phantom and in vivo experiments with MRI systems [17, 
20, 22, 34]. Present work is therefore focused on extend-
ing the current implementation of CSI-EPT toward a 
practical MRI setting using both 2D and 3D field models. 
Three-dimensional models obviously do not suffer from a 
restriction to the midplane of the body coil and will provide 
more accurate reconstruction results in regions where two-
dimensional field approximations fail. On the other hand, 
computation times in 3D will be significantly larger than 
in 2D due to an increase in the number of unknowns and 
the application of 3D FFTs. If possible, it is therefore ben-
eficial to use 2D CSI-EPT, which may even provide online 
SAR reconstructions in the midplane of a body coil.

5  Conclusion

Whether a two- or three-dimensional CSI-EPT method is 
applied, the CSI-EPT method reconstructs, besides the elec-
tric properties, also the electric field at no additional compu-
tational costs. Given the promising results presented in this 
paper, we believe that CSI-EPT may prove an important tool 
toward MR-based SAR reconstruction. In future work, we will 
therefore focus on developing an efficient implementation of 
3D CSI-EPT that allows for complete local SAR assessment 
inside and outside the midplane of the RF transmit coil.
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