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A newmethodis presentedfor estimatingthecolumnspace
(signalsubspace)of a low rankdatamatrixdistortedby ad-
ditivenoise. It is basedon a tangibleexpressionfor theset
of all matricesof minimal rank thatareε-closeto the data
matrixin matrix2-norm. TheusualtruncatedSVD approx-
imantis containedin thisset. Featuresof thealgorithmare
(1) it hasthesamecomputationalstructureandcomplexity
as a QR factorizationof the datamatrix, (2) it yields an
on-linescheme,amenableto parallel (systolic)implemen-
tation, (3) updatinganddowndatingis straightforward,(4)
a rank decision(to detectthe numberof signals)is auto-
matic, for a given thresholdε. It is shownin simulations
ona typicaldirectionfindingapplicationthatthealgorithm
exhibits similar performanceasSVD-basedmethods,at a
fractionof the computationalcost.

1. Introduction

Manyparameterestimationalgorithmsin signalprocessing
applications involve a datamatrix which is presumablyof
low rank,butwhich is distortedby noise.Onewell-known
exampleoccursin directionfinding, wherethe datamodel
is X = AS+ N, and it is desiredto estimatethe rank of AS
and the column span

�
(A) of the array responsematrix

(seee.g., [1, 2] for overviews). Another exampleis in
adaptivefiltering, wherethe model consistsof an overde-
terminedsetof equationsXw = d (X andd known),andit
is desiredto find theweightvectorw of a transversalfilter
(seee.g., [3]). A total leastsquaressolutionis obtainedby
approximating [X d] by a matrix of low rank, andtaking
[wH − 1]H to be a vector of minimal norm in its kernel.
Again,it is importantto find anestimateof acolumnspace,
in this caseof the rangeof [X d]H. In both applications,
theestimateof the principalcolumnspanis to be updated
continuously asmoredatasamplesaremeasured.

In principle, thesingularvaluedecomposition(SVD) is the
appropriatetool for estimatingprincipal subspaces.How-
ever, theSVD is computationallyexpensiveto update,ren-
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dering it unattractivefor on-line applications. A number
of alternativeshave beendevelopedto replacethe SVD
by computationallymore attractivedecompositions.Ex-
amplesare the URV decomposition[4, 5] and the Rank
RevealingQR factorization[6, 7].

In this paper, we consider, for a given matrix X andtoler-
anceε, approximantŝX that satisfy�

X − X̂
�

≤ ε

and that are of smallestpossiblerank.
�

⋅
�

denotesthe
matrix 2-norm (spectralnorm, or largest singular value
of its argument). The truncatedSVD solution, obtained
by putting all singularvaluesof the SVD of X that are
smaller than ε equal to zero, satisfiesthe conditionsand
even minimizes

�
X − X̂

�
. However, becausewe do not

searchfor theminimumof
�

X− X̂
�

andbecausethenorm
is not the Frobeniusnorm, X̂ is not unique; there is an
expressionwhich givesall suitableapproximantsX̂ of the
samerankasthetruncatedSVD approximant.A relatively
simple expressionspecifiesthe column spaceof X̂. This
subspacemay be computedusinga Schur-type algorithm,
or HyperbolicQR-factorization,with complexityof order
O(1/2m2n) for a matrix X of sizem× n (m < n).

The approximationtheoryreferredto in the aboveis pre-
sentedand provenin a separatepaper[8]. It is basedin
turn on a specializationof the Hankel-normapproxima-
tion theoryfor time-varyingsystems,by VanderVeenand
Dewilde [9].

2. Minimal rank 2-norm approximations

For a given m× n datamatrix X, denotethe SVD of X as

X = [U1 U2]

�
Σ1

Σ2 � �
VH

1
VH

2 �
(Σ1)ii > ε , (Σ2)ii ≤ ε .

Supposethat d singularvaluesof X are larger thanε, and
noneareequalto ε. Our approximationtheoryis basedon
an implicit factorizationof

XXH − ε2I = BBH − AAH . (1)
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This is a Choleskyfactorizationof an indefiniteHermitian
matrix. A and B are chosento have full column rank.
Theyarenotunique,but theirdimensionsarewell-defined.
UsingtheSVD of X, weobtainonepossibledecomposition
as

XXH − ε2I = U1(Σ2
1 − ε2I)UH

1 + U2(Σ2
2 − ε2I)UH

2 ,

wherethefirst termis positivesemidefiniteandhasrankd,
andthe secondterm is negativesemidefiniteandhasrank
m− d. Hence,B hasd columns,andA hasm− d columns.

To obtain an implicit factorizationand avoid computing
XXH, we makeuseof the propertiesof J-unitarymatrices.
A 2 × 2 block matrix Θ is saidto be J-unitary, with

Θ =

� m n

m Θ11 Θ12

n Θ21 Θ22 � , J =

�
Im×m

−In×n �
if ΘHJΘ = J, ΘJΘH = J. Two of thepropertiesof J-unitary
matriceswhich we will useare

1. If [C D] = [A B]Θ then

AAH − BBH = [A B]J[A B]H

= [A B]ΘJΘH[A B]H

= CCH − DDH .

2. ΘH
12Θ12 − ΘH

22Θ22 = −I
⇒ I − Θ−H

22 ΘH
12Θ12Θ−1

22 = Θ−H
22 Θ−1

22 > 0
⇒

�
Θ12Θ−1

22

�
< 1.

Theorem 1. Let X haved singularvalueslarger thanε,
and noneequal to ε. Thenthere existsa J-unitary matrix
Θ suchthat

[εI X] Θ = [A′ B′] (2)

where A′ = [A 0m×d] , B′ = [B 0m×n−d] , A: m × (m − d),
B: m× d, and [A B] hasfull rank.

Notethat,by thefirst mentionedpropertyof J-unitaryma-
trices,equation(2) implies(1). Usingthesecondproperty,
we obtainthe following theorem.

Theorem 2. X̂ = B′Θ−1
22 is a rank-d 2-norm approxi-

mant.

Proof (outline). X̂ hasrankd becauseB′ = [B 0] hasrank
d. Equation(2) yields

εΘ12 + XΘ22 = B′

⇒
�

X − X̂
�

= ε
�

Θ12Θ−1
22

�
< ε . �

The ‘signal subspace’
�

(X̂) =
�

(B) is obtaineddirectly
from the factorization(2). The factorizationis relatedto a
factorization

[εI X] ΘΠ = [(A,B) 0] , (3)

whereΠ is a permutationmatrix and(A,B) is of full rank
andcontainsthecolumnsof A andB, possiblyin permuted
order. Equation(3) can be viewed as a ‘hyperbolic QR-
factorization’ (it reducesto a QR factorizationif ε = 0).
Thecomputationof this factorizationusingelementary(hy-
perbolic) rotationsis known as the GeneralizedSchural-
gorithm in systemstheory, andis consideredin section3.

The setof all minimal-rank2-normapproximantswill be
parametrizedby matricesSL, with block partitioning

SL =

� d n − d

m− d (SL)11 (SL)12

d (SL)21 (SL)22 � .

Theorem 3. All rank d 2-normapproximants X̂ of X are
givenby

X̂ = (B′ − A′SL)(Θ22 − Θ21SL)−1 ,

where SL satisfies(i):
�

SL
�

≤ 1, and (ii ): (SL)12 = 0.

Theapproximation error is

X − X̂ = ε(Θ11SL − Θ12)(Θ22 − Θ21SL)−1 .

By this theorem,theestimatedsignalsubspaceis givenby�
(X̂) =

�
(B′ − A′SL) =

�
(B − A(SL)11). The first condi-

tion on SL ensuresthat
�

X − X̂
�

≤ ε, whereasthe second
conditionis requiredto have X̂ of rank d.

Thechoiceof a particularapproximant̂X, or subspaceesti-
mate

�
(X̂), boilsdownto asuitablechoiceof theparameter

SL. Variouschoicesare interesting:

1. The approximantX̂ in theorem2 is obtainedby tak-
ing SL = 0. This is the simplestapproximant;the
signalsubspaceestimateis equalto the rangeof B.
The error is given by ε

�
Θ12Θ−1

22

�
. Note that, even

if all singularvaluesof X are larger than ε so that
it is possibleto have X̂ = X, the choiceSL = 0 does
not give zeroerror. Hence,this simplechoiceof SL

could leadto biasedestimates.This is confirmedin
the simulationexamplein section4, and occursin
caseswhereσd is closeto ε.

2. As the truncatedSVD solutionsatisfiesthe require-
ments,thereis an SL which yields this particularso-
lution andminimizestheapproximationerror. How-
ever, computingthis SL requiresan SVD itself.

3. If we take SL = Θ−1
11Θ12, thenwe obtain X̂ = X and

the approximationerror is zero. Althoughthis SL is
contractive,it doesnot satisfythecondition(SL)12 =
0. To satisfyboth conditions,we proposeto take

SL = Θ−1
11Θ12

�
I

0 � =

�
(Θ−1

11Θ12)11 0
(Θ−1

11Θ12)21 0 � .



Thecorrespondingsignalsubspaceestimateis given
by the range of B′ − A′Θ−1

11Θ12 � I 0
0 0 � , and can be

computedby a Schur complementformula. If X
is square,thenthis SL givesan approximationerror
X − X̂ which hasrank m− d, i.e., the error hasthe
samerank asa truncatedSVD solutionwould give.

4. If d ≥ m/2, then it is possibleto take SL such that
SLSH

L = Im, (SL)12 = 0 (e.g., SL = [I 0]), which gives
a uniform approximationerror: all singularvalues
of X − X̂ areequalto ε.

3. Computation of Θ

Elementary rotations

If [εI X] satisfiescertain regularityconditions,then it is
possible to computeΘ suchthat (3) holds,usingelemen-
tary, planerotationsonly. At an elementarylevel, we are
looking for 2 × 2 matrices ~θ such that [a b] ~θ = [∗ 0].
The matrices~θ areJ-unitary, but with respectto unsorted
signaturematrices~j = diag[±1]:

~θ~j2
~θH = ~j1 , ~θH~j1

~θ = ~j2 .

By congruence,thenumberof positiveentriesin ~j1 is equal
to the numberof positive entriesin ~j2, and similarly for
thenegativeentries.Hence,it is sufficient to considerthe
following six cases(wheresHs+ cHc = 1):

1. if | a | > | b | and~j1 = diag[1 − 1] :

[
+
a

−
b ]

�
1 −s

−s∗ 1 � 1
c∗ = [

+
∗

−
0 ] ,

2. if | a | < | b | and~j1 = diag[1 − 1] :

[
+
a

−
b ]

�
−s 1
1 −s∗ � 1

c∗ = [
−
∗

+
0 ] ,

3. if | a | < | b | and~j1 = diag[−1 1] :

[
−
a

+
b ]

�
−s 1
1 −s∗ � 1

c∗ = [
+
∗

−
0 ] ,

4. if | a | > | b | and~j1 = diag[−1 1] :

[
−
a

+
b ]

�
1 −s

−s∗ 1 � 1
c∗ = [

−
∗

+
0 ] ,

5. [
+
a

+
b ]

�
c s

−s∗ c∗ � = [
+
∗

+
0 ] ,

6. [
−
a

−
b ]

�
c s

−s∗ c∗ � = [
−
∗

−
0 ] .

In the aboveequations,the signaturematrix ~j1 associates
a signatureto a andb; the signature~j2 assignsa signature
to the result [∗ 0], and (~j2)11 is in fact equalto the sign
of [a b] ~j1[a b]H.

Hyperbolic QR factorization

The elementaryrotationsareembeddedin planerotations
which are appliedto the columnsof [εI X] in the same
way asGivensrotationsareusedfor computinga QR fac-
torization. Eachelementaryrotationproducesa zeroentry
in X. Thedifferencewith QR is thatwe haveto keeptrack
of the signaturesassociatedto the columnsof the matrix.
The generalscheme,however, goesasfollows:�� + + + − − − −

ε × × × ×
ε × × × ×

ε × × × ×

	

~Θ(1,1)

→

�� − + + + − − −
× 0 × × ×
× ε × × × ×
× ε × × × ×

	

~Θ(2,1)

→

�� − + + + − − −
× 0 × × ×
× × 0 × × ×
× × ε × × × ×

	

→

���
� ~Θ(m,n)

→

�� − + − + + − −
× 0 0 0 0
× × 0 0 0 0
× × × 0 0 0 0

	

.

(Exceptfor the first matrix, the signaturesof the columns
in the abovematricesare examples,as they are datade-
pendent.) This schemeensuresthat [εI X] ~Θ = [X′ 0],
whereX′ is a resultinglower triangularinvertiblematrix; it
containsthe columnsof A andB in somepermutedorder.
The columnswith a positivesignatureare the columnsof
A, the columnswith a negativesignatureare thoseof B.

Updating and downdating

The Schur method is straightforwardto updateas more
and more columns of X are measured. If [εI Xn] ~Θ =
[(An, Bn) 0] is the factorizationat point n and Xn+1 =
[Xn xn+1], then,becausethealgorithmworkscolumn-wise,

[(An, Bn) 0 xn+1] ~θ(n+1) = [(An+1, Bn+1) 0 0] ,

for someJ-unitary matrix ~θ(n+1) actingon the columnsof
An, Bn, andonxn+1. Hence,wecancontinuewith theresult
of the factorizationthatwasobtainedat the previousstep.

Thedowndatingproblemis tocomputethefactorizationfor
Xn with its first columnx1 removed,from a factorizationof
Xn. It canbeconvertedto an updatingproblem,wherethe
old columnx1 is now introducedwith a positivesignature,

[(
+

An,
−

Bn)
+
x1] ~θ(n+1) = [(An+1, Bn+1) 0] .

This is possiblebecause,implicitly, we factor ε2I − XnXH
n +

x1xH
1 = AnAH

n − BnBH
n + x1xH

1 .



4. Application to Direction Finding

In orderto assesstheapplicabilityof theSchur-basedsub-
spaceestimationmethod,we considerthedirectionfinding
problem. Supposethat we havean arrayof m equispaced
omnidirectionalsensors,which receivesd sinusoidalsig-
nals from directionsφk, k = 1, �
��� , d. A total numberof
n samplesis taken, which gives an m × n data matrix X
modeledasX = � S+N. Here, � = � (φ1, ����� , φd) : m× d is
thearrayresponsematrix, andS : d×n containsthen sam-
plesof the d sourcesignals. N containssamplesof white
additive i.i.d. noisesourceswith varianceσ2I, independent
of the signals.Given X, the φk areto be estimated.

TheESPRITalgorithmfor estimatingtheDOAs[10] works
in two steps. The first stepis to estimatethe signal sub-
space,which is usually taken to be the d principal left
singular vectorsof X, US = USF = U1 . This leadsto the
classicalSVD-ESPRITdirectionfinding scheme.We will
comparethiswith theSchur-basedsubspaceestimates,and
investigate the choice US = USS1 =

�
(B − A(SL)11) with

SL = Θ−1
11Θ12 � I 0

0 0 � , and US = USS2 =
�

(B). As is well-
known,oncethesignalsubspacesareestimated,theDOAs
areobtainedvia a certaineigenvaluedecompositionbased
on thesesubspaces.

In thecomputersimulationexperiments,a lineararraycon-
sisting of m = 4 sensorsis used.Two sourcesare imping-
ing on the array. The signal to noise ratio is chosento
be 20dB in all cases.Onehundredtest runsusingn = 30
samplesare executed.Table1 lists the statisticalresults,
for three different setsof anglesof incidence,and aver-
agedover the test runs. As is seenfrom the table, the
differencebetweenthe three subspaceestimatesis neg-
ligible if the signalsare spatially well separated.If the
signalsarecomingfrom closerdirections,the varianceof
the Schurestimatewith SL = 0 startsto increase,but the
choiceSL = Θ−1

11Θ12 � I 0
0 0 � still performsthe sameas the

SVD-basedestimate. Finally, part (c) of the simulations
showsthat if the signalsare so close that the variance
cloudsareoverlappingevenfor the SVD-basedestimates,
then the choiceSL = 0 breaksdown, but the varianceof
Schurmethod1 is still within reasonablebounds.

5. Conclusions

In this paper, we haveapplieda new subspaceestimation
methodto the direction finding problem. The algorithm
is relativelysimpleandstraightforwardto implement,asit
hasthesamestructureasaQRfactorization.Theestimated
signalsubspacecanbe trackedadaptivelyby updatingand
downdating. For the simplestestimate(SL = 0), only m2/2
operations(elementaryrotations)arerequiredfor eachnew
samplevectorof dimensionm. It is assumedthata suitable
value for the noise threshold,ε, is known on the outset.
The precisevalueof ε is not critical, as long as it lies in

Table 1. EstimatedDOAs for the ESPRITalgorithm.

(a)

φ1,2 = 10°, 70° SVD Schur1 Schur2
DOAmean 9.9948 9.9947 10.0138

70.0160 70.0160 69.9601
DOAstd 0.0122 0.0122 0.0124

0.1243 0.1242 0.1283

(b)

φ1,2 = 20°, 30° SVD Schur1 Schur2
DOAmean 19.9447 19.9417 21.0607

30.0209 30.0228 28.7274
DOAstd 0.2230 0.2320 1.5937

0.2384 0.2528 2.3564

(c)

φ1,2 = 20°, 23° SVD Schur1 Schur2
DOAmean 19.6720 19.4254 9.1648

23.3412 23.5344 21.5303
DOAstd 2.6122 4.0261 209.8293

2.3578 4.4285 2.2607

the gapbetweenthe signalandnoisesingularvalues.
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