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a b s t r a c t

Localization is a fundamental challenge for any network of nodes, in particular when the
nodes are in motion and no reference nodes are available. Traditionally, the Multi-
dimensional scaling (MDS) algorithm is employed at discrete time instances using
pairwise distance measurements to find the relative node positions (with arbitrary
rotation). In this paper, we present a novel framework to localize an anchorless network
of mobile nodes given only time-varying inter-nodal distances. The time derivatives of the
pairwise distances are used to jointly estimate the initial relative position and relative
velocity of the nodes. Under linear velocity assumption for a small time duration, we show
that the combination of the initial relative positions and relative velocity beget the relative
motion of the nodes at discrete time instances. The proposed approach can be seen as an
extension of the classical MDS, wherein Doppler measurements, if available, can be readily
incorporated. We derive Cramér Rao bounds and perform simulations to evaluate the
performance of the proposed estimators. Furthermore, the computational complexity and
the benefits of the proposed algorithms are also presented.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Localization is a key requirement for the deployment of
wireless networks in a wide range of applications. There are
numerous absolute localization algorithms, such as Time of
Arrival (ToA), Time Difference of Arrival (TDoA) and Received
Signal Strength (RSS) which cater to anchored networks,
where a few node positions are known [2]. Alternatively,
when there are no reference anchors, then the relative pos-
itions of the nodes, up to a rotation and translation, can still
be obtained using Multi-Dimensional Scaling (MDS) based
AR project (Contract
gram. A part of this
ference [1].
for Radio Astronomy
Netherlands.
solutions [3,4]. Such anchorless networks arise naturally
when the nodes are deployed in inaccessible locations or
when anchor information is known intermittently. In both
anchored or anchorless scenarios, pairwise distances are one
of the key inputs for almost all localization techniques. For
stationary nodes, these pairwise distances are classically
obtained by measuring the propagation delays of multiple
time stamp exchanges between the nodes and averaging
these measurements over a time period.

A step further, when the nodes are mobile, then conven-
tionally either the nodes are considered relatively stationary
within desired accuracies for the complete duration of the
measurement interval (i.e., multiple distance measurements)
[5] or Doppler measurements are utilized [6]. Unfortunately,
Doppler measurements are not always available and the
assumption on the node positional stability for large time
periods is simply unpractical in many applications. For a
mobile network, the application of classical MDS-based
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relative positioning at every time instant yields a sequence of
position matrices with arbitrary rotation, thereby providing
no information on the relative velocities of the nodes. We
define the term relative velocities as the velocity vectors of the
nodes, up to a common rotation, translation and reflection.
This has, to the best of the authors' knowledge, not yet been
investigated in the literature. Given the relative velocities up
to the appropriate rotation, the time-varying positions can be
readily obtained for a linear mobility model. Hence, the
estimation of relative velocities therefore constitutes a para-
mount challenge to be solved in next-generation localization
technologies.

1.1. Applications

Our motivation for this work is triggered by inaccessible
mobile wireless networks, which have partial or no informa-
tion of absolute coordinates and/or clock references. Such
scenarios are prevalent in under-water communications [7],
indoor positioning systems [8], autonomous swarm net-
works [9] and envisioned space based satellite networks
with minimal ground segment capability. A particular project
of interest is Orbiting Low Frequency Antennas for Radio
astronomy (OLFAR) [10], a Dutch funded program which
aims to design and develop a detailed system concept for a
scalable interferometric array of more than 10 identical,
autonomous satellites in space (far from earth) to be used
as a scientific instrument for ultra long wavelength observa-
tions (0.3 kHz to 30 MHz). Due to limitations of earth-based
tracking, the OLFAR cluster will be an independent coopera-
tive network of nodes, whose positions and velocities need
to be estimated jointly.

1.2. Contributions

In this paper, our quest is to localize an anchorless
network of mobile nodes, given time-varying pairwise dis-
tance measurements. We propose a two-step approach to
solve this problem. Firstly, we approximate the time-
varying pairwise propagation delays (and subsequently
the distances) between the mobile nodes as a Taylor series
in time, which is aptly termed Dynamic Ranging (Section 2).
A simple yet efficient time-basis is employed to estimate
the derivatives of the pairwise distances at a given time
instant (Section 3). Secondly, under the assumption of
constant velocity for a short time duration, we show that
the relative position of each node is dependent only on the
initial relative position, the relative velocity and a unique
rotation matrix (Section 4) [1]. Furthermore, we also show
that the solutions to the unknown initial relative position,
the relative velocity and the rotation matrix lie in the first
three derivatives of the time-varying pairwise distance.
Subsequently, we present MDS-like and least squares solu-
tions to estimate the unknown parameters in Section 5 and
Cramér Rao Bounds are derived in Section 5.3. Finally, based
on the proposed estimators we propose two algorithms,
namely LMDS and CMDS to estimate the relative positions
of the nodes over discrete time intervals (Section 6).
Simulations are conducted to evaluate the performance of
the proposed estimators in Section 7. The novelty of our
work lies in the proposed framework and subsequent
estimators to estimate time-varying relative motion in
Euclidean space.

Notation: The element wise matrix Hadamard product is
denoted by � . We denote the element-wise matrix expo-
nent as ð�Þ�N and ⊘ indicates the element-wise Hadamard
division. The Kronecker product is indicated by � , the
transpose operator by ð�ÞT and the pseudo-inverse by ð�Þ†.
The vectors of ones and zeros are given by 1N ¼ ½1;1…;

1�T ;0N ¼ ½0;0…;0�T ARN�1, respectively. The Euclidean norm
is denoted by J � J , IN is a N � N identity matrix and 0M;N is a
M � N matrix of zeros. A diagonal matrix of the vector a is
represented by diagðaÞ and a block diagonal matrix
A¼ bdiagðA1;A2;…;ANÞ consists of matrices A1;A2;…;AN

along the diagonal and 0 elsewhere. vecðAÞ operator
reshapes the matrix A into a vector. a�N ðμ;ΣÞ is shorthand
for a randomly distributed Gaussian variable with mean μ
and variance Σ.

2. Dynamic ranging

2.1. Range model

Consider a cluster of N nodes in a P-dimensional
Euclidean space. If the nodes are fixed, then the pairwise
propagation delay at time t0 between a given node pair (i,j)
is defined as

τijðt0Þ � τjiðt0Þ9c	1dijðt0Þ; ð1Þ

where dijðt0Þ is the fixed distance between the node pair at
t0 and c is the speed of the electromagnetic wave in the
medium. However, when the nodes are mobile, the rela-
tive distances between the nodes are a non-linear function
of time (for PZ2), even when the nodes are in linear
motion. For a small time interval Δtk ¼ tk	t0, we consider
these relative distances as a smoothly varying polynomial
in time. The propagation delay τijðtkÞ � τjiðtkÞ between a
given node pair (i,j) can be expanded classically as an
infinite Taylor series around a time instant t0 within the
neighborhood Δtk. As an extension of the second-order
distance model [11], we have

τijðt0þΔtkÞ9c	1dijðt0þΔtkÞ9c	1dijðtkÞ; ð2Þ

where dijðtkÞ is the distance at tk ¼ t0þΔtk, given by

dij tkð ÞCrijþ
_r ij
1!
Δtkþ

€r ij
2!
Δt2kþ⋯; ð3Þ

where ½rij; _r ij; €r ij;…�T ARL�1 are the range parameters for
the Lth order approximation of the time-varying distance.
The first coefficient rij � dijðt0Þ is the initial pairwise
distance and the following L	1 coefficients are successive
derivatives of rij at t0. Without loss of generality, assuming
t0 ¼ 0, we have tk ¼Δtk and subsequently (2) and (3)
simplify to the Maclaurin series as

τij tkð Þ ¼ c	1 rijþ _r ijtkþ
€r ij
2!
t2kþ⋯

� �
: ð4Þ

The polynomial range basis is simplified further by intro-
ducing

½r ij; _r ij; €r ij;…�T 9diagðfÞ	1½rij; _r ij; €r ij;…�T ; ð5Þ
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where f ¼ c½1; 1!; 2!; …�T ARL�1, such that (4) is

τijðtkÞ9c	1dijðtkÞ ¼ r ijþ _r ijtkþ €r ijt
2
kþ⋯: ð6Þ

Now, for the entire network of N nodes, the unique
pairwise ranges are collected in a vector rARN�1, where
N ¼ N

2

� �
is the number of unique pairwise baselines. Along

similar lines, we define _rARN�1, €rARN�1 and correspond-
ing higher-order terms. The unknown range parameters
for all pairwise links are collected under the vector
θ¼ ½rT ; _rT ; €rT ;…�T ARNL�1. Furthermore, similar to the defi-
nition of θ, we define θ ¼ ½rT ; _r T ; €r T

;…�T ARNL�1, where
rARN�1, _rARN�1, €rARN�1 and corresponding higher-
order terms are modified range parameters. The relation-
ship between θ and θ, using (5), is then

θ¼ ðdiagðfÞ � IN Þθ: ð7Þ

Remark 1 (Doppler measurements). Observe that in
essence, r is the Time of Arrival (ToA) at t0, the range rate
_r is the radial velocity (as obtained from a Doppler shift)
and the second order range parameter €r is the rate of radial
velocity (as observed from a Doppler spread) between the
nodes at t ¼ t0. These range coefficients can be readily
incorporated if these measurements are available.

2.2. Data model

We now consider a relaxed Two-Way Ranging (TWR)
setup for collecting distance information as follows. Let
each node pair (i,j) within the network be capable of
communicating with each other as shown in Fig. 1. The
nodes communicate K messages back and forth, and the
time of transmission and reception is registered indepen-
dently at the respective nodes. The kth time stamp recorded
at node i when communicating with node j is denoted by
Tij;k and similarly at node j the time stamp is Tji;k. The
direction of the communication is indicated by Eij;k, where
Eij;k ¼ þ1 for transmission from node i to node j and
Eij;k ¼ 	1 for transmission from node j to node i. Under
ideal noiseless conditions, the propagation delay between
the node pair at the kth time instant is τij;k9Eij;kðTji;k	Tij;kÞ,
and in conjunction with the polynomial approximation (6),
Fig. 1. Pair of mobile nodes: a generalized Two-Way Ranging (TWR)
between a pair of mobile nodes, where the solid-skewed lines indicate
the linear motion of the nodes. During the linear motion, the nodes
transmit and receive K time stamps are recorded at the respective nodes.
Similar to [5,11,12], we levy no constraints on the sequence, direction or
number of communications.
we have
τij;k9Eij;kðTji;k	Tij;kÞ ¼ r ijþ _r ijTij;kþ €r ijT

2
ij;kþ⋯; ð8Þ

wherewithout loss of generality we have replaced tkwith Tij;k.

Remark 2 (Synchronized nodes). By replacing true time tk by
Tij;k, we assume without loss of generality that Tij;k is in the
neighborhood of t0 ¼ 0 and the propagation delay is mea-
sured as a function of the local time at node i. Furthermore,
we also assume that the clocks of these nodes are synchro-
nized. This is a valid assumption since for an asynchronous
network of mobile nodes, the clock parameters (up to first
order) can be decoupled from the range parameters and the
distances can be estimated efficiently as shown in [5,11,12].

In practice, the time measurements are also corrupted
with noise and hence (8) is

r ijþ _r ijðTij;kþqi;kÞþ €r ijðTij;kþqi;kÞ2þ⋯

¼ Eij;k ðTji;kþqj;kÞ	ðTij;kþqi;kÞ
� �

; ð9Þ

where qi;k �N ð0;Σ iÞ and qj;k �N ð0;ΣjÞ are modelled as
Gaussian i.i.d. noise variables, plaguing the timing mea-
surements at node i and node j, respectively. Rearranging
the terms, we have

r ijþ _r ijTij;kþ €r ijT
2
ij;kþ⋯¼ Eij;kðTji;k	Tij;kÞþqij;k; ð10Þ

where
qij;k ¼ Eij;kðqj;k	qi;kÞ	ð _r ijqi;kþ2 €r ijTij;kqi;kþ €r ijq

2
i;kþ⋯Þ: ð11Þ

For wireless communication with c¼ 3� 108 m=s, note that
the modified range parameters are scaled by c	1 (7). Further-
more, since the dynamic range model is proposed for a small
time interval, the term ð _r ijqi;kþ2 €r ijTij;kqi;kþ €r ijq

2
i;kþ⋯Þ is

relatively small and subsequently the noise vector plagu-
ing the measurements can be approximated as qij;k 
 Eij;
kðqj;k	qi;kÞ which begets

qij;k � N ð0;Σ ijÞ; ð12Þ
where Σ ij ¼ΣiþΣ j. Aggregating all K packets, we have

½1K tij t�2
ij …�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Aij

r ij
_r ij
€r ij
⋮

266664
377775

zfflfflffl}|fflfflffl{θ
ij

¼ τ ijþqij; ð13Þ

where

τ ij9eij � ðtji	tijÞARK�1; ð14Þ

eij ¼ ½Eij;1; Eij;2;…; Eij;K �T ARK�1; ð15Þ

tij ¼ ½Tij;1; Tij;2;…; Tij;K �T ARK�1: ð16Þ
The known Vandermonde matrix AijARK�L contains

the measured time stamps and is full column rank if Tij;k

are unique. The direction vector eij is encapsulated in the
propagation delay τ ij and θ ijARL�1 is a vector containing
the unknown range parameters. The noise vector on this
linear system is qij ¼ ½qij;1; qij;2;…qij;K �T ARK�1, where qij;k is
given by (12) and the corresponding covariance matrix is

Σij9E½qijq
T
ij � ¼Σ ijIK ARK�K : ð17Þ
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For a network of N nodes, the normal equation (13) can be
extended to the Dynamic Ranging model:

½IN � 1K T T�2 …�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{A

r
_r
€r

⋮

26664
37775

zfflffl}|fflffl{θ

¼ τþq; ð18Þ

where

T¼ bdiagðt12; t13;…t1N ; t23;…ÞARNK�N ; ð19Þ

τ ¼ ½τT12; τT13;…τT1N ; τ
T
23;…�T ARNK�1; ð20Þ

contain the time stamp exchanges of the N unique pair-
wise links in the network and θARNL�1 contains the un-
known range parameters for the entire network. The noise
vector is q¼ ½qT

12;q
T
13;…;qT

1N ;q
T
23;…�T ARNK�1 and the cov-

ariance matrix is

Σ9E½qqT �ARNK�NK : ð21Þ

Remark 3 (Mobility of the nodes). In (8), we implicity
assumed that the nodes are relatively fixed during a time
period of Δtk ¼ jTij;k	Tji;kj i.e., the propagation time of the
message. This is a much weaker assumption compared to
traditional TWR, where for a pair of fixed nodes (i.e., L¼1),
the pairwise distance is assumed to be invariant for the
total measurement period Δt ¼ jTij;K 	Tij;1j. In reality, when
the nodes are mobile, the distance at each kth time instant
is dissimilar and this feature is naturally incorporated in the
presented Dynamic Ranging model.

3. Dynamic ranging algorithm

Suppose that we have collected all the TWR timing data
in A and τ, then in this section we find an estimate for the
unknown θ using the model (18). Given an estimate of θ ,
the range coefficients θ¼ ½rT ; _rT ; €rT ;…�T can be directly
obtained from (7).
3.1. Weighted least squares

Under the assumption that the covariance matrix Σ is
known, a Weighted Least Squares (WLS) solution θ̂ is
obtained by minimizing the l2 norm of the linear system
(18), leading to

θ̂ ¼ arg min
θ

‖Σ	1=2ðAθ	τÞ‖2 ð22Þ

¼ ðATΣ	1AÞ	1ATΣ	1τ; ð23Þ

which is a valid solution if KZL for each of the N pairwise
links. More generally, when the polynomial model order L
is unknown in (3), order recursive least squares algorithms
(such as iMGLS [12]) can be employed to obtain the range
coefficients for increasing values of L, until an optimal
polynomial fit for (22) is reached.
3.2. Distributed weighted least squares

If we consider independent pairwise communication
between all the nodes, with no broadcasting, then the
noise in each pairwise link is independent of each other
and subsequently the covariance matrix (21) simplifies to

Σ¼ bdiagðΣ12;Σ13;…Σ1N ; Σ23;…Þ: ð24Þ
In which case, the centralized system (18) is a cascade of
pairwise linear systems (13) and subsequently (23) is a
generalized version of solving the distributed pairwise
system for estimating the pairwise range parameters θij
independently as

bθ ij ¼ arg min
θ
ij

‖Σ	1=2
ij ðAijθ ij	τ ijÞ‖2

¼ ðAT
ijΣ	1

ij AijÞ	1AT
ijΣ	1

ij τ ij; ð25Þ

which, similar to (23), has a valid solution for KZL for
each pairwise link. It is worth noting that when the noise
is correlated between pairwise links, the distributed
weighted least squares (25) may be sub-optimal. In this
case, a consensus based distributed least squares algo-
rithm [13] can be employed for improved solutions.

3.3. Cramér Rao bounds

The Cramér Rao lower Bound (CRB) [14] for the linear
model (18) is

Σθ ¼ ðATΣ	1AÞ	1; ð26Þ

and in combination with the range scaling (7), the CRB on
θ is given by

Σθ ¼ ðdiagðfÞ � IN ÞðA
TΣ	1AÞ	1ðdiagðfÞ � IN Þ; ð27Þ

where

Σθ ¼

Σr n n n

n Σ_r n n

n n Σ€r n

n n n ⋱

26664
37775; ð28Þ

is the lowest variance attained by any unbiased estimate of
the range parameters θ¼ ½rT ; _rT ; €rT ;…�T . It is worth noting
that (23) achieves these lower bounds for an appropriate L.

Remark 4 (Direction independence). In general, observe
that the proposed solution (23) is feasible for any direction
marker Eij;k, which is incorporated in τ (14). In addition,
the lower bounds are unaffected by the choice of direction
vector eij; 8 i; jrN, since all direction vectors are encap-
sulated in the measurement vector τ ij, which is not a part
of the CRB (27). Hence communication between the nodes
could be arbitrary or one way, and need not be necessarily
bi-directional. However, this is not true for an asynchro-
nous network, where two-way communication is pivotal
in jointly estimating the clock and range parameters [12].
In addition, we impose no pre-requisite on the number,
sequence or direction of the communication links [5,12].
Therefore, the proposed solution is amenable to prevalent
Two Way Ranging (TWR) protocols, such as classical
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pairwise communication [15], passive listening and broad-
casting [16].

4. Relative kinematics

In the previous section, we estimated θ which contains
the solution to the unknown range derivatives θ¼ ½rT ; _rT ;
€rT ;…�. Our next motive is to use these range derivatives to
estimate the positions of the mobile nodes. When the nodes
are in motion, similar to the pairwise range rates, the position
vector of each node is also a Taylor series in time. However,
exploiting piecewise linearity, we assume that the nodes are
in linear motion with no acceleration, which is valid for a
sufficiently small measurement period. Note that despite this
assumption, the pairwise distance is still non-linear.

4.1. Absolute linear motion

Let the position of N ðNZPÞ nodes in a P-dimensional
Euclidean space at the kth time instant be given by
Xk ¼ ½x1;k; x2;k;…; xN;k�ARP�N , where xi;kARP�1 is the posi-
tion vector of the ith node at the kth message exchange.
Furthermore, the ith node has velocity yiARP�1 and all
such velocities are collected in Y¼ ½y1;y2;…yN�ARP�N .
Then, under a linear motion assumption, we have

dyi
dt

¼ 0P 8 irN: ð29Þ

Now, let Δtk ¼ tk	t0 where for the sake of notational
convenience and without loss of generality, we assume
tk ¼ Tij;k 8k, then the position matrix at the kth time
instant is

Xk ¼XþΔtkY; ð30Þ
where X9X0 ¼ ½x1; x2;…;xN� is the initial position matrix
at time instant t 0 and Xk only depends on the initial
Position and Velocity (PV) of the nodes.

4.2. Range derivatives

To estimate the position matrix Xk, we begin by stating
explicit expressions for the range derivatives ½r; _r; €r;…� in
terms of X;Y under linear velocity assumption. The pair-
wise distance dij(t) between a node pair (i,j) in PZ2
dimensional Euclidean space is a non-linear function of time,
even if the nodes are only in linear motion. As derived in
Appendix A, the range parameters ½rij; _r ij; €r ij;… � at t ¼ t0
satisfy

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
i xiþxT

j xj	2xT
i xj

q
; ð31aÞ

_r ij ¼ r	1
ij ðxi	xjÞT ðyi	yjÞ; ð31bÞ

€r ij ¼ r	1
ij J ðyi	yjÞJ2	 _r2ij

� �
: ð31cÞ

Although these range parameters can be estimated up
to the ðL	1Þth order efficiently (as demonstrated in
Section 3), in the rest of this paper we utilize the
information only up to L¼3 for estimating the relative
PV. Rearranging the equations for rij; _r ij; €r ij, from (31) we
obtain

r2ij ¼ ðxi	xjÞT ðxi	xjÞ; ð32aÞ

rij _r ij ¼ ðxi	xjÞT ðyi	yjÞ; ð32bÞ

rij €r ijþ _r2ij ¼ ðyi	yjÞT ðyi	yjÞ: ð32cÞ

Extending the above equations for all N nodes, defining
gxx ¼ diagðXTXÞARN�1;gxy ¼ diagðXTYÞARN�1

and gyy ¼ diagðYTYÞARN�1, we have

R�2 ¼ gxx1
T
Nþ1NgTxx	2XTX; ð33aÞ

R � _R ¼ gxy1
T
Nþ1NgTxy	XTY	YTX; ð33bÞ

R � €Rþ _R
�2 ¼ gyy1

T
Nþ1NgTyy	2YTY; ð33cÞ

where the square matrices R¼ ½rij�ARN�N , _R ¼ ½_r ij�ARN�N

and €R ¼ ½€r ij�ARN�N contain the initial pairwise ranges,
range rates and rates of range rates, respectively.

It is evident from (33) that without a priori knowledge
of a few known PV, estimating the PVs of the network is an
ill-posed problem and hence, we look to find solutions for
the relative PV. Applying the centering matrix P¼ IN	
N	11N1

T
NARN�N on (33), and defining

Bxx9	0:5PR�2P; ð34aÞ

Bxy9	PðR � _RÞP; ð34bÞ

Byy9	0:5PðR � €Rþ _R
�2ÞP; ð34cÞ

we have

Bxx ¼ PXTXP; ð35aÞ

Bxy ¼ PðXTYþYTXÞP; ð35bÞ

Byy ¼ PYTYP: ð35cÞ
where we exploit the property P1N ¼ 0N . Eqs. (35a) and
(35c) can now be used to estimate the initial relative
positions and relative velocities of the nodes, via MDS
which will be addressed in Section 5. However, the MDS
algorithm recovers X and Y only up to a rotation and
translation. Therefore, prior to applying MDS we first
define the relative PVs and subsequently present a relative
framework of the absolute mobility model (30).

4.3. Relative linear motion

We define the relative PV vectors as an affine transfor-
mation of the corresponding absolute PV (Xk;Y) i.e.,

~Xk ¼Hx;kXkþhx;k1
T
N ; ð36Þ

Y¼HyYþhy1T
N ; ð37Þ

where ~X k is the relative position matrix of the nodes at tk
up to a rotation Hx;kARP�P and translation hx;kARP�1.
Along similar lines, we define relative velocity as HyY
and relative velocity up to a rotation as Y , where HyARP�P

is an unknown rotation matrix. The relative velocity of the
nodes HyY is relative to the group velocity of the network,
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which is hyARP�1. Under a linear velocity assumption
(29), the group velocity is the rate at which the translation
vector varies with time i.e.,

hy ¼Δt	1
k ðhx;k	hx;0Þ: ð38Þ

Furthermore, the rotation matrices Hx;k and Hy are ortho-
gonal i.e.,

HT
x;kHx;k ¼HT

yHy ¼ Ip: ð39Þ
Now, substituting (36) and (37) in (30), and using the
property (38) we have

Hx;k
~X k ¼Hx;0XþΔtkHyY ; ð40Þ

where for the sake of notational simplicity, we use X 9X 0

to denote the relative position matrix at t0.
Now observe that the translation vectors hx;k and hy are

unidentifiable from observations (35). Subsequently, we
shall also see in the following section that the solution to
the relative PVs are independent of the translation vectors
hx and hy and hence without loss of generality can be
considered to be 0P for notational simplicity. Secondly, in
order to have a meaningful interpretation of the relative
position at the kth time instant (40), we must choose a
reference coordinate system e.g., Hx;0 ¼ I. To this end,
without loss of generality and for notational simplicity,
we make the following assumptions:

Hx;0 ¼ IP ; ð41aÞ

hx;0 ¼ 0P ; ð41bÞ

hy ¼ 0P : ð41cÞ
Now defining Xk9Hx;k

~Xk simplifies (40) to

Xk ¼ XþΔtkHyY ; ð42Þ
where Xk is the position of the nodes at the kth time
instant up to a translation and r, under the assumption
(41). More significantly, observe that the relative position
at each kth time instant is only dependent on the relative
PV and Hy. Hence in the following sections, we estimate
X;Y and Hy using the range parameters (R; _R ; €R), which
was previously defined in (35) and estimated in Section 3.

4.4. Relative kinematic matrices

Substituting the expression for absolute PV from (36)
and (37) in (35), we have

Bxx ¼ PXTXP¼ PXTHT
x;0Hx;0XP¼XTX; ð43aÞ

Bxy ¼ PðXTYþYTXÞP
¼ PðXTHT

x;0HyYþYTHT
yHx;0XÞP

¼XTHyYþYTHT
yX; ð43bÞ

Byy ¼ PYTYP¼ PYTHT
yHyYP¼ YTY ; ð43cÞ

where we use the property (39) in (43a) and (43c), and the
assumption (41a) in (43b). Bxx and Byy are Gramian
matrices of the relative PVs and the expression for Bxy is
the Lyapunov-like linear matrix equation [17]. It is worth
noting that the relative kinematic equations Bxx;Bxy, and
Byy are dependent only on the relative PVs and the unique
rotation matrix Hy at time t0. For an alternative derivation
of the relative kinematic matrices, refer to Appendix B.

Given an estimate of the range matrices, i.e., R̂ ; _̂R , and
€̂R , either using (23) or alternative methods, an estimate of
the relative kinematic matrices, i.e., B̂xx; B̂xy, and B̂yy can be
readily obtained using (34). Following this, we aim to
estimate the relative position using (43a), the relative
velocity using (43c) and the unknown velocity rotation
matrix Hy using (43b).

5. Estimation algorithms for X;Y ;Hy

5.1. Relative PVs (X;Y)

An estimate of the relative PV can be directly obtained
by the spectral decomposition of the matrices Bxx and Byy.
Let

B̂xx ¼UxΛxUT
x ; ð44Þ

B̂yy ¼UyΛyUT
y ; ð45Þ

where Ux;UyARN�N contain the eigenvectors and the
diagonal matrices Λx;ΛyARN�N contain the increasingly
ordered eigenvalues of the matrices B̂xx; B̂yy respectively.
Then, for a P-dimensional setup, an estimate of the relative
positions X and relative velocities Y of the nodes up to a
rotation is then

X̂ ¼Λ1=2
x UT

x ; ð46Þ

Ŷ ¼Λ1=2
y UT

y ; ð47Þ

where Λx;ΛyARP�P contain the first P nonzero eigenva-
lues and Ux;UyARN�P contain the corresponding
eigenvectors.

Relative positioning (46) from pairwise distance mea-
surements using MDS is a well known technique [3].
However, our contribution is the definition and estimation
of relative velocities, i.e., (37) and (47) respectively.

5.2. Rotation matrix Hy

The estimate of the relative velocity Y up to an
arbitrary rotation gives no information on the direction
of the nodes in an anchorless scenario. Hence, it is
important to estimate the relative velocities w.r.t. the
orientation of the initial positions i.e., Hy. Substituting the
estimates of Bxy;X, and Y from (34b), (46) and (47)
respectively in (43b), we have

B̂xy ¼ X̂
T
HyŶ þ Ŷ

T
HT

y X̂ ; ð48Þ

where Hy is the unknown rotation matrix. Now, vectoriz-
ing (48) and rearranging the terms, we have

b̂xy ¼ ðŶ T � X̂
T ÞvecðHyÞþðX̂ T � Ŷ

T Þ vecðHT
y Þ

¼ ðIN2 þJÞðŶ T � X̂
T ÞvecðHyÞ

¼ ĜvecðHyÞ; ð49Þ
where b̂xy ¼ vecðB̂xyÞ is a vector of the known measure-
ment matrix B̂xy from (35b) and JARN2�N2

is an orthogonal
permutation matrix such that JvecðHyÞ ¼ vecðHT

y Þ. Let Ĥy be
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an estimate of Hy, the unknown rotation can be obtained
by minimizing the cost function:

Ĥy ¼ arg minHy ‖ĜvecðHyÞ	 b̂xy‖2: ð50Þ
Now, let the singular value decomposition of the augmen-
ted matrix S¼ ½Ĝ bxy� be

S¼ ½Us1 Us2�
Λs1

Λs2

" #
Vs11Vs12

Vs21Vs22

" #T

; ð51Þ

then the total least squares solution for minimizing the
cost function (50) is

vecðĤyÞ ¼ 	Vs12V
	1
s22 ; ð52Þ

which has a feasible solution for NZP. The proposed
solution does not exploit the orthogonality property of
the unknown rotation matrix Hy. Hence, more optimal
solutions are feasible by solving the constrained least
squares problem on the Stiefel manifold [18]:

arg minHy‖ĜvecðHyÞ	 b̂xy‖2 s:t HT
yHy ¼ IP ; ð53Þ

which is beyond the scope of this paper and will be
addressed in a follow-up work.

5.3. Cramér Rao bounds

The Cramér Rao Bounds (CRB) for relative positioning
were studied in [19,20], however the Fisher Information
Matrix (FIM) for a general P-dimensional anchorless net-
work was not investigated, which we present here.
Furthermore, we also derive a lower bound for the
proposed relative velocity estimator.

The CRB for any unbiased estimate of the unknown
relative PVs

ϕx9vecðXÞ ¼ ½xT
1; x

T
2;…; xT

N�T ARNP�1; ð54Þ

ϕy9vecðYÞ ¼ ½yT
1
; yT

2
;…; yT

N
�T ARNP�1; ð55Þ

are given by the inverse of the respective FIM i.e.,

trðEfðϕ̂x	ϕxÞðϕ̂x	ϕxÞT gÞ9trðΣxÞZtrðF†xÞ; ð56Þ

trðEfðϕ̂y	ϕyÞðϕ̂y	ϕyÞT gÞ9trðΣyÞZtrðF†yÞ; ð57Þ
where fϕ̂x; ϕ̂yg are estimates of the unknown relative PVs
fϕx;ϕyg and fΣx;Σyg are the corresponding lowest achiev-
able covariances. The FIMs for relative PVs are given by Fx
(see Appendix C) and Fy (see Appendix D) respectively.

The derived FIMs are singular in the absence of anchor
information. More specifically, for a 2-dimensional network
the FIM for relative positions and relative velocities are rank
deficient by 3. Since the FIM are not invertible, we use the
pseudoinverse of the FIM as a lower bound to verify the
optimality of the proposed estimators. Such scenarios arise
in reference-free clock estimation [12], anchor-deficient
localization [20], blind channel estimation [21] and array
calibration [22] to name a few, where the inverse of the
rank-deficient FIM is replaced by the pseudoinverse. This
approach can be reasoned by investigating the CRB for a
constrained framework.

When the FIM is singular, a set of linearly independent
constraints, say C, is required on the unknown parameters to
obtain the CRB. Let Uc be an orthonormal basis for the null
space of this constraint matrix C, then the CRB for the
constrained scenario is given by trðUcðUT

cFUcÞ	1UT
c Þ [23].

Now, let F9UfΛfU
T
f be the eigenvalue decomposition of

the singular FIM. Then, the constrained CRB is lowest when
the Uc spans the range of F [21], which simplifies the CRB to tr
ðΛ†

f Þ, where Λ†
f is obtained by taking the reciprocal of each

non-zero elements along the diagonal and leaving the zeros in
place. Observe that the pseudoinverse of the singular FIM
yields exactly the same expression i.e., trððUfΛfU

T
f Þ†Þ ¼ trðΛ†

f Þ.
Thus, among the set of all feasible linearly independent
constraints, the pseudo-inverse of the unconstrained FIM
yields the lowest value for the total variance on all estimated
parameters. There exists no unbiased estimator which
achieves this bound without a priori knowledge or additional
constraints on the system, and hence the bounds (56) and
(57) are termed oracle-bounds.

6. Relative positions over time

We now briefly summarize the steps to find the relative
position at discrete time instances using the time stamp
measurements discussed in Section 2.

6.1. Linearized MDS (LMDS)

Given the noisy time stamps T̂ ij;k ¼ Tij;kþqi;k; 8ði; jÞ node
pairs in the network and 81rkrK time instances, the
relative position of the nodes at the kth time instance can
be estimated as follows:
1.
 Estimate the range derivatives R̂ ; _̂R , and €̂R
(a) using Dynamic Ranging (23) and/or
(b) via Doppler measurements and/or by other means.
2.

Using these range derivatives, construct the relative
kinematic matrices B̂xx; B̂xy, and B̂yy (34a).
3.
 Obtain an estimate of the relative position X, relative
velocity Y and rotation matrix Hy from (36), (37) and
(52) respectively.
4.
 Defining Δt̂ k ¼ T̂ ij;k	 T̂ ij;0 and using (42), the relative
position at the kth time instant is

X̂k;lmds ¼ X̂þΔt̂ kĤyŶ : ð58Þ
6.2. Connected MDS (CMDS)

Alternatively, the relative positions of the nodes can
also be estimated using MDS at each time instant. Let
Dk9c½τij;k�ARN�N be the EDM at each discrete time instant
k where τij;k ¼ Eij;kðTij;k	Tji;kÞ (8). Furthermore, let

D̂k9c½τij;kþqij;k� be the corresponding noisy distance esti-
mate where qij;k is the noise plaguing the measurements as

shown in (12). Let 	0:5PðD̂�2
k ÞP¼UkΛkU

T
k be an eigen-

value decomposition, then the solution to the relative
position is

X̂ k;cmds ¼Λ 1=2

k U
T
k ; ð59Þ



Table 1
Computational complexity of proposed estimators.

Algorithm Dynamic ranging MDS Rotation matrix FLOPS

CMDS – K K Kð12N3þ4NP4þ8P6Þ
LMDS – 2 1 24N3þ4NP2þ8P3

LMDS-dynamic ranging 1 2 1 2KN2L2þ24N3þ4NP2þ8P3
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where Λ kARP�P contain the first P nonzero eigenvalues

and U kARN�P the corresponding eigenvectors.
The relative position estimate using CMDS i.e., X̂ k;cmds is

up to an arbitrary rotation and translation, unlike X̂k;lmds

which yields the relative position of the nodes up to a
translation alone. Hence to align all the relative position
estimates (59), a unique rotation matrix at each time
instant k must be estimated. Under constant velocity
assumption, note that

Xk	1	2XkþXkþ1 ¼ 0P ; ð60Þ
and using (36) and multiplying by HT

k, we have

HT
kHk	1Xk	1	2XkþHT

kH
T
kþ1Xkþ1 ¼ 0P;N : ð61Þ

Now, substituting the relative position estimates from
(59), we have

½X̂ T

k	1;cmds X̂
T

kþ1;cmds�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Âk

HT
kHk	1

HT
kHkþ1

" #zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Θk

¼ 2X̂
T

k;cmds; ð62Þ

where Θk containing the unknown rotation matrices can
be estimated by minimizing the l2 norm:

Θ̂k ¼ arg min
Θk

‖ÂkΘk	2X̂
T
k;cmds‖

2; ð63Þ

which similar to (50) has a solution for NZP. We name
the estimation of relative positions (59) and the subse-
quent rotation matrices (63) under constant velocity
assumption as Connected MDS (CMDS).

6.3. Computational complexity

The computational complexity of the proposed estimators
is listed in Table 1. We evaluate the computation costs based
on FLoating point OPerationS (FLOPS), ignoring the negligibly
less complex additions and subtractions. The columns indicate
the algorithms, the number of executions for various methods
and the total number of FLOPS for each algorithm. To the
implement Dynamic Ranging i.e., least squares estimator, we
assume the Gram–Schmidt method. In case of MDS and
Rotation matrix estimation we use the Golub–Reinsch based
Singularvalue decomposition [24]. Observe that, in contrast to
the CMDS which estimates the relative position and corre-
sponding rotation matrices for all K time instances, the
proposed LMDS estimator estimates only the relative position,
relative velocity and a single rotation matrix. Furthermore, the
CMDS estimates 2 rotation matrices at each time instant (63)
and hence has a factor P2 more complexity in rotation matrix
estimation. Overall, the LMDS shows clear advantage, as it
reduces the use of the expensive Eigenvalue decomposition
for MDS and total least squares for rotation matrix estimation,
in comparison to the CMDS algorithm.

7. Simulations

Simulations are conducted to evaluate the performance
of the proposed solutions. We consider a cluster of N¼5
nodes in P¼2 dimensions, whose coordinates X and
velocities Y are arbitrarily chosen as

X¼ 	629 311 123 	503 297
	812 929 237 490 	662


 �
m;

Y¼ 	5 5 4 	5 	2
	8 	9 2 	5 5


 �
m=s:

Without loss of generality, we assume that all nodes
employ one-way communication, i.e., eij ¼ 1K ; 8 i; jrN.
Furthermore, all nodes communicate with each other
within the time interval Δt ¼ ½Tij;1; Tij;K � ¼ ½	2:5;2:5� s
and the transmit time markers are chosen to be linearly
spaced within this interval. We consider a classical pair-
wise communication scenario, where all the pairwise
communications are independent of each other and thus
Σ¼ σ2INK .

The metric used to evaluate the performance of the
distances and range parameters is the Root Mean Square

Error (RMSE), given by RMSEðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N	1

exp
PNexp

n ¼ 1 ‖ẑðnÞ	z‖2
q

,

where ẑðnÞ is the Nth estimate of the unknown vector
z during Nexp ¼ 1000 Monte Carlo runs. To qualify these
estimates, the square Root of the Cramér Rao Bound
(RCRB) is plotted along with the respective RMSE. We also
use the same metric for evaluating the rotation vecðHyÞ. In
contrast to the range parameters, the relative PVs (X , Y )
and Xk are known only up to an arbitrary rotation. Hence,
we define the RMSE for these matrices as RMSEðZÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N	1

exp
PNexp

n ¼ 1 ‖vecðHẐðnÞ	ZPÞ‖2
q

, where P is the centering

matrix and H is the optimal Procrustes rotation, given the

matrix Z and the corresponding estimate ẐðnÞ of the Nth
Monte Carlo run. See Appendix E. The RCRBs derived for
the relative PVs (Section 5.3) are plotted along with the
corresponding RMSEs.

7.1. Range parameters

The Dynamic Ranging algorithm (23) is implemented for
L¼4, where the number of communications K is varied
from 10 to 1000. The noise on the propagation delays is
σ¼0.1 m, which is typical in classical TWR [25] or in
conventional anchored MDS-based velocity estimation
using Doppler measurements [6]. Fig. 2(a) shows the RMSE
of the first 3 range coefficients (which are relevant for



Fig. 2. RMSEs of range parameters (a) for varying number of communications (K) between the nodes for σ ¼ 0:1 m and (b) for varying noise (σ) on the time
measurements with number of communication K¼500.
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estimating the relative positions and velocities). A second
experiment is carried out by varying σ in the range [	20,
	5] dB m for a fixed number of communications K¼500.
For the sake of comparison, we also plot the range estimate
for the ‘non-dynamic’ scenario, where the nodes are immo-
bile and the range between the nodes is fixed over the
measurement period i.e., for Y¼ 02;N . The RMSEs of the
range coefficients obtained via the dynamic ranging algo-
rithm (23) are plotted in Fig. 2(b). In both these experi-
ments, the RMSEs of these range parameters achieve the
corresponding RCRBs asymptotically for L¼4. Without loss
of generality, we assume that the order of approximation is
known, since iterative solutions such as iMGLS [12] can be
employed to estimate L. For a detailed discussion on the
effect of L on the distance estimation, particularly for an
unsynchronized network, refer to our previous work [12].

7.2. Relative positions, velocities and rotation

The range parameters obtained via dynamic ranging
are used to estimate the relative PV from (46) and (47).
Fig. 3(a) shows the RMSEs of the PV plotted along with the
respective RCRBs, for varying number of two-way com-
munications K and Fig. 3(b) shows the RMSE plots for the
relative PVs for varying signal-to-noise ratio. For the given
experimental setup, the estimates are shown to perform
reasonably well against the derived oracle-bounds. Further-
more, it is observed that the performance of the relative
velocity is poorer in comparison to the relative positions.
This is primarily because the measurement matrix for the
relative velocity estimation Byy is dependent on R; _R , and
€R , whereas the relative position estimation relies only on
the EDM R. Hence, we observe that the magnitude of the
noise covariance on the velocity model Σηy (D.5) is much
larger than that of the position model Σηx (C.3). However,
improved solutions can be expected if the Doppler mea-
surements (such as radial velocity _R) are made available.
The RMSEs of the relative rotation matrix Hy estimate (52)
are plotted in Fig. 4, where the relative PV estimates
are used.
7.3. Relative position over time tk

To illustrate the benefits of jointly estimating the relative
PVs of the network, we simulate the proposed LMDS and
CMDS algorithms. The relative PV and the rotation matrix
estimates are used to realize the relative position of the nodes
across time using LMDS (58). For the sake of comparison, the
CMDS solution is also evaluated by estimating the relative
positions using MDS (59) and the corresponding rotation
matrix (63) at each time instant tk. Fig. 5(a) shows the RMSE
plots for Xk;cmds and Xk;lmds around the region of interest i.e.,

t0 ¼ 0 with Gaussian noise of σ ¼ 0:1 m and varying commu-
nication links K ¼ ½100;300;500�. Secondly, for a fixed
K¼500, the signal-to-noise ratio is varied σ ¼ ½	3 dB;
	10 dB; 	20 dB� and the LMDS is compared against CMDS
in Fig. 5(b). The Xk;cmds estimate steadily achieves a constant

RMSE, which is expected since CMDS is independently applied
at each kth time instant. On the contrary, the relative position
estimation via dynamic ranging betters this estimate around
t0, where the improvement of up to a factor

ffiffiffiffi
K

p
is primarily

due to averaging over K measurements. However, the error
estimate of Xk;lmds increases as we move away from t0, which

is typical of Taylor series approximation. Note that without
loss of generality the range derivatives can be estimated in
general for any t0 along the time interval. Hence, the relative
PVs can be jointly estimated along the time-line, yielding
improved solutions compared to CMDS at any given time
instant.

8. Conclusions

We proposed a novel relative localization framework for
an anchorless network of mobile nodes, given only the time-
varying pairwise distances. Given the inter-nodal distances
over time, the dynamic ranging algorithm employs a classical
Taylor series based approximation, which extracts pairwise
distance derivatives at any given time instant efficiently.
Under linear velocity assumption, these derivatives are used
to jointly estimate the initial relative PVs and a unique



Fig. 3. RMSEs of relative positions and velocities (a) for varying number of communications (K) between the nodes for σ ¼ 0:1 m and (b) for varying noise (σ)
on the time measurements with number of communication K¼500.

Fig. 4. RMSE of rotation matrix (a) for varying number of communications (K) between the nodes for σ ¼ 0:1 m and (b) for varying noise (σ) on the time
measurements with number of communication K¼500.

Fig. 5. RMSE of relative positions over time tk around t0 ¼ 0 (a) for K ¼ ½100;300;500� communication links with noise on time measurements σ ¼ 0:1 m and
(b) for varying signal-to-noise ratio σ ¼ ½	3; 	10; 	20� dB m with fixed K¼500.

R.T. Rajan et al. / Signal Processing 115 (2015) 66–78 75



R.T. Rajan et al. / Signal Processing 115 (2015) 66–7876
rotation matrix. We propose the LMDS algorithm, which
combines the relative PVs and the rotation matrix to beget
the relative motion of the nodes at discrete time instances.
The LMDS can be considered as an extension of the well-
known MDS. In addition, we also propose the CMDS where
the relative node positions and the corresponding rotation
matrices are estimated at each time instant. The Cramér Rao
bounds are also derived for the range parameters, and the
relative PV and simulations are conducted to verify the
performance of the proposed estimators. While the CMDS
shows consistent performance over time, the LMDS is
computationally cost effective and shows up to a factorffiffiffiffiffiffiffi
ðKÞ

p
improvement around the region of interest. Further-

more, the LMDS permits the usage of Doppler measurements
if available. The presented solutions are suited for autono-
mous networks with minimal a priori knowledge, where the
positions and velocities need to be estimated at cold start. In
practice, over longer durations, the estimated parameters can
be readily extended to both relative and absolute tracking,
which will be addressed in a follow-up work.

Appendix A. Distance non-linearity

Consider an arbitrary pair of nodes fi; jg with initial
positions fxi; xjg at t ¼ t0 and constant velocities fyi; yjg,
then the pairwise distance at t ¼ tk is

dij;k ¼ J ðxi	xjÞ	ðyi	yjÞtk J

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
ijxij	yTijyijt

2
k	2xT

ijyijtk
q

; ðA:1Þ

where xij ¼ xi	xj and yij ¼ yi	yj, which shows that the
pairwise distance is non-linear in time.

Let fx iðtÞ; x jðtÞg be the time varying positions of the
node pair and dij(t) be the corresponding pairwise distance
at time t, then the range parameters are derived as follows.
By definition, the pairwise range between the nodes is the
Euclidean norm

rij9dijðt0Þ ¼ Jxi	xj J ; ðA:2Þ
From (A.2), we compute the first-order range parameter as

_r ij ¼
d
dt
dij tð Þ

¼ 1
2rij

d
dt

ðx iðtÞ	x jðtÞÞT x i tð Þ	x j tð Þ
� �� �

¼ 1
rij

yTi xiþyTj xj	yTi xj	yTj xi

� �
¼ r	1

ij ðyi	yjÞT ðxi	xjÞ: ðA:3Þ

Similarly, under the assumption of constant velocities, the
second-order range parameter using (A.2) is

€r ij ¼
d2

dt2
dij tð Þ

¼ 	r	2
ij _r ij ðyi	yjÞT xi	xj

� �� �
þr	1

ij
d
dt

ðyi	yjÞT x i tð Þ	x j tð Þ
� �� �

¼ 	r	1
ij _r2ijþr	1

ij ðyi	yjÞT ðyi	yjÞ
¼ r	1

ij ð‖yi	yj‖2	 _r2ijÞ: ðA:4Þ
The third-order derivative of the range parameter under
linear motion (A.2) yields

r
…
ij ¼

d3

dt3
dij tð Þ

¼ 	r	2
ij _r ij ‖yi	yj‖2	 _r2ij

� �
	r	1

ij
d2

dt2
d2ij tð Þ

� �
¼ 	r	1

ij _r ij €r ij	2r	1
ij _r ij €r ij

¼ 	3r	1
ij _r ij €r ij: ðA:5Þ

The higher-order range derivatives can be derived along
similar lines.

Appendix B. Alternative derivation for Bxx;BxyByy

With an abuse of notation, let DðtÞARN�N be the time-
varying Euclidean Distance Matrix (EDM) for a network of
N nodes in P-dimensional Euclidean space and let

BðtÞ ¼ 	0:5PDðtÞ�2P; ðB:1Þ
where P¼ IN	N	11N1

T
N is the centering matrix. Then

observe that at t ¼ t0,

Bðt0Þ9Bxx ¼XTX; ðB:2Þ
and the subsequent first derivative is

Bxy9
dBðtÞ
dt

9	P D tð Þ � _D tð Þ
� �

P
����
t ¼ t0

¼XTHxyYþYTHT
xyX: ðB:3Þ

A step further, differentiating again w.r.t.time and substi-
tuting t ¼ t0 we have

d2BðtÞ
dt2

�����
t ¼ t0

9Byy9	0:5P R � €Rþ _R
�2

� �
P¼ YTY ; ðB:4Þ

where _R ¼ ½_r ij�ARN�N and €R ¼ ½€r ij�ARN�N
þ which, perhaps

not surprisingly, concur with the relations obtained in (43)
and offer an alternative verification.

Secondly, unlike the time-varying distance function
DðtÞ, which is infinitely differentiable, BðtÞ is a second-
order function under the linear velocity assumption (29).
Differentiating (B.4) yet again, we have

d3BðtÞ
dt3

�����
t ¼ t0

¼ 	0:5P R � R
…
þ3 _R � €R

� �
P¼ 0N;N ; ðB:5Þ

where

R
…
9

d3R

dt3
¼ 	3R	1 � _R � €R : ðB:6Þ

Appendix C. FIM of the relative positions (X)

The problem of estimating the unknown positions
ϕx9vecðXÞ ¼ ½xT

1; x
T
2;…; xT

N�T ARNP�1 from the distance
measurements is formulated as

axðϕxÞ	dx ¼ ηx; ðC:1Þ
where the vector dx ¼ frijg8 i; jrN; ia jAR2N�1 is the set
of distances between N points, with N ¼ ðN2Þ. The distance
vector is related to the positions by aðϕxÞ ¼ ½axðx1; x2Þ;
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axðx1; x3Þ;…; axðxN	1; xNÞ�T AR2N�1 where

axðx i;x jÞ9ðxT
i x iþxT

j x j	2xT
i x jÞ1=2: ðC:2Þ

Furthermore, the noise plaguing the distance vector is

ηx �N ð0;ΣηxÞ where Σηx ¼ bdiagðΣr ;ΣrÞ; ðC:3Þ
and Σr is given by (28). For the data model (C.1), the FIM
FxARNP�NP is

Fx ¼
∂axðϕxÞ
∂ϕT

x

" #T

Σ	1
ηx

∂axðϕxÞ
∂ϕT

x

" #
: ðC:4Þ

where the Jacobian is of the form

∂axðϕxÞ
∂ϕT

x

¼ ∂axðϕxÞ
∂xT

1

;
∂axðϕxÞ
∂xT

2

;…;
∂axðϕxÞ
∂xT

N

" #
: ðC:5Þ

The ith element of the Jacobian ½∂axðϕÞ=∂xT
i � is given by

∂aðx1; x2ÞT
∂xT

i

;
∂aðx1; x3ÞT

∂xT
i

;…;
∂aðxN	1;xNÞT

∂xT
i

" #
;

where 81r j; krN; jak, we have

∂aðx j;xkÞ
∂xT

i

¼
r	1
jk ðx j	xkÞT if i¼ j ðaÞ
	r	1

jk ðx j	xkÞT if i¼ k ðbÞ
0T
P otherwise ðcÞ:

8>>><>>>: ðC:6Þ

Appendix D. FIM of the relative velocities (Y)

The estimation of relative velocities ϕx9vecðYÞ ¼
½yT

1
; yT

2
;…; yT

N
�T ARNP�1 is modeled as

ayðϕyÞ	d�2
y ¼ ηy; ðD:1Þ

where aðϕyÞ ¼ ½ayðy1
; y

2
Þ; ayðy1

; y
3
Þ;…; ayðyN	1

; y
N
Þ�T AR2

N � 1 and

ayðy i
; y

j
Þ9yT

i
y
i
þyT

j
y
j
	2yT

i
y
j
: ðD:2Þ

The distance squared vector d�2
y ¼ frij €r ijþ _r �2

ij g8 i;
jrN; ia jAR2N�1, where rij; _r ij, and €r ij are the correspond-
ing range estimates. The noise ηy ¼ fηy;ijg in the data model
is

ηy;ij ¼ rijq€r ;ijþ €r ijqr;ijþ2_r ijq_r ;ijþqr;ijq€r ;ijþq_r ;ijq_r ;ij


 rijq€r ;ijþ €r ijqr;ijþ2_r ijq_r ;ij; ðD:3Þ

where qr;ij; q_r ;ij, and q€r ;ij are the noise variable plaguing the
range parameters rij; _r ij, and €r ij respectively. The covariance
of the noise is subsequently defined as

Σηy ¼ EfηyηTy g 
 bdiagðΣηy;ΣηyÞ; ðD:4Þ

where

Σηy 
 RΣ€rRþ €RΣr
€R þ4 _RΣ_r

_R ðD:5Þ

R ¼ diagðrÞ; _R ¼ diagð_rÞ, and €R ¼ diagð€rÞ are the range
parameters and Σr ;Σ_r , and Σ€r are the corresponding
covariance matrices (28). The FIM FyARNP�NP is then

Fy ¼
∂ayðϕyÞ
∂ϕT

y

24 35T

Σ	1
ηy

∂ayðϕyÞ
∂ϕT

y

24 35; ðD:6Þ
where the Jacobian is of the form

∂ayðϕyÞ
∂ϕT

y

¼ ∂ayðϕyÞ
∂yT

1

;
∂ayðϕyÞ
∂yT

2

;…;
∂ayðϕyÞ
∂yT

N

" #
: ðD:7Þ

The ith element of the Jacobian ½∂ayðϕÞ=∂yT
i
� is given by

∂aðy
1
; y

2
ÞT

∂yT
i

;
∂aðy

1
;y

3
ÞT

∂yT
i

;…;
∂aðy

N	1
; y

N
ÞT

∂yT
i

" #
;

where 81r j; krN; jak, we have

∂aðy
j
; y

k
Þ

∂yT
i

¼
2ðy

j
	y

k
ÞT if i¼ j ðaÞ

	2ðy
j
	y

k
ÞT if i¼ k ðbÞ

0T
P otherwise ðcÞ:

8>>><>>>: ðD:8Þ

Appendix E. Procrustes alignment

Let Z;ZARP�N be matrices identical up to a rotation
and let Uz contain the eigenvectors of the matrix product
ZZT , then there exists a rotation matrix H which mini-
mizes the following cost function:

min
H

JZ	HZ J s:t: HTH¼ IP ; ðE:1Þ

and the corresponding optimal Procrustes rotation [26] is

Ĥ ¼UzUT
z : ðE:2Þ
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