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Abstract

Interpolatory Rational Krylov Subspaces (RKS) are a powerful tool for model order-reduction
of large dynamic systems, preconditioning of shifted systems and spectral approximation. RKS
model-order reduction of diffusive PDEs for instance clearly outperforms time stepping algorithms.
However, RKS are barely used for model-reduction of large-scale dynamic systems representing wave
propagation on unbounded domains. This, despite the fact that RKS show excellent convergence
for resonant structures where the wave field can be expanded in a few eigenmodes of the system.
For non-resonant structures RKS techniques are less attractive as the frequency domain transfer
function is highly oscillatory and the RKS approach is fundamentally limited by the Nyquist-
Shanon sampling rate. More specifically, at least two interpolation points per period of the cut-off
frequency of the transfer function are required, which can lead to thousands of interpolation points
for large-scale wave propagation and thus prohibitively large RKS as these interpolation points
need to be solved for every right hand side. We suggest to precondition the RKS via the phase
term of the WKB approximation, easily obtainable from the eikonal equation.
This preconditioning makes the number of interpolation points dependent on the complexity of the
wavespeed model rather than the Nyquist-Shanon sampling rate, which in turn is proportional to
the largest arrival time present in the transfer function. Phase-preconditioning not only allows a
reduction of interpolation points with respect to the Nyquist-Shanon rate but also allows us to
reduce the number of spatial discretization points. After factoring out the main phase dependency
of the wavefield it becomes spatially smooth which significantly lowers the number of points per
wavelength needed for accurate modeling. Last, the preconditioned RKS basis only weakly depends
on the right hand side of the system which allows a third level of model reduction. Specifically, the
number of right hand sides for systems with multiples sources and receivers can be reduced with
respect to standard techniques.
In summary, phase-preconditioning allows a reduction of all three computational aspects of wave
simulation: number of RKS shifts, number of spatial discritization points and number of right hand
sides.

1 Problem definition

After spatial discretization of a second-order wave equation on an open domain we obtain the
nonlinear shifted-system

(A(s)− s2I)u(s) = b (1)

with the wave operator A(s), wavefield u, right hand side b and Laplace paramter s. To model wave
propagation on an unbounded domain we use a near-optimal PML as described in [1], which leads
to the dependence of the operator A(s) on the Laplace parameter. The wave operator inherits
the poperties of the underlying physics, such that it is follows the Schwartz reflection principle
A(s̄) = Ā(s), is symmetric with respect to a diagonal symmetry matrix WA = ATW and is passive.
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The symmetry and Schwarz reflection principle can be used to design a structure preserving rational
Krylov subspace method that interpolates the original problem tangentially for coinciding source
and receiver locations. Such an approach works well if the Hankel singular values of the system
decay rapidly, meaning that only a few modes contribute to the solution as is the case for resonating
structures with a few excited and observable modes [2]. Then the frequency domain response is
well-described by a low-degree rational function and a rational Krylov technique will therefore
quickly capture the desired wave field response. For waves characterized by large travel times,
however, this may no longer be the case, since such responses are highly oscillatory in the frequency
domain and sampling should at least take place at half the Nyqvist-Shanon sampling rate. As an
illustration, consider a coinciding source/receiver pair with a reflector located at a travel time of
T arr/2 away from the source. A transmitted pulse will arrive (without distortion) at the receiver
after T arr, so that the receiver measures the source wavelet convolved with δ(t − T arr). In the
frequency domain this translates to multiplication with exp (−sT arr), which means that according
to the Nyquits-Shanon sampling theorem the maximum frequency domain sampling distance is
∆ω = π

T arr . Clearly, the number of required frequency domain samples increases as the travel time
increases leading to prohibitory large rational Krylov subspace approximations for these fields.

2 Phase Preconditioning

Intuitively we want the size of the Krylov subspace to depend on the complexity of the wavespeed
model rather then the largest arrival time. To achieve this we propose to precondition the rational
Krylov subspace method with the phase term obtained from the eikonal equation |∇Teik(x)|2 =

1
c(x)2

, with wave speed c(x). Every vector of the RKS is decomposed into a spatially smooth

incoming and outgoing field amplitude by factoring out the WKB-phase term. More specifically,
we decompose a single frequency solution u(sj) as

u(sj) = g(sjTeik)uout(sj) + g(s̄jTeik)uin(sj), (2)

where g(sTeik) is the WKB phase term. At evaluation of the reduced-order model all field am-
plitudes are then phase-corrected with the phase corresponding to the WKB-phase term of the
evaluation frequency. The reduced-order solution can then be represented as

um(s) = g(sTeik)

m∑
j=1

aj(s)cout(sj) + g(s̄Teik)

m∑
j=1

dj(s)cin(sj), (3)

were g(sTeik) denotes the phase term of the WKB approximation and the coefficients aj(s) and
dj(s) follow form a Galerkin condition. Clearly this makes the basis of the rational Krylov subspace
frequency dependent, which is necessary in order to precondition a spectral problem like equation (1)
for all shifts s. Doing so can be seen as spectral weighting were the residues associated with poles
far away from the evaluation frequency are deweighted by projecting the operator A(s) onto the
frequency dependent subspace. Spectral problems can in principle not be preconditioned by one
preconditioner for all shifts s, as one can in practice not achieve perfect pole zero cancellation.
Thus, convergence of a RKS method can only be enhanced by increasing the subspace size, which
is computaionally advantageous if the computational cost is dominated by solving shifted systems
rather then projection of the operator onto the subspace, as is the case in the cosidered example
of wave operators. This is the central idea of the presented approach.
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The amplitudes cout/in(sj) obtainable via one-way wave equations are spatially smooth compared
to the original wavefield u(s). Therefore, they can be computed on a much coarser grid then neces-
sary to accurately compute the original wavefield, which significantly reduces the cost of subspace
construction. Admittedly, coarse spatial discretization increases numerical dispersion, which can
be counterbalanced by correcting the wavespeed c(x) for numerical dispersion while constructing
the RKS. The basic idea is that numerical differentiation of the WKB phase term should cancel
the asymptotically dominant term −s2I in the wave equation (1). After subspace construction
with a dispersion corrected, coarse operator we project a wave operator of high accuracy onto the
phase-preconditioned subspace to obtain the phase-preconditioned reduced-order model.

Since the subspace is phase corrected the reduced-order model can now extrapolate, meaning the
reduced-order model can be evaluated for shifts outside the convex hull of interpolation points.
Especially if c(x) is a smooth function this allows extrapolation to frequencies which are not re-
solvable with the grid used to construct the RKS. For smooth configurations taken from geophysics
we obtain accurate results for wavelets with a cutoff frequency of roughly 2.7 spatial points per
wavelength with a second order operator.

In this contribution we discuss extensions of the outlined method to systems with multiple sources
and receivers and discuss how right hand sides can be reduced on top of reduction of the spatial
grid and frequency domain interpolation points. We present numerical experiments showing that
reduced-order models with phase preconditioning can indeed extrapolate.
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