
Joint ranging and clock synchronization

for a wireless network

Raj Thilak Rajan∗,† and Alle-Jan van der Veen†

∗ Netherlands Institute for Radio Astronomy (ASTRON), The Netherlands
† TU Delft, Delft, The Netherlands

Abstract—Synchronization and localization are two key aspects for the
coherent functioning of a wireless network. Recently, various estimators

have been proposed for pairwise synchronization between two nodes

based on time stamp exchanges via two way communication. In this

paper, we propose a closed form centralized Global Least Squares
(GLS) estimator, which exploits the two way communication information

between all the nodes in a wireless network. The fusion center based

GLS uses a single clock reference and estimates all the unknown clock
offsets, skews and pairwise distances in the network. The GLS estimate

for clock offsets and skews is shown to outperform prevalent estimators.

Furthermore, a new Cramer Rao Lower Bound (CRLB) is derived for

the entire network and the proposed GLS solution is shown to approach
the theoretical limits.

Index Terms—joint estimation, skew, offset, distance, wireless network,
anchorless, global solution, packet based two way communication

I. INTRODUCTION

Coherent functioning of wireless networks relies heavily on time

synchronization among nodes. All the nodes in a network must

be synchronized to a global reference, to facilitate accurate time

stamping of data and synchronized communication of processed

information [1]. Such global time synchronization is achieved by

estimating all clock offsets and clock skews of the nodes and

compensating the respective clocks aptly. Furthermore, when nodes

are mobile and/or arbitrarily deployed in the field, then position

estimation is often equally critical as time synchronization. The

intermediate distances between all the nodes in the network is one

of the key inputs for almost all localization techniques [2].

For a pair of nodes exchanging time packets via two way com-

munication, if one node is assumed to be the reference, then the

absolute clock offset and skew of the other node can be estimated

using maximum likelihood [3], such as the Gaussian Maximum

Likelihood (GMLL) estimate for unknown delay. A step further,

Leng et al. presented a Low Complexity Least Squares (LCLS)

solution [4] for the joint estimate, ignoring distance as a nuisance

parameter. Towards joint localization and synchronization, centralized

least squares solutions have been derived for estimating the absolute

2−D position and clock parameters of an unknown node [5], given

completely synchronized anchors whose positions are known.

A. Network assumptions

We assume a wireless network of nodes capable of two way

communication with each other. Each node is equipped with a

light weight atomic clock, which offers sufficient stability during

the period for low frequency data collection. Secondly, the nodes

within the network are mobile but their positions are sufficiently

stable to the required accuracies during the estimation time. Thirdly,

every node is equipped with adequate processing and communication

capabilities. Our motivation is OLFAR (Oribiting Low Frequency

0This research was funded in part by the STW OLFAR project (Contract
Number: 10556) within the ASSYS perspectief program. A part of the work
presented in this paper has been submitted to the SPAMEC 2011 conference.

Array for Radio astronomy) [6], an anchorless network of 10-50

satellite nodes in space which is currently being designed. Each

satellite in OLFAR has a Rubidium clock and samples the sky at

ultra low frequencies of 0.3-30 MHz, thus giving clock coherence

up to 30 minutes [7]. In comparison to the raw data exchange and

the on board correlation in the satellites, the time stamp exchanges

and proposed centralized algorithm are negligible, both in terms of

communication and computational power. The satellite nodes will

be deployed in locations such that their positions are sufficiently

stable during observations of 10-1000 seconds, thus offering adequate

computation time for range measurement.

B. Contributions

In this paper, we propose a novel centralized Global Least Squares

(GLS) estimator to estimate all the unknown clock offsets, skews and

pairwise distances in the network using a single clock reference. A

new Cramer Rao Lower Bound (CRLB) is derived for the model

and the proposed estimator is shown to be optimal asymptotically, in

addition to outperforming available clock synchronization estimators.

Notation: The element wise matrix Hadamard product is denoted

by ⊙, element wise Hadamard division by ⊘, (·)⊙N denotes element-

wise matrix exponent. The Kroneker product is indicated by ⊗ and

the transpose operator by (·)T . 1N = [1, 1 . . . , 1] ∈ R
N×1 is a vector

of ones and IN is a N ×N identity matrix.

II. PROBLEM FORMULATION

Consider a network of N nodes equipped with independent clock

oscillators which, under ideal conditions, are synchronized to the

global time. However, in reality, due to various oscillator imperfec-

tions and environment conditions the clocks vary independently. Let

ti be the local time at node i, then its divergence from the ideal

global time t is to first order given by the affine clock model,

ti = ωit+ φi (1)

where ωi ∈ R+ and φi ∈ R are the clock skew and clock offset

of node i. The clock skew and clock offset parameters for all N
nodes are represented by ω = [ω1, ω2, . . . , ωN ]T ∈ R+

N×1 and

φ = [φ1, φ2, . . . , φN ]T ∈ R
N×1 respectively. Alternatively, the

translation from local time ti to the global time t is written as a

function of local time,

Fi(ti) , t = αiti + βi (2)

where [αi, βi] , [ω−1
i ,−ω−1

i φi] are the calibration parameters

needed to correct the local clock of node i. Following immediately,

for all N nodes in the network, we have α , 1N ⊘ω ∈ R+
N×1 and

β , −φ⊘ω ∈ R
N×1. All M =

(

N
2

)

unique pairwise distances be-

tween N nodes are given by d = [d11, d12, . . . , d(N−1)(N)] ∈ R
M×1

and subsequently the propagation delay between nodes is given by

τ = dc−1 ∈ R
M×1, where c is the speed of the electromagnetic
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Fig. 1. This figure shows the classical two way communication between
a node pair (i, j). Node i is the reference with [ωi, φi] = [1, 0] and also
initiates the communication with node j whose clock skew (ωj), clock offset
(φj ) and distance (dij ) from node i are unknown. There are K two way
communications between the node pair during which 2K time markers are
recorded at the respective nodes.
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wave in the medium. Given a single reference node (providing the

reference clock) and two way communication between all nodes, we

intend to efficiently estimate all the absolute clock skews (ω), clock

offsets (φ) and pairwise distances (d) in the network.

III. PAIRWISE SYNCHRONIZATION AND DISTANCE ESTIMATION

Prior to investigating the entire network, we focus our attention on

a single pair of nodes. Consider the classical two way communication

between a node pair (i, j) as shown in Figure 1. Node i initiates

the communication and up-links a message to node j and node j
responds by downlinking a message back to node i. The two nodes

communicate messages back and forth, and the transmission and

reception times are recorded independently at the respective nodes.

T
(k)
ij denotes the local time recorded at node i for the k th message

departing to node j and R
(k)
ji is the corresponding local time marker

recorded by the node j on receiving the message from node i.
Similarly during downlinking, T

(k)
ji and R

(k)
ij are the local timings

recorded at node j and i respectively. There are K such two way

communications between the node pair, during which we assume that

the propagation delay between the two nodes τij = dij/c ≡ dji/c
is fixed. The transmission and reception markers are then related as

[8]

T
(k)
ij + q

(k)
1 = ωi(Fj(R

(k)
ji + q

(k)
2 )− τij) + φi,

R
(k)
ij + q

(k)
3 = ωi(Fj(T

(k)
ji + q

(k)
4 ) + τij) + φi (3)

where {q(k)1 , q
(k)
2 , q

(k)
3 , q

(k)
4 } ∼ N (0, 0.5σ2) are Gaussian i.i.d noise

variables plaguing the timing measurements. Rearranging the terms

and from (1) and (2) we have

αiT
(k)
ij = αjR

(k)
ji − βi + βj − τij − αiq

(k)
1 + αjq

(k)
2 ,

αiR
(k)
ij = αjT

(k)
ji − βi + βj + τij − αiq

(k)
3 + αjq

(k)
4 (4)

For all K two way communications, a generalized model for a pair

of nodes is

[

tji −tij 12K −12K e
]













αj

αi

βj

βi

τij













= qij (5)

where tij , tji ∈ R
2K×1 are time markers recorded at node i and

node j respectively while communicating with each other and are

Fig. 2. An illustration of a network with N = 4 nodes, each capable of two
way communication. Node 1 (shaded in black) is the clock reference with
[ω1, φ1] = [1, 0]. The clock skews and clock offsets of node 2, 3 and 4 are
unknown and are to be estimated, in addition to all the pairwise distances.
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given by

tij = [T
(1)
ij , R

(1)
ij , T

(2)
ij , . . . , R

(K)
ij ]T ,

tji = [R
(1)
ji , T

(1)
ji , R

(2)
ji , . . . , T

(K)
ji ]T (6)

e = [−1,+1 . . . ,+1]T ∈ R
2K×1 and qij is the i.i.d noise vector,

which is modeled as qij ∼ N (0, 0.5σ2(β2
i + β2

j )) ∈ R
2K×1. In

reality, the clock skews ωi, ωj are very close to 1 and the errors are

of the order of 10−4. Hence the noise vector could be approximated

by

qij ∼ N (0, σ2) ∈ R
2K×1

(7)

Such an approximation is satisfactory and is implicitly employed

in various cases such as [3] and [4]. Now, by asserting node i as the

reference node with [αi, βi] = [1, 0], equation (5) is simplified to

Ajiθj = tij + qij (8)

where

Aji =[tji 12K e] ∈ R
2K×3

θj =[βj αj τij ]
T ∈ R

3×1

The Pairwise Least Squares (PLS) solution for estimating the clock

skew (ωj , 1/αj ), the clock offset (φj , −βj/αj ) of node j and

its distance (dij , cτij ) is obtained by minimizing the least squares

norm, i.e.,

θ̂j = argmin
θj

‖Ajiθj − tij‖
2
2 = (AT

jiAji)
−1

A
T
jitij (9)

provided the number of two way communications K ≥ 2. This

Pairwise Least Squares (PLS) solution is a minor extension of the

Low Complexity Least Squares (LCLS) by Leng et al. [4], where

distance was considered a nuisance parameter and consequently not

estimated. Note that in the two way communication model, there is no

assumption that the messages have to be alternating regularly. Hence

the measured time stamps are valid as long as the distance between

the nodes and the clock parameters are stable within reasonable

limits during the estimation process. Secondly, if the two way link

is replaced with one way communication then matrix Āji is rank

deficient and hence there is no optimal solution to jointly estimate

the clock parameters and pairwise distances.

IV. NETWORK SYNCHRONIZATION AND RANGING

Our aim is to extend the pairwise model in (5) to the entire network

and find a global optimal solution for all unknown clock parameters

and pairwise distances using a single reference. As an illustration,

Figure 2 shows a network consisting of N = 4 nodes, all capable of
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Fig. 3. An illustration of 3 networks with N = 4 nodes each capable of two way communication. The node shaded in black is the clock reference. The 3
networks are illustrative examples where GLS algorithm can be applied for network wide clock synchronization, despite missing communication links.

two way communication with each other. Without loss of generality,

we assume node 1 is the reference node in this wireless network and

that all the links are present. Rearranging the terms in (5), for all

{i, j}, we have

[T E1 E2]





α

β

τ



 = q (10)

where T ∈ R
2KM×N contains all the timing vectors from all the N

nodes , E1 ∈ R
2KM×N , E2 = −IM ⊗ e ∈ R

2KM×M . For N = 4,

T and E1 are of the form

T =

















t12 −t21
t13 −t31

t14 −t41

t23 −t32
t24 −t42

t34 −t43

















(11)

E1 =

















+12K −12K

+12K −12K

+12K −12K

+12K −12K

+12K −12K

+12K −12K

















(12)

and a similar structure can be generalized for N ≥ 4. The global

noise vector is q = [q12,q13, . . . ,q(N−1)(N)] ∈ R
2KM×1 where

each qij is given by (7). Since node 1 is the reference node, i.e.,
[α1, β1] = [1, 0], rearranging the terms in (10) we have

Āθ = −t̄1 + q (13)

where

Ā =[T̄ Ē1 E2] ∈ R
2KM×L

θ =[ᾱ β̄ τ ]T ∈ R
L×1

where L = 2N+M−2 and T̄, Ē1 ∈ R
2KM×(N−1) are submatrices

of T and E1 respectively, excluding the corresponding first columns.

ᾱ, β̄ ∈ R
(N−1)×1 represent the unknown clock parameters of all

the nodes excluding node 1. t̄1 ∈ R
2KM×1 is the first column of

matrix T which contains the timing markers recorded at node 1,

whilst communicating with the other nodes in the network. Analyzing

the components of matrix Ā, both T̄, Ē1 are full rank, since the

respective first 2K(N − 1) rows are formed by block diagonal

matrices. Note that all columns of E2 are also independent. In

addition, if K ≥ 2, then a Global Least Squares (GLS) solution

is feasible and is obtained by minimizing the least squares norm,

i.e.,

θ̂ = argmin
θ

‖Āθ + t̄1‖
2
2 = (ĀT

Ā)−1
Ā

T
t̄1 (14)

Hence, the unknown clock skews (ω̄ , 1N ⊘ ᾱ), the unknown

clock offsets (φ̄ , −β̄⊘ ᾱ) of the nodes and the pairwise distances

(d , τc) in the network can be estimated by solving (14). Note that

the LS solution proposed in the previous section is a special case

of GLS when N = 2. The closed form solution (14) is for a full

mesh network. More in general, if some pairwise communications

links are missing then corresponding rows in matrix Ā are dropped.

Consequentially, the pairwise distances between those particular

nodes cannot be optimally estimated. However, despite missing links

network wide synchronization is still feasible (example Figure 3)

using (14) if and only if Ā is full rank. In other words, every node

has at least single two way communication link with any other node

in the network.

V. CRAMER RAO LOWER BOUND

The Cramer Rao Lower Bound (CRLB) on the error variance for

any unbiased estimator states [9]

ε

{

(θ̂ − θ)(θ̂ − θ)T
}

≥ F
−1

(15)

where F is the Fisher information matrix. The error vector q in (13)

is Gaussian by assumption and the corresponding Fisher information

matrix is [9]

F =
1

σ2
J
T
J (16)

where J ∈ R
2KM×L is the Jacobian matrix. For jointly estimating

the clock skew ω̄, clock offset φ̄ and all the pairwise distances d,

we have

J =

[

∂Āθ

∂θT

]

,

[

Jω̄ J ¯φ
Jτ

]

(17)

where the independent components can be shown as

Jω̄ = −(T̄+ Ē1 ⊙ 12KM φ̄
T
)⊘ (12KM ω̄

T )⊙2

J ¯φ = Ē1 ⊘ 12KM ω̄
T

Jτ = E2 (18)

VI. SIMULATIONS

Simulations are conducted to evaluate the performance of the

proposed estimator. We consider a network of N = 4 nodes, as shown

in Figure 2, wherein all the nodes are located within 10Km of each

other and consequently d is a random vector in the range (0,10Km].
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Fig. 4. Mean Square Error (MSE) plot of estimated clock skews (ω̂) for a
network of N = 4 nodes, where noise is Gaussian with σ = 0.1
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Fig. 5. Mean Square Error (MSE) plot of estimated clock offsets (φ̂) for a
network of N = 4 nodes, where noise is Gaussian with σ = 0.1

The clock offsets (φ̄) and clock skews (ω̄) are uniform randomly dis-

tributed in the range [−1, 1] seconds and [0.998, 1.002] respectively.

The transmission time markers tij are linearly distributed between

1 to 100 seconds, for a number of two way communication links K
from 5 to 20. The noise variance on the timing markers is σ = 0.1
and all results presented are averaged over 10,000 independent Monte

Carlo runs.

Figure 5 and 4 show the Mean Square Errors (MSEs) of clock

skews and offsets against the number of two way communications K
for various estimators. The Low Complexity Least Squares (LCLS)

[4], the proposed Pairwise Least Squares (LS) and the Maximum

Likelihood GMLL [3] algorithms are independently applied, pairwise

from node 1 to every other node, to estimate all the unknown skews

ω̄ and offsets φ̄. As shown by the plots, the PLS solution matches

the LCLS performance. Secondly, the proposed Global Least Squares

(GLS) solution, which exploits information from all the pairwise two

way communications, outperforms the (LCLS) for both clock skew

and clock offset estimation in addition to achieving the theoretical

Cramer Rao Lower Bound. In addition to clock skews and offsets,

the pairwise distances d are also estimated in terms of propagation

delays τ . Figure 6 shows the proposed Global Least Squares (GLS)

solution for τ which achieves the Cramer Rao Lower Bound. To the

best of the author’s knowledge, there are no other distance estimators

5 10 15 20

10
−3

 

 

GLS estimate

CRLB

Number of two way communications (K)

M
S

E
o
f

p
ro

p
ag

at
io

n
d
el

ay
s

(τ̂
)

Fig. 6. Mean Square Error (MSE) plot of estimated propagation delays (τ̂ )
for a network of N = 4 nodes, where noise is Gaussian with σ = 0.1

available for this data model for comparison.

VII. CONCLUSIONS

In this paper, an efficient and novel closed form Global Least

Squares (GLS) estimator for network wide synchronization is pro-

posed. The GLS utilizes a single reference node and exploits all

two way communication information between nodes in the network.

The proposed estimator is shown to improve available solutions

for clock skews and offsets, in addition to estimating the pairwise

distances between all nodes in a closed form. A new CRLB has

been derived and the proposed solution achieves the bound, which

shows that the linearized model is sufficiently accurate. As a trivial

extension, Multi-Dimensional Scaling (MDS) [2] can be applied

on the estimated distances to obtain all relative positions of the

nodes, thereby achieving absolute clock synchronization and relative

localization for an anchorless wireless network.
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