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Summary

Reduced order models can reduce the computational burden associated with inverse scattering problems. Ap-
proximating the transfer function of the measurement setup by reduced order models allows for fast and memory
e�cient computation of Jacobians. Here we present several projection based model order reduction techniques
to simulate electromagnetic wave propagation in unbounded domains.
We show how general wave�eld principles such as reciprocity, causality, passivity, and the Schwartz re�ection
principle translate from the analytical to the numerical domain. Next, we introduce model order reduction
techniques that preserve these structures. Projection onto polynomial, extended, and rational Krylov subspaces
are discussed. The symmetry of the Maxwell equations allows for projection onto polynomial and extended
Krylov subspaces without saving the basis, using short term recurrence relations. Therefore reduced order
models can be obtained that are as memory e�cient as time stepping algorithms.
Rational Krylov subspaces are an interpolating model order reduction technique that performs well if only a few
modes contribute to the system response. In case the con�guration of interest has a low conductivity and the
source and receiver are situated far away from the target, long travel times need to be modelled. In this case,
the approximation error of rational Krylov subspace based reduced order models can be reduced signi�cantly
by approximating the phase of the wave�eld by the eikonal phase, leading to what we call phase-preconditioned
Rational Krylov subspaces. We present numerical examples to highlight the advantages and disadvantages of
the discussed methods.
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Introduction

Reduced order models (ROM) of electromagnetic
wave propagation play an important role in many
areas of science and engineering. The application
range spans from design optimization of an optical
resonator to borehole imaging in the oil and gas in-
dustry. The goal of reduced order modeling is usu-
ally a reduction in computational load; however, one
can di�erentiate between two types of applications,
namely, applications that require a fast construction
and applications where a ROM can be constructed
o�ine and is only required to o�er accurate and fast
evaluation. For process control in lithography for in-
stance one has to solve real time inverse optical prob-
lems to ensure that the fabricated structure is within
the set error margins. Here one can compute a com-
putationally expensive ROM of expected electromag-
netic con�gurations in an o�ine stage, as long as eval-
uation of the ROM is fast.
In this contribution we discuss three types of projec-
tion based Krylov model order reduction techniques
for electromagnetic problems. We show how the
structure of the Maxwell equations can be used to ef-
�ciently construct ROMs, while preserving the model

structure. Most applications require open domains,
such that absorbing boundary conditions in the form
of complex coordinate stretching (Druskin, V. and
Güttel, S. and Knizhnerman, L., 2016) are incorpo-
rated. The implementation of these boundary condi-
tions into the various ROM frameworks is discussed
as well.

Problem formulation

We are interested in solving the Maxwell equations

−∇×H+ σE + ε∂tE = −J ext (1)

∇× E + µ∂tH = −Kext (2)

for one (or multiple) source and receiver locations.
Thus we are interested in the transfer function from
a source to a receiver location. After �nite di�er-
ence discretization on a Yee-grid we obtain the matrix
equation([

0 −Dh

De 0

]
+

[
Mε 0
0 Mµ

]
∂t +

[
Mσ0
0 0

])[
e
h

]
= −

[
jext

kext

]
,

(3)

1/4



Zimmerling, J. et al., 2017, MOR of EM-waves in open domains.

with Dh/e the �nite di�erence approximations of the
curl operators, Mε/µ/σ diagonal medium matrices,
and e the �nite di�erence approximation of the elec-
tric �eld strength E and so forth. Equation 3 can be
written in the compact form

(A + ∂tI)u = b, (4)

where A is our sparse �nite di�erence Maxwell oper-
ator that acts on the �elds collected in u, which are
excited by the sources in b. Equation 4 admits the
formal solution and transfer function

u = exp (−At)b and f(r, b) = rTW exp (−At)b, (5)

respectively. With rT the receiver vector and the di-

agonal matrix W =

[
Wp 0
0 −Ws

]
containing the vol-

ume of each primary (Wp) and secondary (Ws) �nite
di�erence voxel. From reciprocity we obtain invari-
ance of the transfer function with respect to exchang-
ing source and receiver vector f(r, b) = f(b, r), from
which we obtain the symmetry relation

WA = ATW. (6)

We are mainly interested in wave�elds in open do-
mains and therefore continue our analysis in the
Laplace domain with Laplace parameter s, since co-
ordinate stretching is more easily introduced in the
Laplace domain . Incorporating this technique leads
to a �nite di�erence operator A that depends on the
Laplace parameter s such that Equation 4 now reads

(Â(s) + sI)û = b̂. (7)

The symmetry of A (Eq. 6) directly translates to the
Laplace domain. Further, Â(s) follows the Schwartz

re�ection principle Â(s̄) = Â(s), since wave �elds are
conjugate symmetric in the Laplace domain (here the
overbar denotes conjugation).

Reduced order modelling

The �nite di�erence system of Equation 7 can be large
with millions of unknowns for real applications, such
that direct solution can be cumbersome. In reduced
order modeling we approximate the wave�eld in a
small basis, to reduce the systems of equations to be
solved. Therefore, we expand the wave�eld û = Vy
in the basis V with expansion coe�cients y. For sim-
plicity we assume V ∈ CN×m to be orthogonal in a
W weighted bilinear form, with N and m the order of
the full and reduced system, respectively. After im-
posing a Galerkin condition we obtain a relation for
the expansion coe�cients y as

(VTWÂ(s)V + sI)y = VTWb̂, (8)

which is of orderm, with the symmetric reduced order
model Ĥ(s) = VTWÂ(s)V. The quality of the reduced
order model is determined by the choice of approxi-
mation basis V. We discuss three popular choices in
this context, namely, Polynomial, Extended, and Ra-
tional Krylov Subspaces (PKS, EKS and RKS). In
PKS we build a matrix polynomial with Â acting on
b̂. This subspace can be extended to EKS by adding
inverse powers of the matrix Â to the basis. The RKS
method builds rational functions with Â and shifts κ.
The subspaces are de�ned as

KmPKS = span
{
b̂, Âb̂, . . . , Âmb̂

}
,

Knn,npEKS = span
{
Â−nn b̂, . . . , b̂, . . . , Ânp b̂

}
,

KmRKS(κ) = span
{

(Â(κ1) + κ1I)
−1b̂, . . . ,

(Â(κm) + κmI)−1b̂
}
. (9)

Adding a vector to a PKS is computationally cheap
and just requires one matrix vector multiplication;
however, adding a vector to an RKS is computa-
tionally expensive, as one has to numerically solve
the Maxwell equations for singe frequency points in
κ. Depending on the investigated con�guration, this
cost di�erence can be balanced by the RKS superior
approximation qualities, leading to accurate reduced
order models with small subspaces. In fact to obtain
a reasonable approximation with PKS and EKS often
requires a model order m that makes storing the ba-
sis V infeasible. Furthermore, V would be frequency
dependent with a frequency dependent PML. To re-
solve these issues for EKS and PKS we �x the PML
frequency and use short term recurrence relations to
compute the reduced order model Ĥ(s) without stor-
ing the basis.

Fixed frequency PML

Recent developments in near-optimal PMLs allow for
frequency independent PMLs that are matched over
a spectral inveral (Druskin, V. and Güttel, S. and
Knizhnerman, L., 2016). Fixing the PML frequency
at s = sf and using the notation Âf = Â(sf) we obtain

(Âf + sI)û = b̂, (10)

which violates the Schwarz re�ection principle as
û(s) 6= û(s) and makes Equation 10 unstable as Âf has
eigenvalues with a negative real part. However, sta-
ble �eld approximations can be obtained by comput-
ing stability-corrected (Druskin, Remis, & Zaslavsky,
2014; Druskin & Remis, 2013) transfer functions via

f(r, b) = 2η(t)rTW Re(η(Âf) exp (−Âft)b), (11)
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which also upholds the Schwartz re�ection principle
in the Laplace domain since

f̂(r, b) =rTWη(Âf)(Âf + sI)−1b+

rTWη(Âf)(Âf + sI)−1b. (12)

Here η(z) is the Heaviside step function acting on the
real part of its argument, such that η(Âf) is a projec-
tor onto the stable part of our �nite di�erence matrix.
Reduced order models of the upper transfer functions
using EKS and PKS can be computed e�ciently with-
out storing the basis V, since Âf is J-symmetric (see
6). Using PKS, a tridiagonal H can be computed via
the modi�ed Lanczos algorithm (Freund & Nachtigal,
1995) and a pentadiagonal H can be computed when
EKS are used as approximation basis (Jagels & Re-
ichel, 2011). The short recursion relations together
with the fact that only the bilinear form rTWf(Âf)b
is needed rather than the whole �eld approximation
allows for the computation of the transfer function
without storing the basis. Generally, EKS performs
well if low frequencies need to be approximated. Es-
sentially, one has to solve three Poisson equations to
compute an iteration with a negative power of A.

Rational Krylov Subspaces

Contrary to EKS and PKS the rational Krylov
method has no problem in handling frequency de-
pendent �nite di�erence matrices as the subspace is
spanned by single frequency solutions to the prob-
lem. The quality of an RKS-ROM is dependent on
the choice of so-called shifts or interpolation points
κ which are the Laplace frequencies whose Maxwell
solutions span the RKS. We would like the reduced
order model to preserve the symmetry, passivity and
Schwartz re�ection principle of the full order model,
to honor the underlying physics. To this end, the in-
terpolation points κ need to be closed under conjuga-
tion, such that the RKS itself is closed under conjuga-
tion and contains solutions u(κj) and u(κj) = u(κj).
This can be achieved by a choosing the real struc-
ture preserving Rational Krylov subspace (spRKS)
subspace

K2m
spRKS = span {Re û(κ1), Im û(κ1), . . . ,

Re û(κm), Im û(κm)} . (13)

Now let V ∈ RN×2m span this subspace, then the
reduced order wave�eld ûm can be obtained as

ûm = V(VTWÂ(s)V + sVTWV)−1VTWb̂. (14)

Phase preconditioning

The described model order reduction technique yields
fast convergence in small subspaces when only a few

modes of the system contribute to the response. For
highly conductive media, the method exhibits fast
convergence as well and in the limiting case of electro-
magnetic di�usion, RKS show excellent convergence
properties, and optimal shifts κ are known (Knizhn-
erman, Druskin, & Zaslavsky, 2009). For applications
in explorational geophysics with little or no losses
present and long travel times between source, target
and receiver the frequency domain transfer function
becomes very oscillatory since a delay in the time do-
main turns into a complex exponent in the Laplace
domain. An interpolatory method like RKS should
at least have two points per wavelength of the largest
travel time modelled, which leads to prohibitively
large RKS. However, this sampling requirement can
be lowered by approximating the phase term of the
wave�eld by the eikonal phase term exp(sT eik), where
T eik is the eikonal travel time obtained from the
eikonal equation |∇T eik|2 = εµ (Druskin, Remis, Za-
slavsky, & Zimmerling, submitted). Thus, at each
interpolation point the wave�eld û can be split into
an incoming and outgoing wave amplitude cin/out and
phase term

û(κi) = exp(−κiT)cout(κi)+exp(κiT)cin(κi), (15)

using one-way wave equations. Now a phase precon-
ditioned Rational Krylov subspace can be built by
multiplying the amplitudes cin/out with the eikonal
phase at every frequency where the ROM is evalu-
ated. Thus we obtain a �eld approximation ûm(s) of
the form

ûm(s) =

m∑
i=1

ai exp(−sT)cout(κi) + . . .

m∑
j=1

bj exp(sT)cin(κj) (16)

where the expansion coe�cients ai, bi can be found
from a Galerkin condition. Now the �rst arrival times
are factored out and corrected analytically, such that
low order �eld approximations can be obtained.

Results

To show the approximation qualities of the intro-
duced ROMs we consider a con�guration arising in
exploration with a ground penetrating radar (GPR).
We investigate a lossy subsurface with a box shaped
anomaly in a frequency band between 50 MHz and
2.4 GHz. The simulated con�guration is shown in
Figure 1, where the exact medium parameters are
provided in the caption. A current source directed
in the z-direction is used for excitation and the z-
component of the electrical �eld is measured at the
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ground-air interface. Finite-di�erence discretization
with a second-order accurate operator and 8 points
per wavelength at 2.4 GHz leads to a �rst order
Maxwell system with N = 62 · 103 unknowns. Us-
ing this full operator, we compute the transfer func-
tion for this con�guration using an FDFD method
as comparison solution for our reduced order mod-
els. This comparison solution is shown alongside the
responses of the PKS, EKS and RKS reduced order
models in Figure 2. The order of the reduced order
models was increased until the reduced order models
and the comparison solution essentially overlap.
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Figure 1: Simulated GPR con�guration, with a
(εr = 4, σ = 10−2 S/m) anomaly embedded in
a (εr = 1, σ = 5 · 10−4 S/m) surface layer, with
dry air εr = 1, σ = 0 on top.
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Figure 2: Imaginary part of the transfer function
over the frequency interval of interest. A FDFD
method is compared to two di�erent ROMs.

For the RKS method we choose equidistant shifts on
the imaginary axis between 50 MHz and 2.4 GHz.

The RKS method leads to the smallest model with
m = 71; however, a single iteration is much more
expensive than a PKS iteration. The PKS method
needs m = 3500 iterations until convergence, where
one iteration is as expensive as an FDTD step.

Conclusion

We presented several reduced order modeling tech-
niques for the Maxwell equations targeted at but not
limited to applications in geophysics. RKS generally
yields the smallest models; however, for some appli-
cations and con�gurations the low cost of a single
iteration of PKS or EKS outweighs this advantage.
Furthermore, generating a RKS demands more mem-
ory as we have to save the basis.
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