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Abstract—Localization is a fundamental challenge for any

wireless network of nodes, in particular when the nodes are

mobile. For an anchorless network of mobile nodes, we present a

relative velocity estimation algorithm based on multidimensional

scaling. We propose a generalized two-way ranging model, where

the time-varying pairwise distances between the nodes are ex-

pressed as a Taylor series for a small observation period. The

Taylor coefficients which are obtained by solving a Vandermonde

system are in turn used to jointly estimate the initial relative

position and the relative velocity of the nodes. Simulations are

conducted to evaluate the performance of the proposed solutions

and the results are presented.

Index Terms—joint position and velocity estimation, MDS,

dynamic ranging, wireless network, anchorless, localization,

doppler-free

I. INTRODUCTION

Wireless network localization is a fundamental challenge

for a wide variety of applications. For a network of fixed

nodes, range based localization algorithms use the pairwise

distances between the nodes to estimate the positions of the

nodes. In particular, for anchorless networks i.e., networks

without known reference positions, Multi-Dimensional Scaling

(MDS) algorithms estimate the relative positions of the nodes

up to a rotation and translation [2]. A step further, when

the nodes are mobile, then conventionally either the nodes

are considered relatively stationary within desired accuracies

during all ranging measurements [3] or Doppler measurements

are utilized to track the positions. Unfortunately, Doppler

measurements are not always available and the assumption

on the node positional stability over large time periods is

not necessarily practical. Furthermore, for a mobile network,

the application of classical MDS-based relative localization

at every time instant yields a position matrix with arbitrary

rotation, thereby providing no information on the relative

velocities of the nodes. To the best of the authors’ knowledge,

the estimation of relative velocities for an anchorless network

has not been investigated in literature.

Our motivation for this work is triggered by inaccessible

mobile wireless networks, which have partial or no informa-

tion of absolute coordinates and/or clock references. Such

scenarios are prevalent in under-water communication [4],

indoor positioning systems [5] and envisioned space-based

satellite networks with minimal ground segment capability [6].

This research was funded in part by the STW OLFAR project (Contract
Number: 10556) within the ASSYS perspectief program. A part of this work
has been submitted to the IEEE Transactions on Signal Processing [1].

In this article, our quest is to estimate the relative Positions and

Velocities (PVs) up to a rotation and translation of an anchor-

less network of mobile nodes, given two-way communication

capability between all the nodes.

Notation: The element-wise matrix Hadamard product is de-

noted by ⊙ and (·)⊙N denotes element-wise matrix exponent.

The Kronecker product is indicated by ⊗ and the transpose

operator by (·)T . 1N ∈ R
N×1 is a vector of ones, IN is a

N × N identity matrix, 0M,N is a M × N matrix of zeros,

diag(a) represents a diagonal matrix with elements of the

vector a on the diagonal and ‖ · ‖ is the Euclidean norm.

The matrix A = bdiag(A1,A2, . . . ,AN ) consists of matrices

A1,A2, . . . ,AN along the diagonal and zeros elsewhere.

II. RELATIVE KINEMATICS

Consider a cluster of N nodes in a P -dimensional Eu-

clidean space, whose initial coordinates are given by X =
[x1,x2, . . . xN ] ∈ R

P×N , where xi ∈ R
P×1 is the position

of the ith node at time t = t0. At the same time t0, the ith node

has velocity yi ∈ R
P×1 and all such velocities are collected

in Y = [y1,y2, . . . yN ] ∈ R
P×N . Without loss of generality,

for a small time duration around t = t0 we assume the nodes

are in independent linear motion, i.e.,

dY

dt
= 0P,N . (1)

The absolute PVs (X,Y) are a linear isometric transformation

of the relative PVs (X, Y) i.e.,

X=HxX+ hx1
T
N , (2)

Y =HyY + hy1
T
N , (3)

where X ∈ R
P×N is the relative position matrix, Hx ∈ R

P×P

is the unknown rotation and hx ∈ R
P×1 is the translation of

the network at t = t0. We define relative velocity at t0 up to a

rotation and translation as Y ∈ R
P×N and relative velocity up

to a translation as HyY, where Hy ∈ R
P×P is an unknown

rotation matrix. The relative velocity HyY is relative to the

group velocity of the network, i.e., hy ∈ R
P×1.

In addition, the distances between the nodes are time-

varying, which are denoted by the Euclidean Distance Matrix

(EDM) D(t) , [dij(t)] ∈ R
N×N , where dij(t) is the pairwise

distance between the node pair (i, j) at time instant t. Finally,

we define a double-centered matrix

B(t) , −0.5P
(
D(t)

)⊙2
P, (4)

where P = IN − N−11N1T
N is the centering matrix. Note
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that D(t) (and subsequently B(t)) is a non-linear function of

time t, even when the nodes are in independent linear motion.

Given an estimate of the EDMs D̂(t) at time instances t, our

goal is to find an estimate of the initial relative position X̂

and relative velocity Ŷ.

A. Relative Position

Let D(t0) , R = [rij ] ∈ R
N×N
+ be the true EDM

containing all the pairwise distances between the nodes at time

instant t0, then (4) is

Bx , −0.5PR⊙2P = XTX. (5)

The relative position of the nodes is then obtained by the

spectral decomposition of Bx [2], which we describe in brief

for the sake of completeness. Let B̂x , −0.5PR̂⊙2P =
UxΛxU

T
x , where R̂ collects the measured noisy distances

between the nodes and Ux,Λx ∈ R
N×N are the eigenvectors

and eigenvalues of B̂x, respectively. An MDS estimate of the

relative position X̂ is then

X̂ = Λ1/2
x UT

x , (6)

where Λx ∈ R
P×P and Ux ∈ R

P×N contain the first P

nonzero eigenvalues and eigenvectors, respectively.

B. Relative Velocity

Differentiating (4) w.r.t. time t, we have

dB(t)

dt
, −P

(
D(t)⊙ Ḋ(t)

)
P

∣∣∣
t=t0

= P
(
XTY+YTX

)
P

and a step further, differentiating again w.r.t. time under the

constraint (1) and substituting t = t0 we have

d2B(t)

dt2

∣∣∣
t=t0

, By , −0.5P(R⊙R̈+Ṙ⊙2)P = YTY (7)

where Ṙ = [ṙij ] ∈ R
N×N and R̈ = [r̈ij ] ∈ R

N×N
+ are

the respective first-order and second-order derivatives of the

pairwise distances w.r.t. time at t = t0. Now given the

corresponding measurement matrices
̂̇
R and

̂̈
R, let the eigen-

value decomposition of the measurement B̂y , −0.5P(R̂⊙
̂̈
R + ̂̇

R
⊙2

)P = UyΛyU
T
y , where Λy,Uy ∈ R

N×N are the

corresponding eigenvalues and eigenvectors, then an MDS-

based relative velocity estimate Ŷ is given by

Ŷ = Λ1/2
y UT

y , (8)

where Λy ∈ R
P×P are the first P nonzero eigenvalues and

Uy ∈ R
P×N the corresponding eigenvectors.

While MDS based relative localization (6) is well under-

stood [2], our fundamental contribution is the definition of

relative velocities (3) and its estimation (8).

III. DYNAMIC RANGING

In essence the required range coefficients can be obtained

from Doppler measurements. Note that, R is the ToA (Time of

Arrival), the range rate Ṙ is the radial velocity (observed from

Doppler shift) and the second-order range parameter R̈ is the

Fig. 1: A generalized two-way ranging between a pair of mobile

nodes, where the nodes transmit and receive and record K time

stamps independently. Similar to [3], [7], we levy no pre-requisite

on the sequence, direction of communications.

rate of radial velocity (observed from Doppler spread) between

the nodes at t0. Hence, if available these measurements can

be readily used to estimate the relative velocity from (8).

Alternatively, we here propose an elegant time-based Taylor

series approximation of the measured time-varying pairwise

distances to obtain these range coefficients.

A. Taylor series approximation

Let τij(t0) ≡ τji(t0) = c−1dij(t0) be the propagation

delay between the node pair (i, j) at time instant t0 where

dij(t0) is the corresponding pairwise distance and c is the

speed of the electromagnetic wave in the medium. Now, for a

small interval ∆t = t−t0, we consider the relative distance to

be a smoothly varying polynomial of time, which empowers

us to describe the propagation delay τij(t) at t as an infinite

Taylor series in the neighborhood of t0. Thus, we have

τij(t0 +∆t), c−1dij(t0 +∆t) , c−1dij(t), (9)

where dij(t) is the distance at t = t0 +∆t, given by

dij(t) = rij +
ṙij

1!
∆t+

r̈ij

2!
∆t2 + . . . , (10)

where [rij , ṙij , r̈ij , . . .] ∈ R
L×1 are the derivatives of the

pairwise distance at t0, which are limited to L − 1th order.

Without loss of generality, assuming t0 = 0, we have t = ∆t

and subsequently (9) and (10) simplify to the Maclaurian series

as

τij(t) = c−1

(
rij + ṙijt+

r̈ij

2!
t2 + . . .

)
. (11)

The unique pairwise ranges between all the N nodes are

collected in a vector r ∈ R
N̄×1, where N̄ =

(
N

2

)
is the

number of unique pairwise baselines. Along similar lines, we

have ṙ ∈ R
N̄×1, r̈ ∈ R

N̄×1 and corresponding higher-order

terms. The polynomial range basis is simplified further by

introducing

[
rij , ṙij , r̈ij , . . .

]T
= diag(f)−1

[
rij , ṙij , r̈ij , . . .

]T
, (12)

where f = c[1, 1!, 2!, . . .]T ∈ R
L×1, such that (11) is

τij(t) = c−1dij(t), rij + ṙijt+ r̈ijt
2 + . . . . (13)

Following the definition of [r, ṙ, r̈, . . .], we define r ∈ R
N̄×1,

ṙ ∈ R
N̄×1, r̈ ∈ R

N̄×1 and similarly higher order terms.
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B. Data model

Now, consider a pair of nodes (i, j) communicating with

each other, where Tij,k and Tji,k are respectively the time of

departure (or arrival) of the message at node i and node j for

the kth time instant. As shown in Fig.1, the nodes exchange K

messages where similar to [3], [7] we impose no restrictions on

the direction or sequence of communication. The propagation

delay between the node pair at the k th time instant is |Tij,k−
Tji,k|, and in conjunction with the polynomial approximation

(13) we have

τij(Tij,k) = rij + ṙijTij,k + r̈ijT
2
ij,k + . . . = |Tij,k − Tji,k|,

(14)

where without loss of generality we have replaced t with Tij,k.

By replacing the true time with Tij,k, we inherently assume

Tij,k is in the neighborhood of t0 = 0 and τij,k is measured

as a function of the local time at node i. Furthermore, we

also assume the network to be synchronized, which is a valid

assumption since for an asynchronous network, the clock

parameters (up to first order) can be decoupled from the range

parameters and estimated efficiently [7].

In practice, the time measurements are also corrupted with

noise and hence (14) is

rij + ṙij(Tij,k + qi,k) + r̈ij(Tij,k + qi,k)
2 + . . .

= |(Tji,k + qj,k)− (Tij,k + qi,k)|, (15)

where qi,k ∼ N (0,Σi), qj,k ∼ N (0,Σj) are Gaussian i.i.d.

noise by assumption, plaguing the timing measurements at

node i and node j, respectively. Rearranging the terms, we

have

rij + ṙijTij,k + r̈ijT
2
ij,k + . . . = |Tji,k − Tij,k|+ qij,k, (16)

where qij,k = |qj,k − qi,k| − (2r̈ijTij,kqi,k + r̈ijq
2
i,k + . . .).

For wireless communication with c = 3 × 108m/s, note

that the modified range parameters are scaled by c−1 (12).

Furthermore, since the dynamic range model is proposed for

a small time interval, the term (2r̈ijTij,kqi,k + r̈ijq
2
i,k + . . .)

is relatively small and subsequently the noise vector plaguing

the measurements can be approximated as qij,k ≈ |qj,k − qi,k|
which begets

qij,k ∼ N (0,Σi +Σj). (17)

Aggregating all K packets, we have

Aij︷ ︸︸ ︷[
1K tij t⊙2

ij . . .
]

θij︷ ︸︸ ︷


rij
ṙij
r̈ij
...


 = τ ij + qij , (18)

where tij = [Tij,1, Tij,2, . . . , Tij,K ] ∈ R
K×1 and τ ij =

|tij − tji| ∈ R
K×1 and θij ∈ R

L×1 is a vector containing the

unknown range parameters. The known Vandermonde matrix

Aij ∈ R
K×L contains the measured time stamps and is

invertible if Tij,k is unique for all k ≤ K . The noise vector on

the linear system is qij = [qij,1, qij,2, . . . qij,K ]T ∈ R
K×1,

where qij,k is given by (17) and the corresponding covariance

matrix is

Σij , E
[
qijq

T
ij

]
= (Σi +Σj)IK ∈ R

K×K . (19)

For a network of N nodes, the normal equations (18) can be

extended to

A︷ ︸︸ ︷[
IN̄ ⊗ 1K T T⊙2 . . .

]

θ︷︸︸︷


r

ṙ

r̈
...


 = τ + q, (20)

where T = bdiag(t12, t13, . . . t1N , t23, . . .) ∈ R
N̄K×N̄ ,

τ = [τT
12, τ

T
13, . . . τ

T
1N , τ

T
23, . . .]

T ∈ R
N̄K×1 contain the

time stamp exchanges of the N̄ unique pairwise links in

the network, and θ ∈ R
N̄L×1 contains the unknown range

parameters for the entire network. The noise vector is q =
[qT

12,q
T
13, . . .q

T
1N , qT

23, . . .]
T ∈ R

N̄K×1 and the covariance

matrix is

Σ, E
[
qqT

]
∈ R

N̄K×N̄K . (21)

Remark: Mobility of the nodes: In traditional two-way rang-

ing, for a fixed pair of nodes (i.e., L = 1), the pairwise

distance dij,k is classically assumed to be invariant for the total

measurement period Tij,K − Tij,1. However, when the nodes

are mobile, the distance at each time instance k is dissimilar.

Hence, instead of the classical assertion [3], we suppose that

the nodes are relatively stable over a much smaller time period

of |Tij,k − Tji,k|, i.e., the propagation time of the message.

C. Dynamic ranging algorithm

Under the assumption that the covariance matrix Σ is

known, a Weighted Least Squares (WLS) solution θ̂ is ob-

tained by minimizing the l2 norm of the linear system (20),

leading to

θ̂ = (ATΣ−1A)−1ATΣ−1
τ , (22)

which is a valid solution if K ≥ L for each of the N̄ pairwise

links. Given an estimate of θ, the range coefficients [r, ṙ, r̈, . . .]
can be directly obtained from (12). More generally, when L

is unknown, an order recursive least squares can be employed

to obtain the range coefficients [8]. Furthermore, the Cramér

Rao lower Bound (CRB) for the least squares model (20) in

combination with the range translation (12) is given by [8]

Σcrb , F(ATΣ−1A)−1F, (23)

where Σcrb is the lowest variance attained by any unbiased

estimate of the range parameters [rT , ṙT , r̈T , . . .]T and F =
diag(f)⊗IN̄ ∈ R

N̄L×N̄L. It is worth noting that (22) achieves

this lower bound.

IV. SIMULATIONS

To evaluate the performance of the proposed solutions, we

consider a cluster of N = 5 nodes in P = 2 dimensions,
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X =

[

−382 735 959 630 800

9 7 727 366 −858

]

, Y =

[

−6 8 −1 −10 3

8 −9 −7 −2 −8

]

(24)
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Fig. 2: (a) RMSEs of range parameters and (b) RMSs relative

position, relative velocity for a varying number of communications

(K) between the nodes for σ = 0.1 meters

whose coordinates X and velocities Y are arbitrarily chosen

to be (24). Without loss of generality, we assume that all nodes

employ one way communication and communicate with each

other within the same time interval [Tij,1, Tij,K ] = [−3, 3]
seconds, where the transmit time markers are spaced equidis-

tantly. We consider a classical pairwise communication sce-

nario, where all the pairwise communications are independent

of each other and thus Σ = σ2IN̄K .

The metric used to evaluate the performance of the range

parameters is Root Mean Square Error (RMSE), given by

RMSE(z) =

√
N−1

exp
∑Nexp

n=1 ‖ẑ(n)− z‖2, where ẑ(n) is the

nth estimate of the unknown vector z ∈ R
N̄×1 during Nexp =

1000 Monte Carlo runs. To qualify these estimates, the square

Root of the Cramér Rao Bound (RCRB) is plotted along with

the respective RMSE. Furthermore, since the relative PVs are

known only upto a rotation, we use a metric based on the mean

of raw stress [2] for evaluation. Let Z = [z1, z2, . . . , zN ] ∈
R

P×N be the matrix under evaluation, then the average raw

stress of Z for each nth Monte carlo realization is defined as

SZ(n) = N̄−1
∑N−1

i=1

∑N
j=i+1

(D̂ij(n)−Dij)
2, where Dij =

‖zi−zj‖ is the Euclidean distance between the vectors (zi, zj)

and D̂ij(n) = ‖ẑi(n) − ẑj(n)‖ its corresponding estimate.

Subsequently, the Root Mean Stress (RMS) for relative PVs

are RMS(Z) =

√
N−1

exp
∑Nexp

n=1 SZ(n), where Nexp = 1000.

The dynamic ranging algorithm (22) is implemented for

L = 4, where the number of communications K is varied

from 10 to 100. The noise on the propagation delays is

σ = 0.1 meters, which is typically considered for conventional

anchored MDS-based velocity estimation using Doppler mea-

surements [9]. Fig. 2a shows the RMSE of the first 3 range

coefficients (which are relevant for estimating the relative

velocities) achieving the RCRB asymptotically. The PVs are

obtained using these range coefficients via (6), (8) and the

corresponding RMSs are plotted in Fig. 2b.

V. CONCLUSION

A closed-form solution is proposed for relative velocity

estimation for an anchorless network of mobile nodes. Under a

linear velocity assumption, we show that the solution for rela-

tive velocities up to a rotation can be obtained from the deriva-

tives of the time-varying pairwise distance. In the absence of

Doppler measurements, a least squares based dynamic ranging

algorithm is proposed, which employs a classical Taylor series

based approximation to efficiently estimate pairwise distance

derivatives at a given time instant. In practice, over longer

durations the estimated parameters can be readily extended to

both relative and absolute tracking of mobile nodes.
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