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Abstract

In a first-order formulation, simulating wavefield propagation on unbounded domains amounts to
solving the large order dynamical system

[A(s) + sI]u(s) = b(s) for all s ∈ Ω, (1)

where Ω is the frequency interval of interest. In the above equation, A(s) is the spatially discretized
first-order hyperbolic wave operator and u(s) and b(s) are the unknown field and known source
vectors, respectively. We note that A(s) is frequency dependent in general, due to application of
the coordinate stretching or Perfectly Matched Layer (PML) technique. This technique is included
to simulate outward wave propagation towards infinity. Taking equation (1) as a starting point, we
discuss two Krylov-based solution methods that solve wavefield problems on open domains. Some
physical properties of the approximate solutions are discussed as well.

The first method linearizes the discretized wave operator with respect to frequency by setting
up a frequency independent PML that constructs a set of complex PML spatial step sizes for
a given frequency interval Ω [1]. The resulting linearized wave operator A no longer explicitly
depends on frequency, but has complex entries and is unstable as well. Fortunately, this matrix can
still be used to compute stable time-domain or conjugate-symmetric frequency-domain wave field
approximations. Frequency-domain approximations, for example, can be obtained by evaluating
the stability-corrected wave function [2]

u(s) = [r(A, s) + r(A∗, s)] b(s), (2)

where the asterisk denotes complex conjugation and

r(z, s) =
η(z)

z + s
(3)

is the filtered resolvent with η(z) the complex Heaviside function defined as η(z) = 1 for Re(z) > 0
and η(z) = 0 for Re(z) < 0. Direct evaluation is not feasible, however, since the order n of
matrix A is simply too large. The field vector u(s) is therefore approximated by a polynomial
Krylov reduced-order model um(s) of order m� n. Such a model can be computed very efficiently
via a three-term Lanczos-type recursion, since there exists a diagonal weighting matrix W such
that ATW = WA. Details about the construction of the algorithm, the physical significance of the
weighting matrix W , and some of the convergence properties of the above reduction scheme will be
discussed.

In the second Krylov reduction method, we do not linearize the wave operator with respect to
frequency and we consider equation (1) directly. Specifically, we focus on rational Krylov subspace
field approximations to the field vector u(s) satisfying equation (1). Such an approach may be
particularly beneficial in case the wavefield response on Ω and at a particular receiver location is
dominated by a few modes of the wavefield operator as is the case in many applications in optics,
for example [3].
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In our rational Krylov reduction method, we construct structure-preserving reduced-order models
that belong to the realification of a standard rational Krylov space spanned by the field vectors
u(si) with si ∈ Ω, i = 1, 2, ...,m. Specifically, since there exists a frequency-dependent weighting
matrix W (s) such that AT (s)W (s) = W (s)A(s), we can show that the reduced-order models inter-
polate the field vector u(s) at the frequencies si and s∗i , for i = 1, 2, ...,m, provided the expansion
coefficients are determined using a pseudo-Galerkin condition that depends on W (s). Moreover, for
monostatic field responses (source and receiver coincide), the derivative of the reduced-order model
with respect to s interpolates the derivative of the field at the frequencies si and s∗i , i = 1, 2, ...,m.
Finally, since space and time are coupled in wavefield problems, we will discuss how the length of the
time interval of observation in the time-domain is related to the number of expansion frequencies m
and the order n of the total system.
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