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SUMMARY
We have developed a novel approach for solving multi-frequency frequency domain wave equation. The
approach is based on efficient Krylov subspace approximants and projection-based model reduction
techniques. We have considered polynomial Krylov and extended Krylov subspaces for approximating the
solution given by stability-corrected resolvent. Our numerical examples indicate that polynomial Krylov
subspace allows to obtain solution for the whole a priori given frequency range at the cost of solution for
minimal frequency (for that frequency range) obtained using unpreconditioned BiCGStab solver. Extended
Krylov subspace has been shown to improve the convergence by providing more uniform rate for the
whole frequency range.
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Introduction

Developing fast and robust forward-modeling methods for frequency-domain wave problems is not only
a significant topic by itself, it is also of great importance for full wave inversion. When solutions for
multiple frequencies are required, conventional workflow consists of solving discretized frequency-
domain problems for each frequency separately. Typically, however, discretization grids for 3D prob-
lems consist of up to a billion nodes and even with state-of-the-art preconditioners such a workflow
results in rather computationally intensive tasks.

Model reduction is a well-established tool, allowing us to efficiently obtain solutions in the time- or
frequency-domains by projecting the large-scale dynamical system on a small Krylov or rational Krylov
subspace. For lossy diffusion dominated problems, for example, model reduction has been shown to pro-
vide significant speed ups (see Zaslavsky et al. (2011)). For seismic exploration, we note that problems
involving lossless media in unbounded domains effectively behave as lossy ones since infinity can be
viewed as an absorber of outgoing waves. In fact, two of the authors showed that these problems, poly-
nomial Krylov subspace (PKS) model reduction outperforms the finite-difference time-domain method
on large time intervals (see Druskin and Remis (2013)).

In this paper we extend the PKS approach and use extended Krylov subspaces (EKS) for reduced-order
model construction (Druskin and Knizhnerman (1998)). An EKS is generated by the system matrix and
its inverse and reduced-order models taken from such a space usually converge much faster than PKS
reduced-order models especially if a wide frequency range containing small frequencies is of interest. To
compute the models in an efficient manner, we use a modified version of the EKS algorithm proposed
by Jagels and Reichel (2009). Specifically, we generate a complex-orthogonal basis of the EKS via
short-term recurrences by exploiting the complex-symmetric structure of the system matrix.

Problem formulation

Consider the multidimensional Helmholtz equation

Au+ω2u = b. (1)

In this equation, A is a self-adjoint nonnegative partial differential equation operator on an unbounded
domain that has an absolutely continuous spectrum. We note that via a proper change of variables, all
frequency-domain acoustic and elastic field equations can be written in a form as given by Eq. (1). We
now discretize (1) using a second-order grid in the interior of the computational domain and use a PML
for domain truncation. As a result, we obtain a matrix ÃN ≈A, where ÃN ∈C N×N is complex symmetric.
In practice, the order of this matrix can be up to billion or even more.

When the computational domain is truncated using a conventional time-domain perfectly matched lay-
ers (PML) formulation (Berenger (1994)), operator ÃN becomes frequency-dependent. Indeed, that is
sufficient for traditional preconditioned solvers that treat each frequency one by one. In our approach,
however, we intend to reuse the same operator for multi-frequency computations. We therefore follow
Druskin and Remis (2013) and Druskin et al (2013) and apply a fixed-frequency PML with optimal
discrete stretching allowing low cost error control for a prescribed frequency interval.

It is tempting to substitute straightforwardly the approximate operator ÃN in (1) and take the solution
uN(ω) = (ÃN +ω2I)−1bN as an approximation to u. Here, we note that it is out goal to solve Eq. (1)
for multiple frequencies employing a fixed-frequency PML such that it is still possible to transform
the frequency-domain solution back to the time-domain. However, using the non-Hermitian matrix ÃN
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instead of its exact Hermitian counterpart A, qualitatively changes the behavior of the solution on the
complex plane. In particular, the symmetry relation u(ω) = u(−ω) breaks for the approximate solution
and the time-domain transform of uN(ω) is unstable. Fortunately, it is shown in Druskin and Remis
(2013) that we can correct for these defects by using the stabilized approximation to Eq. (1) in the form

ũN(ω) =−
1
2

[
B−1

N (BN + iωI)−1 +B−1
N

(
BN + iωI

)−1
]

bN , BN =
(
−ÃN

)1/2 (2)

Model reduction and Krylov subspace methods

With the stability-corrected field approximations available, we can now construct reduced-order models
based on EKS in the usual way. Specifically, the models are drawn from the Krylov subspace

Km1,m2 = span{Ã−m1+1
N bN , ..., Ã−1

N bN ,bN , ÃNbN ..., Ãm2−1
N bN}.

We note that the PKS Km = span{bN , ÃNbN , ..., Ãm−1
N bN} corresponds to K1,m2 and PKS reduced-order

models with application to stability-corrected solutions were investigated in Druskin and Remis (2013).
The advantage of such a PKS model-order reduction approach is that its computational costs are es-
sentially the same as the costs of m2 steps of the explicit finite-difference time-domain method or m2
steps of the unpreconditioned bi-CG method for the single frequency Helmholtz equation. However,
the reduced-order models taken from the PKS may not provide us with the fastest convergence if wide
frequency ranges with small enough frequencies are of interest. For such problems, we therefore resort
to an EKS reduced-order modeling approach. An EKS can be seen as a special case of a rational Krylov
subspace with one expansion point at zero and one at infinity. The action of Ã−1

N on a vector is required
to generate a basis for such a space. This essentially amounts to solving a Poisson-type equation for
which efficient solution techniques are available. Computing matrix-vector products with the inverse
of the system matrix is generally still more expensive than computing matrix-vector products with the
system matrix itself, however, and from a computational point of view we therefore prefer to deal with
EKS Km1,m2 with m1 < m2. In addition, the basis vectors should be constructed via short-term recur-
rence relations, since storage of all basis vectors is generally not practical for large-scale applications. In
Jagels and Reichel (2009), the authors developed such an EKS algorithm in which the orthogonal bases

Vk(i+1) = [v0,v1, ...,vi,v−1, ...,v−k+1, ...,vik]

for the sequence of subspaces K1,i+1 ⊂ K2,2i+1 ⊂ ... ⊂ Kk,ki+1 are indeed generated via short term
recurrences. Here, i is an integer that allows us to optimize the accuracy and computational costs. In
this paper, we modify this algorithm and generate complex-orthogonal basis vectors of the EKS by
exploiting the complex-symmetric structure of matrix ÃN . Denote d = k(i+ 1) and let Vd ∈ C N×d be
matrix with columns being the generated basis vectors. Then all iterations can be summarized into the
equation

ÃNVd =VdHd + zdeT
d ,

where zd = hd+1,dv−k + hd+2,dvik+1 and hi j is the (i, j) entry of matrix Hd . Furthermore, matrix Hd
is a pentadiagonal matrix that satisfies DdHd = V T

d ÃNVd , where Dd is diagonal matrix with entries
δ0,δ1, . . . ,δi,δ−1, . . . ,δ−k+1, . . . ,δik. The entries of matrix Hd can easily be obtained in explicit form
from the pentadiagonal matrix given in Jagels and Reichel (2009). The frequency-domain EKS reduced-
order model is given by

ũd(ω) =−
1
2

δ0

[
VdB−1

d (Bd + iωId)−1 +V dB−1
d

(
Bd + iωId

)−1
]

e1, (3)
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Figure 1 SEG/EAGE Salt model. Real and imaginary parts of the solution for a frequency of 7.5 Hz
computed using the BiCGStab and PKS solvers with 1,600 matrix-vector multiplications and 1,800
iterations, respectively. The solutions are almost indistinguishable.

where Bd =
(
−D1/2

d HdD−1/2
d

)1/2
, Id ∈ Rd×d is the identity matrix, and e1 is its first column. With

the help of our modified EKS algorithm, we now have reduced the computation of functions of a
very large finite-difference matrix ÃN to the action of functions of a much smaller five-diagonal ma-
trix −D1/2

d HdD−1/2
d times a “skinny” matrix Vd . Once both of these matrices have been computed,

simulation of the frequency domain curve can be done rather cheaply.

Numerical experiments

First, we have considered the 3D SEG/EAGE Salt model and benchmarked our solver against an inde-
pendently developed unpreconditioned BiCGStab algorithm that is a competitive conventional iterative
Helmholtz solver (see Pan et al (2012) for details). Here, we took the case m1 = 1 which corresponds to
PKS. Fig. 1 shows excellent agreement between two approaches . Then we note that the PKS approach
requires one matrix-vector multiplication per iteration, while BiCGStab needs two. Since this part con-
stitutes the most computationally intensive part of the iteration process, it makes sense to compare the
performance of these two methods in terms of matrix-vector multiplications rather than in terms of it-
erations. We have plotted the convergence rates of BiCGStab against the PKS model-order reduction
method on Fig. 2 (left). Clearly, for this single frequency problem, both rates are rather close. We note
that both approaches converge faster for higher frequencies and convergence slows down for lower fre-
quencies. Indeed, Fig. 2 (right) shows how the reduced-order modeling method converges for different
frequencies in the range from 2.5 Hz to 7.5 Hz. However, the principal difference between the PKS
method and BiCGStab is that the former approach obtains solutions for the whole given frequency range
at the convergence cost of BiCGStab for the lowest (from that range) frequency. Next, we consider what
adding negative powers gives us in terms of performance. In Fig. 3 (left), we have plotted a number
of convergence curves (with respect to increasing k) for approximants obtained using EKS Kk,ki+1 for
different values of fixed i (i = ∞ corresponds to PKS) and on a frequency range running from 2.5 Hz to
7.5 Hz. As is clear from this figure, adding negative powers (i < ∞) visibly improves the convergence of
the Krylov subspace method. Indeed, while PKS converges faster for higher frequencies, EKS improves
convergence for smaller frequencies and, consequently, convergence is more uniform on the entire fre-
quency range. To confirm that point, in Fig. 3 (right), we have plotted convergence curves for the EKS
method on a frequency range with expanded lower part. As one can observe, PKS significantly slows
down while EKS performs as efficient as for a narrower frequency range.

Conclusions

We have developed a powerful model-order reduction tool for solving large-scale multi-frequency wave
problems. The PKS method allows obtaining solutions for a whole range of frequencies at the cost of
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Figure 2 SEG/EAGE Salt model. Convergence rates of BiCGStab and PKS at a fixed frequency of 7.5
Hz (left) and convergence behavior of PKS for a frequency range running from 2.5 Hz to 7.5 Hz (right).
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Figure 3 SEG/EAGE Salt model. Convergence of EKS for different values of i and for frequencies
ranging from 2.5 Hz to 7.5 Hz (left) and from 0.1 Hz to 7.5 Hz (right).

solving a single-frequency problem with the BiCGStab solver. Moreover, EKS model-order reduction
significantly outperform polynomial reduced-order modeling when solutions for small frequencies are
required. We also note that the EKS approach can be applied to wave problems in the time-domain.
Furthermore, our approach is not limited to second-order schemes in the interior. In fact, since the
optimal discrete PML has spectral accuracy (see Druskin and Remis (2013); Druskin et al (2013)), it
would be preferable to use optimal grids (Asvadurov et al (2000)) or spectral methods for interior part.
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