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Abstract—Synchronization and localization are critical chal-
lenges for the coherent functioning of a wireless network, which
are conventionally solved independently. Recently, various esti-
mators have been proposed for pairwise synchronization between
immobile nodes, based on time stamp exchanges via two-way
communication. In this paper, we consider a network of mobile
nodes for which a novel joint time-range model is presented,
treating both unsynchronized clocks and the pairwise distances as
a polynomial functions of true time. For a pair of nodes, a least
squares solution is proposed for estimating the pairwise range
parameters between the nodes, in addition to estimating the clock
offsets and clock skews. Extending these pairwise solutions to
network-wide ranging and clock synchronization, we present a
central data fusion based global least squares algorithm. A unique
solution is nonexistent without a constraint on the cost function
e.g., a clock reference node. Ergo, a constrained framework is
proposed and a new Constrained Cramér–Rao Bound (CCRB) is
derived for the joint time-range model. In addition, to alleviate
the need for a single clock reference, various clock constraints are
presented and their benefits are investigated using the proposed
solutions. Simulations are conducted and the algorithms are
shown to approach the theoretical limits.

Index Terms—Joint estimation, relative position, sum constraint,
nullspace constraint, virtual clock.

I. INTRODUCTION

T HE coherent functioning of wireless networks relies
heavily on time synchronization among nodes [4]–[7].

All nodes in a network are equipped with independent clock
oscillators, which must be synchronized to a global reference,
to facilitate accurate time stamping of data and synchronized
communication of processed information. Clock oscillators
in these nodes are inherently non-linear [8]–[10], however, if
calibrated astutely, can be approximated as a linear function
for a small measurement time period. The unknown regression
coefficients of such an affine clock model will be the clock
offset and clock skew. Global time synchronization within the
network is then achieved by estimating all clock offsets and
clock skews of the nodes and compensating the respective
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clocks aptly. Furthermore, when nodes are arbitrarily deployed
in the field, then position estimation is often equally critical
as time synchronization [11], [12]. The intermediate distances
between all the nodes in the network (obtained via ranging)
is one of the key inputs for almost all localization techniques
e.g., Time Of Arrival (TOA) [13], Time Difference of Arrival
(TDOA) [14], Multi-Dimensional Scaling (MDS) [15]. More-
over, when the nodes are mobile, distance estimation using
ranging is a challenge, particularly when the clocks of the
nodes are unsynchronized.
In this article, we consider an anchorless network of unsyn-

chronized mobile nodes, capable of two-way communication.
All the nodes are in motion i.e.,mobile during the two-way com-
munication and hence the pairwise distances are unique at each
time instant. In addition, all the nodes are equipped with inde-
pendent clocks, which are unsynchronizedw.r.t. some reference
time i.e., true time, during the two-way communication. Finally,
by the term anchorless, we consider an autonomous and cooper-
ative network with no external (reference) information on either
time, distance or position. Hence we assume no a priori knowl-
edge on the nodes initial positions and/or on their respective
motion. Thus, our fundamental challenge is to understand the
joint variation of local time at each node and time-varying pair-
wise distances between the cluster of nodes. After obtaining the
pairwise distances at discrete intervals of time, the relative po-
sitions of the nodes at respective time instances can be obtained
via MDS [15]. We assume the need for bi-directional communi-
cation between the nodes, but a full mesh network is not always
necessary.

A. Applications

Our motivation for this work are inaccessible mobile wire-
less networks, which have partial or no information of absolute
co-ordinates and/or clock references. Such scenarios are preva-
lent in under-water communication [16], indoor positioning
systems [17], autonomous swarm networks [18] and envisioned
space based satellite networks with minimal ground segment
capability. A particular project of interest is the Orbiting Low
Frequency Antennas for Radio astronomy (OLFAR) [19], a
Dutch funded program which aims to design and develop a
detailed system concept for an interferometric array of
identical, scalable and autonomous satellites in space to be used
as a scientific instrument for ultra low frequency observations
(0.3 MHz–30 MHz). The OLFAR cluster will be deployed far
from the earth orbiting global positioning systems and hence
cooperative network synchronization and localization is one of
the key challenges in OLFAR, since no a priori information is
available [20].
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B. Previous Work

The joint estimation of clock parameters (upto a first order)
and the pairwise distances via two-way ranging is a well studied
topic for a network of stationary nodes [6], [7]. For a pair of
fixed nodes capable of bi-directional communication, the clas-
sical Two Way Ranging (TWR) model involves 2 clock off-
sets, 2 clock skews and the pairwise distance between the nodes,
which results in an unsolvable five dimensional problem. How-
ever, traditionally, one clock is assumed to be the reference
clock which reduces the cardinality to 3 and given sufficient
measurements, the absolute clock skew and clock offset of the
second node, and its pairwise distance from the first node can
be estimated. For estimating the clock errors, maximum likeli-
hood estimates and Low Complexity Least Square (LCLS) esti-
mates are proposed in [21] and [22] respectively, and distributed
solutions are presented in [23]. A step further, joint estimation
of clock parameters and the fixed distances for the entire net-
work of nodes was proposed in [1]. An overview of estima-
tors for a plethora of two-way ranging protocols and approaches
are presented in [24] and, joint localization and synchronization
for a anchored network is addressed in [25], [26]. Furthermore,
the connectivity, capacity, clocks, and function computation re-
quired for synchronizing large network of nodes is discussed
in [27].
However, all these propositions are based on the classical

two-way ranging data model [7], where the node positions are
fixed and consequently the pairwise ranges are independent
of time. In case of an anchorless network of mobile nodes,
the nodes are in motion during the time-of-flight measurement
window. As a result, the pairwise distances are a non-linear
function of time and our proposition is to approximate this
continuous function as a polynomial function in time, for a
small measurement period. Under this context, the unknown
coefficients of this monomial approximation (called range
parameters) need to be estimated, which beget the pairwise
distances at discrete time intervals. Furthermore, for an unsyn-
chronized network, these range parameters are plagued with
clock errors, which must be estimated and the respective clocks
calibrated. Along these lines, for an network of mobile nodes,
we had previously proposed a joint first-order time-range model
in [2], where clock parameters were estimated along with range
parameters upto the first order. We further extended this model
to a joint second-order ranging and affine synchronization basis
for a network of mobile nodes in [3], where second-order range
parameters were also estimated. However, in reality, the order
of the time-varying distance approximation is typically un-
known, as it depends on the initial position, the nature of node
mobility and the measurement time window. This motivates the
need for a unified time-range basis which can estimate both the
clock parameters and pairwise distances without any a priori
information on the motion of the nodes.

C. Contributions

In this paper, we propose a generic joint time-range
basis (Section II), which combines the affine clock model
(Section II.A) with a generalized th order non-linear
range model for an anchorless network of mobile nodes. In the
presence of clock errors, the time-varying distance measure-
ments are corrupted with clock skews and clock offsets and

the relation is addressed in Section II.B. The proposed joint
basis is applied in a TWR framework (Section III.A) and a
Mobile Pairwise Least Squares (MPLS) solution (Section III.B)
is proposed for a pair of mobile nodes, to estimate the clock
skews, offsets and the range parameters of the pairwise distance
between the nodes. Furthermore, for the entire network, all the
clock skews, offsets and range parameters can be estimated
using the proposed Mobile Global Pairwise Least Squares
(MGLS) algorithm (Section IV.A). More generally, when the
order of distance approximation is unknown, iterative solu-
tions are proposed for both the pairwise and global solutions. A
unique solution is non-existent without a constraint on the cost
function (e.g., clock reference node) and hence, a constrained
framework is proposed. A new Constrained Cramér Rao Bound
(CCRB) is derived in Section V for the estimated clock and
range parameters. In addition, instead of the classic constraint
of using a single clock reference, alternative sum constraint
and nullspace constraint are proposed (Section VI) which are
shown to yield about a factor of magnitude better performance
on the clock skew and offset estimation. The performance of
the proposed algorithms and choice of constraints are analyzed
using simulations in Section VII.
Notation: The element wise matrix Hadamard product is

denoted by denotes element-wise matrix exponent
and indicates the element-wise Hadamard division. The
Kronecker product is indicated by and the transpose operator
by . , are
vectors of ones and zeros, respectively. is a identity
matrix, is a matrix of 0, represents a
diagonal matrix with elements of vector on the diagonal. The
variance of parameter is indicated by .

II. JOINT TIME-RANGE BASIS

A. Affine Time Model

Consider a network of nodes equipped with independent
clock oscillators which, under ideal conditions, are synchro-
nized to the global time. However, in reality, due to various
oscillator imperfections and environment conditions the clocks
vary independently and are inherently non-linear. Nonetheless,
the local time at a given node can be approximated to a linear
function, provided the Allan deviation of the respective clock
is negligible for a small time period. Let be the local time at
node , then its divergence from the ideal true time is to first
order given by the affine clock model,

(1)

where and are the clock skew and clock offset
of node and the function relates the local time to the
true time . In actuality, the clock skew and clock
offset are time-varying, but we assume they remain con-
stant for small measurement time period (say ), which is
often a reasonable assumption [27]. Alternatively, the 2nd part
of (1) shows the translation from local time to the global time
, where are the calibration parame-
ters needed to correct the local clock at node . The clock skew
and clock offset parameters for all nodes are represented by

and
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respectively, and similarly the clock calibration parame-
ters of the network are and . The unique
relation between all the clock parameters is given by

(2a)

(2b)

Observe that for an ideal clock, immediately
implies and vice versa.

B. Non-Linear Range Model

In addition to clock variations, the nodes are also in motion
with respect to each other. Traditionally, when the nodes are
fixed, the pairwise propagation delay between a node pair

is , where is the fixed distance between
the node pair and is the speed of the electromagnetic wave in
the medium.1 However, when the nodes are mobile, then the rel-
ative distances between the nodes are a non-linear function of
time. For a small measurement time period , the propaga-
tion delay between a node pair is then, classically a
Taylor series, given by

(3)

where is the time-varying pairwise distance between
node pair and

contains all the range coefficients of the corresponding
Taylor approximation. The order of approximation and the
range of these coefficients depend on the initial position
and the type of motion of the respective nodes. However, the
propagation delay between the node pair is not measured at
true time, instead by a local node clock, say node . Hence,
substituting the equation of ideal true time from (1), we have
the propagation delay in terms of the local time , i.e.,

(4)

where

(5)

describes the pairwise propagation delay w.r.t. the local time
at . The coefficients

are translated range parameters in terms of time, which
incorporate the clock discrepancy of node .

For the entire network, comprising of unique pair-

wise links for nodes, all the unique range coefficients are
given by

...
. . .

...
(6)

1Without the loss of generality, we assume line of sight communication and
hence all physical layer effects such as multi-path and shadowing are beyond the
scope of this work. These scenarios can be addressed using existing techniques
in literature e.g., [28].

and along similar lines, we have the translated range coefficients

...
. . .

...
(7)

where and represent the unique th order range coeffi-
cient for of the node pair respectively.
Furthermore, vectorizing these coefficient matrices, we have

(8)

Observe that although and are non-linear functions,
is an affine translation and thus there exists

a linear transformation matrix containing
such that

(9)

The expression for is derived in Appendix A.

C. Time-Range Interrelation

In the following section we present a generalized TWR sce-
nario where the joint time-range basis is applied. Furthermore,
an estimation process is described to obtain the network param-
eters where , that are
uniquely related to the desired unknown clock and range pa-
rameters by (2) and (9) respectively.
Finally the distance at discrete time intervals is obtained using
(4).

III. PAIRWISE SYNCHRONIZATION AND RANGING

A. Data Model

Consider a pair of mobile nodes with , which are
capable of two-way communication with each other as shown
in Fig. 1. The two nodes communicate messages back and forth,
and the time of transmission and reception are registered inde-
pendently at respective nodes in respective local time coordi-
nates. The th time stamp recorded at node when communi-
cating with node is denoted by and similarly at node
the time stamp is . Note that the total measurement period
in this framework is seconds. The direction
of the communication is indicated by , where
for transmission from node to node and for
transmission from node to node . Furthermore, the propaga-
tion delay between the nodes at each time instant is
given by , where is the total number of time
stamps recorded at each node and is the distance between
the nodes at time instant .
Under ideal circumstances, when the nodes are completely

synchronized the noise free th communication time markers
are related as

(10a)
(10b)

which can be combined as

(11)

(12)
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Fig. 1. Asynchronous pair of mobile nodes:A generalized Two Way Ranging
(TWR) scenario between a pair of asynchronous nodes in motion, where the
nodes exchange time stamps each. The curved lines symbolize the time-
varying motion of the nodes, in addition to the independent clock drifts. See
Remark 1.

where the distance between the nodes at time
instant is defined in (3). However, due to clock
uncertainties modeled in (2), and its subsequent influence on
distance (4), (12) translates to

(13)

where without loss of generality, the time-varying pairwise dis-
tance is expressed as a linear function of i.e., time at node .
[See (14)–(16) at the bottom of the page.]
Furthermore, in reality due to measurement noise on the

time markers, (13) is (14), where are noise vari-
ables plaguing the timing measurements at respective nodes.
Rearranging the terms and incorporating the approximate range
model for from (4) as a function of local time at node
we have (15), which also includes the error due to Taylor series
expansion. Expanding the equation and rearranging the terms
begets (16), where is the stochastic noise between the node
pair at the th instant, which is discussed in Section V.
Remark 1: (Mobile Nodes During Communication): In

Fig. 1, the curved lines symbolize the independent clock drifts
in addition to the time-varying distance between the nodes. In
traditional TWR, for a fixed pair of nodes (i.e., ), the
pairwise distance is assumed to be invariant for the total
measurement period . However, when the
nodes are mobile, the distance at each time instance is dis-
similar. Hence, instead of the classical assertion that the nodes
are relatively stable over a time period [7], [21], [22], we
suppose that the nodes are relatively stable over a much smaller
time period of i.e., the propagation time
of the message. Furthermore, unlike previous cases [7], [21],
[22] where the transmission and reception was alternating, the
proposed setup imposes no pre-requisites on the sequence or

number of two-way communications [1]–[3]. However, at least
a single communication in the opposite direction is required for
a feasible solution.

B. Mobile Pairwise Least Squares (MPLS)

Extending (16) for all communications, a generalized joint
clock and th order range model for a pair of nodes is

...

(17)

where

(18)

(19)

(20)

contain the observation vectors

(21)

(22)

(23)

The time markers recorded at node and node while commu-
nicating with each other are stored in and respectively,
is a known vector indicating the transmission direction for

each data packet and the noise vector is

(24)

Given a sufficiently large number of communications
between the two nodes, the homogeneous system (17) has a
non-trivial solution spanning the null space of . The
known Vandermonde matrix is full rank for sufficiently
large. Secondly, in the column vectors and are
completely dependent and although is full rank, it
is observed that the matrix is rank deficient by 2 and the
corresponding null space is data dependent [1].
A unique solution can be obtained by assuming either one

of and either one of is known and thus
eliminating respective columns in , which is in turn
accomplished by choosing one of the two nodes as a clock [1].

(14)

(15)

(16)
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More generally, we can translate the homogeneous equations
into normal equations by asserting one of the two nodes as the
reference node, say node with . This gives

(25)

where
(26)

(27)

(28)

The Mobile Pairwise Least Squares (MPLS) solution is then
obtained by minimizing the norm,

(29)

where is an estimate of . Following, an esti-
mate of the desired clock and range parameters can
then be obtained using (2) and (9). An estimate of the approx-
imated distance between the nodes at the th time instant
is then from (4)

(30)
and for all , we have

(31)

where is the Vandermonde matrix (20) and
is the distance estimate

between the node pair at all time instances.
More generally, when is unknown, solutions for increasing
can be estimated using iterative MPLS (iMPLS) (based on

order recursive least squares [29]), which we briefly describe
in Appendix B for the sake of completeness. This order recur-
sive least squares not only implicitly estimates the unknown
by incrementing the number of columns of the Vandermonde
structure iteratively, but also implements computationally
economical updates of the inverse and solutions (29).
Remark 2: (Feasibility of MPLS Solution): The solution (29)

is feasible if is a square or tall matrix i.e., the
number of communications . Secondly, to ensure
full column rank, we require and . In
other words, among the data exchanges between
the two nodes, there must be at least one transmission from to
and to respectively.
Although the MPLS solution is motivated for a mobile net-

work of nodes, it is readily applicable for a network of immobile
nodes. In that case, for a given node pair the estimated
range parameter indicates the fixed uncalibrated commu-
nication latency during the exchange of time stamps and the
higher order range parameters indicate the latency fluctuations
during communication.

IV. NETWORK SYNCHRONIZATION AND RANGING

We now extend the pairwise model in (17) to the entire net-
work, i.e., , and intend to find a global solution for joint
ranging and synchronization. In the process, for the sake of no-
tational simplicity we assume all nodes transmit messages,
which is not mandatory. Secondly, we enforce the same approx-
imation order on both time (first order) and distance ( th
order) for all node pairs (during the small measurement period).
Thus, the proposed solution may not be accurate when the mag-

Fig. 2. Network of mobile nodes: A network with nodes, each capable
of two-way communication. The clock skews and clock offsets of node 2, 3 and
4 are unknown and are to be estimated, in addition to all time-varying distances.

nitude of the estimation parameters of some nodes vary eccentri-
cally from the rest of the cluster within the approximation time
period. As an illustration, Fig. 2 shows a network consisting of

nodes with pairwise communication links.

A. Mobile Global Least Squares (MGLS)

Aggregating (17) for all pairwise links in the network, we
have a linear global model of the form

(32)

where and is a Vandermonde-like
matrix given by

(33)

are measurement matrices contain
the timing vectors recorded at all nodes. is
a matrix of and , and contains all the
direction vectors. The noise vector is represented as

(34)

where each is given by (24). We assume that the noise vec-
tors for each pairwise communication are uncorrelated with
one another, which may not be applicable for all communica-
tion schemes e.g., broadcasting.
For are of the form

(35)

where the empty spaces in matrices are entries with 0.
A similar structure can be obtained for . The vector
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Fig. 3. Illustration of feasible networks for proposed algorithms: Four networks with nodes each capable of two-way communication. The node shaded
in black is the clock reference. The 4 networks are illustrative examples where MGLS algorithm (and thus the constrained formulation) can be applied for network
wide clock synchronization, despite missing communication links and multiple clock references.

contains the time stamps recorded at the th node when commu-
nicating with the th node in the network and is defined in (21).
Similarly, contains the direction information of the corre-
sponding pairwise communication and is defined in (22).
Let us analyze the submatrices of . We find and are full

column rank since they are block diagonal and subsequently,
is a full rank matrix. is rank deficient by 1, with

a null space spanning . The sparsely populated matrix
containing the time stamp vectors is full rank. However, aug-
menting with the matrix further reduces the rank of by
1 and hence we require at least 2 constraints. This is expected,
since a clock reference is needed to solve for unknown clock and
range parameters of the network, as observed in Section III.B.

B. Equality Constrained Least Squares

Traditionally, a simple constraint would be to choose a
random node as the clock reference and thereby eliminating
the rank deficiency in . Following which, it is straightfor-
ward to formulate a global solution similar to (25), however
in this section we will present a generic constrained least
squares framework, the benefits of which will be discussed
in Section VI.D. Thus, more generally, the unknown vector

, where , can be estimated by
minimizing the cost function

(36)

where is the (rank-deficient) matrix defined in (32),
is a known constraint matrix and , where

is the number of constraints. The equation implements
the feasibility conditions, enforcing linearly indepen-
dent constraints on . Assuming the constraints are selected such

that is non-singular and [30], the

solution to (36) is obtained by solving the Karush-Kuhn-Tucker
(KKT) equations [31] and is given by

(37)

where is the Lagrange vector. A detailed discus-
sion on the choice of the constraint matrix is presented in
Section VI.
Given the estimate , an estimate of the

clock parameters is estimated using (2) and the pairwise
range parameters between the nodes using (9). Furthermore,

all the unique pairwise distances between the nodes
at all time instances

are given by

(38)

where is defined in (33). Similar to the iterative MPLS
(iMPLS) solution (Appendix B), we propose an iterative
equality constrained least squares algorithm (iMGLS) in
Appendix C to estimate in the presence of unknown . Note
that is linearly dependent on the clock parameter estimates
since using (9), where is the trans-
formation matrix containing the clock parameter estimates (7).
While this 2-step optimization (of estimating the clocks first
followed by distance) is suboptimal in theory, simulations point
out the effectiveness of the method. See Section VII.
Remark 3: (Extension to Partially Connected Networks): The

closed form solution (37) is for a full mesh network. More gen-
erally, if some pairwise communications links are missing then
the corresponding rows in the primary matrix are dropped.
Consequentially, the pairwise distances between those partic-
ular nodes cannot be estimated. However, despite missing links,
network wide synchronization is still feasible using the pro-
posed algorithms if the primary matrix in (37) is full rank [1],
[2]. A few feasible topologies are illustrated in Fig. 3. For global
synchronization, the networkmust consist of at least links,
where every node has at least a single two-way communication
link with one other node in the network.
Remark 4: (Distributed MGLS): It is worth noting that, for

, the centralized MGLS is identical to the MPLS solu-
tion. However, the MGLS solution yields a better estimate for
the clock parameters (when i.e., ) due to an
increase in number of unique pairwise links, which will be dis-
cussed in Section VII. Furthermore, although suboptimal, the
MPLS is a distributed alternative to the centralized MGLS for
estimating the clocks and range parameters. For large number of
message exchanges and/or a large network of nodes i.e.,

, the computational complexity of the MGLS algorithm
is , which can be distributed efficiently using preva-
lent techniques [32].

V. CONSTRAINED CRAMÉR RAO BOUNDS

A. Noise Modeling

In reality, the time markers in (14) are plagued with measure-
ment noise, which for simplicity is here assumed to be Gaussian
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[24].2 Hence the noise on the nodes at the th time in-
stant in (15) are modeled as , where
without loss of generality, we assume the same noise variance
on both transmission and reception markers. Subsequently, the
cumulative noise vector for the pairwise link (16), after ig-
noring the higher order noise terms, is

which is modeled as

Note that, for m/s the term
is scaled by (by definition of in (67) and (66) and thus
is negligibly small for small measurement periods. Hence the
gaussian noise simplifies to

(39)

and for the entire network, we have

(40)

where and is of the
form

(41)

Remark 5: (Distance Dependent Noise): In reality, the pair-
wise noise is also dependent on the distance between the
nodes and the physical communication medium [34], in which
case the noise is correlated with both channel effects and range
parameters. The presented model can be readily extended to ad-
dress these scenarios, where a weighted least square solution
would be appropriate in contrast to the proposed least squares
solution.

B. Lower Bounds for Joint Time-Range Estimation

In order to verify the performance of the proposed algorithms,
we derive a Constrained Cramér Rao lower Bound (CCRB) for
the joint affine clock and th order range model defined
in (32). The error vector in (32) is Gaussian by assumption
and following immediately, the Constrained Cramér Rao Bound
(CCRB) on the error variance for an unbiased estimator is given
by [35]

(42)

where is the Cramér Rao lower Bound on
, represent entries not of interest,

2Elsewhere, the noise on the time markers is also modeled as uniformly
random variable (rising from quantization errors) or an exponential distribution
[24], [33].

with is an orthonormal basis for
the null space of the constraint matrix with constraints

(43)

is the Fisher Information Matrix (FIM) and is the covari-
ance of the noise on the time markers (40). Moreover, since the
system parameters can be uniquely derived from ,
we have the CRB on the estimates of from standard error prop-
agation formulas [29] as,

(44)

where is given by (42) and is the Jaco-
bian of the transformation of from (Appendix D). Following
immediately, given the lower bound on the variance of as

, the lower bound on the variance of the dis-
tance estimate (38) is

(45)

where is the Vandermonde-like matrix (33).
Remark 6: (Generalization of MGLS, CCRB): The previ-

ously proposed global solutions namely, Global Least Squares
(GLS) [1], Extended Global Least Squares (EGLS) [2], Ex-
tended Global Least Squares [3] (and corresponding
pairwise solutions ) are special cases of
MGLS (and MPLS) for the distance approximation of
and 3 respectively. In addition, the choice of range approxima-
tion order is automatically estimated using the proposed itera-
tive solutions (iMGLS, iMPLS). Similarly, the new CCRB (42)
and the Jacobian (Appendix D) are also generalizations of
the respective lower order models proposed in [1]–[3] for any

.

VI. ON THE CHOICE OF CLOCK REFERENCE

Observe that the solution to in (37) and its corresponding
performance (42), (44) is not only data dependent, but also de-
pends on the choice of constraints. The primarymatrix is rank
deficient by 2 and hence, feasible constraints are needed
on the clock parameters to ensure a unique solution in (37). In
view of achieving an optimal solution, we discuss three potential
constraints, namely (a) the Classic constraint, (b) a Nullspace
constraint and (c) the Sum constraint.

A. Classic Constraint

The minimum requirement for a feasible solution is to use an
arbitrary node as a clock reference, i.e., the constraint
and , which yields the classic constraint,

(46)

where

(47)

Such a constraint is often utilized without further discussion for
clock synchronization in a network of fixed nodes [7], [24], [36]
and much of the literature on localization [25]. To alleviate the
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dependence on a single node for clock reference, we propose
2 virtual clocks via the Nullspace constraint and the Sum con-
straint in the following sections.

B. Nullspace Constraint

Among the set of all feasible linearly independent constraints,
the pseudo-inverse of the unconstrained FIM yields the lowest
value for the total variance on all estimated parameters [37]. Let
the spectral decomposition of the rank deficient FIM be

(48)

where is a diagonal matrix containing the non-zero eigen-
values and the corresponding eigenvectors. Now, let be
the nullspace constraint matrix such that the range of spans
the null space of (i.e., in the range of ). Subsequently, the
orthogonal basis for the null space of i.e., spans the range
of , and the trace of the CCRB (42) is

(49)

where we use the property and exploit the cyclic
nature of the trace operator. Hence, the nullspace constraint
yields the pseudo-inverse of the unconstrained FIM, which is
the lowest achievable total variance on all estimated parameters.
This implies that any set of vectors which span the nullspace of
the FIM form an optimal constraint for the system.
Observe that the Nullspace constraint offers little insight on

the optimality of the independent parameters and sub-
sequently on the translated parameters of interest and .
Furthermore, this constraint is data dependent and presents no
physical intuition on the estimated parameters. However, the
Nullspace constraint cannot be dismissed since it guarantees the
lowest variance on the overall estimate .

C. Sum Constraint

In the pursuit of a data independent constraint and inspired by
[38], we propose a sum constraint, whereby we enforce the sum
of all to be 1 and the sum of all to be 0, i.e.,
and , which begets a new constraint matrix

(50)

The sum constraint proposes a virtual “average” clock, which
in turn is governed by the clock errors of all the clocks
in the network and thereby alleviates a single clock reference
which maybe potentially unstable. In case of the classic con-
straint with a single clock reference, the variance of the ref-
erence clock parameters is artificially put to zero and thereby
accruing its variance to all other clock parameter estimates. In
comparison, the sum constraint computes the average (and
) for all the nodes, which leads to about a factor 2 reduction

in the variance of the estimate of (and ), and subsequent
improvement on and due to averaging, as observed in the
simulations. See Section VII.

As shown in Section VI.B, any set of constraints that span the
null space of the FIM yield an optimal estimate of the unknown
parameter. Among the pair of proposed sum constraints on ,
observe that the second constraint indeed lies in
the null space of the FIM (43), since . However,
a similar argument cannot be made for the constraint on , i.e.,

, thus the sum constraint is not yet optimal (unlike
the case in [38]), although it is seen to be close to optimum in
simulations.

D. Benefits of the Constrained Formulation

Contrary to the pairwise algorithm MPLS, which was formu-
lated as a least square solution, the global algorithm is structured
as a constrained least squares problem. Such a generic frame-
work enables the user to incorporate additional a priori infor-
mation into the constraint matrix and thereby obtain a lower
variance on the clock and range estimates. For example, if the
network has three reference nodes, say node 1, 3, and 4, which
is common in joint TOA localization and synchronization [25],
[39] (refer Fig. 3(d)), then by increasing the number of rows
of the constraint matrix , such as

(51)

a better estimates can be obtained for the unknown clock param-
eters of node 2. As a special case, if there are one-way commu-
nication links from the reference nodes to node 2 and the refer-
ence nodes directly communicate their true time, then Fig. 3(d)
simplifies to the conventional GPS based synchronization and
ranging [40]. Likewise, for , in a network with adequate
known node positions, one can incorporate known pairwise dis-
tances in the constraint matrix to yield higher accuracy in overall
estimates. The formulation in (36) is thus a convenient frame-
work to incorporate various prevalent scenarios.

VII. SIMULATIONS

Simulations are conducted to evaluate the performance of
the proposed estimators. We consider a network of
mobile nodes, each capable of two-way communication with
each other. The nodes transmit and receive time stamps alter-
natingly and thus the direction matrix is (35), where

. The transmission time markers are lin-
early distributed within a small measurement time interval of

seconds. All the nodes are equipped with in-
dependent clock oscillators, whose clock skews and clock
offsets are uniform randomly distributed in the range

and seconds respectively,
which are given by (52) and (53) respectively, shown at the
bottom of the next page. The initial positions of the nodes are
arbitrarily chosen as (54). To investigate the mobile scenario, in
addition to the initial positions, we also assume the nodes to
have independent linear velocities given by (55).
The metric used to evaluate the performance of the es-

timators is the Root Mean Square Error (RMSE) given by
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Fig. 4. Immobile network: Varying : RMSEs (and RCRBs) of (a) clock skew, (b) clock offset and (c) distances for varying number of communications
between the fixed nodes for seconds.

Fig. 5. Immobile network: Varying : RMSEs (and RCRBs) of (a) clock skew, (b) clock offset and (c) distances for a cluster of fixed nodes, for varying noise
on the time measurements with number of communication.

, where is the
th estimate of the unknown vector to be estimated
and the number of experiments is . Furthermore,
along with the RMSE plots, the square Root of the constrained
Cramér Rao Bounds (RCRB) derived in Section V are also
plotted for the three constraints discussed in Section VI. In case
of the classic constraint, node 1 is assumed to be the reference
node without loss of generality.
To verify the proposed algorithms, we consider two exper-

imental setups (a) a fixed network of asynchronous nodes and
(b) a mobile network of asynchronous nodes. Furthermore, both
setups are evaluated for (1) varying number of pairwise com-
munications for fixed noise on the time markers with stan-

dard deviation seconds and (2) varying in the
range dB seconds for . The timing error of

seconds (and noise range dB) translates
to a ranging error of meters (and meters)
for a static network model, since with

m/s. Although such high SNR is not usually con-
sidered in clock synchronization literature [36], it is typical to
achieve meter level accuracies for localization [12], [41].

A. Immobile Network

Let the locations of the nodes be
in a 2 dimensional space, which are arbitrarily chosen to

(52)

(53)

(54)

(55)
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Fig. 6. Mobile network: Varying : RMSEs (and RCRBs) of (a) clock skew, (b) clock offset and (c) distances for varying number of communications
between the mobile nodes for seconds.

Fig. 7. Mobile network: Varying : RMSEs (and RCRBs) of (a) clock skew, (b) clock offset and (c) distances for a cluster of mobile nodes, for varying noise
on the time measurements with .

be (52), where is the position of the th node. The
time invariant propagation delay between the nodes is then

The proposed MPLS algorithm (Section III.B) for is in-
dependently applied, pairwise from node 1 to every other node
as in Fig. 3(a) to estimate all the unknown clock skews ,
clock offsets and range parameters . For the entire net-
work, the proposed MGLS (Section IV.A) algorithm (with
) is applied to estimate both the clock parameters and
the range parameters . Note that for a fixed network

, where contains all unique pairwise distances within
the network. Figs. 4 and 5 show the RMSE plots for varying
number of communications , for the clock skew and the
clock offset and pairwise distances . The RMSE of clock
parameter estimates from the Low Complexity Least Squares
(LCLS) solution [22] is also presented for clock skew
and offset, which not surprisingly performs similar to the MPLS
solution for a fixed network [1].
The MGLS estimate outperforms the MPLS estimate, which

is expected, since the total number of communication channels
available for the MGLS estimate is greater than that for MPLS
i.e., for . Furthermore, the MGLS is
shown to achieve the CCRB bounds for for both clock
and range parameters since the least square solution is the Min-
imum Variance Unbiased estimate for the assumed Gaussian
noise model. For the given experimental setup, with 10 ns (

meters) noise on the time measurements, distance accura-
cies improve by an order for two-way communica-
tions (Fig. 4(c)). Secondly, the nullspace and sum constraints
are shown to improve the performance of the clock parameter
estimates by about a factor 2. It is worth noting that, the RMSE
(and RCRBs) of the clock parameters and distance for the sum
constraint is nearly the same as the nullspace constraint.

B. Mobile Network

To investigate the performance of the Least Square solutions
for a cluster of mobile nodes, we consider a simple scenario
where the nodes are mobile with constant independent veloc-
ities.3 The independent constant velocities of the nodes are
given by , which similar to the
initial positions, are also arbitrarily chosen as (55). Hence, the
true time-varying propagation delay w.r.t. to the clock in
node , between the nodes at time instant , is

where

(56)

Note that, even though the nodes are in linear motion, the
pairwise distance between the nodes is always non-linear.
In our previous work [1]–[3], fixed range parameters

3Note that the presented model is more general and readily applicable to any
motion, as long as is a continuous function of time.
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Fig. 8. Mobile network: On the choice of for varying : RMSEs (and RCRBs) of (a) clock skew, (b) clock offset and (c) distances for varying number of
communications between the mobile nodes and different orders of approximation .

were used
for simulation ensuring the linearity of the joint time-range
model, which is unlike the current experimental setup where
distance is inherently non-linear.
Furthermore, since is unknown the proposed iMPLS al-

gorithm (Appendix B) is independently applied, pairwise from
node 1 to every other node as in Fig. 3(a) to estimate all the un-
known clock skews, clock offsets and range coefficients. For the
given input parameters, the iterative algorithms are observed to
converge for . For the entire network the iMGLS algo-
rithm (Appendix C) is applied to estimate the clock parameters

and the distances. Observe that unlike the fixed network
(with unique pairwise distances), the mobile scenario has

unique pairwise distances to be estimated, i.e., unique
pairwise distances between the nodes, at all discrete time in-
stances during the measurement period . As before, we in-
vestigate the performance of the proposed algorithms for all the
3 constraints, i.e., the classic constraint, nullspace constraint and
the sum constraint. All the corresponding RMSEs of the clock
skew, offset and distance estimates are plotted in Figs. 6 and 7
along with their respective RCRB derived in (44) and (45) for
various constraints.
The proposed iMPLS algorithm outperforms the LCLS al-

gorithm [22] for clock skew and offset estimation of a mobile
network, as shown in Fig. 6. Recall that the LCLS algorithm as-
sumes a fixed network. In addition, numerous outliers are also
observed in case of LCLS, since the approximation error of the
time-varying distance dominates the gaussian noise under con-
sideration. Secondly, it is perhaps not surprising that the iMGLS
solution achieves the theoretical bounds asymptotically for the
clock parameters since the linearity of the clock model is
ensured via exact parametrization. However, for the non-linear
range model in conjunction with the affine clock model, given
that the nodes are in independent linear motion, the distance
parameters achieving the CCRB at validates the joint
time-range model.
Remark 7: (Noise Covariance): We observed in (39) and (40)

that the covariance of the noise on the time markers was cou-
pled with the estimated parameter . However, in spite of this
dependency, the proposed least squares estimate achieves the
CRB asymptotically. This is a consequence of the clock skews
typically being close to 1, with errors of the order of or

so [7]. Therefore, in (39), which simplifies

the scaling of the noise covariance (41) to and subse-
quently (40) reduces to,

(57)

Such an approximation is satisfactory and is implicitly em-
ployed in various literature [1], [21], [22], [36], [42] for
conventional fixed networks
In Fig. 7, where the RMSE of the proposed algorithms are

compared against varying noise variance, the iMPLS shows
considerable improvement over LCLS for high SNR. For lower
SNR however, particularly when meters, the
difference between the performances of iMPLS and LCLS
is negligible. This is because the noise variance exceeds the
magnitude of the velocities (few meters/second in the current
experimental setup) and hence, the effect of higher order
approximation of the time-varying distance is ineffective.

C. Effect of on Estimation Error

The iterative algorithms (iMPLS, iMGLS) implicity choose
the distance approximation order which minimizes the Least
Squares error. To understand the effect of choosing on the
RMSE of the clock and distance parameters, we investigate the
performance of MPLS and MGLS algorithms for .
Fig. 8 (varying ) and Fig. 9 (varying ) show the RMSE and
RCRB plots of the proposed algorithm for a single clock refer-
ence, i.e., the classic constraint.4

For the given experimental setup, the RCRBs of the clock
parameters are nearly indistinguishable for (and
thus overlay on the plots). However, Fig. 8(a) and (b) show a
factor improvement in the performance of the MGLS algorithm
for clock offset and skew. Furthermore, the disparity between

and the optimal increases by an order for higher
SNR scenarios as presented in Fig. 9(a) and (b). A significant
advantage of utilizing the proper is observed in RMSE of the
distance parameter in Figs. 8(c) and 9(c). As the approximation
order increases, the RCRB of the distance (dominated by the
Vandermonde-like system) also increases, while the RMSE of
the distance estimate steadily decreases with incrementing .

4The classic constraint is arbitrarily chosen for investigating this scenario.
Alternatively, these experiments can also be conducted using the proposed
Nullspace and Sum constraints, which follow similar trends.
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Fig. 9. Mobile network: On the choice of for varying : RMSEs (and RCRBs) (a) clock skew, (b) clock offset and (c) distances, for varying noise on the
time measurements with and different orders of approximation .

An optimality is achieved at , when the RMSE of the dis-
tance estimate meets the RCRB. Similar to the performance of
the clock parameters, for lower SNR the higher order approxi-
mation is redundant. Observe in Fig. 9, for seconds

meters with , the lower bound and the errors of the
distance parameter are equivalent for both and ,
which is not surprising given the velocities are only a few me-
ters/second.

D. Extension to Partially Connected Networks

The proposed MGLS algorithm caters to a full mesh network
and can be extended to partial networks for clock synchroniza-
tion as discussed in Remark 3. For the given mobile network
of nodes, the minimum requirement on the number of
links is and for a full mesh network we have
links. We evaluate the performance of the MGLS algorithm for
the synchronization in case of a partially connected network,
by varying the number of connected links as 9, 15, 25, 37 and
45. The links are arbitrarily chosen such that each node has at
least single two-way communication link with one other node
in the network, to ensure network wide synchronization. Sub-
sequently, the rows and columns of the corresponding non-ex-
isting links are eliminated from the primary matrix (32). The
MGLS algorithm is implemented for with a single clock
reference (i.e., classic constraint4) for and
ns, and the performance of the clock parameters are presented
in Fig. 10, shown by blue colored markers. Not surprisingly,
the RMSE of clock parameters deteriorate with the increase in
missing links.
In addition, to emphasize the benefits of the constrained for-

mulation (Section VI.D), we assume that first 3 clocks of the
10 node clocks are known in each of the partially connected
networks under study. The constraint matrix is then according
designed (e.g., (51)) and the performance of the corresponding
MGLS solution is presented in Fig. 10, shown by red colored
markers. The incorporation of 2 additional reference clocks im-
proves the performance of the clock parameters. Furthermore,
observe that a partially connected network with links
and 3 reference clocks outperforms the full mesh network of

with a single clock. Such observations can be di-
rectly interpreted from the CCRB and the proposed algorithm
achieves this CCRB asymptotically, catering readily to such par-

Fig. 10. Partially connected Mobile scenario and effect of additional clocks:
RMSEs (and RCRBs) of (a) clock skew and (b) clock offset for

ns, for varying number of connected links.

tially connected networks with (or without) a priori information.

E. Summary

Wevalidate the joint time-rangemodel by simulating an asyn-
chronous cluster of mobile nodes, where the pairwise distances
are time-varying, and the approximation order of distance is
unknown. The proposed MPLS and MGLS algorithms clearly
outperform the prevalent solutions when the nodes are in mo-
tion, and in particular for relatively higher SNR on the time
markers. More significantly, the variance of the estimated clock
parameters and distance achieve the derived CCRB asymptot-
ically. The proposed sum constraint shows an improvement of
about factor 2 in contrast to the classic constraint, and is nearly
identical to the performance of the “optimal” nullspace con-
straint. Furthermore, the extension of the proposed algorithms to
a partially connected network is simulated for various number of
missing links. In addition, the benefits of the constrained frame-
work is shown by studying the effect of multiple clocks in par-
tially connected networks.

VIII. CONCLUSION

The fundamental challenge has been to jointly estimate clock
discrepancies and the time-varying distances between a cluster
of asynchronous mobile nodes, which is addressed by proposing
a novel joint time-range basis. The clock parameters are mod-
eled up to the first order (clock skews, clock offsets) and the
pairwise distances between up to a th order monomial of
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true time consisting of range coefficients for each pairwise
link. An elegant linear transformation decouples the clock er-
rors from the estimated range parameters. This joint time-range
basis has been applied to the proposed generalized TWR sce-
nario and is shown to be a linear system of unknown clock and
range parameters. More generally, the joint basis can be applied
to other two-way communication frameworks as well. Subse-
quently a global least squares solution (MGLS) is proposed,
which is in turn an extension of the corresponding distributed
pairwise algorithm (MPLS), to estimate all the clock parameters
and the pairwise distances at discrete time intervals. Further-
more, when the order of range approximation is unknown,
iterative solutions (iMGLS, iMPLS) are proposed to estimate
the apt approximation order for the distance measurement. A
novel Constrained Crammer Rao Bound is derived for the pre-
sented model and the proposed solutions meet this lower bound
asymptotically, which is corroborated by the simulations. As an
alternative to the classical single clock reference constraint, we
propose the sum and the nullspace constraints which beget a
lower variance for clock parameters.
The generalized constrained framework enables users to add

more constraints if there is additional information available
on the clock and range parameters from other systems, which
would evidently increase overall estimation performance. The
proposed framework was a full mesh network with two-way
communication capability, however a robust synchroniza-
tion is still feasible despite missing links, including one-way
communication. More generally, it can be easily extended to
sender-receiver, receiver-receiver, pairwise listening, broad-
casting and other prevalent communication schemes (see [36]
and references therein).
The presented solutions are suited for autonomous networks

with minimal a priori knowledge, where the clock and range pa-
rameters need to be estimated at cold start. Given the pairwise
distances, the relative node positions of an anchorless network
at every time instant can be estimated using Multi-Dimensional
Scaling. In practice, over longer durations, a Kalman filter [29]
can be applied sequentially to track these network parameters,
which would yield more efficient and optimal estimates with
time. In this article, the estimated range parameters are viewed
merely as coefficients to fit the pairwise distances between the
nodes. Further investigation on their interpretation of the range
parameters will be addressed in the followup work [43], [44].
Finally, although the proposed model is targeted towards an-
chorless networks, it is readily applicable to anchored scenarios
of time, distance and position.

APPENDIX A
RANGE TRANSLATION MATRIX

To find an expression for , we begin by considering
the classic case of a static network of immobile nodes i.e.,

. This is a special case of the dynamic range model
in (3), which has been investigated extensively [1], [7], [22],
[24], [27]. When the nodes are fixed, the propagation delay

is invariant with the true time
and following immediately we have

(58)

A step further, in case of a mobile network, a first order range
model is proposed in [2], where the translated range model (4)
for is given by

(59)

Substituting the equation of ideal true time from (1) in (59), the
translated range coefficients in terms of and are

(60a)

(60b)

and rearranging the terms,

(61a)

(61b)

Along similar lines, extending the affine range model to a
second order model [3] (i.e., ), we have

(62)

where an expression for in terms of the
true range parameters and clock errors is obtained by sub-
stituting for ideal true time from (1) in (62), which yields

(63a)

(63b)

(63c)

or alternatively

(64a)

(64b)

(64c)

More generally, for any , the th order translated range
coefficient for the node pair is by symmetry

(65)

which for the sake of notational brevity can be written as

(66)

where and
is a triangular matrix contains the clock discrepancies of node
and is given by

(67)

For the entire network of unique pairwise links, we have

(68)

where and , where
is a permutation matrix. The transformation ma-
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trix
is only dependent on the clock calibration parameters

of the network. Finally, defining

(69)

we have

(70)

which gives us a unique relation between the true range pa-
rameters and the translated range parameters, in the presence of
clock errors. It is evident from (9) that the range parameters can
be extracted uniquely from the modified range parameters de-
spite clock discrepancies, provided i.e., the clock calibration
parameters are known. Furthermore, in the absence of
clock errors, i.e., and , then and fol-
lowing immediately . Observe that, for a given node pair

although the translated parameters are dependent on
the choice of clock reference or , the true range parameters

remain unique to a given node pair.

APPENDIX B
ITERATIVE MOBILE PAIRWISE LEAST SQUARES (IMPLS)

For a given distance approximation order , the pairwise cost
function (29) can be rewritten as

(71)

where

(72)

(73)

and
. More generally, when is unknown, we briefly

describe the iterative Mobile Pairwise Least Squares (iMPLS)
algorithm for a pair of nodes, using the well known order recur-
sive least squares [29].

Algorithm 1: iterative Mobile Pairwise Least Squares (iMPLS)

Initialize:

1) For define from (73)

2) Define

3) Estimate using (71)

4) Estimate LSE from (72)

3) Define and

while do

4) Update inverse using (74), shown at the
bottom of the page

5) Estimate from (75), shown at the bottom of
the page

6) Update least squares error via (76), shown at
the bottom of the page

7) Update

8) Update

end while

APPENDIX C
ITERATIVE MOBILE GLOBAL LEAST SQUARES (IMGLS)

Similar to the pairwise model, we propose an iterativeMobile
Global Least Squares solution to estimate all the clock and range
parameters for a cluster of mobile nodes, when the range order
is unknown. For a given , the KKT solution (37) is

(77)

where
(78)

(79)

and
.

(74)

(75)

(76)
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Algorithm 2: iterative Mobile Global Least Squares (iMGLS)}

Initialize:

1) For , define using (79)

2) Estimate using (77)

3) Estimate LSE from (78)

4) Define and .

while do

4) Estimate using (37)

5) Obtain least squares error using (78)

6) Update

7) Update

end while

APPENDIX D
JACOBIAN

The Jacobian in (44) is given by

where
is the transformation matrix defined in (69). The transformation
derivatives are (80) and (81)
respectively,

(80)

(81)

where and are

APPENDIX E
CONSTRAINED CRAMÉR RAO BOUND ON DISTANCE

Since (See Remark 7), the Fisher information
matrix of (43) simplifies to

and considering all the 3 constraints (discussed in Section VI)
are levied on the clock parameters, the orthonormal basis
for the null space of these constraints are of the form

. Following immediately, (42) is

(82)

where is the lower bound on and
is the Schur complement and

subsequently, the CCRB on distance is
. It is observed that contribution of the term

is insignificant (in all 3 constraint
cases) for the given experimental setup. Hence, the CCRB of
distance and the performance of the MGLS solution is observed
to be independent of the clock constraints in the simulations.
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