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Abstract—OLFAR is Orbiting Low Frequency Antennas for Radio
astronomy, a study to investigate the feasibility of a untethered satellite
array (≥ 10 satellites) in space for ultra low frequency observations
(0.3MHz-30MHz). Synchronization and localization are twokey aspects
for the coherent functioning of satellite nodes. Recently,various estima-
tors have been proposed for pairwise synchronization between two nodes
based on time stamp exchanges via two way communication. In this
paper, we propose a closed form centralized Global Least Squares (GLS)
estimator, which exploits two way communication information between
all the nodes in the network. The fusion center based GLS usesa single
clock reference node and estimates all the unknown clock offsets, skews
and pairwise distances in the network. The GLS estimate for clock offsets
and skews is shown to outperform prevalent estimators. Furthermore, a
new Cramer Rao Lower Bound (CRLB) is derived for the entire network
and the proposed GLS solution is shown to approach the theoretical
limits. To illustrate the applicability of the GLS solution despite missing
communication links, a few network topologies are presented.

Index Terms—OLFAR, joint estimation, clock synchronization, skew,
offset, distance, wireless network, anchorless

I. I NTRODUCTION

The Orbiting Low Frequency Antennas for Radio astronomy
(OLFAR) [1] is a Dutch funded program which aims to design and
develop a detailed system concept for an interferometric array (≥ 10)
of identical, scalable and autonomous nano satellites in space to be
used as a scientific instrument for ultra low frequency observations
(0.3KHz - 30MHz). The OLFAR cluster could either orbit the moon,
whilst sampling during the Earth-radio eclipse phase, or orbit the
Earth-moon L2 point, sampling almost continuously or Earth-trailing
and leading orbit. Due to its distant deployment location (far from
the earth orbiting global positioning systems) and the large number
of satellites, autonomous network synchronization and localization is
one of the key issues in OLFAR.

The coherent functioning of OLFAR network relies heavily on
time synchronization among satellite nodes. All nodes in the network
must be synchronized to a global reference, to facilitate accurate
time stamping of data and synchronized communication of processed
information [2]. Such global time synchronization is achieved by
estimating all clock offsets and clock skews of the nodes and
compensating the respective clocks aptly. Furthermore, autonomous
position estimation is equally critical as time synchronization. The
intermediate distances between all the nodes in the networkis one
of the key inputs for almost all localization techniques [3].

For a pair of nodes capable of two way communication with
each other, Freris et al. proposed a model [4], which is basedon
exchanging time stamps between the nodes. The model contains 2
clock offsets, 2 clock skews and the distance between the nodes,
which results in an unsolvable five dimensional problem. However,
traditionally, one clock is assumed to be the reference clock which
reduces the cardinality to3 and the absolute clock offset and clock
skew of the second node can be estimated. Maximum likelihood
estimates for various noise profiles are presented for jointestimation
of clock offset and clock skew in [5], such as the GMLL estimate

for gaussian noise and unknown delay. A step further, Leng etal.
presented a Low Complexity Least Squares (LCLS) solution [6] for
the joint estimate, however the distance was ignored as a nuisance
parameter. In similar lines, but towards localization, Zheng et al. [7]
showed if 3 nodes are completely synchronized and their positions
known, then the clock offset, skew and position of an unknownnode
can be estimated for a2D scenario. In this paper, we propose a
centralized Global Least Squares (GLS) estimator which exploits
the two way communication information between all the nodesand
estimates all the unknown clock offsets, skews and pairwisedistances
in the network using a single clock reference. Although the presented
algorithm is in the context of the OLFAR project, they are readily
applicable to terrestrial networks as well.

Notation: The element wise matrix Hadamard product is denoted
by⊙, element wise Hadamard division by⊘, (·)⊙N denotes element-
wise matrix exponent. The Kroneker product is indicated by⊗ and
the transpose operator by (·)T . 1N = [1, 1 . . . , 1] ∈ R

N×1 is a vector
of ones andIN is aN ×N identity matrix.

II. PROBLEM FORMULATION

Consider a network ofN nodes equipped with independent clock
oscillators which, under ideal conditions, are synchronized to the
global time. However, in reality, due to various oscillatorimper-
fections and environment conditions the clocks at the nodesvary
independently. Clocks are inherently Letti be the local time at node
i, then its divergence from the ideal global timet is to first order
given by the affine clock model,

ti = ωit+ φi (1)

whereωi ∈ R+ andφi ∈ R are the clock skew and clock offset
of node i. The clock skew and clock offset parameters for allN
nodes are represented byω = [ω1, ω2, . . . , ωN ]T ∈ R+

N×1 and
φ = [φ1, φ2, . . . , φN ]T ∈ R

N×1 respectively. Alternatively, the
translation from local timeti to the global timet is written as a
function of local time,

Fi(ti) , t = βiti − αi (2)

where

[βi, αi] , [ω−1
i , ω−1

i φi] (3)

are the calibration parameters needed to correct the local clock
of node i. Following immediately, for allN nodes in the network,
we haveβ , 1N ⊘ ω ∈ R+

N×1 and α , φ ⊘ ω ∈ R
N×1. All

M =

(

N
2

)

unique pairwise distances betweenN nodes are given
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Fig. 1. Figure shows the classical two way communication between a
node pair(i, j). Node i is the reference with[ωi, φi] = [1, 0] and also
initiates the communication with nodej whose clock skew (ωj), clock offset
(φj ) and distance (dij ) from node i are unknown. There areK two way
communications between the node pair during which2K time markers are
recorded at the respective nodes
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by d = [d11, d12, . . . , d(N−1)(N)] ∈ R
M×1 and subsequently the

propagation delay between nodes is given byτ = dc−1 ∈ R
M×1,

where c is the speed of the electromagnetic wave in the medium.
Given a single reference node (providing the reference clock) and
two way communication between all nodes, we intend to efficiently
estimate all the absolute clock skews (ω), clock offsets (φ) and
pairwise distances (d) in the network.

III. N ETWORK SYNCHRONIZATION AND RANGING

Consider the classical two way communication between a sensor
pair (i, j) as shown in Figure 1. Nodei initiates the communication
and up-links a message to nodej and nodej responds by downlinking
a message back to nodei. Both the nodes communicate messages
back and forth to each other, and the transmission and reception times
are recorded independently by the clocks at the respective nodes. For
the uplink,T (k)

ij denotes the local time recorded at nodei for the k

th message departing to nodej andR
(k)
ji is the corresponding local

time marker recorded by the Nodej on receiving the message from
node i. Similarly during down linking,T (k)

ji andR
(k)
ij are the local

timings recorded at nodej and i respectively. There areK such
two way communications between the sensor pair, during which we
assume that the propagation delay between the two nodesτij =
dij/c ≡ dji/c is fixed. The transmission and reception markers are
then related as [2] [4]

T
(k)
ij + q

(k)
1 = ωi(Fj(R

(k)
ji + q

(k)
2 )− τij) + φi,

R
(k)
ij + q

(k)
3 = ωi(Fj(T

(k)
ji + q

(k)
4 ) + τij) + φi (4)

where {q(k)1 , q
(k)
2 , q

(k)
3 , q

(k)
4 } ∼ N (0, 0.5σ2) are gaussian i.i.d

noise variables plaguing the timing measurements. Rearranging the
terms and from (1), (2) and (3) we have

βiT
(k)
ij = βjR

(k)
ji + αi − αj − τij − βiq

(k)
1 + βjq

(k)
2 ,

βiR
(k)
ij = βjT

(k)
ji + αi − αj + τij − βiq

(k)
3 + βjq

(k)
4 (5)

For allK two way communications, a generalized model for a pair
of sensors is

[

tij −tji −12K 12K −e
]
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Fig. 2. An illustration of a network withN = 4 nodes, each capable of two
way communication. Node 1 (shaded in black) is the clock reference with
[ω1, φ1] = [1, 0]. The clock skews and clock offsets of node 2, 3 and 4 are
unknown and are to be estimated, in addition to all the pairwise distances.
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wheretij , tji ∈ R
2K×1 are time markers recorded at nodei and

node j respectively while communicating with each other and are
given by

tij = [T
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ij , R
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ij , T
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ij , . . . , R

(K)
ij ]T ,

tji = [R
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ji , T

(1)
ji , R

(2)
ji , . . . , T

(K)
ji ]T (7)

e = [−1,+1 . . . ,+1]T ∈ R
2K×1 andqij is the i.i.d noise vector,

which is modeled asqij ∼ N (0, 0.5σ2(β2
i + β2

j )) ∈ R
2K×1. In

reality, the clock skewsωi, ωj are very close to1 and the errors are
of the order of10−4. Hence the noise vector could be approximated
by

qij ∼ N (0, σ2) ∈ R
2K×1 (8)

Such an approximation is satisfactory and is implicitly employed in
various cases such as [2], [5], [6] and [7]. The pairwise model in (6)
is not solvable as is, since the measurement matrix is rank deficient.
However by asserting one node as the clock reference and extending
this model to the entire network and we propose to find a global
optimal solution for all unknown clock parameters and distances
using a single reference. As an illustration, Figure 2 showsa network
consisting ofN = 4 nodes, all capable of two way communication
with each other. Without loss of generality, we assume node 1is
the reference node in this sensor network and that all the links are
present. Rearranging the terms in (6), for all{i, j}, we have

[T E1 E2]





β

α

τ



 = q (9)

whereT ∈ R
2KM×N contains all the timing vectors from all the

N nodes ,E1 ∈ R
2KM×N , E2 = −IM ⊗ e ∈ R

2KM×M . For
N = 4, T andE1 are of the form
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and a similar structure can be generalized forN ≥ 4. The global
noise vector isq = [q12,q13, . . . ,q(N−1)(N)] ∈ R

2KM×1 where
eachqij is given by (8). Since node 1 is the reference node,i.e.,
[β1, α1] = [1, 0], rearranging the terms in (9) we have

Āθ = −t̄1 + q (12)

where

Ā =[T̄ Ē1 E2] ∈ R
2KM×L

θ =[β̄ ᾱ τ ]T ∈ R
L×1

where L = 2N + M − 2 and T̄, Ē1 ∈ R
2KM×(N−1) are

submatrices ofT andE1 respectively, excluding the corresponding
first columns. β̄, ᾱ ∈ R

(N−1)×1 represent the unknown clock
parameters of all the nodes excluding node 1.t̄1 ∈ R

2KM×1 is
the first column of matrixT which contains the timing markers
recorded at node 1, whilst communicating with the other nodes in
the network. Analyzing the components of matrix̄A, both T̄, Ē1

are full rank, since the respective first2K(N − 1) rows are formed
by block diagonal matrices. Note that all columns ofE2 are also
independent. In addition, ifK ≥ 2, then a Global Least Squares
(GLS) solution is feasible and is obtained by minimizing theleast
squares norm, i.e.,

θ̂ = argmin
θ

‖Āθ − t̄1‖
2
2

= (ĀT
Ā)−1

Ā
T
t̄1 (13)

Hence, the unknown clock skews (ω̄ , 1N ⊘ β̄), the unknown
clock offsets (̄φ , ᾱ ⊘ β̄) of the nodes and the pairwise distances
(d , τc) in the network can be estimated by solving (13). Note that
in the two way communication model, there is no assumption that
the messages have to be alternating regularly. Hence the measured
time stamps are valid as long as the distance between the nodes and
the clock parameters are stable within reasonable limits during the
estimation process. Secondly, if the two way link is replaced with
one way communication then matrix̄A is rank deficient and hence
there is no optimal solution to jointly estimate the clock parameters
and pairwise distances.

IV. CRAMER RAO LOWER BOUND

The Cramer Rao Lower Bound (CRLB) on the error variance for
any unbiased estimator states[8]

ε{(θ̂ − θ)T (θ̂ − θ)} ≥
1

L
F

−1 (14)

whereF is the Fisher information matrix andL is the length of
the estimated vector̂θ. The error vectorq in (12) is gaussian by
assumption and the corresponding Fisher information matrix is [8]

F =
1

σ2
J
T
J (15)

whereJ ∈ R
2KM×L is the Jacobian matrix. For jointly estimating

the clock skewω̄, clock offsetφ̄ and all the pairwise distancesd,
we have

J =

[

∂Āθ

∂θT

]

,

[

Jω̄ J ¯φ Jτ
]

(16)

where the independent components can be shown as
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Fig. 4. Mean Square Error (MSE) plot of estimated clock skews(ω̂) for a
network ofN = 4 nodes, where noise is gaussian withσ = 0.1
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Fig. 5. Mean Square Error (MSE) plot of estimated clock offsets (φ̂) for a
network ofN = 4 nodes, where noise is gaussian withσ = 0.1

Jω̄ = −(T̄+ Ē1 ⊙ 12KM φ̄
T
)⊘ (12KM ω̄

T )⊙2

J ¯φ = Ē1 ⊘ 12KM ω̄
T

Jτ = E2 (17)

V. SIMULATIONS

Simulations are conducted to evaluate the performance of the
proposed estimator. We consider a network ofN = 4 nodes, as
shown in Figure 2, wherein all the nodes are located within100
meters of each other and consequentlyd is a random vector in
the range (0,100m]. The clock offsets (φ̄) and clock skews (̄ω)
are uniform randomly distributed in the range[−1, 1] seconds and
[0.998, 1.002] respectively. The transmission time markerstij are
linearly distributed between 1 to 100 seconds, for number oftwo way
communicationK from 5 to 20. The noise variance on the timing
markers isσ = 0.1 and all results presented are averaged over 10,000
independent monte carlo runs.

Figures 4 and 5 show the Mean Square Errors (MSE) of clock
skews and offsets against the number of two way communicationsK
for various estimators. The Low Complexity Least Squares (LCLS)
[6] and the Maximum likelihood GMLL [5] algorithms are indepen-
dently applied, pairwise from node 1 to every other node, to estimate
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Fig. 3. An illustration of 3 networks withN = 4 nodes each capable of two way communication. The node shadedin black is the clock reference. The 3
networks are illustrative examples where GLS algorithm canbe applied for network wide clock synchronization, despitemissing communication links.
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Fig. 6. Mean Square Error (MSE) plot of estimated propagation delays (̂τ )
for a network ofN = 4 nodes, where noise is gaussian withσ = 0.1

all the unknown skews̄ω and offsetsφ̄. Secondly, the proposed
Global Least Squares (GLS) solution, which exploits information
from all the pairwise two way communications, outperforms the
(LCLS) for both clock skew and clock offset estimation and achieves
the theoretical Cramer Rao Lower Bound. In addition to clock
parameters, the pairwise distancesd are also estimated in terms of
propagation delaysτ . Figure 6 shows the proposed Global Least
Squares (GLS) solution forτ which achieves the Cramer Rao Lower
Bound. Note that there are no prevalent estimators available to all
the pair wise distances along with the clock parameters.

VI. T OPOLOGIES

In the OLFAR network, each nano satellite will be equipped with a
high quality Rubidium clock oscillator for accurate time stamping of
observed data and for communication. The centralized GLS algorithm
can readily be applied to estimate the clocks parameters andthe
intermediate distances between the satellites. As an extension, Multi-
dimensional scaling (MDS) [3] can be applied on the estimated
distances to obtain all relative positions of the nodes, thereby achiev-
ing absolute clock synchronization and relative localization for an
anchorless sensor network. The data observed by each satellite is
distributed to all the other satellites using a frequency distributed
correlator architecture [1]. Since the data rates between the satellite
nodes is≥ 10 MBits/sec, the measured time stamp information form
a relatively trivial part of the house keeping information.

The closed form GLS solution (13) is for a full mesh networki.e.,
all nodes are are connected to each other. However, more in general, if
some pairwise communications links are missing then corresponding
rows in matrix Ā are dropped. Consequentially, the pairwise dis-
tances between those particular nodes cannot be optimally estimated.

However, despite missing links network wide synchronization is still
feasible using (13) if and only if̄A is full rank and every node in the
network communicates at least with one other node. As an example,
Figure 3 shows three topologies with missing communicationlinks,
where the GLS algorithm is still applicable. Hence far away satellite
nodes can still be synchronized even if there is no direct link with
the reference node.

VII. C ONCLUSIONS

Autonomous synchronization and localization are key requitements
of the OLFAR network. In this paper, an efficient and novel closed
form Global Least Squares (GLS) estimator for network wide syn-
chronization is proposed. The GLS utilizes a single reference node
and exploits all two way communication information betweennodes
in the network. The performance of the proposed estimator isshown
to better available solutions for clock skews and offsets, in addition to
estimating the pairwise distances between all nodes in a closed form.
A new CRLB has been derived and the proposed solution is shownto
achieve the bound. The applicability of GLS solution despite missing
links has been discussed with the help of few network topologies.
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