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Chapter 1

Introduction

1.1 Air-traffic control and the SSR system

Air-Traffic Control centers (ATC) have the mission to assure the safety of the aircraft
cruising in their area. To fulfill this mission, the ATC operator has at his disposal a
Plan Position Indicator (PPI). The PPI displays several kinds of information such
as the position and the altitude of all planes in the area for which the operator
is responsible. The data for this display is provided by two radar systems, the
primary radar and the Secondary Surveillance Radar (SSR). The first one indicates
the presence of a plane, whilst the second radar informs moreover on its identity and
its altitude.

The primary radar uses a rotating antenna to send pulses in a narrow beam in
the direction of sight. If a plane is in the line of sight of the radar, then its body
will reflect the pulses. The primary radar detects these reflections to determine the
presence of a plane.

A SSR mode A/C uses a conventional rotating antenna as well, but functions
more like a cooperative two-way communication system. Indeed, the groundstation
emits in a narrow beam in the line of sight an up-link signal, called the “interroga-
tion”, which contains an un-addressed question. A plane illuminated by the radar
detects the interrogation packet and responds by emitting a down-link signal, called
the “reply”. An omnidirectional antenna on the plane assures the reception of the
request. A transponder onboard the aircraft is used to decode the request, to obtain
the requested information, and to encode it in a short reply (12 bits), which contains
either the altitude or the identity. This reply is transmitted back to the ground-
station at a different frequency, using the same omnidirectional antenna. At the
groundstation, the received message is decoded and sent to the Air Traffic Control
center.

Originally the system was created during the last world war to identify the planes
detected by a primary radar, for which reason the radar was called “Identify, Friend
or Foe” (IFF). Later it was opened to civilian usage, and now SSR is mandatory on
all aircraft. In the USA the SSR system is frequently called the ATC Radar Beacon
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2 CHAPTER 1. INTRODUCTION

System (ATCRBS).
The SSR mode A/C system has some problems, such as “Garble”, which means

that replies from two or more airplanes arrive at the same time on the antenna.
But also it can endure what is called “FRUIT”, which means that a plane had its
transponder triggered by an adjacent SSR groundstation, and emits an undesired
answer, which can create a garble situation and/or fool the groundstation. Multipath
brings also some additional problems, such as the appearance of ghost planes. Loss of
some replies due to garbling is solved by the fact that the interrogation is repeated
around 12 times per antenna scan. Due to the increase of air traffic, the density
of replies has increased as well, and the SSR mode A/C became more and more
overloaded.

To reduce the reply density, in 1999 an updated SSR was supposed to be com-
missioned: the Secondary Surveillance Radar mode S, where S stands for selective.
This update was intended to reduce the density of replies, and as a consequence the
quantity of lost replies. It is mainly a protocol update, and differs from SSR mode
A/C in two respects. First, the interrogation is selective, the groundstation may
address planes separately. Second, the data-length of the replies is longer: while
12 bits are used for mode A/C, mode S has either 64 or 112 bits, called “short”
and “long” replies. Furthermore, this protocol allows to have Extended Long Mes-
sages (ELM), which consist of several (2 to 8) long replies linked together to form
the answer to a request. This new mode provides a data link between the aircraft
and the groundstation. This data link is supposed to be part of the Aeronautical
Telecommunication Network (ATN), which links aircraft, groundstations and ATC-
centers. The upgrade is being delayed by the principal actors of the field (the airline
companies and the airports), while Eurocontrol, as well as other federal agencies,
tries to enforce it.

Chapter 2, [1], [2], and [3] give more information on SSR.

1.2 Problems with mode S

We foresee for this new system some shortcomings. Because the ground antenna is
rotating, the time during which the aircraft is illuminated is quite limited, around 30
ms per scan. For a mode A/C link there are up to 15 request-reply exchanges in this
time, and this is sufficient to ensure that the answer has been properly decoded. But
the mode S datalink requires more time, indeed only one or two ELM are possible in
one illumination (or antenna scan). Furthermore, the time between two illuminations
is as long as the antenna revolution time, 4-10 seconds. An undesired effect is that
an ELM might be received by fractions over different scans, which is unacceptable
because the transaction time will be too long. By reducing the density of replies
from different aircraft by selectivity, SSR mode S should reduce as well the Garble,
FRUIT and Multipath problems. However, these problems will still contribute to
fool the ground system. Finally, due to the increase of air traffic, we expect that the
currently proposed SSR mode S system will not be able to cope with future traffic
densities, at least not in areas with a dense concentration of planes, like in Western
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Europe or south-west Asia.

1.3 A distributed groundstation based solution

In this thesis, we propose a solution to the problems described in section 1.2 by
innovating the ground-based component of the SSR system, while maintaining the
current airborne component. The idea is to replace the present rotating antenna by
a distributed groundsystem, consisting of a network of groundstations on different
geographical positions, as shown in Figure 1.1. These groundstations can be divided
into two classes: transmitters, which send the request, and receivers, which receive
the transponders’ replies. The distributed groundsystem consists of one transmitter
and at least three receivers, which work cooperatively. The transmitter sends the

Request

Reply

Reply
Reply

Local
Information

Global Information

Figure 1.1: The distributed system: the interrogator, the plane, the receiving sta-
tions, and the central management.

requests and the other groundstations receive the replies on an array antenna. Each
array antenna consists of an array of elements attached to a processing unit. The
elements are omnidirectional antennas; having several elements gives access to dif-
ferently phased versions of each impinging signal. Sources from different directions
give rise to different phases, and by properly combining this information, the im-
pinging SSR sources can be separated and their directions of arrival estimated. The
groundstations send the relevant information, such as the angles of arrival (DOA),
the messages, and the times of arrival (TOA) of the SSR signals to a central man-
agement system. With this information, and knowledge on the positions of the
groundstations, the central management system can estimate the position of the
planes by means of triangulation, and confirm the down-link messages. While two
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receiving stations suffice in theory, having three or more stations would result in a
more accurate location estimation. The principle of this solution is summarized in
Figure 1.2.

Raw signal . . . Raw signal
↓ ↓ ↓ ↓ ↓ (array) ↓ ↓ ↓ ↓ ↓

groundstation 1 . . . groundstation p

↓ ↓
Local parameters: . . . Local parameters:
TOAs, DOAs, messages . . . TOAs, DOAs, messages︸ ︷︷ ︸⇓

Central management
⇓

Global parameters: plane positions, messages

Figure 1.2: Scheme of the proposed solution.

The distributed radar receiver concept has already been applied in the past to
other problems, such as tracking radar jitter with the MUlti RAdar Trajectory
REConstruction method in [4] and [3], and for Wind Speed Measurement [5]. Fur-
thermore, a study made by J. Tol [6] shows that a distributed ground system can
increase the quality of the reception over the usual SSR system. This triangulation
principle has been successfully applied recently by a Czech company and became a
reliable commercial product, see the corresponding article [7]. The authors only use
existing signal decoder linked to one omnidirectional element to obtain the times of
arrival of the replies. Our design incorporates an antenna array at each receiving
station, which improves the reliability of the separation and allows for direction of
arrival estimation. With this additional information, the accuracy of the airplane
position would be enhanced compared to the commercial system. Moreover, our
design needs only two receivers as a minimum requirement, while this commercial
product requires three receivers at least.

The proposed design does not impose any additional requirements on the inter-
rogating antenna, which can be a conventional rotating antenna or a fixed array
of several elements. Ultimately, a transmitting array would have the advantage to
point instantly to the plane of interest, without having to wait for the rotation of
the conventional antenna. Nevertheless, in a transition period, the emitter can keep
the actual rotating antenna in order to assess the concept.
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1.4 Scope of the thesis

As any radar design is a multi-disciplinary exercise, our design involves issues from
several diverse expertise fields: creating a receiving array (antenna theory and analog
electronics), processing the data (array signal processing), communication between
the stations (asynchronous network communication), determining the airplanes po-
sition (data fusion and clustering), and presenting the information to the air-traffic
controllers (human-machine interface). Among the issues to be solved, we were inter-
ested in one particular problem that was worth a separate study: to extract from the
raw signal received by the array at each groundstation the meaningful parameters
by means of an array Signal Processing (SP) algorithm. Usually, the SP community
appreciates the following qualities in an algorithm: robustness, i.e. the algorithm
does not miss any plane, accuracy, i.e. the extracted parameters have a small er-
ror variance, and speed, i.e. the algorithm is computationally “fast” enough to be
implemented in practice. The focus of my thesis is to develop and assess receivers
algorithms that solve the problem under consideration and that possess the desired
qualities mentioned above. Such an algorithm has two components, firstly it has
to separate the incoming overlapping source signals and detect the reply messages,
secondly it has to estimate the Direction Of Arrival (DOA) and the Time Of Arrival
(TOA) of each source.

To perform source separation, an algorithm has to exploit mathematical proper-
ties, resulting from the model of the problem under investigation. Generally, these
properties are divided into two categories: spatial and source properties. Spatial
properties rely on the propagation channel and the array configuration only, and a
good survey can be found in [8, 9]. Source properties are structural properties of
the transmitted signals such as their modulation properties and statistical indepen-
dence. The most used are: cyclostationarity [10], high-order statistics [11], constant
modulus [12], finite alphabet [13, 14, 15, 16], or self-coherence [17].

SSR replies have a very structured but unusual source model, it is a binary signal
taken from the alphabet {0, 1}, multiplied by a complex phase, which depends on
the residual carrier frequency such that this phase is a complex exponential of time.
In the literature, we have found algorithms that rely on the residual carrier property
[18, 19]. Specifically for a mixture of SSR replies, there is an article [20] that uses
a general property, the cumulants, to separate the sources. The only article that
proposed SSR separation based on the structural properties of the sources was [21],
which presented the Analytical Zero Constant Modulus Algorithm (AZCMA).

1.5 Contributions

The main contribution of this thesis is four-fold:

• Identifiability, i.e. the ability to extract the model parameters from a given set
of observations. For a small number of observations, this is not always possible.
Using the source symbol properties, I derive an identifiability proposition for an
infinite number of observations, and two propositions valid for a finite batch of
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samples, the latter propositions state bounds for the identification probability
of a mixture of SSR sources.

• Cramer-Rao Bound: The CRB gives a lower bound on the estimation accuracy
of any unbiased estimator. It is frequently used as a benchmark for algorithms.
Assuming a high SNR, I derive Cramer-Rao bounds for two data models: one
where the SSR signals is considered stochastic, and one where it is considered
deterministic.

• Receiver algorithms: I propose a new algorithm that uses the specific encoding
of the data in the SSR reply system. I propose as well two evolutions of existing
algorithms: the multi-shift-ZCMA and the ESPRIT-SOBI. These algorithms
overcome some of the shortcomings of the initial algorithms. The multi-shift
ZCMA will even be shown to be quite robust in a variety of circumstances.

• Experimental platform: I designed a complete 4 elements phased array, from
the antenna dipoles to the receiving chains, which was subsequently built by
our technician. With this setup, we were able to obtain real measurement data
to confront the algorithms. I report on the setup and the initial results.

During the preparation of the thesis, I also worked on several other topics such
as:

• Synchronization and channel equalization: Orthogonal Frequency Division mul-
tiplexed (OFDM) is a promising scheme for future communication systems:
digital video broadcast (DVB), digital audio broadcast (DAB), IEEE 802.11a,
W-LAN, Hyperlan II and xDSL, and is well placed for widespread adoption in
future broadband wireless networks. This high-data rate multi-carrier scheme
is unfortunately sensitive to symbol timing offset, to frequency offset, and to
time-varying channels. In [22, 23, 24], we proposed several algorithms to cope
with these problems.

• Blind time delay estimation via subspace intersection and ESPRIT: In Code
division Multiple Acces (CDMA) receiver systems, knowledge of the times of
arrival of the dominant paths is required. In [25] we have presented a method to
blindly estimate them by taking advantage of several signal space invariances,
and lastly an application of ESPRIT.

• Wind-speed measurement system: Using a multi-static configuration of passive
array antennas with a highly directional emitter, we propose a new scheme to
measure air speed in the atmosphere [5]. Two direct important applications
are remote-sensing for environmental study, and wind profile measurement at
airport sites to improve security for aircrafts during landing.

• Blind identification of linear-quadratic channel: In [26], using High-Order
Statistics (HOS) of the input we obtain a set of equations which are quadratic
in the unknown coefficients of the channel. Several algorithms are then devel-
oped to solve these equations.
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• Non-linear channel identification: Unlike the Schetzen method, the non-blind
identification method proposed in [27] can identify non-linear systems whose in-
puts have discrete distributions, accepts kernels of any length, tolerates signal-
independent zero-mean additive noise irrespective of its color and distribution,
and leads to a closed form solution.

• Identifiability of a mixture of constant modulus signals with a finite number
of samples: Identifiability has the same definition as in the first item of the
section, but the source model is different, we consider sources whose absolute
value is equal to one: Constant Modulus sources. In the literature, unique
identifiability of mixtures of CM signals results were developed only for an
infinite number of available observations. In [28] we derived a rigorous proof
for a finite sample identifiability theorem.

1.6 Outline of the thesis

The thesis is organized as follows:

• Chapter 2 contains a short introduction for non-specialists to the present SSR
system, and reminds our proposed design for a distributed SSR system.

• Chapter 3 describes the mathematical model of the SSR replies, and after sim-
plification the model that we use throughout this thesis. The chapter presents
the statistical properties of the replies and finishes with a short survey of signal
processing algorithms for source separation.

• Before deriving any estimation algorithm, we have to be insured that there is an
unique identifiability of the parameters. Chapter 4 presents the propositions
and theorems derived towards this goal.

• In Chapter 5, various Cramer-Rao Bounds are derived for SSR replies. A
stochastic bound is derived and compared to a deterministic one.

• In Chapter 6, the algorithms invented during this thesis work are presented.
The extension of the AZCMA, the multi-shift ZCMA is first described, then
the ESPRIT-SOBI is presented. At the end of the chapter, a new algorithm,
the Manchester Decoding Algorithm, is developed, and both versions of the
MDA are presented.

• The algorithms presented in the preceding chapter need to be evaluated. As it
would not be possible to measure and record all the possible scenarios, we had
to simulate them to establish the strong and weak points of the algorithms.
In chapter 7, the results of the extensive simulations are presented, and some
behavior of the algorithms is explained.

• Chapter 8 presents the experimental setup designed and constructed at TU
Delft. It also exhibits the preliminary results of the measurement campaign.
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In this chapter, we also describe the missing elements to have an operational
radar.

• The thesis is concluded by chapter 9, which summarizes the significance of this
work and proposes some recommendations for future directions of research.

1.7 Notation

We denote scalars by italic lowercase letters, as in a, vectors by lower case boldface
letters, as in a, and matrices by upper case boldface letters, as in A. Unless specified
otherwise, I is the identity matrix, and 0 and 1 are the vectors with all entries are
equal to 0 and 1, respectively. We denote by (.)∗ the complex conjugation, by (.)T

the matrix transpose, and by (.)H the matrix conjugate transpose.
E{.} denotes the mathematical expectation operator, and Vec is the operator that

stacks the columns of a matrix A into a vector a. Unvec is the reverse operator.
Unless specified differently, it is used to transform a d2 vector into a square d × d
matrix. Diag is the diagonal operator, which from a vector creates a diagonal matrix,
whose diagonal entries are the elements of the vector:

diag(a) = diag([a1, .., ad]T ) =

 a1 0
. . .

0 ad


The notation (.)† refers to the Moore-Penrose inverse (pseudo-inverse). For tall

matrices, if AHA is invertible, then:

A† =
(
AHA

)−1
AH , and A†A = I

For wide matrices, if AAH is invertible, then:

A† = AH
(
AAH

)−1
, and AA† = I

The symbol 	 denotes the Schur-Hadamard (element-wise) matrix product. For
two matrices A and B, the Kronecker product, ⊗, is defined by:

A⊗B =

 a11B a12B
· · ·

amnB


Similarly, the symbol ◦ denotes the Khatri-Rao product, which is a column-wise

Kronecker product:

A ◦B = [a1 ⊗ b1,a2 ⊗ b2, ...]
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At this point we recall some Kronecker product properties. For matrices and
vectors of compatible size, we have

vec(abH) = b∗ ⊗ a (1.1)
(AC)⊗ (BD) = (A⊗B)(C⊗D) (1.2)
(aHc)(bHd) = (a⊗ b)H(c⊗ d) (1.3)
vec(ABC) = (CT ⊗A)vec(B) (1.4)

vec(Adiag(b)C) = (CT ◦A)b (1.5)

We can introduce a lemma that will be useful later:

Lemma 1.7.1 Assume M invertible, then M⊗M is invertible, and

(M⊗M)−1 = M−1 ⊗M−1 .

Proof: Using Equation (1.2):(
M−1 ⊗M−1

)
(M⊗M) =

(
M−1M

)⊗ (
M−1M

)
= I⊗ I = I

Hence M−1 ⊗M−1 is the inverse of M⊗M. Note that similarly, we can show that
M⊗M∗ is invertible as well.
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Chapter 2

Secondary Surveillance Radar

This chapter describes the general design of the current SSR systems, the differences
between mode A/C and mode S replies, the Traffic Advisory and Collision Avoidance
System (TACAS), the deficiencies of the current SSR systems, and our proposed
design to solve some of these problems.

Additional information on SSR systems, such as the evolution from mode A/C
to mode S, the protocols for the request, and the precise meaning of each bit of the
messages can be found in [1], on which this chapter is mainly based.

2.1 System summary

On the ground a conventional SSR groundstation consists of two rotating anten-
nas mounted on top of each other. The top antenna is an omnidirectional trans-
mit/receive antenna whose radiation pattern is equal for all azimuths, its received
output is called the control beam. Below, there is a long rotating transmit/receive
antenna, split into two equal parts on each side of the rotating axis. The output
of both parts goes into a device called a hybrid ring, which produces a sum and a
difference beam, see Figure 2.1. For transmission, only the sum beam is used, while
for reception purpose, both beams are used.

Hybrid Ring

Sum BeamΣ

Difference Beam∆

Figure 2.1: Formation of the sum and difference beams.

The sum beam is the addition of both sides of the long antenna. This beam has

11
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a narrow main lobe in the boresight direction of the antenna, and some secondary
undesired sidelobes. This beam is equal to the resulting beam of the full antenna,
and is called the main beam as well. The difference beam is the subtraction of the
signals coming from both halves of the long antenna. Its most important property
is that in the boresight direction this beam has an amplitude equal to zero and a
phase reversal.

Using the sum beam of the rotating long antenna, the ground interrogator sends
in the look direction a request modulated by a carrier frequency of 1030 MHz. If
there is a plane in this direction, the onboard transponder detects the request and
responds to it by a reply containing the desired information modulated by a carrier
frequency of 1090 MHz. The use of two different frequencies avoids clutters of the
uplink and downlink communications.

In radar systems, one problem is the propagation loss: if the distance between
the plane and the radar is R, a primary radar has a R4 propagation loss, which
corresponds to a factor R2 for the propagation towards the plane and a factor R2

for the propagation of the reflection. With the SSR system the reply is emitted by
the transponder at the airplane, thus the loss is only proportional to R2. This allows
for a lower power budget and a better detection.

Since the system is based on active transponders, this request/answer design
also avoids typical primary radar problems like false detections from passive ele-
ments (raindrops, birds, or mountain reflections). Note that this system needs the
cooperation of the airplanes.

Control beam

Sum beam

Figure 2.2: The use of the control beam allows to discard unwanted datalink.

The control beam is used to avoid errors coming from the sidelobe of the main
antenna, see Figure 2.2. During emission, the power of the control beam is weaker
than the power of the main lobe of the sum beam, but higher than the power of
the secondary lobes of the sum beam. Transponders compare the received powers
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of the request and trigger only if they are in the main beam (Interrogator Sidelobe
Suppression). Similarly for reception, if the received power in the control beam is
larger than the received power in the sum beam, the radar considers that the reply is
not in the main lobe of the sum beam, and rejects the detection (Receiver Sidelobe
Suppression).

At reception, while the main (sum) beam is very directional, its half beamwidth
is still several degrees. This is not sufficient for an accurate measurement of the
azimuth and a precise localization of the planes, so additional processing has to be
done. Initially, to measure the azimuth the SSR radar used the “sliding window
technique”, which takes the average of the boresight angle of the radar between
the first and the last received reply in a scan. Nowadays SSR uses a “monopulse
technique”, which compares the relative amplitude and phase of the sum and the
difference beam. Depending on the result, the groundstation can deduce an accurate
azimuth within the main beam.

Azimuth

Range Heigth

Figure 2.3: How SSR locates a plane.

Apart from its datalink capability, SSR can also locate planes, see Figure 2.3.
The range between the radar and the plane is measured by the round-trip time,
which is the time of propagation plus a time delay for the transponder to answer.
This time delay has been specified by the International Civil Aviation Organisation
(ICAO) to be 3µs ± 0.5µs. The height of the plane is measured by its altimeter,
and is sent to the groundstation encoded in a reply (indeed, it is one of the possible
requests).

Note that unlike the groundstations, the airborne antennas are small, so these
antennas are omnidirectional: the SSR replies go in all directions. Additionally, the
transponders emit self-triggered mode S replies to declare their presence. This is
called squitter, and its rate is about one per second.

The initial communication protocol used by the SSR is called mode A/C. This
protocol allows very little communication, only identity and altitude can be re-
quested. This mode was un-addressed: all planes in the main beam are selected.
Because of this non selectivity, all planes in the main lobe of the sum beam answer
a reply. In dense regions, the groundstations receive too many replies, and currently
the whole system has reached (and passed) its limits.
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A new protocol, called mode S where S stands for selective, solves this problem
by addressing the requests to specific planes. Only the addressed plane answers,
which decreases the density of replies, and the received answer is not garbled by
replies of other planes. As a further improvement, mode S enables longer communi-
cation messages, which allows also to exchange additional information such as ATC
instructions, flight management support, weather forecast, etc... This leads to some
automation in air traffic control, and decreases the workload of the controllers and
pilots.

However, compatibility between the two modes has to be achieved between zones
and planes still using mode A/C and those having mode S. The International Civil
Aeronautic Organization (ICAO) proposed to keep the same design with slight mod-
ifications. The groundstation processing units must be able to receive and emit both
modes. The antennas and the carrier frequencies remain the same. The design of
mode S is made such that it acts as a new protocol layer. A clever choice of the
pulse positions and powers in the preamble of a mode S request desensitizes mode
A/C transponders. So old transponders only answer the mode A/C requests, and
ignore the mode S requests. New mode S transponders can reply either mode.

2.2 Mode A/C and mode S replies

As the mode A/C and mode S protocols differ, the structure of the replies is also
different. We give here a short description of each of them. For more information
on the protocol of the request, the reader is relegated to [1].

2.2.1 Mode A/C reply message

In mode A/C, the baseband reply message is a frame consisting of 15 pulses with a
total duration of 20.75 µs. The pulses are either equal to 1 or 0. The first and the
last pulses are called F1 and F2, and are always equal to 1 and limit the boundaries
of the reply. The middle pulse, called X, is always equal to 0. The information
is encoded on the remaining 12 pulses. Each pulse has a length of 0.45µs and the
spacing between two consecutive pulses is 1µs, see Figure 2.4.

Depending on whether identity or height is requested, the reply uses all 12 pulses
or only 11. For identity requests, 12 pulses provide 4096 different identity numbers
to identify the planes. In case of a height request, the 11 used pulses give us 2048
steps of 100 feet.

The shape of a pulse must be within a trapezoid, such that the pulse duration
is equal to 0.8 ± 0.1µs for the request (and 0.45 ± 0.1µs for the answer), the pulse
rise time is between 0.05 and 0.1µs, and the pulse decay time between 0.05 and
0.2µs. The limitations on rise time and decay time are intended to reduce sideband
radiations. The current receivers perform a logarithmic digitization, so a Gaussian
pulse meets the requirements (see the DME pulse in Figure 3.1 in [29, p. 28]).



2.2. MODE A/C AND MODE S REPLIES 15

−5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Time in microsecond

Po
ss

ib
le

 p
ul

se
s

F1 F2

Figure 2.4: Possible pulses for a mode A/C reply.

2.2.2 SSR mode S reply

In a mode S reply frame, pulse position modulation is used. The frame starts with
a preamble consisting of four pulses. The first four pulses have a duration of 0.5µs,
and they are placed at 0, 0.5, 3.5, 4.5µs after the beginning of the reply. 8µs after
the beginning of the reply begins a 56 or 112-bits binary message. Each bit has a
duration of 1µs, this time is separated in two periods of 0.5µs consisting of a pulse
and a non-pulse (the absence of a pulse). A bit equal to 1 is represented by a pulse
followed by a non-pulse, and a bit 0 is formed by a non-pulse followed by a pulse.
This way of coding is called Manchester encoding and it enables enhanced reception
in difficult situations with low Signal to Noise Ratio (SNR). Indeed, the detection of
a bit can be done by comparing the respective power of the beginning and the end
of the bit time slot.

µ  1    s µ  1    s

µ0.5    s

µ

bit 1 bit 2 bit 3 bit N

8    s

µ µ µ0.5    s 0.5    s 0.5    s

µ3.5    s

1 0 1 10 0 1 10 0

0 1 1 0 0

56   s, or 112   sµ  µ  

Figure 2.5: Mode S response format.
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The precise format of the reply message depends on the type of request that was
made: its format matches the format of the request. Although there are 25 possible
request and answer messages, only 8 possible exchanges are assigned. The type of
request is determined by the first two bits (see [1]).

As for the interrogation, several replies can be linked together to convey a longer
message. This is called an Extended Long Message (ELM).

The 56 or 112 bits of information are also coded in order to prevent errors in bit
detection. The “parity code” is a modified cyclic redundancy code, which is detailed
in [1].

2.3 Traffic Advisory and Collision Avoidance Sys-
tem

The TACAS is an airborne system intended for the prevention of a mid-air collision.
Instead of creating a whole new system, US engineers conceived to set up an SSR
link between two aircraft, with one playing the role of the groundstation. Three
versions of this aircraft link exist, from the simplest to the most complete version,
see table 2.1. While the power of the inboard equipment to transmit requests is
limited to a small range, it still provokes replies from multiple aircraft to be sent in
the air.

Version Description
TACAS I the system just warns the pilot that a plane is near. The

pilot has to locate the hazard visually and decide on the
evasive action.

TACAS II the system also advises the pilot with clues like descend or
climb.

TACAS III the system uses an onboard SSR radar with a directional
antenna. The airborne directional antenna allows the plane
to have also horizontal angular information on other planes.
Because this antenna is much smaller than the ground an-
tenna, the beam width is typically as large as 45◦ − 90◦.

Table 2.1: Various evolutions of the TACAS.

The system requires three steps: detection of other planes via an SSR mode A
request, track update, and possibly traffic avoidance. The modification is not very
simple, because now the transponder should be able to receive and to transmit on
both carrier frequencies, 1030 and 1090 MHz.
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2.4 Problems

This section is organized in chronological order: the well-known problems of SSR
mode A/C, and the foreseen problems of SSR mode S.

2.4.1 Well-known mode A/C problems

The following list presents the main problems of mode A/C.

• Garbling: at least two replies overlap in time at the reception. It may mean
that two (or more) transponders have near azimuths and time of arrival within
the time duration of the reply. The planes might be at a similar range and
direction from the groundstation, however, the height of the aircrafts can be
different, and the two planes do not necessarily risk to collide.

• FRUIT: False Replies Unsynchronized In Time. This occurs when planes an-
swer to other interrogators, which can be either a groundstation, or the TACAS
system of another plane. Since the receiving antenna of the plane is not direc-
tional, the transponder answers to all received requests from all interrogators.
In turn, the groundstation will receive messages that were not requested by
itself. Those answers have random time of arrival and thus indicate random
ranges. Based on this property, they are easy to suppress. If FRUIT occurs
while a desired answer reaches the groundstation antenna, it leads to a garbling
problem.

• Multipath: several propagation paths with significant amplitude are present
between the plane and the groundstation antenna. Depending on the antenna
beam width and the time duration of the response, three categories of non-
direct paths may appear:

1. Non-direct paths with no azimuth angle difference to the line of sight;
these are produced by ground reflections on the line of sight. They ei-
ther have a long time delay (produced far from the antenna, and easy to
discard) or they have a short time delay. The last case, more difficult, is
caused by ground reflections nearby the antenna, since the antenna has
some height above the ground. For the sake of simplicity, let us assume
the presence of two paths, a direct one and one produced by the ground
reflection. Depending on the time delay and the gain of the ground-
reflection, the combination of both paths give rise to interferences like
slits of Young. The main consequence is the modification of the antenna
elevation pattern and the possible creation of nulls in this pattern. The
usual countermeasure is to avoid ground paths. This can be done by in-
stalling a rough scattering surface near the antenna, or by using a metallic
screen around the antenna, or by using a Large Vertical Aperture antenna
(LVA), which nulls the antenna pattern below the horizon.
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2. Non-direct paths with small azimuth angle. These can arise when the
ground around the groundstation has a slope. Depending on the time
delay, it may be quite troublesome to solve.

3. Non-direct paths with large azimuth angle. These do not cause problems:
they are quite useful to detect and identify the reflecting objects, see [30].

Typically, the request is sent between 8 and 12 times in a scan, so the usual way
to solve a failure in receiving a reply is to listen to the next reply. This can be done
only depending on the plane density around the groundstation. In some regions,
the mode A/C protocol was overloaded, and an evolution of the system became
mandatory.

2.4.2 Foreseen mode S problems

The mode S protocol relies on the addressing of the requests to the aircrafts, and on
the parity code to correct the received replies. Only one exchange will be necessary
where up to 15 could have happened before, thus mode S will decrease the density of
replies received, and thus reduce the FRUIT problem. But, the multi-path problem
remains unchanged. To conclude, mode S will increase the reliability of the link.
However, new problems will appear.

With the rotating transmitter antenna, the dwell time during which the aircraft
is illuminated is quite limited, 30 ms, and the time between two scans is quite long,
several seconds. For mode A/C links, this time is sufficient to exchange up to 15 data
frames between the groundstation and the airplane, so that the required information
by the groundstation is obtained. But due to the format of the mode S protocol,
the duration of a reply is much longer, and only one or two exchanges are possible
within a scan. In the case of difficult situations or for ELM, the system is forced to
rely on different scans. This is unacceptable because the total transaction time is
then too long, and there is a high access delay.

Furthermore, it is expected that due to the increase in air traffic, the proposed
mode S system will not be able to cope with future traffic loads, at least in areas
with a dense concentration of planes.

Since there will be less exchanges, it is also expected that the azimuth estimation
will be less accurate.

2.5 A distributed groundstation network

The natural solution to cope with the expected problems with SSR system is to
decouple the emitting and the receiving role at the groundstation. The novel idea
is to also decouple the emitting and receiving locations, and to have several re-
ceivers. Recall Figure 1.1 and Figure 1.2. Once a request has been sent, at least one
groundstation in the receiving network will receive the reply. If several groundsta-
tions receive the reply, it is possible to obtain an improved estimate of the aircraft
position. Since the receiving groundstations are not placed at the same location
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as the emitting station, they receive replies from a large range of directions. Thus
the choice of an array of antenna elements is natural, since such arrays allow the
estimation of directions and separation of source signals by electronic beamforming.

Our proposed distributed system will also introduce some specific problems. Al-
though the number of desired replies will reduce, the use of an array of omnidirec-
tional antennas will increase the total number of received replies, for two reasons:

• Because of multipath propagation, each SSR reply is received over a direct
path, and/or a number of secondary paths. These reflections are avoided in
the current SSR system because of the narrow beam and with the help of the
control beam. With an array of omni-directional elements, this will be no
longer be possible; the elements will receive the replies from the line of sight
as well as from the secondary paths, see Figure 2.6.

Figure 2.6: An array antenna is more sensitive to multipath than the current system
which uses a control beam.

• Due to the omnidirectionality of the elements of the array, the groundstation
will receive many more undesired replies: the TACAS replies, the replies trig-
gered by adjacent groundstations, and the squitters (self-triggered replies by
the transponder). This leads again to the well-known problem of FRUIT.

It appears that the distributed ground-system will increases the number of replies,
desired or FRUIT, which can cause garbling problems. This motivates the use of
array signal processing to separate the source signals and estimate their directions.
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2.6 Conclusion

In this chapter, we explained the principles of the SSR system. We have shown the
differences between the replies from both modes. The system limitation was show,
and the need of a new system demonstrated. The chapter also pointed out the
possible origins of the replies impinging on a distributed groundstation: the desired
replies, the self-triggered replies, and the replies triggered by nearby groundstations
or by TACAS.

The last section has shown that the number of instantaneously received replies
is expected to increase with the distributed system, and it might appear that the
situation is degrading. In fact, it motivates the use of adaptive beamforming, since
an array with M elements can be combined to result in M spatially very selective
antennas.

We can state here the objective of the thesis: with the use array signal processing,
we desire to separate reply signals from different users, partially overlapping in time
and frequency. And for each signal, we want estimate the transmitted symbol and
the parameters: DOA and frequency shift.

Further, to obtain estimation performance bounds, we wish to establish identifi-
ability (i.e. the fact that the parameters can be uniquely estimated) and to verify
the efficacy of the algorithms on simulated and actual data.



Chapter 3

Data model, and state of the
art

In the end of the previous chapter, we have defined the problem under investigation in
this thesis. In the present chapter, we will construct a model of the signal received at
the antenna array and identify its properties. This forms the basis of the separation
algorithms constructed in subsequent chapters.

The first section presents a model of the received signal due to several SSR
replies impinging on a ground array antenna, and is concluded by a summary of the
key properties of the model. In the second section, the statistical properties of the
sources are analyzed, which leads to the concept of a “pseudo-Gaussian” source, and
we connect this to Higher-Order Statistics (HOS) methods. The last section is an
overview of several relevant existing algorithms which perform source separation.

3.1 Data Model

3.1.1 The emitted replies

We start our data modeling by looking at the emitted data stream before up-
conversion, first for mode A/C replies, then for mode S replies.

Mode A/C reply frame

Let bn be a bit taken from the alphabet {0, 1}. A sequence of 12 such bits is
the variable data in the reply frame that forms the answer to the request of the
transmitting groundstation. We also define pA/C(t) to be the pulse shape function
of the mode A/C pulse which, according to the ICAO, has to satisfy the following
conditions, see [29]:

Time (µs) t ≤ 0 0.1 ≤ t ≤ 0.45 t ≥ 0.55
pA/C(t) 0 1 0

21
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where we note that the nominal duration of a pulse is 0.5µs. The pulse shape is
not totally determined by the standard: only the rise and decay times are bounded.
Thus, the pulse shape can be different for each transponder. In current practice this
is not a problem, since actual groundstations use logarithmic amplifiers and do not
perform matched filtering.

The emitted data stream, b̃, contains the 12 data bits bi extended by 3 fixed
bits,

b̃ = [b̃0, . . . , b̃15]
def= [1, b1, . . . , b6, 0, b7, . . . , b12, 1] .

The emitted signal is a pulse amplitude modulation (PAM) of the data stream, using
the pulse shape function pA/C(t). The transponder emits the mode A/C data-stream:

bA/C(t) =
15∑

n=0

b̃(n) · pA/C

(
t− nTA/C

)
(3.1)

where b̃(n) is the n-th entry of b̃, and TA/C = 1.45µs is the mode A/C period.
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Figure 3.1: Format of a mode A/C reply frame.

Mode S reply frame

Let pS(t) be the pulse shape of mode S. According to the ICAO requirements, it
must satisfy the following constraints:

Time (µs) t ≤ 0 0.1 ≤ t ≤ 0.5 t > 0.6
pS(t) 0 1 0
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Here again, the standard does not totally enforce the pulse-shape. As before, we
denote by bn ∈ {0, 1} one of the transmitted bits. For Mode S, the reply frame
contains either 56 or 112 bits. The bits are encoded in a “Manchester Encoding”
scheme, which means that a bit bn = 0 is coded as bn = [0 , 1], and a bit bn = 1
as bn = [1 , 0]. The emitted bit stream, b̃ consists of a preamble followed by the
encoded data bits,

b̃ = [1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,b1,b2, · · · ,b56/112]

The preamble is aimed to facilitate the synchronization (detection of the start of a
frame).

The Mode S reply signal emitted by the transponder is a pulse amplitude mod-
ulation of b̃, and has the form

bS(t) =
127/239∑
n=0

b̃(n)pS

(
t− 1

2nTS

)
(3.2)

where b̃(n) is the n-th entry of b̃, and TS = 1µs is the Mode S period.

Temporal properties

The format of both Mode A/C and Mode S is such that it satisfies interesting tem-
poral correlation properties which are deterministic and independent of the actual
transmitted data. For example, note from Figure 3.1 that for any time t, the product
of the data stream and the data stream delayed by half a mode A/C bit-period is
equal to zero:

bA/C(t)bA/C

(
t + 1

2TA/C

)
= 0 (3.3)

We additionally assume that pS(t) = 0 for t ≥ 0.5. Then for Mode S, a similar
relation holds due to the Manchester encoding, in case the receiver is synchronized.
In this case, the product of the data stream with a 1

2TS-delayed version of itself will
always be equal to zero. Otherwise, when unsynchronized, we can still multiply by
an additional delayed version, so that we are sure that one of the sub-multiplications
is zero.

We summarize the relations in the following proposition.

Property 3.1.1 Independent of the transmitted data, a mode A/C transmitted reply
signal bC(t) satisfies

bA/C(t) bA/C

(
t + 1

2TA/C

)
= 0 , ∀t ∈ R (3.4)

where TA/C = 1.45 µs.
Independent of the transmitted data, a mode S reply signal bS(t) obeys:

bS(t)bS
(
t + 1

2TS

)
= 0 , t ∈ {0, 1

2TS}+ nTS, n = 0, 1, · · · (3.5)

where TS = 1 µs. More generally, bS(t) satisfies

bS
(
t− 1

2TS

)
bS(t) bS

(
t + 1

2TS

)
= 0 , ∀t ∈ R (3.6)
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In the remainder of this section, it is not necessary to make a distinction between
Mode A/C and Mode S, hence for the sake of simplicity, let b(t) be either bA/C(t)
or bS(t).

Before being emitted by the antenna, the signal is up-converted to the frequency
band fe:

z(t) = b(t) · cos(2πfet)

where we neglect the initial phase. The ICAO requires the transponder to emit at
nominally the carrier frequency fc = 1090 MHz, but allows the transponders to have
a carrier frequency shift up to ±3 MHz, thus, fe �= fc. In future, this limit should
be reduced to ±1 MHz.

Due to this frequency carrier mis-match, a residual frequency f remains after
down-conversion by fc to baseband. This residual carrier causes significant phase
rotations of the symbols (see figure 3.2). Additionaly, it hides the Doppler effect due
to the radial speed of the aircraft.
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Figure 3.2: Influence of the carrier frequency shift (50 kHz) on a mode A/C reply.
The dashed line is b(t), the original reply signal. The residual carrier causes a
rotation of b(t) in the complex plane as a function of time.

3.1.2 Received data model

We will now present complex baseband model for the received signal, as valid after
downconversion and sampling. As the derivation of such models is rather standard
in the Signal Processing literature (see e.g. [8, 9, 18, 19, 21, 20]) , we do not show
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the constructing steps. The construction of the model is valid under the following
assumptions, which we make from now on:

• As the bandwidth of the signal is BW ≈ 10 MHz, and the frequency carrier
is fc = 1090 MHz, we admit a narrow-band assumption, i.e. BW � fc. Con-
sequently, short delays (e.g. propagation delays across the array) are modeled
as baseband phase shifts.

• As the array has a size in the order of a few decimeters, and that the airplanes
are over a kilometer far away, we admit the far-field assumption: the incoming
signal has a planar wavefront.

• As the noise mainly originates from the thermal noise of the receiver, but also
from atmospheric sources, we assume that the noise vector is spatially white,
and that its entries are Gaussian, independent identically distributed (i.i.d.)
with equal variances σ2.

• We also assume that we know σ2; this is reasonable because of the bursty
nature of a reply, so that there are many time periods without any signal
during which we can estimate the noise variance.

• For simplicity, we assume that the array is a calibrated Uniform Linear Array
(ULA), i.e. all sensor have an equal behavior, and they are placed in a line at
equal distance one from the consecutive other.

At reception, we consider that during a time interval of interest there are d single-
path replies impinging on a M -element antenna array. We consider the data as a
stream of bits and we do not consider synchronization problems. We consider that
outside the packet frame, the emitted bit stream is zero, which can be modeled as
well by a modulation of bits with value 0. It allows us to not consider time delays
between the sources, and to consider all impinging sources present on the full interval
as a zero-padded version of the original packets.

For the sake of simplicity, we propose a model only for mode S replies, with
a sampling period T . This choice is motivated by the fact that mode S transpon-
ders will be mandatory in the future, and by the complexity to handle a combined
model that contains both mode A/C and mode S. Due to different (incommensurate)
pulse lengths, this would be untractable in the following chapters. Unless specified
otherwise, the sampling period is T = 0.5 µs.

After propagation, reception by the array, and baseband demodulation, the ana-
log signal x(t) is sampled and digitized by an Analog-to-Digital Converter (ADC).
We denote the digital signal: x[n] def= x(nT ). After collecting N samples, we can
construct the M ×N received signal matrix X = [x[1], · · · ,x[N ]]. Then we pose the
following model for X:

X = A ·G · [F	B] +N (3.7)

where

• d is the number of sources.
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• A = [a (θ1) , · · · ,a (θd)] is the M × d steering matrix, with ∀i ∈ {1, · · · , d} the
steering vector defined as

a (θi) = [1, exp(πcos(θi)), · · · , exp(π(M − 1)cos(θi))]
T

, (3.8)

where θi is the direction of incidence of the i-th source with respect to the
ULA boresight.

• G is a d × d diagonal gain matrix, with diagonal entries gi = ρi exp(jψi)
∀i ∈ {1, · · · , d}, where gi is the gain of the i-th source, ρi > 0 its amplitude
and ψi ∈ [0, 2π〉 its phase.

• F =
[
f1

T
, · · · , fdT

]
T
is a d×N matrix, whose i-th row is fi =

[
1, φi, · · · , φN−1

i

]
where φi = exp (2πfiT ). F is a Vandermonde matrix, which represents the
effects of the residual carrier frequencies. We assume fi ∈ [0, 1/T 〉.

• B = [b[1], · · · ,b[N ]] is the d × N transmitted symbol matrix, whose n-th
column is b[n] = [b1[n], · · · , bd[n]]T , where bi[n] is the n-th symbol of the i-th
source. We assume that all bi[n] belong to the alphabet {0, 1}.

• 	 the Schur-Hadamard element-wise matrix multiplication.

• N = [n[1] · · ·n[N ]] is the M ×N noise matrix, with n[k] ∼ CN (0, σ2I).

We can also write Equation (3.7) as:

X = A ·G · S+N (3.9)

where for simplicity of notation S def= F	B is the d×N source matrix. This equation
will be our basic data model throughout the thesis.

Note that the element of the matrix S for the i-th source at integer time n is
equal to:

(S)i,n = si[n] = bi[n] exp (2πnfiT ) (3.10)

with bi[n] ∈ {0, 1}. From this equation, we can extract the following properties:

Property 3.1.2 Consider an SSR source s[n] of the form (3.10).
Static property: s[n] is a Zero-Constant Modulus (ZCM) source: the source is

either zero or of unit norm, i.e.,

s[n] = 0 or |s[n]| = 1 , ∀n ∈ {1, .., N}
This is equivalent to:

s[n]s∗[n]s[n] = s[n] (3.11)

Dynamic property: For any integer k, two non-zero samples with a distance of
τ = kT have a phase difference of φk, where φ = exp (2πfT ). Consequently,

s[n]s∗[n− k] = 0 or s[n]s∗[n− k] = φk , ∀n ∈ {k + 1, .., N}. (3.12)

Combining the two properties, we obtain the relation:

s[n]s∗[n− k]s[n]s∗[n− k] = φks[n]s∗[n− k] , ∀n ∈ {k + 1, .., N}. (3.13)
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3.1.3 Multipath

The aircraft replies are emitted by means of an omnidirectional antenna. There is
always a Line Of Sight (LOS), but depending on the presence or absence of reflecting
objects, other paths may exist. In order to simplify this work, we consider only two
kinds of secondary paths.

The first type of secondary paths are reflections originated by the ground near
the antenna, and have the same direction of arrival. Usually, these reflections are
limited by the use of antennas with a large vertical aperture, or by a metallic screen.
However, in the experiments conducted at Delft University of Technology, we have
used simple dipole antennas for the array, so ground reflections probably occurred.
This does not change the data model too much because the time delay between the
LOS and the ground reflection signal is much below the inverse of the bandwidth of
the replies. So the delay may be represented by a phase shift of the complex baseband
signal, i.e. the signal due to the second path is a copy of the direct signal multiplied
by a complex gain factor dependent on the time delay and the ground reflection
coefficient. Both gains can be combined into a factor that alters the received power
g of the reply. While the data model remains the same, the practical consequence
is that the final gain can be smaller than the noise or even equal to zero, resulting
in the problem that the reply cannot be detected. Let us consider this gain for all
the elements. In general, the antenna response will be the sum of the LOS path and
the reflected path:

aTotal = gLOSa(θLOS) + gRefla(θRefl)
where the resulting aTotal in general does not belong to the array manifold. However,
since we are considering a ground reflection, both angles are equal, and aTotal =
(gLOS + gRefl)a(θLOS). Consequently, all antennas fade at the same time. If not in
a fade, the estimation of θLOS is still possible.

Other secondary paths are created by surfaces far from the antenna and are not
in the direction of the LOS. They usually show a time delay of several bits, so the
matrix S is full rank. The secondary paths also have different angles of arrival than
the LOS path. Therefore we can consider the two replies as independent signals.

3.2 Statistical properties of the SSR source

Our objective in the next chapters will be, given a data matrix X of size M × N ,
with N sufficiently large, to estimate d and separate the d source signals bi[n], and
the source parameters {fi, θi}. The separation can be based on deterministic and
statistical properties of the sources. Some algorithms use the dynamic properties of
the signals, so it is interesting to see if we can adapt these algorithms to the SSR
problem.

To simplify the study, we consider a single mode S reply. We consider the model:

s[n] = b[n] exp(2πfTn) = b[n]φn , n = {1, · · · , N}
where T is the sampling period, f the residual frequency, φ = exp(2πfT ), and
b[n] ∈ {0, 1} the bit emitted at time n. We consider the residual frequency as
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an unknown deterministic quantity, rather than as a random variable. We assume
that we are synchronised so that the start of the packet is known, without loss of
generality it starts at n = 1. The random part of the signals are the data bits, with
values in {0, 1} with equal probability.

Because of the temporal structure of the SSR reply frame, the signal s[n] is not
stationary and we do not use the usual ergodic assumption. At some times n, the
expected value E{b[n]} is zero, at other time instants it is 1

2 or 1, multiplied by the
residual frequency factor. We first decompose b[n] for each n into an expected value
and a zero-mean deviation:

b[n] = e[n] + a[n]

where e[n] def= E{b[n]} represents the expected value at time n of the binary signal:
it is a constant and zero-padded after expectation. a [n] represents the random part
with E{a[n]} = 0. Figure 3.3 illustrates e[n] for each kind of SSR mode S.
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Figure 3.3: The expected value e[n] of the binary signal b[n] as a function of times,
presented for all modes S.

Note that for certain (known) times n in a data frame, a[n] is not random and
equal to 0, whereas for other times n, a[n] is random and takes values on the alphabet
{± 1

2}. We define Tdet to be the set of time instants for which a[n] is not random,
and Trand to be the time instants for which a[n] is random. Let L be the number of
independent pulses (the size of Trand). The random elements a[n] have for n ∈ Trand,
the following properties:

E{a[n]} = 0



3.2. STATISTICAL PROPERTIES OF THE SSR SOURCE 29

and

E{a[n]a[m]} =


1
4 , m = n
− 1

8 , m = n± 1
0 , otherwise

(3.14)

The second result of Equation (3.14) is a consequence of the manchester encoding.
Now that we have defined our model and some properties, we consider a non-

stationary auto-correlation. First define the un-normalized estimated auto-correlation:

γ̂[τ ] def=
N−τ∑
n=1

s∗[n]s[n− τ ]

then define:
γ[τ ] def= E {γ̂[τ ]}

We obtain after some derivations:

γ[τ ] = exp (−2πfTτ)

[
N−τ∑
n=1

e∗[n]e[n− τ ] +
L

8
(2δ[τ ]− δ[τ + 1]− δ[τ − 1])

]
(3.15)

where δ[t] is the Kronecker delta, and L is the number of pulses, 64 or 112 for mode
S replies.

Equation (3.15) shows that the auto-correlation is a function depending only on
the mode of the source, modulated by exactly the same residual frequency as the
source:

γ[τ ] = γ0[τ ]φ−τ

where the function γ0[τ ] depends only on the mode of the reply.
Figure 3.4 presents the auto-correlation γ0[τ ] for each kind of SSR reply: short

mode S, and long mode S. We note that they have a pseudo triangular shape, except
for the first 16 samples in the beginning.

Consequences

To summarize, we consider a single mode S SSR reply, with a residual carrier f , for
which φ = exp(2π fT ) where T is the sampling period. Then the next property
holds:

Property 3.2.1 For a Mode S SSR reply s[n], if 16 < τ < TL − 16 then γ[τ ]
simplifies such that:

γ[τ ] =
1
4
(TL − τ)φτ (3.16)

where TL is the data length of the data frame (128 or 240 samples). If 16 < τ � TL,
then Equation 3.16 can be further approximated as:

γ[τ ] = Kφτ (3.17)

where the constant K is equal to TL

4 .
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Figure 3.4: Expected auto-correlation γ0[τ ] of a reply without frequency shift for
each mode: short S, and long S.

Mode A/C: a similar property can be derived for mode A/C. However, the prop-
erties cannot easily be combined: one has to take care about the pulse period which
is not the same as for mode S, and the specific encoding for this mode. Since in fu-
ture chapters we focus mostly on algorithms for mode S, we omit the corresponding
properties for mode A/C.

3.3 Algorithmic survey

We present a short survey of the source separation methods which are the most
relevant to the principles of the algorithms proposed in the thesis.

First, we recall the difference between a Minimum Mean Square Error (MMSE)
beamformer, and a Zero-Forcing (ZF) one. Second, we present an example of a
source separation algorithm which is based on spatial properties, i.e., it only uses
the knowledge of antenna array, but not of the source structure. The algorithm
we choose to present is ESPRIT, because it is an algebraic method that relies on
a low rank decomposition of the covariance matrix, and in that sense similar to
our approach in future sections. Third, we present several algorithms that use the
signal properties. The signal property used in an algorithm can be either quite
general or oppositely very specific. Among the specific algorithms, we present the
Decision-Directed Beamformer, the ILSP/E algorithm, the ACMA, and the ACPA,
which all depend on the constellation or the modulus of the signal. For a more
general scheme, we present SOBI, which depend only on statistical independence of
the sources. Note that these more general schemes rely on the estimation of certain
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statistical moments from the data, and in general require many data samples.

3.3.1 MMSE and ZF approach

Consider the linear data model

X = MS+N

Note that M = AG in this thesis, but it can be more general. Note also that
we consider M tall or square. There are many ways to recover the data matrix S,
depending on knowledge of M or its structure, and knowledge of the structure of S.
We consider here a linear transformation of the form:

Ŝ = WHX

W is the beamforming matrix, the i-th column wi of W is a beamformer to receive
the i-th source (row of S). In the presence of noise, we can think of several optimiza-
tion criteria to obtain the “best” beamformer. Two criteria are commonly used, one
to minimize the output noise, the other to reduce the model error.

In the latter case, the cost function to minimize is:

{M, S} = argmin
M,S

||X−MS||2F (3.18)

Without further constraints on S, we optimize the cost function keeping M constant
(or assuming it is known):

Ŝ = (MHM)−1MHX = M†X

so the corresponding beamformer is: WH = M†, and the solution is:

Ŝ = M†X = S+ (MHM)−1MHN

From this result, one can see that each signal is recovered interference-free. The
name of the corresponding beamformer is Zero-Forcing, ZF. It yields the best Signal
to Interference Ratio, SIR1, but unfortunately it might amplify the output noise in
case M is ill conditioned, thus its output Signal to Noise Ratio, SNR, might be poor.
The Signal to Interference and Noise Ratio, SINR, will be equal to SNR.

A second criterion aims at obtaining the lowest output noise after processing.
Consider a collection of d vectors wi such that wH

i x = ŝi. Let us stack them in a
matrix W = [w1, . . . ,wd], such that Ŝ = WHX, then the criterion to minimize is:

{Ŵ, Ŝ} = argmin
W,S

||S−WHX||2F

Keeping S constant (or with a known S), we optimize the cost function, and we
obtain:

W =
(
XXH

)−1
XSH

1In fact the SIR will be infinite in that case.
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Note that the first matrix is proportional to the sample covariance matrix: R̂x
def=

1
N

∑N
n=1 x[n]x

H [n], and the second to R̂xs
def= 1

N

∑N
n=1 x[n]s

H [n]. It can be written
as W = R̂−1

x R̂xs. For an infinite number of samples, it tends to W = R−1
x M.

Alternatively, if we know M and the sources are uncorrelated, then the optimum
beamformer is W = R̂−1

x M. A beamformer defined in this way will minimize the
output noise and the interference, thus it yields the best SINR. This is why it is
called the Minimum Mean Square Error beamformer (MMSE).

We define the output Signal to Noise Ratio of a beamformer as the ratio of the
output power of the desired source over the power of the output noise. Similarly,
the Signal to Interference and Noise Ratio is the ratio of the output power of the
desired source over the sum of the output powers of the other sources and the noise.
In general, one can say that

SINR(MMSE) ≥ SINR(ZF)
SIR(MMSE) ≤ SIR(ZF)

If the mixing matrix M is known, tall and full column rank, then the ZF recon-
struction of the sources is obtained by the application by the pseudo inverse of M,
and the SIR is infinite.

3.3.2 ESPRIT

Several beamforming and source separation techniques assume that the mixing ma-
trix has the formM = AG, whereA is known parametrically asA = [a(θ1), ..,a(θd)],
and G is a diagonal matrix containing the gains of the sources. Classical methods
used the sample covariance matrix of X directly, as for example the Bartlett method
[31], the Minimum Variance Distortionless Response (MVDR, see [32]), or Capon’s
method [33]. More recent methods first perform a low rank factorization of the
covariance matrix (usually obtained by an eigendecomposition, or a Singular Value
Decomposition, SVD), and work on the subspace spanned by the left singular vec-
tors; we can cite MUSIC [34, 35], and MODE [36] for general arrays, and ESPRIT
[37] for an Uniform Linear Array (ULA). These are all parametric methods to esti-
mate the directions-of-arrival θi. These in turn determine A, and thus for example
a zero-forcing beamformer W.

We present here the most common implementation of ESPRIT. For an ULA, A
has the form:

A =


1 · · · 1
ψ1 · · · ψd

ψ2
1 · · · ψ2

d

ψM−1
1 · · · ψM−1

d


where ψi = exp [2πd/λ cos(θi)], and θi is the direction of arrival of the i-th source2.
There are d sources, and A has size M × d. We assume M > d.

2In the literature, φ is used, here we choose to present ESPRIT with the notation ψ to not mix
the definition.
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Define two selection matrices J1 and J2, which select the (M − 1) first and the
(M − 1) last rows, respectively. By applying these matrices to A, we get:

A1
def= J1A

A2
def= J2A

with some simplifications, the special structure of A ensures that:

A2 = J1AΦ = A1Φ

where Φ is the d× d diagonal matrix whose diagonal entries are [ψ1, · · · , ψd]. This
is the fundamental property used by ESPRIT.

Given the data matrix X, we perform a low rank decomposition of X to obtain
an estimate of the subspace spanned by the columns of A. It can be done by a
Singular Value Decomposition (SVD), X = UΣVH , where U and V are unitary
matrices, and Σ is a diagonal matrix containing the singular values in descending
order. We construct a matrix E consisting of the first d columns of U. If the noise is
Gaussian and spatially white, then the column span of E tends to the column span
of A as the number of samples tends to infinity3. Thus there exists a d×d invertible
matrix T such that:

A = ET

We apply the matrices J1 and J2 to E to obtain E1 = J1E and E2 = J2E. It follows
that

A1 = E1T

A2 = E2T

Re-arranging the last Equation gives:

A1Φ = E2T

Using the definition of A1, gives:

E1TΦ = E2T

This Equation indicates that E1 and E2 span the same subspace. Since we assumed
that M > d, E1 is tall and we can compute a left inverse of it, E†

1 = (EH
1 E1)−1EH

1 .
Applying it, we obtain

TΦ = E†
1E2T

⇒ F def= E†
1E2 = TΦT−1

F can be computed from the data. The model for F is an eigenvalue decomposition:
the diagonal entries of Φ are the eigenvalues of F and the vectors of T−1 are its

3There is equality for any N in the noise-free case.
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eigenvectors. Thus, we can compute Φ, and from the diagonal elements, the ψi’s
(i ∈ {1, · · · , d}), we can estimate the directions of arrival. In the absence of noise,
the pseudo-inversion of A indicates that S = T−1EHX, so we can compute the
beamformers W as:

W = E
(
T−1

)H
Over time, many refinements have been added to this algorithm, e.g., multi-

dimensional ESPRIT [38, 39], TLS-ESPRIT [40], UNITARY-ESPRIT [41], and
VIRTUAL-ESPRIT [42].

3.3.3 A Decision-Directed Beamformer

A Decision Directed (DD) Beamforming technique does not use the structure of the
array A, but of the sources S. As all techniques presented in the remaining of this
section are not using the structure of the array, we will consider the more general
model:

X = MS+N

where M is unstructured but considered square or tall, and full column rank. The
idea in the derivation of a DD beamformer is that S is generated by a finite set of
unknown discrete variables (the transmitted symbols). The technique in [43] consists
of alternately estimating the symbols and the beamformers in order to converge to
an optimal solution. In outline, the algorithm is as follows:

1. Obtain by any method a first estimate of the signal, demodulate it to esti-
mate the transmitted symbols, and use a symbol decision (or projection) to
regenerate an estimate of the emitted signal: ŝo[n], ∀n ∈ {1, · · · , N}, k = 0.

2. Compute an estimate of the MMSE beamformer W as:

WMMSE = argmin
W

∥∥WHX− S
∥∥2

F
= (SX†)H = R̂−1

xx R̂xs (3.19)

3. Recompute ∀n ∈ {1, · · · , N} the signal estimate:

ŝk[n] = ŴHx[n] (3.20)

where the index k means k-th iteration.

4. Demodulate ŝk[n] to obtain an estimate of the transmitted symbols: qk+1[n],
this is the decision-directed step. Use this stream to regenerate the signal:
ŝk+1[n].

5. If Sk+1 �= Sk, k = k+1 and go to step 2. Otherwise, we have a stable solution.

The major problem in this method is to find an initial signal to begin the it-
eration, for which we need some knowledge on S, such as a training period. The
procedure does not garantee a global convergence, but only a local convergence is
demonstrated in the article, so it may happen that similar sources are found several
times (e.g. to have W full rank).
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3.3.4 The ILSP and ILSE method

The article [13] proposed two methods that share the basic ideas of the preceding
subsection. The idea is to use the finite alphabet property of the signals to redirect
the beams (non-linear step), and to alternately estimate the DOA and the signal
(separate the variables).

The model is X = MS + N, where the noise is additive, spatially white, and
Gaussian. M is unstructured but considered square or tall, and full column rank.

There are two differences with the preceding algorithm, the first one is that now
the entries of S are assumed to be the symbols and drawn from a finite alphabet
(rather than that S is obtained indirectly via some modulation of the symbols). The
second is that the authors do not optimize the MMSE criterion but the model error
criterion:

min
M,S∈Ωd×N

‖X−MS‖2
F (3.21)

where (S)i,n ∈ Ω indicates that the entries of S belong to the finite alphabet Ω, for
example Ω = {±1}. We define by L the size of the alphabet set. Using the proof
derived in [44], the optimization may be carried out in two steps:

1. For any fixed S, the minimization to M of equation (3.21) leads to:

M̂ = XS† = XSH
(
SSH

)−1
(3.22)

2. Replacing M by M̂ in 3.21 gives us:

min
S∈Ω

∥∥XP⊥
S

∥∥2

F
(3.23)

where P⊥
S = IN −SH

(
SSH

)−1
S, is the projection orthogonal to the subspace

spanned by the columns of S.

The global minimum is found by enumerating S over all the possibilities. Since
it has an expensive computational cost, the authors propose two simpler algorithms
to reduce the computational costs.

• Iterative Least Square with Projection (ILSP): The method consists of pro-
jecting the estimate of the signal onto the closest discrete value. The algorithm
is outlined below:

1 k = 0, Take a first estimate of M̂0.
2 a k = k + 1

b S̄k =
(
M̂H

k−1M̂k−1

)−1

M̂H
k−1X = M̂†

k−1X

c Ŝk = projΩ
[
S̄k

]
d M̂k = XŜH

k

(
ŜkŜH

k

)−1

= XŜ†
k

3 repeat 2 until
(
M̂, Ŝ

)
is stable.
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The initialization of M may be either done by first estimating the DOAs, using
ESPRIT or by setting M to the identity matrix. An alternative method is to
first initialize S with a estimate of the signals, which can be obtained by taking
the d rows corresponding to the d largest singular values of X, and then to set
the mixing matrix from the step 2.c.

• Iterative Least Square with Enumeration (ILSE): Alternatively, the authors
propose to enumerate all the possibilities of the signal over Ω. This is quite
expensive: LdN possibilities, but due to the Frobenius norm properties:

‖X−MS‖2
F = ‖x[1]−Ms[1]‖2 + . . . + ‖x[N ]−Ms[N ]‖2

we may do it for each vector s(k) separately, so that we have to enumerate N
times over only Ld possibilities. The algorithm is outlined below:

1 k = 0, Take a first estimate of M̂0.
2 a k = k + 1

b By enumeration, ∀n ∈ {1, · · · , N}:
ŝk[n] = arg

{
mins[n]∈Ω ||x[n]− M̂ks[n]||2F

}
Ŝk = [ŝ[1], · · · , ŝ[N ]]

c M̂k = XŜH
k

(
ŜkŜH

k

)−1

= XŜ†
k

3 repeat 2 until
(
M̂, Ŝ

)
is stable.

As for the Decision-Directed Beamformer, the choice of the initial point is crucial.
If the algorithm does not reach a minimum whose cost is close to the noise power
Nmσ2, the authors restart the procedure with a new initial point, otherwise the
final estimate is declared correct.

The simulations give good results, even for low angle separation and low SNR.
But the computational cost is rather high. ILSE has a cost in the order of NMdLd

per iteration, where 4 iterations on the average are necessary, while ILSP has a cost
in the order NMd per iteration, but the average number of iterations is now around
10. These algorithms have the best performance for small alphabet set or with initial
point near the solution, thus there are perfect for fine-tuning of other algorithms.

3.3.5 ACMA

The Analytical Constant Modulus Algorithm (ACMA) [12] also considers the model
X = MS+N. This time, the entries of S are supposed to have a constant modulus,
|Sij | = 1. Examples of such signals are FM modulated sources, or discrete sources
with a constellation on the unit circle. Another important example is GSM signals.

The algorithm looks for all beamformers {w} such that the output signal
wHx[n] = ŝ[n] has a constant modulus,

|ŝ[n]| = 1 , ∀n ∈ {1, · · · , N}
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For the sake of convenience, we consider d sources impinging on d elements. Using
the beamformer, an equivalent formulation to the previous Equation is:

wHx[n]xH [n]w = 1, ∀n ∈ {1, · · · , N}
Using properties of the Kronecker product (see section 1.7, Equation (1.3)), it follows
that

wHx[n]xH [n]w = 1 ⇔ (x[n]⊗ x[n]∗)H(w ⊗w∗) = 1

By stacking for n ∈ {1, · · · , N} the row vectors p[n] = (x[n]⊗x[n]∗)H into a matrix
P P = [pT [1], · · · ,pT [N ]]T , we obtain:{

Py = 1
y = w ⊗w∗ (3.25)

The next step is to solve the linear system Py = 1 independently from the constraint
on y. We first transform the linear system to an equivalent system P̂y = 0. Let Q
be an orthonormal (Householder) transformation such that Q1 = [

√
N 0T ]T , and

let P̂ be the last (N − 1) rows of QP, then up to a scaling, solving Py = 1 is
equivalent to solve:

P̂y = 0

with y �= 0. The solutions of this Equation are in the kernel of P̂. If N is sufficiently
large and the sources are sufficiently varying, then it can be shown that the dimension
of the kernel is exactly d. Denote by [y1, · · · ,yd] its basis, then all solutions y are
linear combinations of this basis, hence of the form

y = wi ⊗w∗
i =

d∑
j=1

αijyj

For unknown coefficients αij , after some derivations and using the “unvec” operator
from Section 1.7, we obtain for i ∈ {1, · · · , d}:

Yi = WΛiWH i = 1, · · · , d
where Yi is the d × d matrix equal to unvec(yi), and Λi is a diagonal matrix
related to the αij . We note that all the Yi have a diagonal form in the same basis,
W. The only matrix that jointly diagonalizes this collection of matrices {Yi} is
W, up to a column permutation and/or a unit-norm column scaling. The joint
diagonalization problem is a generalization of the usual eigenvalue problem. Indeed,
assume that Y1 is invertible, then note that Y−1

1 Y2 = W−1Λ−1
1 Λ2W, hence W

can be computed from the eigenvectors of Y−1
1 Y2. With more than 2 matrices, the

joint diagonalization can be computed with the method proposed in [12].

3.3.6 ACPA

Proposed in [15, 16], the principle of ACPA differs from the preceding algorithm in
the sense that the conditions on the source constellation are more tight. Indeed,
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this method is intended to work only for n-PSK symbol constellations, which are
regularly spaced constellations on the unit circle. These distributions are restrictive
cases of the more general framework of Constant Modulus distributions.

Since these constellations are the set of the L Lth roots of unity, s is in the
constellation if sL = 1. In the case of L = 2, this property can be used is the same
way as in ACMA [14]. For general L, let us consider a beamformer w such that the
output signal is wHx[n] = ŝ[n], then[

wHx[n]
]L

= 1 , ∀n ∈ {1, .., N}
Similar to ACMA, it can be shown that this can be written as

Pw�L = 1

where w�L is a vector that contains only the non-redundant terms of w ⊗w . . . ⊗
w, and P is a tall matrix constructed of X. The problem can be solved for all
beamformersw by solving a linear system and a Joint Diagonalization step, although
the latter step is a bit more difficult than in ACMA for L > 2.

3.3.7 SOBI

The Second-Order Blind Identification (SOBI) algorithm [17] is a general technique
to blindly separate sources based on differences in second-order spectral content.
In contrast to the preceding techniques, it is based on statistical properties of the
sources.

Consider the data model x(k) = Ms(k) + n(k), where the vector signal s(k)
consists of d independent wide-sense stationary sources si(k) with different non-
white spectral content. For each i ∈ {1, · · · ,m}, the i-th component of the noise
ni(k) is additive zero-mean Gaussian noise, temporally independently identically
distributed.

Let γi(τ) = E{si(k)s∗i (k− τ)}, and define the non-central auto-covariance of the
vector x at time-lag τ as Rτ

def= E{x(k)xH(k − τ)}. Then after some derivations,
and for τ �= 0, Rτ becomes:

Rτ = MΓτMH

where Γτ = diag(γ1(τ), · · · , γd(τ)). The authors collect L matricesRτ with different
τ , τ ∈ {τ1, · · · , τL}. Note that all the Rτ have a diagonal form in the same basis, M.
One can prove that if the Γτ are sufficiently different and M is full rank, the only
matrix that jointly diagonalizes this collection is M, up to a column permutation
and/or a unit-norm column scaling. The proposed algorithm in [17] uses the joint
diagonalization of Cardoso and Souloumiac [45].

3.4 Conclusion

In this chapter we have derived a model for the reception of several SSR sources
impinging on an array. For this model, we have extracted several properties that
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will be useful to perform source separation. Generic source separation techniques
have been reviewed in the preceding section.
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Chapter 4

Identifiability in the noiseless
case

Suppose that we have received a data matrix consisting of a mixture of SSR signals.
Our objective in this thesis is to derive algorithms to separate the sources, i.e. given
the data and a model, estimate all parameters of the model. A general principle
in estimation theory is that prior to any signal processing, one has to ensure that
the model is identifiable, i.e. under noise-free conditions there should be up to
a permutation only one unique set of parameters admissible as a solution. In this
chapter, we present conditions under which a mixture of SSR replies can be identified.

The identifiability problem is addressed in two different cases: infinite number
of samples and finite number of samples. For the finite sample case, only bounds on
the probability that identifiability holds can be proposed.

By identifiability, it is meant that the observation X = f(Θ) admits one and only
one solution Θ in a parameter set Ω, e.g. the function f(.) is bijective. Considering
the noiseless case amounts to admit that X ∈ f(Ω), which means that f(.) is sur-
jective by construction. Thus, it remains to prove injectivity of f(.), i.e. uniqueness
of Θ.

4.1 Model and assumptions

Recall from Chapter 3 the signal model where M is the number of antennas, N the
number of samples, d the number of sources, and T the sampling period. In this
chapter, we consider only unframed signals, so that there is no notion of packet here.

Let fi be the residual carrier frequency of source i, and its associated phase
φi = exp(2πfiT ), ∀i ∈ {1, · · · , d}. F is the d×N matrix that contains the influences
of the residual frequencies: its i-th row is fi = [1, φi, · · · , φN−1

i ]. Each source si,
∀i ∈ {1, · · · , d}, transmits a bit sequence, bi[n], n ∈ {1, · · · , N}, which is taken from
the alphabet {0, 1}. We denote the d × N data matrix B = [bT

1 , · · · ,bT
d ]

T , whose
i-th row is the binary sequence bi = [bi[1], · · · , bi[N ]]. 	 denotes the element-wise

41
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multiplication between two matrices. We define the d×N source matrix:

S = F	B

Recall that A is the M × d steering matrix containing the d steering vectors a(θi),
1 ≤ i ≤ d, where the θi’s are the directions of arrival of the source. a(θ) is a
known function of the parameter θ, the DOA, which characterizes the properties of
an antenna array. G is a d× d diagonal gain matrix, which also contains the initial
phase of the receivers. X = [x(1), · · · ,x(N)] is a M × N matrix that contains the
received signal, with xm[k] being the signal received on the m-th sensor at time kT .
The noise-free model is:

X = AG [F	B] = AGS (4.1)

At time n, we receive the M -vector x[n] = [x1[n], · · · , xM [n]]T , corresponding
to the binary vector b[n] = [b1[n], · · · , bd[n]]T . Last, define the parameter vector Θ
that contains all the information: Θ = {θi, gi, fi,bi, i ∈ [1, · · · , d]}.

We remind that E{.} denotes the mathematical expectation operator, I the iden-
tity matrix, and 1 the vector built of 1’s.

Definition An array is unambiguous if for any set of d distinct DOAs, {θ1, · · · , θd},
the array response matrix [a(θ1), · · · ,a(θd)] is full column rank.

Note that in this thesis, we always consider ULA’s with a half wavelength separa-
tion distance, which is known to be unambiguous in the range [0, · · · , 180) degrees.

General assumptions In this chapter, we make the following assumptions, which
are common to all propositions:

A1. No noise.

A2. The array is an unambiguous ULA. From the definition, the first row of A
consists of 1.

A3. The angles θi are different, ∀i ∈ {1, · · · , d}.
A4. The residual frequencies belong to the range: 0 ≤ fi < 1

T , ∀i ∈ {1, · · · , d}.
A5. There are more sensors than sources: M > d. As well, there are more samples

than sources: N > d.

A6. We consider unframed streams of bits (no time of arrival identification).

A7. The bits, bi[n], ∀i ∈ {1, .., d} and ∀n ∈ {1, .., N}, are taken from the finite
alphabet {0, 1} with an equiprobable distribution. The bit streams are inde-
pendent, identically distributed, and stationary. Then the following statistical
property holds:

E{bbH} =
1
4
11T +

1
4
I

A8. All gains are non-zero: gi �= 0, ∀i ∈ {1, · · · , d}.
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In most blind identification problems of the form X = AGS, there always re-
mains a permutation and complex scaling uncertainty. The permutation uncertainty
is due to the fact that we cannot know the specific ordering of sources in S, e.g. for
any permutation matrix Π, X = AGS = AΠΠTGS. Here, given (i) the data al-
phabet, (ii) the choice for the phase of the carrier drift at the first sample, and (iii)
the definition of the matrix A, the complex scaling uncertainty does not hold in
our context. Note that this indeterminacy could be resolved by sorting the θ’s in
increasing order.

Note that as we sample at T = 0.5µs, the ICAO tolerance on the carrier frequency
of ±3 MHz precludes an exact identification of the frequency drift, due to aliasing.
As we limit f to the interval [0, 1

T ) in our model, we obtain the actual carrier residual
modulo 1

T .
We consider in this chapter only the noiseless case identification. Parameter

estimation in the noisy case is the topic of Chapters 5 and 6.

4.2 The infinite sample case

We derive in this section uniqueness conditions for an infinite number of samples.

Proposition 4.2.1 Under the assumptions A1 to A8, M ≥ 2 d, and an infinite
number of samples, then the parameters {θi, gi, fi,bi}, ∀i ∈ {1, .., d}, are unique for
a given X ∈ f(Ω), up to a permutation.

Proof Suppose there are two solutions satisfying the requirements of Proposition
4.2.1: Θ = {θi, gi, fi,bi, i ∈ [1, .., d]} and Θ̃ = {θ̃i, g̃i, f̃i, b̃i, i ∈ [1, .., d]}. Then:

X = A ·G · [F	B] = Ã · G̃ ·
[
F̃	 B̃

]
(4.2)

which gives:
A ·G · [F	B]− Ã · G̃ ·

[
F̃	 B̃

]
= 0

Suppose that some of the θi’s are equal to some of the θ̃i’s. First re-order the
columns of A in order to have the common steering vectors, Ac in the right block,
and the non-common steering vectors, Anc in the left block: A = [Anc,Ac]. The
same re-ordering is done on the rows of the matrices G and F	B. Apply a similar
re-ordering to Ã to obtain: Ã = [Ãc, Ãnc]. Then:

[
Anc Ac

]·[ Gnc · [F	B]nc
Gc · [F	B]c

]
−[

Ãnc Ãc

]·
 G̃nc ·

[
F̃	 B̃

]
nc

G̃c ·
[
F̃	 B̃

]
c

 = 0 (4.3)

Since Ac = Ãc, equation (4.3) can be written as:

[
Anc Ac Ãnc

] ·


Gnc · [F	B]nc
Gc · [F	B]c − G̃c ·

[
F̃	 B̃

]
c

G̃nc ·
[
F̃	 B̃

]
nc

 = AS = 0 (4.4)
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The first matrix, A, is tall or square and is constructed by a collection of a(θi)’s
all different. By assumption, we use an unambiguous antenna array, therefore A is
full column rank, so that the second matrix, S, is equal to zero. As the binary signals
are non-trivial, for all sources there is an n ∈ N, such that for all the bit is equal
to 1 for this time index. Then we obtain giφ

n
i = 0, which is impossible since A8

assumes that gi �= 0 and |φi| = 1. Hence Gnc ·[F	B]nc and G̃nc ·
[
F̃	 B̃

]
nc

have to

be zero-dimensional, as well Anc and Ãnc are zero-dimensional. We conclude that
there were only common DOAs, and we can state that A, A, and Ã are equal up to
permutation of the columns. After fixing this permutation, we obtain the equality
of the rows of Gc · [F	B]c and G̃c ·

[
F̃	 B̃

]
c
. For each row i = {1, · · · , d} of the

factor S, we have:
gi · (fi 	 bi) = g̃i ·

(
f̃i 	 b̃i

)
(4.5)

By taking the absolute value of Equation (4.5), we get: |gi|bi[n] = |g̃i|b̃i[n], ∀n ∈
{1, · · · , N}. As we consider an infinite number of samples, and that the binary
distribution of bi[n] is equiprobable, there is almost surely a sample time n0 for
which bi[n0] = 1. Then b̃i[n0] =

∣∣∣ gi

g̃i

∣∣∣ with b̃i[n0] ∈ {0, 1}, so b̃i[n0] must be equal
to 1 as well, and we obtain:|gi| = |g̃i|. Then the absolute value of Equation (4.5)
results in: b̃i = bi, ∀i ∈ {1, · · · , d}.

Yet, gi = |gi| . ejψi , and g̃i = |g̃i| . ejψ̃i . Thus Equation (4.5) leads to:(
ejψifi − ejψ̃i f̃i

)
	 bi = 0

It remains to prove that, for all i ∈ {1, · · · , d}, fi and ψi coincide with f̃i and ψ̃i.
Given an i.i.d. binary equiprobable source bi[n], we can find almost surely two

successive time indices, n1 and (n1+1), both belonging to the support of bi: bi[n1] =
bi[n1 + 1] = 1. Then the equations exp[j(2πn1(fi − f̃i)T + (ψi − ψ̃i))] = 1 and
exp[j(2π(n1 + 1)(fi − f̃i)T + (ψi − ψ̃i))] = 1, yield that (fi − f̃i) = k/T for some
integer k and ψi − ψ̃i = 2k̃π for some integer k̃. So gi = g̃i, ∀i ∈ [1, · · · , d], and the
fi’s are uniquely defined in the range [1, T−1).

4.3 The finite sample case

The previous results are of asymptotic nature, and may not hold valid for limited
observation lengths. Therefore, we propose another result, which applies to finite
observation periods.

4.3.1 Method using the binary data property

Considering a binary matrix B of size d×N with i.i.d. equiprobable binary entries,
we derive the probability to observe, up to a row and a column permutation of B,
a square sub-matrix of size d× d, which is upper-triangular with zeros in the lower
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triangle, and ones on the main diagonal. With this probability, we state the finite
sample case identifiability, Proposition 4.3.4. This proposition was first presented in
[46].

Lemma 4.3.1 Let B be a d × N matrix with i.i.d. equiprobable binary entries.
The probability that a column of a d × N matrix B with independently identically
distributed binary entries has the form [∗ · · · ∗, 1, 0q−1]

T
is: p(q,N) = 1− (1−2−q)N

The probability to obtain any column of the aforementioned form, but with the
possibility that the 1 has been permuted with one of the 0 is: p′(q,N) = 1− (1− q ·
2−q)N .

Proof Only the last q entries of the column of size d are imposed, so that the
probability to draw such a vector is 2−q. With N realizations, the probability not
to draw such a vector is thus (1− 2−q)N .

Similarly, with the permutation, the probability to get a vector of this form up
to permutation of the last q entries is q.2−q, and the probability not to get one of
those vectors over N realizations is (1− q.2−q)N .

Lemma 4.3.2 Let B be a d ×N matrix containing i.i.d. binary random variables
with N ≥ d. Denote by P1(d,N) the probability that B contains an upper triangular
matrix with ones on the diagonal up to a row and column permutation. Also denote
by Pf (d,N) the probability that B is full rank. Then they are related as:

Pf (d,N) ≥ P1(d,N) =
d∏

q=1

[1− (1− q.2−q)N−d+q] (4.6)

Proof A sufficient condition for matrix B to be full rank is that there exist d
columns building together an upper triangular matrix with ones along the diagonal,
up to a row permutation; thus, P1 ≤ Pf .

The proof of the expression of P1 is constructive. First let us extract a column
of B that contains one 1 and all other elements equal to 0. Lemma 4.3.1 indicates
that the probability to draw such a vector is p′(d,N). Denote i1 the index of the
1 in this vector. Now in the remaining N − 1 samples, we look for a column such
that there is a 1 at another index than i1, 0 elsewhere, and anything at index i1;
e.g. a permutation of [∗, 1, 0d−2]

T
. The probability to obtain such a vector is:

p′(d− 1, N − 1). Repeating the same argument, we finish by the last column, which
consists of a 1 at the last possible index, and anything otherwise. The probability
is then p′(1, N − d + 1).

The product of the probabilities is the probability that such a set of columns
exists , and is: P1 =

∏d
q=1 p′(d,N − d + q).

Before we can state the Proposition, we need a last lemma:

Lemma 4.3.3 Let B̃ be a (d − 1) × N matrix containing i.i.d. binary random
variables with N ≥ d. Let b̃i be one of the rows of B̃. Construct a d × N binary
matrix B as:

B =
[
b̃T

1 , · · · , b̃T
i , b̃T

i , · · · , b̃T
d−1

]T
=

[
bT

1 , · · · ,bT
i ,bT

i+1, · · · ,bT
d

]T
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The probability that B contains, up to a row and a column permutation, an upper
block triangular matrix with ones on the diagonal and a 2× 2 block of 1 on the rows
i and i + 1, is bounded by the probability P1(d,N).

Proof Comparing with Lemma 4.6, the difference in the construction occurs during
the step i and i + 1.

Indeed in the previous lemma, we wish to find two columns as α and we get two
columns as β:

α =


∗

1 ∗
0 1
0

 and β =


∗

1 1
1 1
0


where the probability for obtaining α is pα = [1 − (1 − q.2−q)n][1 − (1 − (q −
1).2−q+1)n−1]. Given that the rows i and i + 1 are the same, the probability for
finding β is pβ = [1− (1− (q − 1).2−q+1)n][1− (1− (q − 1).2−q+1)n−1].

Now, we have to compare pα and pβ . Note that if q ≥ 2, then q ≤ 2(q−1). After
numerous steps:

[1− (1− q.2−q)n] ≤ [1− (1− (q − 1).2−q+1)n] (4.7)
pα ≤ pβ (4.8)

so the probability that we can extract a desired sub-matrix is bounded by P1(d,N).

Now, we can state:

Proposition 4.3.4 Under the assumptions A1 to A8, for an observation duration
N ≥ d, given the matrix X, the probability that the parameters {θi, gi, fi, i ∈ [1, .., d]}
are unique is larger than the probability P1(2d,N), up to a permutation.

Proof Assume there are two solutions to this problem: Θ and Θ̃. Then, remind
equation (4.2) which gives:

A ·G · [F	B]− Ã · G̃ ·
[
F̃	 B̃

]
= 0

Re-order the rows and the columns of the matrices to bring together the rows
containing the same frequencies and the same binary sequences in the two solutions,
and bring together the rows containing different frequencies, but identical binary
sequences. It gives:

A · S = 0

with:

A def=
[

(AG)c−(ÃG̃)c (AG)nc −(ÃG̃)nc (AG)sc −(ÃG̃)sc
]

S def=


(F	B)c
(F	B)nc
(F̃	 B̃)nc
(F	B)sc
(F̃	 B̃)sc
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where the index [.]sc stands for “semi-common”, e.g. different frequencies, but same
binary sequence. S is equal to F 	 B by definition, where B is a binary matrix
as in Lemma 4.3.3. The probability that there exists a sub-matrix of B, such that
it has the desired form described in Lemma 4.3.3, is bounded by P1(2d,N). This
form is block diagonal, with blocks of size 1 and 2, where for the block of size 2,
the frequencies are different. So the determinant of these blocks is of the form:
det = K(φk

1 − φk
2), with k being a constant, and k an integer bounded by N . Such

an expression is zero for a finite subset of discrete values taken from an infinite set,
so the determinant is almost surely non-zero. Thus, by construction, S is full row
rank, hence A is null. As the first row of any product AG is not zero (A8), (AG)sc,
(ÃG̃)sc, Anc and Ãnc have to be zero-dimensional, as well (F 	 B)sc, (F̃ 	 B̃)sc,
Gnc · [F	B]nc and G̃nc ·

[
F̃	 B̃

]
nc

are zero-dimensional. This means that there

was only a common part, for which (AG)c = (ÃG̃)c. Assumption A2 provides
G̃c = Gc, and Ãc = Ac. This proves identifiability with a probability larger than
P1(2d,N).

4.3.2 Method using the ZCM property

In [47], we proposed a method to identify continuous Constant Modulus (CM)
sources. CM signals have unit norm and a uniformly distributed phase over [0, 2π].
The method in [47] uses the linearization technique presented in [12] to create a
larger source matrix, Ψ, which contains all second-order cross-products of the dif-
ferent sources.

We then use an inductive argument to show that Ψ is full column rank with
probability 1 as soon as the number of samples exceeds d(d + 1). Having this full
rank matrix allows to conclude that the sources are identifiable.

Here we use the same methodology applied to Zero-CM (ZCM) sources. First,
we recall the ZCM properties and distribution function, and we introduce a matrix
Ψ that will contain all third-order cross-products of the sources. Next, we present
a lemma that states the probability for Ψ to be full column rank, and we state the
identifiability proposition based on this lemma.

We remind that the probability distribution function of a ZCM source s[n] is:

P (s[n] = 0) = P (|s[n]| = 1) =
1
2

with a uniform probability over [0, 2π[ for the phase distribution. We remind also
Property 3.1.2 for a ZCM source s(t):(

s∗s2
)
[n] = s[n]

We consider a collection of stationary i.i.d. ZCM vectors s[n], with n ∈ {1, · · · , N},
with d entries: s1[n] to sd[n]. We denote byΨ the N×d2(d+1)/2 matrix constructed
as:

Ψ = [Ψa|Ψb] (4.9)
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with:

Ψa =

 s1[1] . . . sd[1] (s∗1s1s2) [1] . . . (s∗dsdsd−1) [1]
...

...
...

...
...

...
s1[N ] . . . sd[N ] (s∗1s1s2) [N ] . . . (s∗dsdsd−1) [N ]


Ψb =


(
s∗1s

2
2

)
[1] . . .

(
s∗ds

2
d−1

)
[1]

...
...

...(
s∗1s

2
2

)
[N ] . . .

(
s∗ds

2
d−1

)
[N ]


whose rows contain all the non redundant elements s∗i sjsl[n], ∀{i, j, l} ∈ [1, .., d]3,
∀n ∈ [1, ..N ]. The rows are sorted with the time index, the columns are sorted such
that the elements for which i = j = l are placed first, then the elements with j �= l,
and lastly the elements such that j = l, and i �= j.

Then, we state:

Lemma 4.3.5 Given a matrix S of size d×N with entries, si[n], independent iden-
tically distributed ZCM samples. Assume that N > 1

2d
2(d + 1), then the probability

that the matrix Ψ has independent columns is larger than:{
P2(d,N) = Pα(N)

[∏d−2
i=1 P

(i)
T (N − d)

]
pf , if d > 2

P2(2, N) = pfPα(N) , otherwise

where Pα(N) =
∏d

i=1

[
1− (

1− d−i+1
2d−i+1

)N−i+1
]
, and

P
(i)
T (N) =

N−Ld−i+1∑
Ni=ld−i+1

PC(Ni, N − Ld−i+1)
ld−i+1∏
j=1

p0(Ni − j + 1)

with
Ld−i+1 =

∑i−1
j=1 ld−j+1 ,

ld = d
[

3d−1
2

]− 1 ,

PC(Na, Nb) = 1
2Na

Na!
(Na−Nb)!Nb! ,

pf =
∏2

i=0 1− (
3
4

)N−d−i−L3
,

p0(N) = 1− 2−N .

Note that if N < d2(d + 1)/2, then Ψ is definitely not full column rank. The
proof is given in Appendix A.

Now, let us state:

Proposition 4.3.6 Let s[k], for k = {1, . . . , N} be a collection of N i.i.d ZCM d-
vectors with N > 1

2d
2(d+1). Assume that there is an invertible linear transformation

T such that y(k) = Ts(k), ∀k = 1, . . . , N , where all y(k) are ZCM d-vectors as well.
Then, with probability larger than P2(d,N), T is unique. In this case, T = ΛP, Λ
is a diagonal matrix with unit-norm entries and P is a permutation.
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Proof It is sufficient to prove that each row of T contains exactly one non zero
element tij , which is unit norm: |tij | = 1. Since T is invertible, it holds also for each
column, so that these locations are different for each i.

From now, we consider separately each row of T. Let tm be the m’th row of
T, and let tm = [t1, . . . , td]. Let y[k] = ym[k] be the m’th element of y[k]. Then
∀k ∈ {1, · · · , N}, we have

y[k] =
d∑

i=1

tisi[k] (4.10)

The ZCM property can be written as: {y = 0, or |y| = 1}, which is equivalent to
y(yy∗ − 1) = 0, and y = |y|2y, which leads ∀k ∈ {1, . . . , N} to:

d∑
l=1

tlsl[k] =
d∑

i,j,l=1

t∗i tjtls
∗
i [k]sj [k]sl[k] (4.11)

=
d∑

i=1

|ti|2ti|si[k]|2si[k] +
d∑

1≤i1≤j<li
=j 
=l

2t∗i tjtls
∗
i [k]sj [k]sl[k] (4.12)

where the last sum consider all the cross-products such the i �= j and j �= l. Denote:

pT = [t1
(|t1|2 − 1

)
, . . . , td

(|td|2 − 1
)
, 2t∗1t1t2, . . . , 2t

∗
dtdtd−1, t

∗
1t

2
2, . . . , t

∗
dt

2
d−1]

By linearizing (4.12), and using s2
i s

∗
i = si, we obtain:

Ψp = 0 (4.13)

From Lemma 4.3.5, the probability that Ψ is full column rank is larger than
P2(d,N). Assuming that Ψ is full column rank, the only solution is p = 0.

Since T is invertible, there is at least one non-zero element (say ti). Then p = 0
implies that: {

ti(|ti|2 − 1) = 0
t∗i t

2
j = 0, ∀j �= i

⇒
{ |ti| = 1

tj = 0, ∀j �= i

Two different rows cannot have their non-zero element in the same column be-
cause T would not be a bijection. Thus the absolute value of T is a permutation,
and the identifiability holds with probability P2(d,N).

We can now state the identifiability proposition:

Proposition 4.3.7 Under the assumptions A1 to A8, for an observation dura-
tion N ≥ d, given the matrix X, the probability that the parameters {θi, gi, fi, i ∈
[1, · · · , d]} are identifiable is larger than P ′

2(d,N) =
[
1− (

3
4

)N−1
]d

P2(d,N).

Proof Assume there are two solutions to this problem: Θ and Θ̃. Then, equation
(4.2) tells:

A ·G · S− Ã · G̃ · S̃ = 0
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where S = [F	B] is a ZCM source. As the array is unambiguous and the DOAs
are different (A2 and A3), A is full column rank. Multiply on the left side by the
left inverse of A and by the inverse of G (A8), then:

S = G−1A†ÃG̃S̃

= TS̃

where T is an invertible matrix, since theA and Ã were spanning the same subspace.
We recognize the situation of the previous Proposition, so with probability

P2(d,N), T is a permutation multiplied by a diagonal matrix with unit-norm en-
tries. We deduce the equality up to a permutation and a phase shift: S = S̃. Using
the same argument as in the proof of Proposition 4.2.1, the equality of matrices A
and Ã can be shown, and hence the equality of matrices G and G̃.

It remains to show that S = S̃ implies the equality of the bits and the equality of
the frequencies. By taking the absolute value of the equality of the sources we obtain
the equality of the binary matrices: B = B̃. Then, for each source i ∈ {1, · · · , d},
we have:

fi 	 bi = f̃i 	 bi

where fi is the i-th row of F. Assume now that we observe two consecutive samples
such that bi[k] = bi[k + 1] = 1, the probability that such an observation occurs is[
1− (

3
4

)N−1
]
. Using the same argument as at the end of the proof of Proposition

4.2.1, we obtain the equality of the frequencies.

4.3.3 Simulations

This section aims at determining to which measure Propositions 4.3.4 and 4.3.6
provide good lower bounds for the actual identifiability probability distribution.

In order to estimate the actual probability distribution, several independent re-
alizations of F	B were randomly created by taking randomly a residual carrier and
a data-stream. We ran one million independent realizations for the study. For each
independent run, we estimated the minimal number of samples N required to have
F	B of full row rank. After this collection of results, we performed a histogram to
retrieve the probability distribution , which is denoted PF (d,N). As the previous
demonstrations use the rank of the source matrices, it is interesting to compare them
together.

In Figure 4.1, we compare the bounds for 5 sources with the estimated probability.
While the binary bound is better than the ZCM bound, both proposed bounds are
not tight, and may be far from the actual probability.

To see the convergence of the bounds, we plot in Figure 4.2 the complementary
probability of figure 4.1 for 5 sources. It appears that the ZCM method has a
steeper slope than the binary method, so for large numbers of samples, this method
can provide a better bound.

Figure 4.3 presents the simulated complementary probability of identifiability.
The number of sources varies from 2 to 10. We note that the identifiability reaches
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Figure 4.1: Actual probability distribution, and identifiability probabilities bounds
as a function of the number of samples with 5 sources, for both cases.
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Figure 4.2: Complement of the probabilities of Figure 4.1: Actual probability dis-
tribution, and both bounds as a function of the number of samples with 5 sources.

very fast the complementary probability of 10−2, and that the slope of the curves are
log-linear with the number of samples and sub-linear with the number of sources. It
appears that 100000 Monte-Carlo runs is just sufficient to have probability precision
below 10−4.

The results from Proposition 4.3.4 are computed and displayed in Figure 4.4.
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Figure 4.3: Complement of the identifiability probability computed by simulating
100000 independent runs. The number of sources is from left to right 2 to 10.

We note first that the number of samples to reach a complementary probability of
10−2 is larger than in Figure 4.3. Second, the slopes of the curves become less steep
for increasing d with the number of sources for d ≥ 3.

The results from Proposition 4.3.6 are computed and displayed in Figure 4.5.
The number of samples to reach 1−P2 ≤ 10−2 is even larger than with the previous
bound. But the slope of the curves is independent of the number of sources, and
indicates a behavior in 10−0.12N , which has a better slope than the previous bound.

To conclude, the validity of the bounds is not so good: for a small number of
source (d), the bound P1 is correct, but for large number of d none are good.

4.4 Conclusion

In this Chapter, we stated uniqueness propositions for the infinite sample case, and
two different bounds for the finite sample case.

The gap between the identification failure probability curves obtained by simula-
tion and the bounds issued by Proposition 4.3.4 and Proposition 4.3.6 demonstrates
that the bounds for the finite case are loose, so finite sample identifiability is not a
closed problem. One direction for future research could be to improve the final step
of the Proof of Lemma 4.3.5.

The assumptions made in this Chapter are mainly relevant to the body part
of the mode S sources. We note that for a mixture of 5 overlapping sources, the
complementary probability is bounded by 10−4 for short mode S (56 samples for



4.4. CONCLUSION 53

0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Samples

Pr
ob

ab
ili

ty
: 1

−P
1

Figure 4.4: Complementary of the identifiability probability for the binary method.
The number of sources are from left to right 2 to 10

the body), and for long mode S, the bound is below 10−6. We can conclude that
the most relevant case, with less than 5 sources, the sources will be “almost surely”
identifiable.

While not investigated in this Chapter, one can perhaps show that partly over-
lapping sources need less samples for a similar probability of uniqueness. This can
be a future subject for research.
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Figure 4.5: Complement of the identifiability probability for the binary method.
Here, only the probabilities for 2 to 5 sources are presented.



Chapter 5

Cramer-Rao Bounds

After ensuring that an estimation problem has a unique solution in the noise-free
case or at least asymptotically, the logical next step is to determine what can be
the best result one can obtain in the presence of noise. Indeed, any unbiased es-
timator of any unknown variable includes some estimation error. The variance of
this error is bounded by its Cramer-Rao bound (CRB) [48], which is independent
from the estimation algorithm, and depends only on the data model. The difference
between the variance and the Cramer-Rao bound is an indication of the quality of
this estimator. Note that identifiability ensures that the CRB is finite.

In this chapter, we derive the CRB of the SSR problem for the data model
described in Chapter 3. First, we recall the definition of the CRB and our model.
We then present the result of our derivations, and the last section presents some
simulations.

5.1 Introduction

First, we review the general definition of the CRB, then we recall the data model
used.

5.1.1 Definition of Cramer-Rao Bound

Consider the data model X = S(λ) +N, where λ is a real-valued parameter vector,
and N is a complex Gaussian noise matrix with independent identically distributed
entries. The matrices are of size M × N : M sensors and N samples. Define the
Fisher Information Matrix, FIM, as in [48], and denote it by I(λ). The (i, j)-th
entry of I(λ) is defined by:

[I(λ)]ij
def= −EX/λ

{
∂2 ln p (X|λ)

∂λi∂λj

}
= EX/λ

{
∂ ln p (X|λ)

∂λi
· ∂ ln p (X|λ)

∂λj

}
(5.1)

55
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where the likelihood function p (X|λ) is the probability density of X given λ, for
our data model:

p (X|λ) =
[
πσ2

]−MN · exp
{
−trace

{
1
σ2

[X− S (λ)]
H
[X− S (λ)]

}}
(5.2)

=
[
πσ2

]−MN · exp
{
−

N∑
k=1

1
σ2

[x[k]− s[k] (λ)]
H
[x[k]− s[k] (λ)]

}
(5.3)

For a given X, any unbiased estimator λ̂(X) of λ is a random variable and its
variance is lower bounded by its Cramer-Rao Bound (CRB). For the ith element of
λ, this bound is the ith diagonal element of the inverse of the Fisher Information
Matrix (viz. [48]), assuming the inverse exists:

Var (λ̂i) ≥ CRB (λi) = [I−1(λ)]ii

We present the next Lemma, as it is useful for later derivations.

Lemma 5.1.1 Consider the data model X = S(λ) + N, where λ is a real-valued
parameter vector and N is white i.i.d complex Gaussian noise with known variance
σ2. The (i, j) entry of the corresponding FIM is:

[I(λ)]ij =
2
σ2

N∑
k=1

Re

{(
∂s[k]
∂λi

)H

·
(

∂s[k]
∂λj

)}

=
2
σ2

Re

{
Tr

{(
∂S
∂λi

)H

· ∂S
∂λj

}}
(5.4)

where s[k] is the k-th column of S corresponding to the time sample k.

Proof: The first derivative of (5.3) with respect to λi results in:

∂ ln p(X|λ)
∂λi

=
1
σ2

N∑
k=1

[
nH [k] · ∂s[k]

∂λi
+

∂sH [k]
∂λi

· n[k]
]

(5.5)

A complex Gaussian distribution is circularly symmetric, so the expectation of
odd order terms is zero:

∀{i, j, k} ∈ N
3

{
E

{
nH [i]n[j]n[k]

}
= 0

E {n[i]} = 0

The product of the first derivatives yields the result.
Let p be the size of the parameter vector λ, and define the matrix containing the

derivative at the time k ∈ {1, · · · , N}:
Dk(λ) =

[
∂s[k]
∂λ1

· · · ∂s[k]
∂λp

]
then from (5.4), the Fisher Information matrix, I(Θ) is:

I(λ) =
2
σ2

Re

{
N∑

k=1

DH
k (λ)Dk(λ)

}
(5.6)
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5.1.2 Modeling

We recall the SSR data model from the description of Equation (3.9): X is the
received signal matrix (M × N), which depends on the parameter vector λ =
{θi, gi, fi; 1 ≤ i ≤ d; B}:

X = A ·G · [F	B] +N

where:

• The array response A depends only on the DOAs: θi, i ∈ {1, · · · , d}.
• The gain matrix depends only on the source powers and initial phases: gi,

i ∈ {1, · · · , d}. We characterize the diagonal matrix G by: Gii = gi
def= ρiΨii

with ρi the norm of gi: ρi = |gi|, and Ψ = diag[ψ1, · · · , ψd] is a diagonal
matrix with unit-norm entries such that the diagonal elements contain the
initial phases: Ψii.

• The frequency matrix F depends only on the residual frequencies: fi, i ∈
{1, · · · , d}. Recall that φi = exp (2πfiT ), and Φ = diag[φ1, · · · , φd].

• The binary source signal B contains the data-stream : bi[k], i ∈ {1, · · · , d},
k ∈ {1, · · · , N}, we assume the binary distribution to have an i.i.d equiprobable
outcome out of {0, 1}, so its covariance is:

Rbb =
1
4

(
11T + I

)
The noise matrix N is complex Gaussian, independent identically distributed,

and spatially white with identical variance. This noise mainly originates from the
thermal noise of the receiver, so we assume we know σ2.

5.2 Cramer-Rao Bounds

In this section, the CRB is derived in various cases. Indeed, the CRB depends on
the hypothesis made, and the “a priori” knowledge on the data. The following cases
will be under investigation:

• Case α : Deterministic known B.
• Case β : Stochastic B.
• Case γ : Deterministic unknown B.

We first study the deterministic cases, then the stochastic case.

5.2.1 Case α: Deterministic known B

In this subsection, we consider that we know the binary signal matrix B with entries
bi[k]. This strong assumption is relevant in the context of high SNR, because the
detection of the bits ({0, 1}) appears to be almost perfect under these conditions of
operation. One consequence is that we consider a reduced parameter vector λ.
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Define the following notation:

DA =
[
∂a
∂θ (θ1) · · · ∂a

∂θ (θd)
]

G = diag(ρ).Ψ
CT = 2πT [1 · · · 1]T . [0 1 · · · N − 1]
S = F	B

and we order our parameter vector as:

λ = [θ1, · · · , θd, f1, · · · , fd, ρ1, · · · , ρd, ψ1, · · · , ψd]T (5.7)

Proposition 5.2.1 With known binary signal, the FIM for our data model is:

Iα =
2
σ2


Iθθ Iθf Iθρ Iθψ
ITfθ Iff Ifρ Ifψ
ITρθ ITρf Iρρ Iρψ
ITψθ ITψf ITψρ Iψψ

 (5.8)

where:
Iθθ = Re

{
(GSSHGH)	 (DH

ADA)∗
}

Iff = Re
{(
G(CT 	 S)(CT 	 S)HGH

)	 (AHA)∗
}

Iθf = Re
{(
GS(CT 	 S)HGH

)	 (DH
AA)∗

}
Iρρ = Re

{
(ΨSSHΨH)	 (AHA)∗

}
Iθρ = Re

{
(GSSHΨH)	 (DH

AA)∗
}

Ifρ = Re
{[

(G(CT 	 S))(ΨS)H
]	 (AHA)∗

}
Iψψ = Re

{[
(GS)(GS)H

]	 (AHA)∗
}

Iθψ = Re
{

[
(GS)(GS)H

]	 (DH
AA)∗

}
Ifψ = Re

{

[
(G(CT 	 S))(GS)H

]	 (AHA)∗
}

Iρψ = Re
{

[
(ΨS)(GS)H

]	 (AHA)∗
}

Proof: We present the derivation for Iθρ; the other submatrices have similar deriva-
tions. Recall:

s[k] =
d∑

i=1

a(θi)giφk
i bi[k]

then:

N∑
k=1

(
∂s[k]
∂θi

)H (
∂s[k]
∂ρj

)
=

N∑
k=1

[(
giφ

k
i bi[k]

)∗ (
∂a
∂θ

(θi)
)H

] [
a(θj)ψjφ

k
j bj [k]

]
=

(
∂a
∂θ

(θi)
)H

a(θj) .
N∑

k=1

(
giφ

k
i bi[k]

)∗
ψjφ

k
j bj [k]

=
(

∂a
∂θ

(θi)
)H

a(θj) . g∗i [F	B]∗i [F	B]Tj ψj

=
(
DH

AA
)
ij

.
(
G∗[F	B]∗[F	B]TΨ

)
ij
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where [F 	B]i denotes the i-th row of [F 	B]. It eventually follows from Lemma
5.1.1 that:

Iθρ =
2
σ2

Re
{(
DH

AA
)∗ 	 (

GSSHΨH
)}

5.2.2 Case β: Stochastic B

In this subsection, we consider the binary symbols as unwanted parameters with a
known probability distribution. Using the binary probability distribution, we derive
a stochastic CRB under the assumption that the SNR of each source is high enough.
Requiring high SNR is an acceptable condition given the SSR situation. The precise
assumption is that the singular values of (AG) are one order of magnitude larger
than M times the noise standard deviation. Note that we are again concerned with
a reduced vector λ without the binary information as in Equation (5.7).

Proposition 5.2.2 Define the Töplitz matrix C(d)
B = 1

4

(
1d×1.1Td×1 + Id

)
, and de-

fine:

CD
B =

(
14×1.1T4×1

)⊗C(d)
B =


C(d)

B C(d)
B C(d)

B C(d)
B

C(d)
B C(d)

B C(d)
B C(d)

B

C(d)
B C(d)

B C(d)
B C(d)

B

C(d)
B C(d)

B C(d)
B C(d)

B


assuming that each source has a high SNR, the stochastic Fisher Information Matrix
for estimating λ is:

Iβ(λ) = Iδ(λ)	CD
B (5.9)

where Iδ(λ) is the FIM for known binary sources all equal to 1: bi[k] = 1, ∀i ∈
{1, · · · , d}, and ∀k ∈ {1, · · · , N}, given by Iα for S = F.

The complexity of computing Iβ is of the same order as computing Iα. The
proof uses the following lemma, and is presented next to it.

Lemma 5.2.3 Define the simplified model at a time k: x[k] = M[k].b[k] + n[k],
where M[k] is the “mixing matrix”, with mi[k] the column of M[k] that contains the
i-th parameter λi of λ. further define the function δs(i − j) to be equal to 1 if the
parameters λi and λj correspond to the same source, 0 otherwise1.

Assume that the norms of the mi[k] are well above the noise level, then the
stochastic (i, j) entry of FIM is:

Iβ
i,j =

2
σ2

(
1
4
+

δs(i− j)
4

)
Re

{
N∑

k=1

∂mi[k]
∂λi

H
∂mj [k]
∂λj

}
(5.10)

1e.g. equal to 1 for λi = f3 and λj = θ3; 0 for λi = f3 and λj = g1.



60 CHAPTER 5. CRAMER-RAO BOUNDS

Since the proof of the Lemma is long, it is postponed to Appendix B.2.
The proof of the proposition 5.2.2 consists only of recognizing in the result of the

lemma that the real part is equal to the definition given by Lemma 5.1.1 for a source
mixture of sinusoidal (e.g. the bits are all equal to 1). Thus, the term inside the real
part is the (i, j) entry of the FIM Iδ. As we recognize in the first term the entry of
(i, j) entry of CD

B , we conclude that the two matrices are point-wise multiplied.

5.2.3 Case γ: Deterministic unknown B

In this subsection, we consider the binary signal as an unknown desired parameter.
To overcome the fact that the binary signal is based only on a discrete set, and thus
non-differentiable, we consider here that the binary signal is a real continuous vari-
able in order to allow the computation of the derivative as a continuous parameter.
This hypothesis makes sense considering that the signal is not exactly taken from
a discrete set due to the imperfections of the transmitter (or equivalently, we could
intellectually consider two very thin Gaussian distributions centered on {0, 1}, which
is equivalent to adding a small Gaussian noise).

Proposition 5.2.4 Order the parameter vector as:

λ =
[
bT [1], · · · ,bT [N ], θ1, · · · , θd, f1, · · · , fd, |g1|, · · · , |gd|, ψ1, · · · , ψd

]T
where b[k] is the output of the binary sources at time instant k. Define the following
matrices, with k ∈ {1, · · · , N}:

Hk
def= Re

{
Φ−kG∗AHAGΦk

}
B[k] def= diag{b[k]}
Ib[k]θ

def= Re
{
Φ−kG∗AHDAGΦkB[k]

}
Ib[k]f

def= Re
{
2πkTΦ−kG∗AHAGΦkB[k]

}
Ib[k]ρ

def= Re
{
Φ−kG∗AHAΨΦkB[k]

}
Ib[k]ψ

def= Re
{
Φ−kG∗AHAGΦkB[k]

}
Ik

def=
[
Ib[k]θ Ib[k]f Ib[k]ρ Ib[k]ψ

]
where the Ik’s are d× 4d matrices. The FIM is then:

Iγ =
2
σ2


H1 0 I1

. . .
...

0 HN IN
IT1 . . . ITN Iα


The proof is not provided since it is a direct calculation.

The various CRBs are the diagonal elements of the inverse of the FIM, which
results in this case in a (N +4d) square matrix. This might be a too large matrix to
invert due to computational cost, however we can use the Schur complement theorem
(see Appendix B.1) on Iγ to get the next proposition:
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Proposition 5.2.5 Define:

B′ = Iα −
N∑

k=1

AT
kH

−1
k Ak

Oij = H−1
i AiB′−1AT

j H
−1
j

assuming that Iα, the Hk’s, and then Iγ are invertible. The inverse of Iγ is:

I−1
γ =


H−1

1 +O11 O1N −H−1
1 A1B′−1

. . .
...

ON1 H−1
N +ONN −H−1

N ANB′−1

−B′−1AT
1 H

−1
1 . . . −B′−1AT

NH
−1
N B′−1

 (5.11)

Since we are interested only in the diagonal elements of the inverse, this formu-
lation allows us to save some computations.

5.3 Simulations

In order to check the quality of the bounds, we compare the various Cramer-Rao
Bounds. The deterministic bounds are different for each new realization of B. The
stochastic bound incorporates the knowledge of the statistic of B, so no realization
are needed. The goal of this section is to determine if we can use one bound for the
other (we don’t know the matrix B beforehand, so it is more practical to use the
stochastic bound).

The simulations are based on 200 independent runs, where the parameters are
fixed but the binary matrix B and the noise matrix N are varied randomly. We
compare the Cramer-Rao bounds corresponding to the cases β, and α. The scenario
consists of d = 2 sources impinging on an array of M = 4 elements with directions
{80, 100} degrees, and with residual carriers ±0.02T (i.e. ±10 kHz). The SNR was
30 dB per source, and the number of samples was N = 100. We present two different
simulations; in the first one, the number of samples varies from 64 to 32768 by a
power of 2, and in the second one, the SNR varies from 0 dB to 60 dB.

For case α, we show the average of 200 independent runs.
Figure 5.1 and 5.2 show the CRBs for θ and f as function of N, with a SNR of 30

dB. From Figures 5.1 and 5.2, we note the closeness of both methods, which indicates
that the stochastic and the deterministic CRBs can be exchanged. The only case
were the CRBs differ, is at small numbers of samples, which is not surprising since
the CRBs are by definition valid for large SNRs and number of samples.

Figure 5.3 and 5.4 show the CRBs for θ and f as function of SNR, with N = 100:
also the two bounds give the same result.
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Figure 5.1: Standard deviation of the DOA as function of the number of samples
for the CRB bound α and β.

5.4 Conclusion

In this chapter, we have presented Cramer-Rao Bounds for three cases: deterministic
known B, deterministic unknown B, stochastic B. The simulations have shown good
agreement between the CRBs for deterministic known B and stochastic B. Thus
in the latter simulations, we will compare the algorithms with the stochastic CRB
only, as it is simpler to compute.
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Figure 5.2: Standard deviation of the residual frequency as function of the number
of samples for the stochastic CRB bound α and β.
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CRB bound α and β.
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Chapter 6

Algorithms

The goal of this thesis is to study how SSR replies can be separated using algebraic
techniques. In the previous chapters, we defined the problem and its relevance, we
studied identifiability —is it possible to solve the problem?—, and we considered
the Cramer-Rao Bounds —what would be the quality of the best estimators? The
next step is to give practical solutions.

In this Chapter, we propose and define algorithms to separate the replies and
estimate their parameters. One conclusion of Chapter 3 is that the SSR sources are
rich in structure, therefore many different properties may be used. Each section in
this Chapter will focus on a specific property of the SSR sources and thus will lead
to a different algorithm. In section 6.2, we exploit Properties 3.1.2: the sources have
a Zero-Constant Modulus. These properties lead to the already existing algorithm
AZCMA by Van der Veen [21], and the improved multi-shift ZCMA. In Section 6.3,
we use Correlation Property 3.2.1 to extend the SOBI algorithm to a new algorithm
called ESPRIT-SOBI. Lastly, section 6.4 presents an algorithm that uses the data
Manchester Encoding of the different modes, based on Properties 3.1.1. But first we
recall the model, propose a simplified version, and recall some algebraic results.

6.1 The problem statement and useful results

6.1.1 The problem statement

For the convenience of the reader, we recall the signal model from Chapter 3.
We have a scenario where an array of M elements receives d SSR sources. We

denote by T the sampling period, and xi[n] the sampled version of the signal received
on the i-th element of the array at the time t = nT . We denote the n-th received
signal x[n] = [x1[n], .., xM [n]]T . We collect these vectors for the samples [1, .., N ]
into a received signal matrix X = [x[1], ..,x[N ]]. Then X has the model:

X = AGS+N (6.1)

65
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Here, N is the M ×N noise matrix constructed in the same fashion as X. A is the
M × d steering matrix that contains the steering vectors a(θi), 1 ≤ i ≤ d, where
the θi’s are the directions of arrivals. G is the d× d diagonal gain matrix. S is the
d×N transmitted sources matrix, and has the structure:

S = [F	B]

where 	 is the Schur-Hadamard (element-wise) matrix multiplication between two
matrices. F is the frequency matrix that contains the residual frequencies over the
time: the i-th row of F is fi = [φi, . . . , φ

N
i ], where φi = exp(2πjfiT ), ∀i ∈ [1, .., d].

B = [bT
1 , . . . ,bT

d ]
T is the binary matrix that contains the bit information with

bi = [bi[1], .., bi[N ]] and ∀i ∈ [1, ..d], ∀n ∈ [1, .., N ], bi[n] is taken on the alphabet
{0, 1}, with equal probability.

In this Chapter, we do not use the properties of the antenna array, so for sim-
plicity we consider that the sources are mixed at the receiver by an unstructured
matrix M:

X = MS+N

where in fact M = AG. Note that with this model, M may also reflect the imper-
fections of the array such as calibration errors, coupling errors, or inaccuracies in
the position of the elements. We only assume the matrix M to be left-invertible.

To restore the sources, we look for a series of beamformers {wi}, such that
∀i ∈ {1, · · · , d}:

ŝi[n] = wH
i x[n]

or in matrix form:
Ŝ = WHX = WHMS+WHN

where we try to make Ŝ to have properties similar to S. The main advantage of this
approach is its insensitivity to model mis-matches of the array.

6.1.2 Prior processing

Throughout this chapter, we assume that the number of sources has been accurately
estimated. For instance, this estimation can be performed by a White Noise Test
(WNT, see [9]), which assumes that the noise is spatially white with a known noise
power. Since most of the noise consists of the thermal noise of the receiver, this
is a plausible assumption. Denote by λi, i ∈ {1, · · · ,M}, the ordered eigenvalues
of the sample covariance matrix of X. The WNT compares the sum Sd = (M −
d)−1

∑M
n=d+1 λn to a threshold γ to detect the number of sources d, where γ is

determined by the desired probability of false alarm.
Prior to any algorithm, we first reduce the dimension M of the received data

vector x(n) to the number of sources, d, and we whiten the data covariance matrix.
The dimension reduction is necessary to avoid the existence of nullspace beamform-
ers: w0, such that wH

0 M = 0. Indeed, such beamformers could be added to a valid
separating beamformer wi without changing the output signal, and only change
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the output noise. Hence they would destroy the uniqueness of the solution, and
complicate the estimation algorithms.

The data covariance whitening is not as essential, but has been applied in similar
algorithms because it causes the beamformers to converge asymptotically in N to
the Wiener beamformer [49]. Indeed, let Rx = E{xxH} be the data covariance
matrix. Then the whitened data matrix is

X̃ = R−1/2
x X = M̃S+ Ñ .

where M̃ = R−1/2
x M. Let ˆ̃M be an asymptotically unbiased estimate of M̃ in the

whitened domain, then for large N we have ˆ̃M ≈ M̃. A matched beamformer in the
whitened domain is W̃ = M̃. In the original domain the corresponding beamformer
acting on X is

W = R−1/2
x

ˆ̃M ≈ R−1/2
x M̃ = R−1

x M .

This is recognized as the Wiener beamformer. Wiener beamformers are attractive
because they optimize the output Signal to Interference and Noise Ratio (SINR).
Note that after the prewhitening step, the noise is not spatially white anymore.

The usual method to compute the prewhitened data matrix is to use a Singular
Value Decomposition (SVD) on X, which factorizes X matrix into a product of three
matrices,

X = UΣV

whereU is a M×M unitary matrix, Σ is an M×M diagonal matrix, whose diagonal
entries are real positive and ordered, and V is an M × N matrix, whose rows are
orthonormal.

Note that the diagonal entries of Σ are the square roots of the eigenvalues of
the sample covariance matrix R̂x = (1/N)XXH , thus the detection of number of
sources can be computed from Σ at this point.

We split the matrix V into two sub-matrices:

V =
[
Vr

Vn

]
where Vr is d × N . We define as well Ur the d first columns of U, and Σr, the
upper left d× d corner of Σ. The prewhitened and dimension-reduced data matrix
is now defined as

X̃ = Vr

Indeed, Vr contains the d dominant components in the row span of X, and X′X′H =
VrVH

r = I so the data is whitened.
The dimension reduction/prewhitening can also be written as a prefiltering on

X, since if we premultiply the data by1 Σ−1
r UH

r , then we obtain

Σ−1
r UH

r X = Vr = X̃ .

1Note that UrΣ
−1
r is a valid square root of Rx, although it is not the usual symmetric square

root.
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Figure 6.1: Sketch of preprocessing and beamforming.

This shows that the data model in the whitened domain is

X̃ = M̃S+ Ñ (6.2)

with
M̃ = Σ−1

r UH
r M (6.3)

a d × d square invertible mixing matrix, and Ñ a noise matrix with covariance
R̃n = σ2Σ−2

r .
Finally, once a beamforming matrix on X̃ is found, say W̃ such that W̃HX̃ = Ŝ,

then the corresponding beamformer on the original data matrix is

W = UrΣ−1
r W̃ .

In the remaining of this Chapter we will work with the whitened data model
(6.2) but to simplify the notation we will drop the tilde notation.

6.2 Zero/Constant modulus algorithms

In Subsection 6.2.1, we recall the ZCM properties, and we transform them into a
more useful formulation. In Subsection 6.2.2, we then present the two algorithms
proposed in [21], and their shortcomings. To overcome them, we present an adap-
tation of the preceding algorithms in Subsection 6.2.4, as well as some algorithmic
details.

6.2.1 ZCM properties

Initial properties

From chapter 3, we recall the ZCM Properties 3.1.2 for a SSR source s[k]. The first
property is instantaneous in time: s[k] = 0 or |s[k]| = 1, ∀k ∈ {1, · · · , N}, which is
equivalent to:

s[k]s∗[k]s[k] = s[k] (6.4)
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For the second property, we consider the residual carrier of the sources. Denote
by φ the phase shift associated with the residual carrier f of a source s[k]: φ =
exp(2πjfT ), where T is the sampling period. The shift-ZCM Property states that
for any integer τ , two non-zero samples with a distance of τ in time have a phase
difference of φτ . So either the product is zero: s[k]s∗[k−τ ] = 0, or it is s[k]s∗[k−τ ] =
φτ , ∀k ∈ {1, · · · , N}. Combining the two conditions, we obtain the relation:

s[k]s∗[k − τ ] [s[k]s∗[k − τ ]− φτ ] = 0 (6.5)

Note that Equation (6.5) encompasses Equation (6.4) when τ = 0.

Refined static ZCM property

We look for beamformers w such that s[k] = wHx[k] in the noiseless case. Inserting
this in Equation (6.4) leads to:

wHx[k]wTx∗[k]wHx[k] = wHx[k]

Let α = wHw be the square of the norm of w. Multiplying the right hand side
by 1 = 1

αw
Hw, and using the properties of the Kronecker product, the equation

becomes:

[x[k]⊗ x∗[k]⊗ x[k]]T (w∗ ⊗w ⊗w∗) =
1
α
vec (Id ⊗ x[k])T (w∗ ⊗w ⊗w∗)

For any complex vector a, we define a�3 to be a d2(d + 1)/2 vector that con-
tains only the non-redundant elements of the Kronecker product (a∗ ⊗ a ⊗ a∗).
We define also J to be the d3 × (d2(d + 1)/2) matrix that allows to reconstruct
(a∗ ⊗ a ⊗ a∗) from a�3, i.e., a∗ ⊗ a ⊗ a∗ = Ja�3. We denote by p(1)

A [k] the prod-
uct (x[k]⊗ x∗[k]⊗ x[k])T J, and by p(2)

A [k] the product vec (Id ⊗ x[k])T J. Then the
preceding equation is equal to:

αp(1)
A [k]w�3 = p(2)

A [k]w�3 (6.6)

We create the matrices P(1)
A and P(2)

A by stacking the rows p(1)
A [k] and p(2)

A [k],
∀k ∈ {1, · · · , N}. We thus obtain a matrix formulation for the first ZCM property:

αP(1)
A w�3 = P(2)

A w�3 (6.7)

where the matrices P(1)
A and P(2)

A are N × d2(d + 1)/2 .

Refined shift ZCM property

Similarly, we transform Equation (6.5) to:

wHx[k]wTx∗[k − τ ]wHx[k]wTx∗[k − τ ] = φτwHx[k]wTx∗[k − τ ]
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Using the Kronecker product properties, the equation becomes:

[x[k]⊗ x∗[k − τ ]⊗ x[k]⊗ x∗[k − τ ]]T · (w∗ ⊗w ⊗w∗ ⊗w)

= φτ [x[k]⊗ x∗[k − τ ]]T (w∗ ⊗w)

We define a�4 a (d(d+1)/2)2 vector that contains only the non-redundant elements
of the Kronecker product (a∗⊗ a⊗ a∗⊗ a). We define also J′ the d4 × (d(d+1)/2)2

matrix such that (a∗⊗a⊗a∗⊗a) = J′a�4. For the sake of simplicity, we also define

a�2 = a∗ ⊗ a
p(1)
τ [k] = (x[k]⊗ x∗[k − τ ]⊗ x[k]⊗ x∗[k − τ ])T J′

p(2)
τ [k] = (x[k]⊗ x∗[k − τ ])T

Then the preceding equation is equal to:

p(1)
τ [k]w�4 = φτp(2)

τ [k]w�2 (6.8)

We create the matrices P(1)
τ and P(2)

τ by stacking the rows p(1)
τ [k] and p(2)

τ [k],
∀k ∈ {τ, · · · , N}. We thus obtain a matrix formulation for the second ZCM property:

P(1)
τ w�4 = φτP(2)

τ w�2 (6.9)

where the matrix P(1)
τ has size (N − τ)× (d(d + 1)/2)2, and P(2)

τ is (N − τ)× d2.

6.2.2 The existing algorithms

Using the preceding properties, two algorithms were proposed in [21], which we
summarize in this section.

First algorithm

The Analytical Zero/Constant modulus Algorithm (AZCMA) aims at solving Equa-
tion (6.7),

αP(1)
A w�3 = P(2)

A w�3 (6.10)

which is a matrix pencil problem (generalized eigenvalue problem for rectangular
matrices), where the set of solutions {α} are the eigenvalues, and the corresponding
{w�3} the eigenvectors. The algorithm assumes that P(1)

A is full rank, and remarks
that P(2)

A has only d non-zero columns. Hence, there are at most d non-zero eigen-
values, which then are equal to the α’s. If there are no repeated eigenvalues, the
corresponding beamformers {w} are directly obtained from the eigenvectors {w�3}
after scaling by α

1
2 = ||w||.

In their implementation, Equation (6.7) was solved via premultiplication by the
pseudo-inverse of the first matrix in order to obtain:[

P(1)†
A P(2)

A

]
w�3 = αw�3 (6.11)
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where the matrix in brackets is square. This is a standard eigenvalue problem and
can be solved. From the eigenvectors w�3 and the relation w∗ ⊗w ⊗w∗ = Jw�3,
the beamformers w can be computed. In particular, if we let W be a reshaping
of the vector Jw�3 into a d × d2 matrix such that vec(W) = Jw�3, then W =
w∗(w∗ ⊗w)H , and the conjugate of the dominant left singular vector of W is the
desired beamformer w, up to a scaling which can be determined from α.

Note that the set of solutions of Equation (6.11) contains the solutions of Equa-
tion (6.7), and potentially others. However, since P(2)

A is of rank d, there are only
d non-zero eigenvalues to the matrix in Equation (6.11), and these must correspond
to the solutions of (6.7).

Second algorithm

The Analytical Frequency/ZCM Algorithm (AFZA) in [21] considers property (6.9)
for the delays τ = 0 and τ = 1:{

P(1)
0 w�4 = P(2)

0 w�2

P(1)
1 w�4 = φP(2)

1 w�2

By defining the vector y = [(w�4)T (w�2)T ]T , and the matrices A and B as:

A =

[
P(1)

0 −P(2)
0

P(1)
1 0

]
, B =

[
0 0
0 P(2)

1

]
we can write the set of equations as

Ay = φBy (6.12)

which is again a matrix pencil problem. The article [21] assumed that A and P(2)
1

are of full rank, and used the same pseudo-inverse method to arrive at

[A†B]y = φ−1y

As in the preceding algorithm, the new eigenvalue problem contains the solutions of
the original matrix pencil problem, but now, because P(2)

1 is full rank, the implicit
projection that is part of the pseudo-inversion might have introduced other non-
trivial solutions as well. To cite [21], there are d2 solutions from which “we must
choose the d eigenvalues that are on the unit circle”.

Discussion

Let us consider two non-overlapping sources in time, s1 and s2, and no noise, see
Figure 6.2. We denote by w1 and w2 two beamformers that restore exactly s1 and
s2 from x. From Figure 6.2, we note that for any pair of complex (a, b) on the
unit circle, namely with |a| = 1 and |b| = 1, the vector w = aw1 + bw2 is also
an acceptable beamformer for the criterion (6.4). This demonstrates that AZCMA
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s1(t) s2(t)

Figure 6.2: Two non-overlapping sources

cannot separate the two sources in this case. In terms of the matrix pencil problem,
note that in the case of two non-overlapping sources, the rank ofP(1)

A is too small, and
thus there will appear additional eigenvectors that will cause the other eigenvectors
to be non-unique.

The AFZA should work for non-overlapping sources, since it uses the frequency
information which is different for two sources with different frequencies. Unfortu-
nately, simulations have shown that also for AFZA it might happen that A is not
full rank. In that case, premultiplication by A† to obtain the standard square eigen-
value problem does not work well, because there is always an ambiguity in the result.
To improve our understanding, in the next subsection we study the matrix pencil
problem Ay = φBy in more detail.

6.2.3 The matrix pencil problem

In this subsection, we first transform the matrix pencil problem to an equivalent
problem of smaller dimensions without introducing new solutions. We study a
generic case in more detail, and state under which conditions the reduced problem
is solvable with unique solutions and no additional solutions. The last Subsection
contains a few remarks on non-generic cases.

Reformulation

Since we already noted that the ZCM property used by AZCMA does not allow to
separate two non-overlapping sources uniquely, we will study the pencil problem for
AFZA only. We consider the noiseless case for the equation:

Ay = φBy (6.13)

Recall that A and B are tall matrices of size N × L, where L
def= [d(d + 1)/2]2

and N ≥ L. In order for there to be any solution to (6.13), it is necessary that the
column spans of A and B have a non-empty intersection. Thus let U be a matrix
whose columns form an orthonormal basis of U , the intersection of the column spaces
of A and B, and let q be the number of columns of U. Note that any solution y to
Equation (6.13) must be such that

Ay ∈ U and By ∈ U (6.14)
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To construct U, we perform a QR factorization of A and B:

A = QARA

B = QBRB

where QA and QB are tall rectangular matrices with orthonormal columns spanning
col(A) and col(B) respectively, and where we construct RA and RB to have full row
rank, possibly being rectangular if A or B are rank deficient. Now, we define TA to
be a unitary matrix that transforms QA such that it places U on the first columns:
QATA = [U |UA], where UA is a matrix whose columns are an orthonormal basis of
the complementary space of U on the space spanned byA. Also let be R̃A = T−1

A RA.
We perform a similar transformation on B, which results in:

A =
[
U UA

]
R̃A

B =
[
U UB

]
R̃B

We now partition the matrix R̃H
A into two sub-matrices which correspond to the

columns of U and UA: R̃H
A = [Ac |Anc], where Ac and Anc are full column rank.

(The subscript ()c stands for “common”, and ()nc for “not common”.) Doing the
same to R̃H

B leads to transform the preceding set of equations into:

A =
[
U UA

] [
AH

c

AH
nc

]
(6.15)

B =
[
U UB

] [
BH

c

BH
nc

]
(6.16)

where all sub-matrices Ai and Bi, for i ∈ {c, nc} are full column rank, and Ac and
Bc have the same number of columns q as U. The point of all these transformations
is that we will be able to work with Ac and Bc, which have only order d4/4 rows
rather than N .

Indeed, this factorization leads us to consider the decomposition of the space of
y, C

L into three orthogonal subspaces Z0, Zc, and Zn:

C
L = Z0 ⊕Zc ⊕Zn

Since these subspaces are orthogonal and span the complete space, we can write
any vector y ∈ C

L in a unique way as y = y0 + yc + yn, where yi belongs to Zi

with i ∈ {0, n, c}. The subspaces Zi are defined as follows:

• Zn is the intersection of the kernel of the matrices A and B.
For any yn ∈ Zn: Ayn = Byn = 0, which implies:

AH
c y = AH

ncy = BH
c y = BH

ncy = 0 (6.17)

• Zc is the union of the subspaces spanned by the matrices Anc and Bnc, or the
column span of [Anc Bnc]. For any yc �= 0 ∈ Zc: AH

ncyc and/or BH
ncyc is non

null.
Note that for any vector yn ∈ Zn, Equation (6.17) shows that yH

n [Anc Bnc] =
0, so that Zc is indeed orthogonal to Zn.



74 CHAPTER 6. ALGORITHMS

• Z0 is the complementary space orthogonal to the union of Zc and Zn: Z0 =
(Zn ⊕Zc)

⊥. The most interesting property is: for any y0 ∈ Z0:

y0 ⊥ Zc ⇒ AH
ncy0 = BH

ncy0 = 0 (6.18)

Note that by definition the subspaces are orthogonal and their direct sum is equal
to C

L.
When we insert this partitioning of y in Equation (6.12), we obtain

[
U UA

] [
AH

c

AH
nc

]
(y0 + yc + yn) = φ

[
U UB

] [
BH

c

BH
nc

]
(y0 + yc + yn)

which results in:

[
U UA UB

]  AH
c (y0 + yc)− φBH

c (y0 + yc)
AH

ncyc

BH
ncyc

 = 0

The first matrix compound is a tall orthonormal matrix. We can therefore pre-
multiply the equation by its Hermitian conjugate, which gives:

AH
c (y0 + yc) = φBH

c (y0 + yc) (6.19)

[Anc Bnc]
H yc = 0 (6.20)

Recall that yc ∈ Zc, so by definition of the subspace of subspace Zc, if yc �= 0
at least AH

ncyc or BH
ncyc is non-zero. So Equation (6.20) implies yc = 0, and hence

any solution y of (6.13) must be of the form y = y0 ∈ Z0, with

AH
c y0 = φBH

c y0 (6.21)

To express the condition y = y0 ∈ Z0, let Z0 be a q × L matrix whose columns are
a basis of the subspace Z0, where q > L. Then any y0 ∈ Z0 can be written as

y0 = Z0yr

where yr is an L-dimensional “reduced” vector. Also let Ar = AcZ0 and Br =
BcZ0, then Equation (6.21) becomes:

Aryr = φBryr (6.22)

where the matrices are now square of size q×q. This equation represents a generalized
eigenvalue problem, and we denote its solutions as y(i)

r , q = 1, · · · , q.
By this sequence of steps, we can state that all solutions y(i) of Equation (6.13)

are of the form
y(i) = Z0y(i)

r + y(i)
n (6.23)

where y(i)
r is a solution of Equation (6.22), and y(i)

n ∈ Zn. Ideally, Zn = ∅, so that
the latter terms are absent.
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The “generic” case

We first study the “generic” case, i.e., the ideal case where there are only d unique
solutions which correspond exactly to the desired beamformers, and the eigenvalues
are exactly on the unit circle. The interest of studying first the “generic” case is two-
fold, 1) the generic case allows a straightforward solution of the pencil problem, and
2) understanding the generic case facilitates the understanding of the non-generic
case.

The generic case is defined by:

dim(Zc) = L− d (6.24)

Note that it is equivalent to state:

dim(Zn) = 0
dim(Z0) = d

because d ≥ dim(Z0 ⊕ Zn) ≥ dim(Z0) ≥ d. In order to get Z0 zero-dimensional, it
is sufficient that A is full column rank. But it is not clear under which conditions
dim(Z0) = d, or equivalently the rank of U is exactly equal to d.

In the generic case there are only d solutions to Equation (6.22), and we know
that there are d solutions to Equation (6.13), so there is a one-to-one mapping which
allows us to state the next Proposition:

Proposition 6.2.1 Assume the “generic case” in which A is full column rank,
dim(U) def= q = d, and the residual frequencies φ are different. Then there are exactly
d solutions to the matrix pencil problem (6.12), they can be obtained by solving
the standard eigenvalue problem (6.22); the eigenvalues are the desired frequency
residuals, and the eigenvectors correspond to the desired beamformers.

Proof: The original AFZA problem admits at least d beamformers, hence the
matrix pencil problem (6.12) has at least d solutions. We have to show that there are
precisely d solutions, and that they are unique. Since all steps in the derivation of
(6.22) were reversible, it suffices to solve the latter problem instead of (6.12). Since
q = d by assumption, it is a d × d generalized eigenvalue problem, and we have to
show that the d eigenvectors are unique. This is the case if Ar is full rank d, and
the eigenvalues are different.

Note that because A is full rank, AH
c y0 �= 0 for all yo ∈ Z0, hence the matrix

Ar is a full rank d × d square matrix, and can be inverted in Equation (6.22), so
that there are precisely d eigenvectors to this eigenvalue problem.

Since by assumption the residual frequencies differ, the eigenvalues φ in (6.22)
differ, hence the eigenvectors y(i)

r are unique. The fact that A is full rank also
implies that dim(Zn) = 0, so that there is no vector yn in equation (6.23), and the
solutions of (6.12) are y(i)i = Z0y

(i)
r , for i ∈ {1, · · · , d}, and unique. Thus they

must correspond to the desired beamformers.
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Non-Generic case

Assuming that there is no source for which all the bits are equal to zero (which with
our a priori assumptions would be an improbable event), we know that Equation
(6.22) has at least d solutions. This implies

d ≤ dim(Z0)
d ≤ dim(range(Ac))

where the first inequality comes from the fact there are at least d solutions to the
eigenvalue problem, and the second one from the fact that for each source Equation
(6.5) holds for every k ∈ {1, · · · , N}.

We can also find a relation between the dimension of Z0 and dim(range(Ac)).
First note that dim(range(Ac)) = dim(range(Bc)) = q since they are full column
rank and therefore equal to the size of U. Now we consider any y0 ∈ Z0:

y0 �∈ Zn ⇒ Ayo �= 0

⇒ UAH
c y0 �= 0

⇒ dim(Z0) ≤ dim(range(Ac)) = dim(U)

which allows us to claim that the number of solutions is smaller than the dimension
of the common space U between A and B.

Assume that the dimension of Zn is p > 0, and let [z1, · · · , zp] be a basis of Zn.
We also assume that the number of solutions to Equation (6.22) is q ≥ d. Then the
solutions to the initial problem (6.13) are of the form

y(j) = y(j)
r +

p∑
i=1

λi,j zi , j = 1, · · · , q (6.25)

From this we see that there are two problems in the AFZA algorithm: 1) the
number of solutions q doesn’t have to be precisely equal to d, 2) if p = dim(Zn) �= 0,
then arbitrary vectors from Z can be added to the solutions. In both cases, it is
very hard to recover the beamformers because from the set y(j) we would have to
find out which vectors in that space have the required Kronecker structure. There
are no techniques yet to deal with such situations.

We discovered a few cases that differ from the generic case, for which we expose
now the physical origin and their connections with the previous proposition. In order
to have a clear insight, we restrict ourself to the reception of two non-mixed sources
(M = I2), and to the noiseless case.

• The most common case is non-overlapping signals, meaning that the second
signal begins only after the first one end. Then all cross-products between the
two sources are equal to zero, and the corresponding columns of the matrices
P(2)

0 , P(1)
0 and P(1)

1 are equal to the zero vector. Consequently the matrix A
is not full column rank.
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• In case of slightly overlapping signals, the aforementioned problem may appear.
But also, because some columns that contain the cross-products have only one
non-zero element in P(1)

1 and in P(2)
1 at the same place, the common space U

increases.

• A more unusual case that we observed is as follows: if the sampling rate is
chosen equal to half the date rate of the mode A/C, then because of Prop-
erty (3.2.1), the terms of equation (6.12) are always equal to zero, and by
construction AFZA cannot restore mode A/C sources.

The last case can be avoided by choosing the sampling rate carefully. To overcome
the drawbacks of the two first cases, one remedy to restore the rank properties of
A and U is to consider more than one time-lag. This is investigated in the next
subsection.

6.2.4 The multi-shift ZCMA

Principle

From the preceding subsection, we understand that when the subspace Zc is of
dimension L−d we have the “generic case” which admits an unique solution. We now
discuss a technique to “fill” the subspace Zc to its maximal size. As a consequence,
dim(Zn) = 0, dim(Z0) = d, and dim(U) = d. The idea is to consider several different
time-lags. For each time-lag we stack in a matrix ZC a basis of the estimated
subspace Zc for that time-lag. When this matrix reaches the appropriate size: L−
d , the subspace that contains the beamformer is the orthogonal complementary
subspace of the subspace spanned by Zc.

Method

Consider Equation (6.9) for all τ ∈ N:

P(1)
τ w�4 = φτP(2)

τ w�2

where P(1)
τ is N×L, and P(2)

τ is N×d2. Using the same notation as in the preceding
subsection, let U be the common subspace spanned by the columns of the matrices
P(1)

τ and P(2)
τ for all τ . Then we can write

P(1)
τ =

[
U U(1)

τ

] [
(P(1)

τ,c)H

(P(1)
τ,nc)H

]

P(2)
τ =

[
U U(2)

τ

] [
(P(2)

τ,c)H

(P(2)
τ,nc)H

]

where U(1)
τ and U(2)

τ are the orthogonal complements of U over P(1)
τ and P(2)

τ , and
(P(i)

τ,nc)H , i ∈ {1, 2} are of full row rank.
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Similarly as before, we consider solutions y of equation (6.12), the
yi = [(w�4

i )T (w�2
i )T ]T , ∀i ∈ {1, · · · , d}:

[
U U(1)

τ U(2)
τ

]  (P(1)
τ,c)Hw�4

i − φτ (P(2)
τ,c)Hw�2

i

(P(1)
τ,nc)Hw�4

i

−φτ (P(2)
τ,nc)Hw�2

i

 = 0

where the first matrix compound is full column rank by definition. Then the second
compound is equal to zero, and particularly, we have the following properties:

(P(1)
τ,c)

Hw�4
i − φτ (P(2)

τ,c)
Hw�2

i = 0

(P(1)
τ,nc)

Hw�4
i = 0

and:
(P(2)

τ,nc)
Hw�2

i = 0 (6.26)

We use Equation (6.26) in order to estimate the subspace orthogonal to the subspace
spanned by the w�2

i ’s.
We stack the matrix (P(2)

τ,nc)H in the matrix ZC for L different τ ∈ N:

ZH
C =


(P(2)

0,nc)
H

(P(2)
1,nc)

H

(P(2)
2,nc)

H

...
(P(2)

L,nc)
H


Note that the matrix has only d2 columns, and ∀i ∈ {1, · · · , d}:

ZH
Cw

�2
i = 0 (6.27)

We now assume that we have taken a sufficient number of time-lags such that
the matrix ZC is of rank d2 − d. The rank cannot be larger, because we know that
there are d independent vectors, which are orthogonal to the columns of the matrix
ZC . So we assume “de facto” that the matrix achieves its highest rank.

Let W1 be the subspace spanned by the columns of ZC , and W0 its orthogonal
complementary subspace over C

d2
, whose dimension is dim(W0) = d. We denote

by Y a basis of W0, and we stack the collection of vectors w�2
i into the matrix

W�2 = [w�2
1 , · · · ,w�2

d ]. Since Y and W�2 span the same subspace, there is an
invertible matrix Q = [qij ] such that:

Y = W�2Q

We use now the Unvec operator defined in Section 1.7, which transforms a vector
of dimension d2 into a matrix of size d× d. For each column of Y we obtain a d× d
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matrix: Yi i ∈ {1, · · · , d}, for which we have the relation:

Yi =
d∑

j=1

wjwH
j qi,j

= Wdiag(qi,1, · · · , qi,d)WH

From the above equation, we see that the collection of the Yi’s accept a common
basis W in which they are all diagonal. We say that they are “jointly diagonalizable”
by the basis W, and in fact by any of its column permutations and/or unit column
scalings.

The next step of the algorithm is to perform this joint diagonalization (JD). We
can use existing algorithms, see [12] or [45]. The basis of the diagonalization W
contains the desired beamformers which will separate the sources:

ŝ[k] = WHx[k] ∀k ∈ {1, · · · , N}
Moreover, the frequency residuals can be calculated using Equation (6.5).

The last step is to use Equation (6.3) to get an estimate of the matrix M. With
the estimated matrix M̂, we can recover the Direction Of Arrival (DOA) for each
source, for example by applying the ESPRIT algorithm to each column of M̂.

We summarize the algorithm in Table 6.1.

1 For τ ∈ {τ1, · · · , τL}, do.
a Derive P(1)

τ and P(2)
τ from the data.

b Calculate the common subspace U .
c Derive the matrix P(2)

τ,nc

d Stack it to ZH
C .

2 Perform an SVD of ZC .
3 Keep the left singular vectors corresponding to

the d smallest eigenvalues to form the matrix Y.
4 Unvec Y to obtain the Yi’s.
5 Perform joint diagonalization on the Yi’s to obtain W.
6 Ŝ = WHX.
7 Estimate M̂, and the DOA’s.
8 Estimate the residual frequencies.

Table 6.1: Multi-shift ZCM Algorithm.

Remarks

In our implementation, the joint diagonalization algorithm used in step 5 is the
Jacobi angle method from [12].

The set of time delays {τ1, · · · , τL} can be chosen arbitrarily, as long as the
matrix ZC is expected to achieve its maximal full rank. In our implementation, the
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following set has given satisfactory results:{
0, 1, −1, 2, −2,

N

10
,
−N

10
,
N

4
,
−N

4
,
N

2
,
−N

2

}
In order to save some computational cost, the algorithm implementation worked

in an iterative fashion: the τ were taken one by one in the order: 0, 1, −1, N/2,
−N/2, 2, −2, N/10, −N/10, N/4, −N/4, until the estimate of the subspace spanned
by Y, W0, was declared stable, i.e. the subspace at the iteration k + 1, and k were
similar. The distance was measured by the dimension of the common subspace
between (W0)k and (W0)k+1.

The computational cost is dominated by the search of the subspace U for each
τ . The most expensive in this search is the QR factorization of P(1)

τ , which is of the
order N × L2/2. Thus the computational cost is of order LNd8/8. Note that the
most expensive step in AFZA is the QR of A, of order Nd8/4.

6.2.5 Discussion

It has been seen from the simulations that the multi-shift ZCM algorithm resolved
all simulated cases, even those with non-overlapping sources. The algorithm is deter-
ministic, and thus requires only a few number of samples, as opposed to stochastic
algorithms which need many samples to reach good performance.

Unfortunately, there are a few drawbacks. The computational cost is rather high,
a joint diagonalization is required (unlike the AFZA), the frequency estimates are
obtained in the last step and do not have good performance.

For future research, the iterative method should be investigated as it has the
potential to reduce the computational cost, but one has to find a strategy for choosing
the τ ’s such that 1) the numbers of iterations is minimal, 2) the stability of the
subspace W0 is detectable.

6.3 ESPRIT-Second-Order Blind Identification al-
gorithm

One of the two conclusions of Section 3.2 was the statement of Property 3.2.1, which
expresses the residual carrier presence on the recovered source symbols correlation.
To simplify this property, we consider only a mixture of SSR mode S replies, and
we assume that we have an interval of length TL on which these sources are present
throughout the interval, so that we can assume the statistical properties to be sta-
tionary. Define the auto-correlation of a source s[k] by γ[τ ] def= E{s[k]s∗[k − τ ]}.
Then for any integer τ , such that 16 < τ � TL, the next property holds:

γ[τ ] =
1
4
φτ (6.28)

where φ = exp(2π jfT ), with T the sampling period and f the residual carrier of
the source s[k].
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The Second-Order Blind Identification (SOBI) algorithm [17] is a technique to
blindly separate sources based on differences in second-order spectral content. Our
aim in this Section is to extend the SOBI to also take the SSR property (6.28) into
account. We first recall the original SOBI in Subsection 6.3.1. Next, in Subsection
6.3.2, we describe our extension using the additional knowledge of (6.28). Finally,
we discuss the merits of this algorithm.

6.3.1 The original SOBI: principle

Consider the data model x[k] = Ms[k]+n[k], where the vector signal s[k] consists of
d independent wide-sense stationary sources si[k] with different non-white spectral
content. For each i ∈ {1, · · · ,m}, the i-th component of the noise bni[k] is additive
zero-mean Gaussian noise, temporally independently identically distributed. Let
γ
i
[τ ] = E{si[k]s∗i [k− τ ]}, and define the non-central auto-covariance of the vector x

at time-lag τ as
Rτ

def= E{x[k]xH [k − τ ]} (6.29)

We denote by mi the i-th column of M. Inserting this in Equation (6.29), we obtain
for any integer τ ∈ N:

E{x[k]xH [k − τ ]} =
d∑

i=1,j=1

mimH
j E{si[k]s∗j [k − τ ]}+

d∑
i=1

miE{si[k]nH [k − τ ]}

+
d∑

j=1

E{s∗j [k − τ ]n[k]}mH
j + E{n[k]nH [k − τ ]}

which consists of the sum of four terms. When τ �= 0, the last three terms are null
due to the statistical properties of the noise:

E{n} = 0
E{n[k]nH [k − τ ]} = 0 if τ �= 0

The first term simplifies because there is no correlation for two different sources:
E{sj [k]s∗i [k − τ ]} = 0, if i �= j, ∀τ ∈ N. Thus, the auto-covariance matrices become

Rτ =
d∑

i=1

γ
i
[τ ]mimH

i

with τ �= 0, or equivalently:

Rτ = M

 γ
1
[τ ] . . . 0
...

. . .
...

0 . . . γ
d
[τ ]

MH = MΓτMH (6.30)

We collect L matrices Rτ with different τ , τ ∈ {τ1, · · · , τL}. Note that all the
Rτ have a diagonal form in the same basis, M. One can prove that if the Γτ are
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sufficiently different and M is full rank, the only matrix that jointly diagonalizes this
collection is M, up to a column permutations and/or a unit-norm column scaling.

There are various algorithms for computing M. Consider for example two ma-
trices R1, R2, then R1R−1

2 = M(Γ1Γ−1
2 )M−1, hence M can be estimated from an

eigenvalue decomposition of R1R−1
2 . Better joint diagonalization algorithms take

all available matrices into account and also work if the Γi are not invertible. The
proposed algorithm in [17] uses the joint diagonalization of Cardoso [45].

Discussion

In an implementation of the algorithm, the true Rτ are unknown and have to be
estimated by R̂τ = (N − τ)−1

∑N
k=τ+1 x[k]x[k− τ ]. When the number of samples is

small, the cross-terms in the correlation (6.29) do not become precisely zero, and the
matrices R̂τ will not be exactly diagonalizable. This is true even in the noise-less
case, since the method heavily relies on the cross-correlation of the sources to be
zero for all lags. Hence, SOBI is not consistent as the Signal to Noise Ratio (SNR)
tends to infinity.

Nonetheless, for a small number of samples, SOBI is often an improvement over
fourth-order methods because the second order sample moments will converge to
their asymptotic values much faster than the fourth order sample moments, and
their functions such as e.g. the kurtosis tensor.

SOBI also has a lower computational cost, determined mostly by the computation
of the matrices R̂τ , which is of order LNd2 multiplications.

6.3.2 An evolution: ESPRIT-SOBI

In this Subsection, we extend on SOBI by also using the property that γ
i
[τ ] = 1

4φ
τ
i ,

where the φi are complex on the unit circle: φi = exp(2πfiT ).

Recall that mi is the i-th column of M, and define the vector m̃i as m̃i
def=

Vec(mimH
i ) = m∗

i ⊗mi. We also define

M̃ = [m̃1, · · · , m̃d] = [m∗
1 ⊗m1, · · · ,m∗

d ⊗md]
def= M∗ ◦M

where ◦ denotes a column-wise Kronecker product (also known as the Khatri-Rao
product). Using Equation (1.5) in Equation (6.30) leads to

rτ
def= Vec(Rτ ) =

1
4
M̃

 φτ
1
...
φτ
d

 ∀τ ∈ {τ1, · · · , τL} (6.31)

We collect the rτ , ∀τ ∈ {τ1, · · · , τL}, in a matrix R◦:

R◦ def= [rτ1 . . . rτL
] (6.32)
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Thus we obtain from Equation (6.31) that

R◦ =
1
4
M̃

 φτ1
1 . . . φτL

1
...

...
φτ1
d . . . φτL

d


We now choose the τi’s as successive integers: τi = τ1 + i − 1, for i = 1, · · · , L.

Then R◦ becomes:

R◦ =
1
4
M̃diag([φτ1

1 , · · · , φτ1
d ])

 1 φ1 . . . φL−1
1

...
...

1 φd . . . φL−1
d

 (6.33)

=
1
4
M̃DF (6.34)

At this point, note that F has a Vandermonde structure. The shift invariance
property of that matrix suggests the use of the ESPRIT algorithm to estimate the
φi, see Subsection 3.3.2. In particular, if Fx contains columns 0, · · · , L−2 of F, and
Fy contains columns 1, · · · , L− 1, then the shift-invariance property is

Fy = ΦFx , Φ def= diag(φ1, · · · , φd) (6.35)

where we note that D = Φτ1 .
In summary, our algorithm first computes an estimate of the matrix R◦: R̂◦,

which contains L successive time-lags with L ≥ d+1. Since R◦ has rank d, we then
perform a Singular Value Decomposition (SVD) on R̂◦ in order to get a low rank
factorization: R̂◦ = UΣV, where V is d × L. From the model in (6.34), note that
there exist a invertible matrix T such that V = TF. We apply ESPRIT: let Vx

contain the columns of V except for the last, and Vy the columns of V except for
the first, then from (6.35), Vy = TΦT−1Vx, hence2

VyV†
x = TΦT−1 ,

and an eigenvalue decomposition of VyV†
x reveals both T and Φ, hence the φi’s.

We can reconstruct F̃ = T−1V and D = diag([φτ1
1 , · · · , φτ1

d ]), and estimate M̃ as:

M̃ = 4R̂◦F̃†D−1 (6.36)

The estimation of M from M̃ is in fact a series of d smaller problems: the estimation
of the mi’s from the columns m̃i of M̃, for i = 1, · · · , d. Using the definition

m̃i
def= Vec(mimH

i ) ⇔ Unvec(m̃i) = mimH
i

we can estimate each mi by taking the dominant left singular vector of the matrix
Unvec(m̃i). Next, Ŝ is obtained as:

Ŝ = M̂−1X

We summarize the algorithm in Table 6.2.
2()† stands for pseudo-inverse.



84 CHAPTER 6. ALGORITHMS

1 Calculate R̂k for k = 1 to L.
2 Stack the vec(R̂k) into R̂◦.
3 Perform a SVD of R̂◦, to extract V.
4 Apply ESPRIT on V to obtain φi, i ∈ {1, · · · , d}.
5 Use the φi to reconstruct F̃ and D.
6 Estimate M̃ from Φ.
7 Estimate M̂, and then Ŝ.

Table 6.2: ESPRIT-SOBI algorithm.

6.3.3 Discussion

As for SOBI, the computational cost is dominated by the construction of R◦, which
costs order Ld2N flops.

The number of lags L in the algorithm is a design parameter. The minimal
number is L = d + 1, the maximal number is determined by TL, the length of the
time interval on which the data is taken. The optimal choice for L is not known. One
consideration is that for robustness reasons, it is desirable to have more shifts than
the minimal number. In general, the accuracy of the ESPRIT step increases with
L. However, the accuracy of the covariance estimates Rτ decreases for larger lags,
since with finite data we can average over fewer samples, and incorporating these
lags in the ESPRIT step will decrease the performance. Hence there is a trade-off.
Also note that the computational cost is linear with the number of shifts.

The ESPRIT-SOBI has several advantages: the computational cost is lower than
for the multi-shift-ZCMA, unlike SOBI there is no need for a joint diagonalization,
more sources than sensors can be detected, as demonstrated by simulations in Chap-
ter 7. Furthermore, the detection of the number of sources d might be done more
accurately on R◦ than the usual White Noise Test (WNT) directly on the data (we
have not verified this statement). All statistics are of second-order, so in number of
samples the method converges faster than High-Order Statistics (HOS) methods.

On the other hand, like for SOBI, the algorithm is not consistent as SNR goes
to infinity and the number of samples is finite, because the algorithm relies on the
decorrelation of the sources. This will limit the performance of the algorithm for high
SNRs as compared to other algorithms that are asymptotically consistent, such as
the multi-shift-ZCMA. Simulations indicate that the poor finite-sample performance
is indeed a significant limitation of this type of algorithms.

Mode A/C replies

Mode A/C replies have the same property (6.28) as Mode S replies, but with different
characteristic times, as discussed in Section 3.2. Thus, a mixture of only mode A/C
replies can be separated using the same principle, but a mixture of both types of
signals needs additional attention.

For future research, we suggest to use initially time-lags τ ’s larger than the
time life of the mode A/C replies. This will suppress the mode A/C signals in the
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correlations Rτ . Applying the ESPRIT-SOBI algorithm to these matrices allows us
to estimate the columns of M that concerns mode S replies only. It is then possible
to project out the subspace spanned by these columns, and to concentrate on the
mode A/C replies with their more specific properties.

6.4 Manchester Decoding Algorithm

In chapter 3, we have shown that the SSR replies have a special encoding. Indeed,
the Mode S source are encoded in a “Manchester encoding” scheme, which means
that a bit 0 is coded as [01], and a bit 1 as [10]. If the receiver is synchronized to
the time of arrival, a mode S reply has a data stream b[k] that obeys:

b[k]b[k + 1] = 0 (6.37)

with a sampling rate as T = 0.5 µs. Otherwise, when un-synchronized, the data
stream obeys:

b[k − 1]b[k]b[k + 1] = 0 (6.38)

Since mode A/C and mode S replies have different data-rates, and different
properties, it is complicated to consider an algorithm that can process both of them.
In this section, we will consider only a mixture of mode S replies. We will derive the
“Manchester Decoding Algorithm” (MDA) that will separate the sources based on
property (6.38).

In Subsection 6.4.1, we introduce the principle of separation based on Property
(6.37), and we present the Manchester Decoding Algorithm, the MDA2, where 2
stands for second-order. In Subsection 6.4.2, using the Property (6.38), we propose
an alternative algorithm using the third-order Kronecker product of the beamformer,
which is called MDA3. Subsection 6.4.3 is dedicated to a specific step of the MDA3:
the final third-order joint diagonalization. After a discussion of the merits and
problems of the MDA’s in Subsection 6.4.4, we give in the last Subsection a few
hints how to deal with a mixture of replies with different modes.

6.4.1 Principle of the MDA2

Property (6.37) states that, if we are synchronized, then from two consecutive sam-
ples of a mode S source one sample must be zero. The problem we face is that we do
not know the time synchronization. Indeed, we cannot assume that the receivers are
synchronized with the replies, since the problem is blind. Moreover, two replies from
different planes cannot be synchronized, therefore we are dealing with a mixture of
fully un-synchronized mode S replies.

As a consequence, Property (6.37) is true only every two samples. The idea is
then to consider the next two products:

p1[k] = s[2k]s[2k + 1] (6.39)
p2[k] = s[2k + 1]s[2k + 2] (6.40)
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where s[k] is a mode S source. Depending on the synchronization, one product of
the two is always equal to 0, and the other is random.

We now consider a beamformer w such that its application to x[k] gives an
estimate of one of the replies: ŝi[k] = wHx[k], which satisfies the Property (6.37).
Inserting this in (6.39) and (6.40), we obtain

P1 (w ⊗w) = 0 or P2 (w ⊗w) = 0

where Pi is the collection into a tall matrix of the N/2 rows:
[x[2k + i]⊗ x[2k + 1 + i]]H , for i ∈ {1, 2}, and ∀k ∈ {0, · · · , N/2− 1}.

For each beamformer wi, the vector wi ⊗ wi belongs then either to the kernel
of P1 or to the kernel of P2. Under conditions of Proposition 6.4.1, we state that
for sufficiently large N there are no other vectors in the union of the kernels, so
that we have a one-to-one mapping of an arbitrary basis of each kernel to the corre-
sponding basis of beamformers wi ⊗wi of the sources that have the corresponding
synchronization. In that case, we can detect the number of sources with a partic-
ular synchronization from the dimension of the corresponding kernel, and we can
estimate the beamformers from a joint diagonalization procedure applied to each
basis.

In the next proposition, we state that as the number of samples increases and
the sources are completely overlapping, then the union of the kernels of P1, and P2

will be precisely of dimension d. This implies that there are no other solutions than
wi ⊗wi, i = 1, · · · , d, so that the problem is identifiable.

Proposition 6.4.1 Assume that M is invertible, the sources are totally overlapping,
and that there is no noise. Then for large number of samples N , the union of the
kernel of the matrices P1 and P2 will almost surely be of dimension d.

Proof: We define S(i)
2 as the stacking into a tall matrix of the N/2 rows:

[s[2k + i]⊗ s[2k + 1 + i]]H , for i ∈ {1, 2}, and ∀k ∈ {0, · · · , N/2− 1}. Some deriva-
tions shows then:

P1 = S(1)
2 (M⊗M)H

P2 = S(2)
2 (M⊗M)H

Since M is invertible, Lemma 1.7.1 insures that (M ⊗M) is invertible as well, so
there is equality between the rank of the {Pi} and the {S(i)

2 }, for i ∈ {1, 2}: We
define the covariance matrix of S1 as R̂1 = 1

N SH
1 S1, and the covariance matrix of

S2 as R̂2 = 1
N SH

2 S2. For i ∈ {1, 2}, R̂i has the same rank as Si as soon as N ≥ d2.
We investigate the rank of R̂i as N tends to infinity, which is equal to the rank of
Ri almost surely.

Denote the m-th source at time k as sm[k] = bm[k]φk
m, where bm[k] is the trans-

mitted symbol (0 or 1 with equal probability) and φm is the residual phase rotation,
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random on the unit circle. The i, j-th entry of R̂α, α ∈ {1, 2} is

(
R̂α

)
i,j

=
1
N

N/2−1∑
k=0

bm[2k + α]bn[2k + α− 1]bo[2k + α]bp[2k + α− 1]

φ−2k−α
m φ−2k−α+1

n φ2k+α
o φ2k+α−1

p

where i = md + n, and j = od + p, for m,n, o, p = 1, · · · , d. As N → ∞, R̂α

converges to Rα.
For doublets that are not equal up to a permutation, {m,n} �= {o, p}, the residual

carrier induces the terms (R̂α)i,j to tend towards zero. By re-ordering the rows and
columns of Rα, we transform it into a block-diagonal matrix, with two kinds of
sub-matrices.

1. The first kind of sub-matrices are of size 1× 1 for triplets of the form {n, n},
for n = 1, · · · , d, with value

(
R̂α

)
i,i

=
1
N

N−1∑
k=2

bn[2k − 1]bn[2k]

with i = n(d+ 1), it corresponds to the source n. Because of Property (6.37),
one of the two elements (R̂α)i,i, α ∈ {1, 2}, is always equal to 0, and the other
tends to 1

4 as N →∞. The matrix, which element is zero, corresponds to the
sub-sampled series sn[2k+α] synchronized to the source n, the other matrix is
un-synchronized. So the sub-matrix is zero only in one of the two matrices Rα.
There are precisely d sub-matrices of this kind on both matrices. Moreover,
there are not placed at the same position in the matrix. They thus contribute
d dimensions to the union of the kernel of R1 and R2.

2. The second kind of sub-matrices are of size 2× 2 for doublets of forms {n,m}
and n �= m. Denote the corresponding sub-matrices by R′. Let ψ = φmφ∗

n

and C2 = diag{1, ψ}, then R′ = 1/16C∗
2

(
3I2 + 1H1

)
C2, which is full rank.

Hence, the union of the kernels of {R1,R2} is asymptotically of dimension d. By
continuity, this will almost surely be the case for finite but sufficiently large N .

Note that if two sources s1 and s2 have non-overlapping time-support domains,
as in Figure 6.2, then all columns of the matrices S(1)

2 and S(2)
2 that contain a cross-

product of these two sources will zero. As a result, the size of the union of the
kernels will be larger than d, making the algorithm fail.

We denote by di the dimension of the kernel of Pi, i ∈ {1, 2}, with d = d1 + d2,
and we define Ui as a d2 × di matrix whose columns are a basis of the kernel of Pi.
We assume that the conditions of proposition 6.4.1 are fulfilled, so we have:

Ui = (Wi ◦Wi)Ti , i = 1, 2

where Wi contains the di beamformers w’s related to the kernel of Pi, and Ti is a
di × di invertible matrix.
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First, we consider the case i = 1. We denote ui, the i-th column of U1. By using
the unvec operator we obtain:

unvec (ui) =
d1∑
j=1

(T1)ij wjwT
j

where we note that the {unvec (ui)} have a diagonal form in the basis W1. It is a
joint diagonalization problem, on which we can use the algorithm in [12]. We do the
same joint diagonalization with the columns of U2 to obtain W2, then we obtain
W as W = [W1W2].

Once the beamformers are determined, we separate the sources: ŝ[k] = WHx[k],
∀k ∈ {1, · · · , N}. As in the multi-shift-ZCM Algorithm, the residual frequencies and
the matrix M are estimated with Equation (6.5), and Equation (6.3), respectively.
Finally, we can estimate the Directions of Arrival (DOAs) from each column of the
estimated matrix M̂ separately, e.g. by applying a simplified version of the ESPRIT
algorithm.

The outline of the algorithm is restated in Table 6.3.

1 Construct P1, P2 from X.
2 Extract U1, and U2 from the kernels of P1, and P2.
3 Jointly diagonalize the columns of the {Ui} to get W.
4 Separate the sources via Ŝ = WHX.
5 Estimate M̂, and the DOA’s.
6 Estimate the residual frequencies.

Table 6.3: MDA2 Algorithm.

The most expensive step is the QR factorization of the Pi’s, required in the
computation of the kernels in step 2, with an associated cost of order Nd4 flops.

6.4.2 Principle of the MDA3

To avoid the problem of estimating the kernels of two different matrices, we investi-
gate in this Subsection if it is possible to use the combined Property (6.38), to arrive
at only one, but bigger, matrix.

As in the preceding Subsection, we consider a beamformer w such that ŝi[k] =
wHx[k]. From Equation (6.38), we can derive:

ŝi[k + 1]ŝi[k]ŝi[k − 1] = 0 . (6.41)

Using twice Equation (1.3), we get:

[x[k + 1]⊗ x[k]⊗ x[k − 1]]H (w ⊗w ⊗w) = 0 (6.42)

We define the matrix P3 : N × d3 as the collection of the rows
[x[k + 1]⊗ x[k]⊗ x[k − 1]]H for k ∈ {2, · · · , N − 1}, and obtain:

P3w� = 0 , w� def= w ⊗w ⊗w (6.43)
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When there are d sources, there are d linearly independent separating beamform-
ers wi, i = 1, · · · , d. Thus we have d linearly independent vectors w�

i that belong
to the kernel of P3. If the kernel is d-dimensional, then the subspace spanned by
the w�

i is exactly equal to the kernel, and a basis for the kernel must be a linear
combination of the w�

i . The algorithm will be to estimate an arbitrary basis for
the kernel, then to find the linear combinations to map the basis to the structured
vectors w�

i , and subsequently to estimate the corresponding wi for each vector.
In the next proposition, we state that as the number of samples increases and

the sources are completely overlapping, then the kernel of P3 will be precisely of
dimension d. This implies that there are no other solutions than w�

i , i = 1, · · · , d,
so that the problem is identifiable.

Proposition 6.4.2 Assume that M is invertible, the sources are totally overlapping,
and that there is no noise. Then for large number of samples N , the matrix P3 will
almost surely have rank (d3 − d), equivalently its kernel will almost surely be of
dimension d.

Proof: A short derivation shows that

x[k + 1]⊗ x[k]⊗ x[k − 1] = (M⊗M⊗M) [s[k + 1]⊗ s[k]⊗ s[k − 1]] (6.44)

After defining S3 as the collection of the rows [s[k + 1]⊗ s[k]⊗ s[k − 1]]H , for k ∈
{2, · · · , N − 1}, we get:

P3 = S3(M⊗M⊗M)H (6.45)

Since M is invertible, Lemma 1.7.1 insures that (M ⊗M ⊗M) is invertible as
well, so the rank of P3 is equal to the rank of S3. Define the covariance matrix of
S3 as R̂(3)

ss = 1
N SH

3 S3. It has the same rank as S3 as soon as N ≥ d3. We will verify
the rank of R̂(3)

ss as N tends to infinity.
Denote the m-th source at time k as sm[k] = bm[k]φk

m, where bm[k] is the trans-
mitted symbol (0 or 1 with equal probability) and φm is the residual phase rotation,
random on the unit circle. The i, j-th entry of R̂(3)

ss is

(
R̂(3)

ss

)
i,j

=
1
N

N−1∑
k=2

bm[k − 1]bn[k]bl[k + 1]bo[k − 1]bp[k]bq[k + 1]

φ−k+1
m φ−k

n φ−k−1
l φk−1

o φk
pφ

k+1
q

where i = md2 + nd + l, and j = od2 + pd + q, for m,n, l, o, p, q = 1, · · · , d. As
N →∞, R̂(3)

ss converges to R(3)
ss .

Before demonstrating that the rank of R(3)
ss is d3 − d, we show it in the case

d = 2 for the reader’s convenience. Define ψ = φ1φ
∗
2, and re-order the columns and

the rows in order to follow the triplets (m,n, l) = (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1),
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(1, 2, 2), (2, 1, 2), (2, 2, 1), (2, 2, 2). Then the matrix converges to:

R(3)
ss =

1
32



0 0 0 0 0 0 0 0
0 4 ψ ψ2 0 0 0 0
0 ψ∗ 4 ψ 0 0 0 0
0 ψ∗2 ψ∗ 4 0 0 0 0
0 0 0 0 4 ψ ψ2 0
0 0 0 0 ψ∗ 4 ψ 0
0 0 0 0 ψ∗2 ψ∗ 4 0
0 0 0 0 0 0 0 0


which is of rank 6 = 23 − 2. There are precisely d = 2 columns equal to zero, which
give the kernel a dimension of 2. The rest of the matrix is block-diagonal with
non-singular blocks of size 3× 3.

Now, we consider the general case. For triplets that are not equal up to a
permutation, {m,n, l} �= {o, p, q}, the residual carrier induces the term (R̂(3)

ss )i,j to
tend toward zero. By re-ordering the row and the columns of R(3)

ss , we transform it
into a block-diagonal matrix, with three kinds of sub-matrices.

1. The first kind of sub-matrices are of size 1×1 for triplets of the form {n, n, n},
for n = 1, · · · , d, with value

(
R̂(3)

ss

)
i,i

=
1
N

N−1∑
k=2

bn[k − 1]bn[k]bn[k + 1]

with i = n(d2 + d + 1). As N → ∞, these elements converge to zero because
of property 6.38. There are precisely d sub-matrices of this kind. They thus
contribute d dimensions to the kernel of R(3)

ss .

2. The second kind of sub-matrices are of size 3×3 for triplets of forms {n, n,m}
and n �= m. Denote the corresponding submatrices by R2. Let ψ = φmφ∗

n and
C2 = diag{1, ψ, ψ2}, then R2 = 1/32C∗

2

(
3I3 + 1H1

)
C2, which is full rank.

3. The third kind of sub-matrices are of size 6×6 for triplets of forms {n,m, l} and
m �= n �= l. Denote by R3 the corresponding sub-matrices. Let ψ1 = φmφ∗

n,
ψ2 = φlφ

∗
n, and C3 = diag{ψ2, ψ1, ψ

∗
1ψ2, ψ

∗
1 , ψ1ψ

∗
2 , ψ

∗
2}, and define:

D =


8 2 2 1 1 2
2 8 1 2 2 1
2 1 8 2 2 1
1 2 2 8 1 2
1 2 2 1 8 2
1 1 1 2 2 8


which is full rank. Then R3 = 1/64C∗

3DC3, which is full rank.
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Hence, the rank of R(3)
ss is equal to d3 − d. Thus, as the number of samples tends

towards infinity, S3 and P3 will have rank (d3 − d). By continuity, this will almost
surely be the case for finite but sufficiently large N .

Note that the same limitation as for the previous algorithm (MDA2) will occur
in case of two sources with non-overlapping time-support. In that case all columns
of the matrix S3 containing a cross-product of these two sources will be zero, which
will increase the dimension of its kernel and make the algorithm fail.

Let U0 be a matrix whose columns form a basis for the kernel of P3, and define
W� = [w�

1, · · · ,w�
d]. If the kernel of P3 is d-dimensional, then W� is also a basis

for the kernel. There is a one-to-one relation between the two bases, so that

U0 = W�T (6.46)

where T is a d× d invertible matrix. Denote by ui the i-th column of U0. Equation
(6.46) gives for all i in {1, · · · , d}:

ui =
d∑

j=1

(T)ij w
�
j

Recall from Section 1.7 that the Unvec operator is the operator that transforms
a d2 vector into a d × d matrix. We now denote similarly by Unvec3 the “three-
dimensional Unvec operator” which transforms a d3 vector into a d× d× d “cube”.
We denote the resulting cube: unvec3(u1) = Ui, for all i in [1, · · · , d]. Note that
application of this operator on w�

j gives an elementary rank-1 cube, (Wj)mnp =
wj(n)wj(m)wj(p) . So each cube Ui is a linear combination of d elementary cubes
Wj ,

Ui =
d∑

j=1

(T)ij Wj

In the basis of the wi’s, the cube Ui would then be only with non-zero components
on the main tridiagonal. It is a joint diagonalization problem in three dimensions,
and the generalized eigenvectors are the wi’s. Since it is a difficult question, we keep
this problem for the next Subsection, and assume from now that we have estimated
W.

Once the beamformers are determined, the remaining of the algorithm is the
same as for the MDA2.

The outline of the algorithm is restated in Table 6.4.
The cost of this algorithm is driven by the cost of estimating the kernel of P3 :

N × d3. The main cost of this is formed by a QR factorization of P3, which is of
order Nd6/2.

6.4.3 The third-order joint diagonalization

The most difficult point of the algorithm is the joint diagonalization of a collection
of cubes (see [50]). A “simpler” problem is the joint diagonalization of a collection
of matrices.
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1 Construct P3 from the x’s.
2 Extract U0 from the kernel of P3.
3 Jointly diagonalize the columns of U0 to get W.
4 Separate the sources via Ŝ = WHX.
5 Estimate M̂, and the DOA’s.
6 Estimate the residual frequencies.

Table 6.4: MDA3 Algorithm.

Towards this simplification, we propose the next procedure. Let ui be the i-th
column of U0 with size d3, and recall that ui =

∑d
j=1 (T)ij w

�
j . We reshape ui into

a d2 × d matrix Ui, such that vec(Ui) = ui. Then

Ui =
d∑

j=1

(T)ij (wj ⊗wj)wT
j = (W ◦W)diag(ti)WT def= (W ◦W)ΛiWT

We can define the d2 × d2 matrix U′ as

U′ def= [U1, · · · ,Ud] = (W ◦W)[Λ1WT , · · · ,ΛdWT ]

This shows that U′ should be of rank d. Thus let V be an estimated d-dimensional
basis for the column span of U′, obtained via an SVD of U′, and let Q = VH(W ◦
W), with size d×d. Then VHU′ is a dimension-reduced (d×d2) matrix with square
d× d blocks VHUi, each of the form

(VHUi) = QΛiWT , i = {1, · · · , d}

Thus, the problem is reduced to a standard (unsymmetric) joint diagonalization
problem, and the algorithm in [12] can be applied to estimate W.

6.4.4 Discussion

The MDA2 and MDA3 methods have a lower cost than the Multi-Shift ZCMA, and
they are not iterative. They are deterministic, so they have better performance than
SOBI-ESPRIT for finite number of samples and good SNR. Unfortunately, a joint
diagonalization is needed and as for AZCMA the method is highly sensitive to the
presence of non-overlapping sources.

MDA2 has the advantage over MDA3 that the dimensions of the matrices are
much smaller, and that the data is cross-multiplied only to order two rather than 3
or 4, which should lead to better numerical properties. A related advantage of this
method is its lower computational cost. Indeed, the cost of MDA2 is about Nd4

flops, whereas MDA3 has Nd6/2 flops.
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6.4.5 Mode A/C replies

Mode A/C is the main problem in this method. Indeed, even without time-synchro-
nization s[t]s[t− TC/2] = 0 holds true for mode A/C replies, which results in a too
large kernel of S3.

To solve this problem, a two-stage algorithm is proposed: 1) the mode A/C
replies are detected in a similar fashion, and filtered out; 2) the MDA is applied to
the remaining signal.

We define x̃[k] = x[t = k TC

2 ], we consider the matrix P2 that contains the rows
[x̃[k]⊗ x̃[k + 1]]H . We denote by wc a beamformer that receives a mode A/C reply,
then from Equation 3.4, we derive:

P2(wc ⊗wc) = 0

By performing a joint diagonalization on the kernel of P2, we recover all the
mode A/C replies. We collect the wc’s in a tall matrix Wc, and we denote by Q
the orthogonal projector to the sub-space spanned by Wc. Then QX is a mixture
of mode S replies only, on which we can apply the MDA algorithm.

6.5 Post-processing

Unfortunately, we observe that the frequency estimate given by Equation (6.5) for
the MS-ZCMA and the MDA’s algorithms is far from the CRB. The idea is to
estimate the frequency shift on the separated data, one advantage is that there should
be only one source remaining in a time serie, the obvious drawback occurs when
the separation is not efficient. While slightly better than Equation (6.5), a phase
rotation based method (as ESPRIT on the time serie) performed on the estimated
source signal had poor performance as well. So, we propose to minimize the following
cost function with respect to the frequency estimate f ′i on the estimated source ŝ,
without knowing the bits:

min
f ′

(
N − ||ŝfH ||2)

where ŝ is the estimated signal, N the number of samples, and f = [1, φ, · · · , φN−1],
where φ = exp2πjf ′T . In the noiseless case, we show that this cost is minimum when
the frequency estimate f ′ is equal to the frequency shift of ŝ. Indeed consider that
ŝ(k) = s0b(k) exp2πjkfT , with an unknown s0 ∈ C, and |s0| = 1, then:

||ŝfH ||2 =

∣∣∣∣∣
N−1∑
k=0

s0b(k) exp2πjkfT exp−2πjkf ′T

∣∣∣∣∣
≤

N−1∑
k=0

|s0b(k) exp2πjk(f−f ′)T |

≤ Nbi
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where Nb is the number of bits equal to one. So we obtain that the cost function
is always larger to N − Nb. Note that if f = f ′, there is equality, so the cost is
minimum at f = f ′.

6.6 Conclusion

This chapter have presented several algorithms to separe the SSR sources. Depend-
ing the property on which each algorithm is based, we have described what is likely
to be the performance of each algorithm for certain conditions. One algorithm is
stochastic, while the others are deterministic.



Chapter 7

Simulations

In the previous chapter, we proposed algorithms to separate SSR sources. At this
point, we desire to test and confirm the conclusions of the preceding chapter using
computer simulations. With the simulations, we also desire to assess the quality
of the proposed algorithms, and possibly to discover any unpredicted behavior. In
addition, the simulations can be used to predict the behavior of the experimental
antenna developed within TU Delft.

First we describe the simulation scenario, then we present a series of different
simulations and their results, and finally we draw conclusions on the quality of the
algorithms.

7.1 Simulation scenario

For the simulations, we have considered an array of four elements, with an inter-
element distance of a half wavelength. This choice is compatible with the experi-
mental setup which has only four elements. We have considered scenarios with only
two sources, each with an unframed structure. Hence, the sources are modeled as
continuous data streams without the specific framing of the various modes, nor the
preamble, nor the redundancy code of mode S. This is done so that we can vary
the number of symbol easily, and can compare to the CRBs. As we consider only
mode S, the signal is raw Manchester encoded data shifted in frequency, without
any pulse-shape.

Six parameters were varied: the input SNR, the number of samples, the angle
difference between the two sources, their frequency difference, and the power ratio
of the two sources. The sixth one is a different simulation, in this one we consider
two packets, and we vary the ratio of their common time support. Since the multi-
dimensional space of the parameters is quite large, we have performed the simulations
by changing only one parameter per set. The common point for all sets of simulations
has the following characteristics: two equal powered sources with a SNR of 30 dB, 100
samples (so 50 symbols), DOAs of [70, 110] degree, frequency shifts of [−5.104, 5.104]

95
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Hz. The source packets are totally overlapping.
For each set of parameters, we performed 1000 independent Monte-Carlo runs,

except for the SNR simulations series, where only 100 independent runs were per-
formed. We present performance curves of the following results: the failure rate
(a failure occurs when the estimated output SNIR of one of the sources is below
4 dB), the output SINR, and the standard deviation of the estimated DOA and
the frequency shift. The definition of output SINR is the ratio between the output
power of the desired source and the sum of the output noise power plus the output
power of the undesired sources (after the beamformer). Since the output SINR has
a direct relation to the degradation of the symbol estimate, it is a more interesting
performance measure than the output SNR and the output SIR.

All algorithms start by a detection of the number of sources with the White
Noise Test described in Section 6.1. Most algorithms end with the estimation of the
frequency shift with the method of section 6.5.

In the SINR plots, a black line indicates the best achievable output SINR for
one source, it is a maximum bound. In the legend, it is called “Single” (as single
user). We compute it by multiplying the SNR by the number of elements of the
antenna array. In the same plots, we also present the performance of the Wiener
beamformer, in dashed lines. This beamformer is defined as the minimum of the
MSE criterion under the assumption that the transmitted data matrix S is known
(see Section 3):

W =
(
XXH

)−1
XSH

In the plots presenting the performance of the estimation of the DOA and of the
frequency, the stochastic CRB is included to give a limit on the variance of the best
achievable unbiased estimation.

The failure rate is defined as the ratio of the number of failed simulations over
the total number of simulations for a given set of parameters. The failed simulations
are discarded from the estimation of the SINR, and the standard deviations of the
DOA or the frequency shift.

All the plots present also the multi-shifts ZCMA (denoted MS-ZCMA), the
ESPRIT-SOBI (denoted from now E-SOBI), and the two versions of the MDA al-
gorithm (denoted MDA 2 and MDA 3). When the parameters of two sources had
totally symmetric values, their estimates were averaged together.

7.2 SNR

In the first set of simulations, the input SNR is varied from 10 to 50 dB. This range
represents well the SNR of the received signals encountered in practice. The results
are presented in the Figures 7.1 to 7.5.

Figure 7.1 shows the failure rate as a function of the input SNR. The MDA 3 and
E-SOBI have a few failures at low SNR, while the MS-ZCMA and MDA 2 algorithms
are robust with respect to the noise level.

Figure 7.2 shows the SINR as a function of the input SNR. The output SINR is
linear with the input SNR for all algorithms. Due to the large range of input SNR,
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Figure 7.1: The failure rate as a function of input SNR.

10 15 20 25 30 35 40 45 50
15

20

25

30

35

40

45

50

55

60

Input SNR [dB]

O
ut

pu
t S

IN
R

 [
dB

]

MS−ZCMA
E−SOBI
MDA 2
MDA 3
Wiener
Single

Figure 7.2: The SINR as a function of input SNR.

it is more interesting to consider the difference of the output SINR and the input
SNR, see Figure 7.3. It shows that the MS-ZCMA and the MDA 2 tend towards the
Wiener solution, while the MDA 3 and E-SOBI have better performance, but still
remains under the ultimate limit of one signal alone (the “Single” curve).

Figures 7.4 and 7.5 present the estimation performance for the frequency and the
DOA as a function of input SNR. We also show the stochastic Cramer-Rao bounds
derived in Proposition 5.2.2. In both plots we note that the deterministic algorithms
have a better behavior than E-SOBI, which reaches a floor above a certain input
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Figure 7.3: Compensated SINR by input SNR as a function of input SNR.
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Figure 7.4: Standard deviation of the frequency estimate as a function of input SNR.

SNR. This floor is due to the finite sample effect, indeed the E-SOBI algorithm
uses an estimate of various covariance matrices. These sample covariance matrices
require a certain amount of samples to converge to their expected values. At low
SNR, the finite sample effect will be masked by the noise power. Oppositely, at high
input SNR, the finite sample noise limits the accuracy of the covariance matrices and
the estimation of the frequency shifts is less reliable, which can be observed by the
floor effect on Figure 7.4. In summary, the estimates of E-SOBI are not consistent.

This frequency mis-estimation should has dramatic consequences for the E-SOBI
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Figure 7.5: Standard deviation of the DOA estimate as a function of input SNR.

separation performance. Indeed, this algorithm uses the knowledge of the frequency
to estimate the mixing matrix, see Equation (6.36). As the estimate of the mixing
matrix is used to estimate the beamformers, the output SINR should have been
degraded, unlike what we observe in Figure 7.3. The Unvec operation used for the
estimation of the columns of the mixing matrix is probably compensating for the
frequency mis-match.

We also note that the deterministic algorithms are near the Cramer-Rao bounds,
which indicates they have a good performance. For an input SNR of 30 dB, the
standard deviation of the estimated frequency is only 25 Hz, which would allow to
recover the Doppler shift. If this accuracy can be repeated in practice, it would
be possible to derive the vectorial speed of the aircrafts at the central management
by comparing the different Doppler shifts from each receiving base station. The
standard deviation of the DOA is 0.03 degree for a input SNR of 30 dB for the
deterministic algorithms. Since the current SSR radars typically have only 0.2 degree
of accuracy, it seems a good result, but we have to keep in mind that this is a
theoretical result for a perfect antenna array.

As an additional problem, the E-SOBI algorithm has a non-negligible bias for
the estimate of the Direction of Arrival, which is shown in the Figure 7.5 under
the name “E-SOBI bias”. The other bias were well below their associated standard
deviation.

7.3 Number of Samples

In this series of simulations, we only vary the number of samples, from 50 to 200
samples, keeping the other parameters fixed.
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Figure 7.6: The failure rate as a function of the number of samples.

Figure 7.6 shows the failure rate as a function of the number of samples. It
appears that the MDA 3 algorithm is the first to fail at low number of samples,
while the other algorithms rarely fail. In order to have tall matrices, the MS-ZCMA
algorithm needs to have N ≥ d4/2, and the MDA 3 needs N ≥ d3. Note that
with d = 2, the limits are the same, N ≥ 8. In the general case, we expect that
MS-ZCMA is more sensitive than MDA 3. In fact MS-ZCMA uses an average of the
subspace obtained by considering several shifts, thus it is more robust than MDA 3,
which uses only one matrix.
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Figure 7.7: The output SINR as a function of the number of samples.
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Figure 7.7 shows the SINR as a function of the number of samples. We note
that the SINR of the Wiener solution is increasing with the number of samples,
but remains below the single-user maximum SINR. The MS-ZCMA and the MDA 2
algorithms follow the trend of the Wiener solution. E-SOBI and MDA 3 have a nearly
constant SINR, which degrades a little for the E-SOBI at a low number of samples.
Their SINR is better than the Wiener solution, this is due to the fact that the
beamformers for these algorithms were derived as parametric Wiener beamformer.
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Figure 7.8: Standard deviation of the frequency estimate as a function of the number
of samples.

Figure 7.8 shows the standard deviation of the frequency estimate as a function of
the number of samples. We note that all deterministic algorithms follow the CRB for
the frequency. E-SOBI reaches some floor as in the preceding series of simulations.
In an unreasonable way, a bias even appears for a large number of samples. This
effect remains without any explanation.

Figure 7.9 presents the standard deviation of the DOA as a function of the
number of samples. We note that the deterministic algorithms follow quite well the
CRB, while E-SOBI remains significantly above, and for a low number of samples
exhibits a degradation in performance. This comes from the fact that E-SOBI
needs that the covariance matrices reach their expected values. The deterministic
algorithms are consistent, but unfortunately not asymptotically efficient.

7.4 Angle difference

In this series of simulations, we only vary the DOA of the impinging sources, keep-
ing the other parameters fixed. The DOAs are changed according to the relation:
[θ1, θ2] = [90− θ, 90 + θ] where θ is the index used in the plots.
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Figure 7.9: Standard deviation of the DOA estimate as a function of the number of
samples.
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Figure 7.10: The failure rate as a function of half the angular difference.

Figure 7.10 presents the failure rate as a function of the parameter θ. We observe
that MDA 2 can not cope with low angular separation. As MDA 3 uses a similar
concept, it is interesting to compare them. For MDA 2, the solution subspace is
extracted from the kernels of two different matrices, while for MDA 3, it is extracted
from the kernel of only one matrix. If one of the two matrices used by MDA 2 does
not give the correct subspace, the final detection will be wrong. Thus, MDA 3 is
more robust than MDA 2 at low angular separation.
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Figure 7.11: The SINR as a function of half the angular difference.
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Figure 7.12: A detail of the SINR as a function of half the angular difference.

Figure 7.11 shows the output SINR as a function of the parameter θ. All algo-
rithms have decreased performances in SINR for a lower angular separation than 24
degrees. The E-SOBI also shows a loss over the other algorithms of a few dB over
the range [3◦, · · · , 14◦] degrees. Figure 7.12 is a zoom of Figure 7.11 in the range
[10◦, · · · , 40◦]. We observe that the MS-ZCMA and the MDA 2 algorithms are be-
low the Wiener solution, and MDA 3 is above. These 4 curves have an oscillating
behavior.

Figure 7.13 shows the standard deviation of the frequency estimate as a function
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Figure 7.13: Standard deviation of the frequency estimate as a function of half the
angular difference.

of the parameter θ. The frequency estimate is almost constant above 20 degrees sep-
aration, with E-SOBI two orders of magnitude above the deterministic algorithms.
There was no observable bias for the deterministic algorithm, while E-SOBI had a
slight bias.
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Figure 7.14: Standard deviation of the DOA as a function of half the angular differ-
ence.

Figure 7.14 shows the standard deviation of the DOA as a function of of the
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parameter θ. For reasons of space, the legend is not displayed in this figure, the line
types are the same as for the previous plots, with the addition of the dashed lines,
which represent the bias of each method. We first note that all algorithms have a
bias at low angular separation. Second, surprisingly, the standard deviations of all
methods show the same pattern with different levels of amplitude. Last, the Cramer-
Rao bound rises slightly with the angular separation, which is counter-intuitive.

7.5 Frequency difference

In this series of simulations, we only vary the frequency shifts, keeping the other
parameters fixed. The new frequency shifts are defined accordingly to the relation:
[f1, f2] = [−f, f ], where f in Hz is the index used in the plots.
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Figure 7.15: The failure rate as a function of frequency.

Figure 7.15 presents the failure rate as a function of the parameter f . The E-
SOBI algorithm does not work with small frequency differences, and below 30 kHz
begins to fail. Usually, the ESPRIT step can resolve small frequency differences in
noise-free case, but here the sample covariance noise is probably too strong. The
deterministic algorithms are robust for all simulated frequencies.

Figure 7.16 presents the output SINR as a function of the parameter f . The
SINR of the deterministic algorithms are almost independent of the frequency shift,
while the E-SOBI is performing well only between 30 and 300 kHz. As the frequency
difference tends to zero, the ESPRIT step of the E-SOBI algorithm is more sensitive
to the sample covariance noise, which explains the bad performance for the low
frequency. For high frequency difference, E-SOBI has bad performance as well, the
natural explanation would be the aliasing effect, but Figure 7.17 contradicts this
hypothesis.
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Figure 7.16: The SINR as a function of frequency.
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Figure 7.17: The standard deviation of the frequency as a function of frequency.

Figure 7.17 presents the standard deviation of the estimate of the frequency shift
as a function of the parameter f . We note again that E-SOBI works only with a
difference of frequency larger than 30 kHz, and we remark that the mean of the
E-SOBI is not negligible. The deterministic algorithms have a performance near
the Cramer-Rao bound, and only a slight degradation of quality at low frequency
differences.

Figure 7.18 presents the standard deviation of the estimate of the DOA as a
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Figure 7.18: The standard deviation of the DOA as a function of frequency.

function of the frequency difference of the two sources. The deterministic algorithms
have a similar behavior, and are near the Cramer-Rao bound. E-SOBI has acceptable
performance only between 30 and 100 kHz, but outside this range the bias and the
variance are significant.

From this set of simulations, we can conclude that the deterministic algorithms
do not depend on the difference in residual carrier, which was expected since the
MS-ZCMA and the MDAs do not depend on the frequency. It also appears that
E-SOBI has a limited range where its performance is reliable.

7.6 Power Ratio

In this series of simulations, we only vary the ratio of the source power, P1, P2, while
keeping the other parameters fixed. It is done by keeping P1 constant, while P2 vary
such that the relative power varies over [−20, · · · , 20] dB. The SNR of source 2 varies
then in the range [10, · · · , 50] dB.

Figure 7.19 presents the failure rate as a function of the power ratio. We note
that if the power ratio of the two source is too large, E-SOBI fails. This effect is due
to the finite sample effect: the non diagonal entries of the source covariance matrix
are larger or of the same order of magnitude as the smallest diagonal entry. At low
power ratio, the MDA 2 unexpectedly fails, we can only assume that the problem is
due to the choice of the null subspace from the pair of matrices {R1,R2}.

Figure 7.20 presents the output SINR of source 1 as a function of the power
ratio. Figure 7.21 presents the output SINR of source 2 compensated by the relative
power, as a function of the relative power. In both figures, MS-ZCMA and MDA 3
have a good behavior, while at low power ratios MDA 2 for source 2 has 2 dB loss.
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Figure 7.19: The failure rate as a function of the power ratio.
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Figure 7.20: The SINR of the source 1 as a function of the power ratio.

The two figures are not each other’s image, because at low power ratios the sources
have the following SNR: [30, 10] dB, and at high SNR they have the SNR [30, 50]:
these two situations are not symmetric with respect to the noise.

Figure 7.22 presents the standard deviation of the estimate of the frequency shift
as a function of the power ratio. Figure 7.23 presents the standard deviation of the
estimate of the DOA as a function of the power ratio. As the SNR is different for
each sources, the performance for each of the two sources is shown separately. In
both figures, we note that the deterministic algorithms behave near the Cramer-Rao
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Figure 7.21: The SINR of the source 2 as a function of the power ratio.
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Figure 7.22: The standard deviation of the frequency as a function of the power
ratio.

bound, while for E-SOBI always one of the two sources has degraded performance,
unless their powers are equal. Furthermore, the bias for the E-SOBI can be as high
as the standard deviation.

This set of simulations totally excludes the E-SOBI algorithm from real-life ap-
plications where the dynamic range of the sources can be high. It is worthwhile to
note that MS-ZCMA and MDA 3 can cope with this high variability in power ratio.
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Figure 7.23: The standard deviation of the DOA as a function of the power ratio.

7.7 Packet overlapping

In this series of simulations, we investigate the influence of the time delay offset
between the beginning of two signals with an equal length, while keeping the other
parameters fixed. Both source signals have the same packet length (100 symbols).
The length of the observation window is equal to the number of samples plus the
time delay, so for each simulation the data block has a different number of samples.
If the time delay offset is bigger than 100, then the two signals are non-overlapping.
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Figure 7.24: The failure rate as a function of the time delay offset.
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Figure 7.24 presents the failure rate as a function of the time delay offset. This
figure confirms our expectations that MDAs cannot cope with non-overlapping sig-
nals, but also shows us that already with a time delay offset equal to 50% these
methods begin to fail. For time delay offsets below 90, MDA 2 performs better than
MDA 3, but for non-overlapping sources it always fails, while MDA 3 still has a
“success rate” of 30%. Figure 7.24 also shows that MS-ZCMA only has a few per-
cent failures for non-overlapping sources. It is interesting because in real-life there
should be a pre-processing unit that tries to isolate smaller set of data samples be-
fore using the algorithms. If this step fails and do not isolate two non-overlapping
signals, then our algorithm has to be able to resolve also this kind of situation. For
non-overlapping sources, the covariance matrices Rτ should not have cross-signal
terms (even for finite samples), hence we expect E-SOBI to behave better in that
case. But its failure rate is still a few percent for large time delay offsets.

Given that the failure rate for MDA 2 is almost 1 for a number of samples
superior to 90, the other statistics are not making sense, and are not presented in
the remaining figures for the range of samples [100, · · · , 130].
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Figure 7.25: The SINR as a function of time delay offset.

Figure 7.25 presents the SINR as a function of the index of separation. We note
that E-SOBI algorithm has a constant SINR. The SINRs of MDA 2 and MS-ZCMA
have similar behavior until the time delay offset is equal to 70, then the MDA 2
has its SINR degrading even more, while the SINR of MS-ZCMA raises to almost
the Wiener solution for time delay offsets above 100. Note that the variation of the
SINR for MS-ZCMA is less than 1 dB on an average of 35 dB, so this behavior is
acceptable.

Figure 7.26 presents the standard deviation of the estimate of the frequency shift
as a function of the index of separation. E-SOBI algorithm has a constant standard
deviation, and so is unaffected by the time delay offset, but the bias of this method is
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Figure 7.26: The standard deviation of the frequency as a function of the time delay
offset.

rising with the time delay offset. The deterministic algorithms have similar curves,
which are log-linear with the time delay offset.
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Figure 7.27: The standard deviation of the DOA as a function of the time delay
offset.

Figure 7.27 presents the standard deviation of the estimate of the DOA as a
function of the time delay offset. E-SOBI and MS-ZCMA algorithms have constant
curves, while there is a slight improvement for E-SOBI at high time delay offsets.
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MS-ZCMA remains the algorithm with the best standard deviation for DOA.
We can conclude that the only overlapping-resistant algorithms are E-SOBI and

MS-ZCMA. This is consistent with Chapter 6, where we derived Propositions 6.4.1
and 6.4.2 only for totally overlapping sources, so the MDAs were not supposed to
cope with non-overlapping sources.

7.8 Conclusions

In this section, we have studied by means of simulation the behavior of each algo-
rithm for different situations. Our goal was to verify our predictions on the behavior
from the preceding chapter, and to discover some unpredicted behavior. At this
point, we can draw a first conclusion on the quality of each algorithm.

First, E-SOBI presents too many restrictions in frequency difference and power
ratio. Furthermore, the standard deviation of its frequency and DOA estimate are
always much above the other algorithms. Given these points, we can discard E-SOBI.

Next to E-SOBI, MDA 2 behaves slightly better. Indeed the method fails only
at small angle differences, or at low power ratios, or with non-overlapping sources.
When the method is not failing, the SINR is near the Wiener solution, and the
estimates are near their CRBs.

Finally, if we do not consider the “overlapping” simulations, we conclude that
MDA 3 and MS-ZCMA are of equal quality, they have low failure rate, and the
standard deviations for their estimates are near their CRBs.

The only difference is for non-overlapping sources. As MDA 3 was not designed
for it, it is not surprising that the algorithm is out-performed by MS-ZCMA. Note
that MDA 3 uses simpler mathematics, and has a simpler numerical implementation.
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Chapter 8

Experimental results

In the previous chapter, we used simulations to verify which of the algorithms can
perform well with the data model. In this chapter we describe the work done in our
groups within TU Delft to try the new algorithms with real measurement data.

During the preparation of the thesis, we built several experimental setups. Here,
we present in the first section only the last one for the sake of space. In the second
section, the measured data is presented and we present some experimental consider-
ations on it. The last section derives some statistics out of synthetized overlapping
packets extracted form the data set, and present an overlapping case completely
based on measurement data.

8.1 Experimental setup

The experimental device consists of 4 parts: the antennas, the receiving chain, the
digital oscilloscope, and a PC computer. The impinging signals are received by the
antennas, which are feeding the receivers. The receiving chains down-convert the
signal from the radio frequency, 1090 MHz (RF), to the Intermediary frequency, 10
MHz (IF). They also amplify the signal and filter out the other bands. The digital
oscilloscope samples, digitizes and records the output data. Then, via a General
Purpose Interface Board link (GPIB), the computer receives the measured data and
saves it on the hard-disk and CD-ROM for off-line processing.

First, we present the analog part of the setup, then its digital counterpart.

8.1.1 Design of the receivers

The receiver is intended to convert the signal from RF to IF, and its design is shown
in Figure 8.1.

After the antenna, an RF band-pass filter (BP) is placed before the RF-amplifier.
Its purpose is to protect the amplifier from increasing the power of other signals1.

1The nearest interference can be produced by DME, a system used for navigation.
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Figure 8.1: Design of the receiving chain.

This RF-filter has a bandpass of 10 MHz, and is centered at 1090 MHz. The amplifier
has a gain of 20 dB. The next stage is a mixer, which multiplies by a Local Oscillator
(LO). The LO has a frequency of 1080 MHz, so the IF will be 10 MHz. Since the
mixer is not perfect, there are also some harmonics, and the most important are the
second harmonic at 20 MHz, and the third one at 30 MHz. The other harmonics
do not have an important influence as they are filtered out by the low-pass filter, in
the last stage. The LO is produced by a Marconi waveform generator and is quite
stable in frequency. The next stage consists of a bandpass filter implemented by a
LP and a HP filter. The low-pass filter is centered on 10 MHz, and has a bandpass
of 10 MHz. The measurements made by the technician have shown that the filter
has a constant time-delay over this bandpass.

We built 6 antennas, and 4 receiving chains. The first and last antenna are loaded
with the correct impedance and intended to reduce the coupling between antennas.

We simulated the transformations that a mode S signal undergoes if it is pro-
cessed by this receiving chain. The spectrum of the digital output of the receiver is
shown in Figure 8.2.

In Figure 8.2, there are 3 spectra: the desired output, the second harmonic, and
the third harmonic. The vertical bar shows the band of the spectrum that is kept
after digital transformation. From the plot, we note that there is around 40 dB
between the desired signal and the second harmonic, so this design is acceptable.
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Figure 8.2: Simulation of the spectra of the first three harmonics. The vertical bar
represent the cut-off frequency of subsequent digital filters.

8.1.2 The digital part

The digital part consists of a digital oscilloscope, which is linked to a computer by
a GPIB link, and an off-line digital pre-processing phase done in matlab.

Figure 8.3: The Tektronix TDS 784 A.

The oscilloscope, a Tektronix TDS 784A (see Figure 8.3), has a vertical reso-
lution of 8 bits.
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The sampling rate for the measurement is 50 Megasamples per second. As the
oscilloscope has a limited memory, it was mandatory to export the data in a fast
and reliable way.

The data is loaded from the digital oscilloscope into the computer, which even-
tually stores it onto CDROM for offline processing. The offline processing consists
of three stages. First a Hilbert transform is applied, then a digital filtering with a
bandwidth of 10 MHz.The last stage is to down-sample the data to 2 M-samples per
second, which is the frequency for which the algorithms are designed. No synchro-
nization scheme is implemented.

8.2 Experimental considerations

Due to a tight schedule, we could only perform a limited amount of measurements
during two hours on Aug. 23, 2001. During these two hours, we could record 28 dif-
ferent data sets. Most of them have a short time duration, 300µs, which was chosen
to get a mode S reply or some interesting features. Four of the experiments were
recorded over a long time duration in order to estimate the frequency of appearance
of the various modes. The recorded data contained 8 clean mode S replies and one
case with two overlapping mode S replies.

8.2.1 Reply density

In the scope of this thesis, we assumed that soon only mode S replies would be emit-
ted by the airplanes, and that these mode S replies would overlap at the reception.
So we are interested in estimating the density of the replies at reception.

To estimate the reply density, we recorded the output of the antenna for a long
time of observation without any special triggering, and we obtained 4 block-records
this way. When considering the 4 block-records, we counted 120 mode A/C replies,
and 2 mode S replies for a time length of 2.6 ms per record. This is disappointing,
because the Eurocontrol commission was supposed to enforce the mode S standard
by 1999. Furthermore, it could reduce the importance of the work produced in this
thesis, but the motivation of the thesis remains valid, and it is just a matter of years
before source separation algorithms will be mandatory.

8.2.2 Verification of the signal model

In this subsection, we study the agreement between the true and the modeled signal.

The frequency drift

First, we check the source behavior, so we consider one signal on one antenna, and
we down-sample a received mode S to a frequency of 2 MHz. The absolute values are
consistent up to the noise with the simplified model of Equation (3.9). But the phase
of the received replies is not always consistent with the model. In Figures 8.4 to 8.6,
we consider the phase of three mode S replies, numbered 7, 2 and 6. We present the
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original phase with the frequency shift, and the phase after compensation by the
estimated frequency shift for the 3 sources.
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Figure 8.4: Received phase of source 7, for which a remaining frequency drift of
−60238 Hz has been estimated, and compensated phase of the same source.

Figure 8.4 shows that the match between the model and the true signal is quite
good, indeed the compensated signal has almost a constant phase.

Figure 8.5 presents the phase of source 2. We note that the compensated phase
is not constant as in the preceding case. Moreover, the shape of the compensated
phase is too regular to indicate that only noise is present. We contemplate that the
output of the transponder was not as modeled.

Figure 8.6 presents the phase of the source 6. We note that the phase does not
follow any regular pattern, and the algorithm could not compensate any phase-shift.
It is obvious that the emitted signal had a random phase.

To conclude, it appears that the transponders do not follow any rules for the
stability of their phases. Some are quite stable, while others are not. Since the ICAO
does not enforce this point, it was previsible that the transponder manufacturers
would not spend any money on it.

Calibration

High-resolution algorithms are sensitive to so-called “calibration” errors, which arise
from non-identical behavior of the analog transducers that transform the impinging
electromagnetic waves into electric signals. It was necessary to investigate array
calibration algorithms, in particular, we considered AB algorithms [51], and the
ESPRIT-like Algorithms [52].

Using these algorithms did not help to estimate the direction of arrival of the
impinging sources. We assume that the errors in the received signal originate from
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Figure 8.5: Received phase of source 2, for which a remaining frequency drift of
19258 Hz has been estimated, and compensated phase of the same source.
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Figure 8.6: Received phase of source 5, for which no remaining frequency drift could
be estimated, and compensated phase of the same source.

different reasons. Two causes can immediately be identified: first, there can be
a “coupling” problem, which is caused by the reflections from one element to an-
other element. Second, the roof on which the measurement equipment was installed
contains (too?) many metallic objects, which can be the source of secondary paths.

Given that the array response does not follow the model in Equation (3.8), it is
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not possible to evaluate the DOAs. So we limit ourselves to source separation in the
remaining of this chapter.

Test of the methods

To verify whether the algorithms can cope with real signals, we check Properties
3.1.1 and 3.1.2.

Property 3.1.1 states that the delayed cross-products should be equal to zero.
We checked this property on data segment 2.
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Figure 8.7: Absolute value of the data segment 2, and the test on the third-order
cross-product, and the two second-order cross-product.

In Figure 8.7, we observe the signal, the third-order cross-product, and the two
second-order cross-products. As stated in the property 3.1.1, the third-order, and
one of the second-order cross-products are equal to zero (up to the noise). This
validate the basic assumptions for the MDA algorithms.

Next, we check the Property 3.1.2. As our algorithm, the MS-ZCMA, compares
iteratively 2 vectors, it is reasonable to estimate if these two vectors are parallel.
The way to compare if they are parallel is to take an unit-norm version of them,
and to perform a SVD on them, we should get two tall vectors multiplied by a 2× 2
diagonal matrix and a small square transform matrix. The first vector is supposed
to be the mean, and the second vector the difference. We will plot each vector
multiplied by its corresponding singular value, and compare them graphically. The
original AZCMA also compares 2 vectors, so we can perform this test. We consider
the vector containing the (s∗s2)(k) for all k ∈ [1, .., N ], and the vector containing the
s(k)’s for the original AZCMA. For MS-ZCMA, we consider the vector containing
the [s∗(k − 1)s(k)]2 for all k ∈ [1, .., N ], and the vector containing the s∗(k − 1)s(k)
for all k ∈ [1, .., N ]. The output of the procedure are displayed for comparison in
Figure 8.8.
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Figure 8.8: (a) presents the results of the procedure for the first and third-order
product of the source (the original AZCMA). (b) displays the results of the procedure
of the second and the fourth-order cross-product of the signal (MS-ZCMA).

We note that in both plots of Figure 8.8, the second vector of the testing pro-
cedure is at the level of the noise. Thus the algorithm will be able to extract the
correct subspace for each case.

8.3 Experimental results

In this section, we first study the statistical properties of the algorithms, then the
only true overlapping packets we could measure is investigated.

8.3.1 Semi-synthesized results

As we could measure only a very few number of true mode S replies, with only one
overlapping case, we had to add them manually to create a mixture of two sources.
An advantage is that the delay offset and the SNR can be varied.

We choose the best received mode S signal (8 in total). The signals have a SNR
in the range [10, · · · , 30] dB, they are 128 samples long. The signals are already
down-sampled. We add them pairwise with some Gaussian white noise, so we have
56 possible combinations to study the performance of the algorithms.

There are two series of experiments: in the first series, we vary the power of the
added noise. In the second series, we include a time delay between the two sources.

In the first series, for every couple of sources, we add them pairwise without time
delay offset. We take the sources with an equal power, and we calculate the noise
level. If this noise level is below the SNR we investigate, we adjust the noise level
by adding some complex Gaussian noise, otherwise we discard this couple.
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Figure 8.9: The failure rate as a function of the input SNR.

Figure 8.9 shows the failure rate as a function of the SNR. Unlike in the simula-
tion, MS-ZCMA fails earlier: at 13 dB. These experiments also learn us that MDA 2
soon joins MS-ZCMA, while MDA 3 stay 25% below them. MDA 3 appears to be
more robust than the two other at low SNR.
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Figure 8.10: The output SINR as a function of the input SNR.

Figure 8.10 shows the output SINR as a function of the SNR. The three algo-
rithms tend to follow the Wiener solution, as in the simulations. Only at an SNR of
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30 dB, the performance is degrading a little for MDA2 and MS-ZCMA, and more
seriously for MDA3 (2 dB more). Unfortunately, we do not have recording of reply
signals with less noise to explore if this is a systematic trend or not.

In the next series of experiment, we use equi-powered sources with a SNR equal
to 20 dB, we only vary the time delay offset.
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Figure 8.11: The failure rate as a function of the delay of the second source.

Figure 8.11 presents the failure rate as a function of the delay of the second
source. We recognize the same trend as in Figure 7.24. The MDAs have some
problems in the non-overlapping zone, but MDA 3 now has a failure rate of 30%,
while it was 70% in the simulated data. Also, MS-ZCMA has an improved failure
rate in that zone, although it remains below the others.

Figure 8.12 presents the output SINR as a function of the delay of the second
source. As in the simulations, the performance of MS-ZCMA is insensitive to the
time delay offset, but is not as close to the Wiener solution as in the simulations (it
is 2 dB lower now). MDA 2 has the same bad performance as in the simulations. A
new fact is the loss of 8 dB for MDA 3 for cases with a large time delay offset.

We can summarize this semi-synthetic study by mentioning that we obtained
more or less the same behavior of the algorithms as in the simulations, and we did
not get too many surprises. MS-ZCMA stays the most interesting algorithm for
a real blind approach, and MDA 3 in case we know that the sources have a large
support in common.

8.3.2 Real case data: influence of the down-sampling

In this subsection, we consider the only real overlapping measured data we obtained.
First, we present the situation of this measurement, and the signals. Then we present
the results of the down-sampling study, and why some cases did not work out.
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Figure 8.12: The output SINR as a function of the delay of the second source.
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Figure 8.13: Two overlapping mode S replies at a sampling rate of 50 MHz.

Figure 8.13 presents the absolute value of the first antenna. We observe two
mode S replies overlapping with a similar power. This plot is still sampled at the
initial digitalization frequency of 50 MHz. We separated the two sources by another
means to estimate the mixing matrix, which we can invert to separate the sources.

Figure 8.14 shows the absolute value of the first source obtained this way, and
the Figure 8.15 shows its angular phase. The same is shown for the second source
in Figures 8.16 and 8.17.

The first source has its magnitude quite constant or equal to zero, but its angular
phase is totally random. This is an example of a received signal not matching with
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Figure 8.14: Absolute value of the first recovered source.
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Figure 8.15: Angular phase of the first recovered source. Every 25 samples, a sample
is represented by a cross.

our model.
The second source is totally matching the model, in amplitude and in phase.
Before using the algorithms, we have to reduce the number of samples from 50

per microsecond to 2 per microsecond. If we chose a good initial offset point for
the down-sampling, all algorithms perform well. Oppositely, with a bad initial offset
point, none of the algorithms is able to separate the sources. Since in practice the
downsampler should be totally blind on the choice of the initial point, we need to
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Figure 8.16: Absolute value of the second recovered source.

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

Time in µ s

Ph
as

e

Figure 8.17: Angular phase of the second recovered source.

know the influence of the initial point on the results of the algorithms. So for each
initial point we tried to separate the source, and if one of the two sources has an
output SINR smaller than 3 dB, the trial was considered as a failure. Table 8.1
presents the resulting rates.

It appears clearly that the Manchester based algorithms are more robust than
MS-ZCMA. For this case, the phase of the first source does not follow our model,
this may explain that the MDAs are more robust. The latter only use the absolute
values of the samples.
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Method MD2 MD3 MS-ZCM
Failure rate 0.24 0.24 0.36

Table 8.1: Failure rate over all the possible starts of the down-sampling.
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Figure 8.18: Case of down-sampling which results in a failure.

Figure 8.18 presents a case where the initial sampling point was chosen badly.
One can observe that in this case the amplitude is constant almost everywhere, and
thus we do not have the 0/1 property for the sources.

8.4 Conclusion

The measured data have shown that the model chosen at the beginning of the thesis
does not always match the reality. The experiments show that even with these
mismatches the algorithms continue to perform well.

The last experiment demonstrates that now the most important aspect to be
investigated is the downsampling. To be insensitive to the sample moment, we have
to oversample the received data, and the algorithms have to be modified for this.



Chapter 9

Conclusion

During the work of this thesis, I was offered a rare opportunity: to deeply investigate
a subject from the beginning to the end. I had to demonstrate the feasibility of a new
extension to the SSR radar: the multi-static configuration. The critical point was
to create a passive receiving antenna array, this is the focus of my thesis. Antenna
array is not a new tool, but never used in the scope of SSR. So the limits of this
approach had to be found, algorithms dedicated for this case to be imaginated, and
a real antenna to be built.

Before any data processing, it is important to know if a solution exists and
is unique. Many results on antenna array identifiability exist, but most of them
concern infinite number of samples. For a finite number of samples, only probability
bounds exist and are constellation-dependent; none of them is related to the SSR
case. I found a novel bound for identifiability of the SSR problem using the source
properties.

It is common practice to evaluate the best performance achievable by signal
processing for a given scenario. This performance is the Cramer-Rao Bound, un-
fortunately in many cases some parameters influence the bound while they are not
desired: we commonly call them the unwanted parameters. Often the symbols are
unwanted parameters, I derived a proof for a stochastic Cramer-Rao Bound, which
averages them.

As many algorithms dedicated to antenna arrays already exist, it is more inter-
esting to elaborate new algorithms or refinements based on the specific properties of
the SSR sources. I mainly investigated three different directions. Using the special
Manchester Encoding of the SSR replies, I created two algorithms, called MDA2
and MDA3. I have adapted the SOBI algorithm to the SSR case, in order to make
it more reliable. While it is not interesting in our context, it can be used in the
landing phase of the aircrafts at the airport, where there is no variability in dynamic
range. Lastly, I have used the principle of the AZFA algorithm to recreate a many
subspace intersections algorithm, the MS-ZCMA.

Finally, I added a new value by designing and programming the whole physical
receiving chain to validate those algorithms. With the antenna array built during the
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thesis, we could perform a limited number of measurements. It was a semi-success,
in the sense that while the results were good, not enough measurements could be
done, due to lack of time.

As a general conclusion, the MDA 3 and the MS-ZCMA are recommended to be
implemented in the future in the airports, as they have shown good robustness to
difficult situations, and low failure rates.

In the future, as far as theoretical aspect are concerned, one should perform
a first order error study of the algorithms. As the experimental device is up and
running, it is a pity to not use it for further measurements, I suggest to use the
device to enforce or to change the conclusion of Chapter 8. Practical utilization will
be possible only after investigating the down-sampling issue: how it influences the
results, and how to adapt the algorithms?

High-resolution algorithms are sensitive to so-called “calibration” errors, which
arise from non-identical behavior of the analog transducers that transform the im-
pinging electromagnetic waves into electric signals. As the thesis has a strong experi-
mental final component, it was necessary to investigate array calibration algorithms.
To do so, I gathered an extensive bibliography on the subject and I directed a stu-
dent to study the AB algorithms [51] and the ESPRIT-like Algorithms [52] with
synthesized data. Due to lack of time, I could not continue my investigations be-
yond these first steps. My desire is to continue to work in this direction and to
imagine elegant new algorithms.



Appendix A

Proof of Lemma 4.3.5

A.1 Reminder

We consider here d ZCM sources, si[n], for which the absolute values belong to the
set {0, 1} with equal probability, and for which the phases are uniformly distributed
over [0, 2π). It can be summarized as:

P (si[n] = 0) = P (|si[n]| = 1) =
1
2

In Chapter 4, we have considered a N × d2(d + 1)/2 matrix Ψ constructed as:

Ψ = [Ψa|Ψb] (A.1)

with:

Ψa =

 s1[1] . . . sd[1] (s∗1s1s2) [1] . . . (s∗dsdsd−1) [1]
...

...
...

...
...

...
s1[N ] . . . sd[N ] (s∗1s1s2) [N ] . . . (s∗dsdsd−1) [N ]


Ψb =


(
s∗1s

2
2

)
[1] . . .

(
s∗ds

2
d−1

)
[1]

...
...

...(
s∗1s

2
2

)
[N ] . . .

(
s∗ds

2
d−1

)
[N ]


whose rows contain all the non redundant elements s∗i sjsl[n], ∀{i, j, l} ∈ [1, .., d]3,
∀n ∈ [1, ..N ]. The rows are sorted with the time index, the columns are sorted such
that the elements for which i = j = l are placed first, then the elements with j �= l,
and lastly the elements such that j = l, and i �= j.

We also have stated that this matrix has its columns independent, with at least
the probability stated in Lemma 4.3.5. The next section presents the proof of this
Lemma.
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A.2 Proof of Lemma 4.3.5

Given N samples of s[n], Ψ is full column rank if and only if:

Ψα = 0 =⇒ α = 0 (A.2)

For the sake of convenience, the vector α is indexed as αijl, where {i, j, l} is
conformal to the list of arguments in Ψ.

The proof is constructive: we derive a probability bound such that all elements
of α are zero, hence Ψ full rank. Consider Figure A.1 where the coefficients αijl

are stacked in a volume, as in a half cube. We note that the elements αijl, which
are connected with the first source, represent a layer of the volume, and that the
smaller volume is a scale-reduced version of the total volume.

l

1

1

j

i∗

1

Figure A.1: The coefficient αijl are re-organized in a volume which is a half-cube.
In the upper-left are placed the coefficients containing a 1 in their indices.

The objective of this proof is to consider one layer after the other, and by using
the independence of the sources to demonstrate that the αijl are all equal to 0.
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Source 1: We consider the first source s1[n]. Reformulating Equation (A.2), we
obtain for every n the following equation:

(Ψα) [n] = 0 ⇔ (A.3)

α111s1[n] +
d∑

2≤i≤j

α1ijs
∗
1[n]si[n]sj [n] +

d∑
2≤i

α11is
∗
1[n]s1[n]si[n]

+
d∑

2≤{i,j}
αi1js

∗
i [n]s1[n]sj [n] +

d∑
2≤i

αi11s
∗
i [n]s

2
1[n] +

d∑
2≤i2≤j≤l

αijls
∗
i [n]sj [n]sl[n] = 0(A.4)

For the samples n such that s1[n] �= 0, define the sample set N1 of size N1. This
set exists with the probability:

Pc(N1/N) =
1
2N

N !
(N −N1)!N1!

For each sample n ∈ N1, we multiply the equations in (A.4) by s1[n], and using
s1s

∗
1 = 1, we obtain:

 d∑
2≤i≤j

α1ijsi[n]sj [n]

 +

 d∑
2≤i

α11isi[n]
d∑

2≤i2≤j≤l

αijls
∗
i [n]sj [n]sl[n]

 s1[n]

+

α111 +
d∑

2≤{i,j}
αi1js

∗
i [n]sj [n]

 s2
1[n] +

 d∑
2≤i

αi11s
∗
i [n]

 s3
1[n] = 0

It is a set of polynomial equations in s1:

a[n] + b[n]s1[n] + c[n]s2
1[n] + d[n]s3

1[n] = 0

for which G. Cardan (see [53] and [54, page 12]) gave us an exact solution:

s1[n] = G[a[n], b[n], c[n], d[n]]

Since a[n], b[n], c[n], and d[n] depend on {s2[n], · · · , sd[n]}, it implies s1[n] =
F (s2[n], · · · , sd[n]) = F [n], which contradicts the independence assumption. Indeed,
as |s1[n]| = 1, and its probability distribution is uniform in phase, the probability
such that s1[n] = F [n] is zero, because it is a set of measure zero (one point on
a circle.). Therefore, either a[n] or d[n] is zero. Repeating this reasoning on the
remaining quadratic equation, and on the linear equation, implies:

a[n] = b[n] = c[n] = d[n] = 0, ∀n ∈ N1
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or equivalently:

a[n] =
∑d

2≤i≤j α1ijsi[n]sj [n] = 0

b[n] =
∑d

2≤i α11isi[n] +
d∑

2≤i2≤j≤l

αijls
∗
i [n]sj [n]sl[n] = 0

c[n] = α111 +
∑d

2≤{i,j} αi1js
∗
i [n]sj [n] = 0

d[n] =
∑d

2≤i αi11s
∗
i [n] = 0

Note that we have discarded one sample.

1. We first study a[n] = 0. The probability to get a sample n ∈ N1, such that
s2[n] �= 0 is p0(N1) = 1 − 1/2N1 . For this n, factoring s2[n] out of the sum
gives:

α122s
2
2[n] +

 d∑
j=3

α12jsj [n]

 s2[n] +

 d∑
3≤i≤j

α1ijsi[n]sj [n]

 = 0

This s2[n] is the solution of a quadratic equation: a
′
[n]s2

2[n]+b
′
[n]s2[n]+c[n] =

0, with the same reasoning like in the preceding alinea, it follows that the
probability to get s2[n] =

[
−b′[n]±√

4ac−b2

2a

]
[n] is zero, thus implying:

α122 = 0∑d
j=3 α12jsj [n] = 0∑d
3≤i≤j α1ijsi[n]sj [n] = 0

Next, we consider the N1 − 1 equations
∑d

j=3 α12jsj [n] = 0. Similarly, the
probability that we obtain at least one non-zero s3[n] is p0(N1 − 1) = 1 −
1/2N1−1. We then have the equation α123s3[n1) = −∑d

j=4 α12jsj [n], because
of the independence of the sources, α123 = 0. Inductively, we deduce the
probability to have all α12i = 0, i ≥ 2 is:

d∏
i=2

p0(N1 − i + 2)

Next, we consider the N1 − 2 equations
∑d

3≤i≤j α1ijsi[n]sj [n] = 0, applying
inductively the same reasoning than at the beginning of this alinea , we can
state that ∀{i, j} such that 2 ≤ i ≤ j ≤ d, α1ij = 0 with the probability:

P1(N1) =
d(d−1)/2∏

i=1

po(N1 − i + 1)

Note that we have identified d(d−1)
2 parameters, the α1ij with 2 ≤ i ≤ j, but

we also discarded d(d−1)
2 samples.
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2. We now study c[n] =
[
α111 +

∑d
2≤{i,j} αi1js

∗
i [n]sj [n]

]
= 0. We denote N2 =

N1 − d(d−1)
2 , and we assume there exists a time n in the remaining set of N1

such that |s2[n]| = 1, then we can multiply c[n] by s2[n]:α111 +
d∑

3≤i,j

αi1js
∗
i sj

 + α212|s2|2
 s2[n] +

 d∑
2≤j

α21jsj

 (A.5)

+

 d∑
2≤j

αi11s
∗
i

 s2
2[n] = 0

s2[n] has to be the solution of the above quadratic equation. Since the proba-
bility to obtain randomly the ideal s2[n] is zero, for the same reason as in the
preceding alineas, it implies:

⇒


∑d

2≤j α21jsj = 0∑d
2≤i αi12s

∗
i = 0

α111 + α212|s2|2 +
∑d

3≤i,j αi1js
∗
i sj = 0

Using the same techniques as in item 1, we show that with probability∏d
i=3 p0(N2 − i + 2):

α21j = 0 , ∀j ≥ 3

and with probability
∏d

j=3 p0(N2 − d + 2− j + 2):

αi21 = 0 , ∀i ≥ 3

By iterating the process, with the probability:

P2(N2) =
(d−2)(d−1)+1∏

i=1

p0(N2 − i + 1)

we obtain:
αi1j = 0 , 2 ≤ i �= j ≤ d

Note that we identified (d−1)(d−2) coefficients and discarded d(d−2) samples.
The (d− 2) unused samples remain and form the following equations:

1 1 ∗ · · · ∗
... ∗ . . . . . .

...
...

...
. . . . . .

...
1 ∗ · · · ∗ 1 ∗




α111

...

...
αd1d

 = 0 (A.6)

where ∗ ∈ {0, 1}, so the matrix is binary
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Considering again the beginning this alinea, we obtain that if |s1| = 1:

c[n] = α111 +
d∑

2≤j

αi1i|si|2 = 0 (A.7)

3. d[n] =
∑d

2≤i αi11s
∗
i [n] = 0. We denote N3 = N2−(d−1)(d−2). By isolating the

contribution of each source as in the first alinea, we then have the probability
P3(N3) =

∏d−1
i=1 p0(N3 − i + 1) to obtain αi11 = 0 ∀i ≤ 2

Note that (d− 1) coefficients and samples are discarded.

4. We denote N4 = N3−(d−1). We first consider Equation (A.4) with the terms,
that have not yet been canceled:

α111s1 +
d∑

2≤i

αi1i|si|2s1 +
d∑

2≤i

α11i|s1|2si +
d∑

2≤i2≤j≤l

αijls
∗2
i sjsl = 0 (A.8)

If Equation (A.7) is true when |s1| = 1, then Equation (A.7) multiplied by s1

is true for all s1: α111 +
d∑

2≤i

αi1i|si|2
 s1 = 0

Thus Equation (A.8) reduces to: d∑
2≤i

α11isi

 |s1|2 +

 d∑
2≤i2≤j≤l

αijls
∗
i sjsl

 = 0

⇔ a′[n]b1[n] + c′[n] = 0 (A.9)

where b1[n] is the associated bit to s1[n]. Assume that a[n] �= 0 so that
b1[n] =

c′[n]
a′[n] = f [n].

Necessarily, both sides must have the same probability distribution:{
P (1) = 1

2
P (0) = 1

2

but are independent since f [n] = F (s2[n], · · · , sd[n]). The probability to get an
equation as “0 = 1” is: P4 = 1− 1

2N4 , which shows that by necessity a′[n] = 0,
and thus c′[n] as well.

Denote N5 = N4 − 1. We consider now a′[n] =
∑d

2≤i α11isi[n] = 0 as in the
previous case, with probability P5 =

∏d−1
i=1 p0(N5 − i + 1), α11i = 0 for i ≥ 2.
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Finally, we managed to reduce Equation (A.8), and Equation (A.4), to:

d∑
2≤i2≤j≤l

αijls
∗
i sjsl = 0

with the probability:

P
(1)
T (N) =

N∑
N1=ld

PC

(
N1

N

)[
ld∏
i=1

p0(N1 − i1)

]

where ld = d
[

3d−1
2

]− 1.
Note that now the Equation does not contain any αijl whose indices would con-

tain a 1. We are placed back at the beginning of the demonstration, but with d− 1
sources only.

Source 2: We consider the second source s2[n]. With the same method as in
the previous paragraph, we determine the probability to isolate the “half-cube”
containing the αijl with all indices superior to 2 to be:

P
(2)
T =

N−ld∑
N2=ld−1

PC

(
N2

N − ld

) ld−1∏
i=1

p0(N2 − i + 1)


with ld−1 = (d− 1)

[
3(d−1)−1

2

]
− 1, and to obtain:


α2ij = 0 ∀i, j ∈ {3, · · · , d}
αi2j = 0 3 ≤ i �= j ≤ d
α22i = 0 3 ≤ i
αi22 = 0 i ≥ 3

Note that we left on the side several coefficient as in the preceding paragraph:
the αi2i, for all the i ≥ 2.

Source 3 to d − 2: • The same method is iterated from the third source to the
(d− 2)th source, and for each source the probability is:

P
(i)
T =

N−Ld+1−i∑
Ni=ld−i+1

PC

(
Ni

N − Ld+1−i

) ld+1−1∏
j=1

p0(Ni − j + 1)


with Ld+1−i =

∑i−1
j=1 ld+1−j .
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Source d − 1: We finally consider the (d − 1)th source, Equation (A.4) is now
reduced to:

d∑
d−1≤i≤dd−1≤j≤l≤d

αijls
∗
i sjsl = 0

or equivalently:

αdddsd + αd−1,d−1,d−1sd−1 + αd−1,d−1,d−1|sd−1|2sd
+αd−1,d,ds

2
ds

∗
d−1 + αd,d−1,d−1s

∗
ds

2
d−1 + αd,d−1,d|sd|2sd−1 = 0 (A.10)

a) The probability there is a time n such that sd = 0 and sd−1 �= 0 is 1
4 . We

denote N ′ = N −Ld−2 the number of unused samples, then the probability to
get this combination is Pa = 1− (

3
4

)N ′
. Equation (A.10) is simplified to:

αd−1,d−1,d−1sd−1 = 0 ⇒ αd−1,d−1,d−1 = 0

b) Identically, with probability Pb = 1− (
3
4

)N ′−1, there is a t such that sd−1 = 0
and sd �= 1, which simplifies Equation (A.10) to:

αd,d,dsd = 0 ⇒ αd,d,d = 0

c) Consider now that both sd and sd−1 are non-zero, and multiply Equation
(A.10) by sd:

[αd,d−1,d−1] + [αd,d−1,dsd−1] sd +
[
αd−1,d−1,d|sd−1|2

]
s2
d +

[
αd−1,d,ds

∗
d−1

]
s3
d = 0

with |sd−1| = 1. For the same reason than in the previous steps of the demon-
stration, the probability such that sd = F (sd−1) is zero. Thus the coefficients
of the polynomial should be zero, and remind that sd−1 �= 0:

αd,d−1,d−1 = 0
αd,d−1,dsd−1 = 0 ⇒ αd,d−1,d = 0
αd−1,d−1,d|sd−1|2 = 0 ⇒ αd−1,d−1,d = 0
αd−1,d,ds

∗
d−1 = 0 ⇒ αd−1,d,d = 0

with Pc = 1− (
3
4

)N ′−2.

Last terms: The last part of the demonstration is to cancel the terms αiji with
i ≥ j. We have the following relations, for all t ∈ [1, · · · , N ]:

[
α111 +

∑d
2≤i αi1ibi[n]

]
s1[n] = 0[

α222 +
∑d

3≤i αi2ibi[n]
]
s2[n] = 0

...[
αd−2,d−2,d−2 +

∑d
d−1≤i αi,d−2,ibi[n]

]
sd−i[n] = 0

(A.11)
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We assume that we can find d samples, {n1, · · · , nd}, such that the columns of
the signal form an upper-triangular d× d source matrix, with non-zero elements on
the diagonal, such as:

SF =


s1[n1] s1[n2] · · · s1[nd]

0 s2[n2]
. . .

...
...

. . . . . . ∗
0 · · · 0 sd[nd]


where SF is full rank. Given NF remaining samples, the probability to get such an
arrangement is: Pα(NF ) =

∏d
i=1

[
1− (

1− d+1−i
2d+1−i

)N−i+1
]
.

For each i ∈ {1, · · · , d − 2}, we transform SF into a matrix S
(i)
F by multiplying

the square of the element of the absolute value of SF by a diagonal matrix which
contains on the diagonal the i-th row of SF . We denote the square of the element
of absolute value of |SF | by SF , the S

(i)
F are:

S
(i)
F = SF × diag [(si[n1]), · · · , (si[nd])]

S
(i)
F =


(|s1|2si)[n1] (|s1|2si)[n2] · · · (|s1|2si)[nd]

0 (|s2|2si)[n2]
...

...
. . . . . .

...
0 · · · 0 (|sd|2si)[nd]

 (A.12)

where the lower right (d−i)×(d−i) corner of the matrices S
(i)
F are full rank matrices.

We define the notation (M)i, which reduce a matrix M to its lower right (d −
i)× (d− i) corner. Equation (A.11) can be re-written as:

[α111, α212, · · · , αd1d]
(
S

(1)
F

)
i

= 0

[α222, · · · , αd2d]
(
S

(2)
F

)
i

= 0
...

[αd−2,d−2,d−2, αd−1,d−2,d−1, αd,d−2,d]
(
S

(d−2)
F

)
i

= 0

(A.13)

which demonstrates that ∀d ≥ i ≥ j ≥ 1: αiji = 0.
Because this last step need a lot of samples in order to have Pα(NF ) near 1, it is

more interesting to select good samples at the beginning and to keep it on the side
for the end, so that the probability is Pα(N).

Conclusion We demonstrated that with the probability:

PF = Pα(N)
[
P

(1)
T P

(2)
T · · ·P (d−2)

T

]
(N − d)PaPbPc
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for all i, j, l ∈ {1, · · · , d}, we have obtained that:

αijl = 0

So with the same probability, the matrix Ψ has independent columns. If N ≥
L2 + d + 3, Ψ is full rank.



Appendix B

CRB proofs

B.1 Inversion of Iγ by the Schur complement the-
orem

Consider a matrix M , which has the following partition:

M =
[

A B
BH C

]
then assuming A and C to be square and that A, C, and M are invertible, the
Schur complement theorem yields ([55, p. 472]):[

A B
BH C

]−1

=
[

(A−BC−1BH)−1 A−1B(BHA−1B−C)−1

(BHA−1B−C)−1BHA−1 (C−BHA−1B)−1

]
(B.1)

Then using the matrix inversion lemma:

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1

and denoting the matrix: (C−BHA−1B)−1 = C′, the above matrix simplifies to:[
A B
BH C

]−1

=
[
A−1 +A−1BC′BHA−1 −A−1BC′

−C′BHA−1 C′

]
(B.2)

Replacing the matrices {A,B,C} by their actual value gives Prop. 5.2.5.

B.2 Proof for lemma (5.2.3)

B.2.1 Reminders

FACT I For a real Gaussian noise with variance σ2
R
, the probability density function

is:

p(n) =
1

2πσ2
R

e
− ||n||2

2σ2
R

141
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define mi = E{ni}, then we get:  m0 = 1
m1 = 0
m2 = σ2

R

(B.3)

FACT II For a complex Gaussian noise with variance σ2
C
, the p.d.f. is:

p(x) =
1

πσ2
C

e
− ||x||2

σ2
C

with σ2
C
= 2 ·σ2

R
. Define mij = E{xix∗j}, since complex Gaussian noise are circular,

if i �= j, mij = 0. Also: {
m00 = 1
m11 = σ2

C

(B.4)

B.2.2 Preliminary lemmas

Lemma B.2.1 Define

Fab =
∫

e−|x−a|2 × e−|x−b|2

e−|x−a|2 + e−|x−b|2 dx

if ||a − b||2 , 1 (a and b are enough separated), then |Fab| << |Faa|, meaning Fab

ican be neglected with respect to Faa.

Proof Let us cut the domain of integration into two regions: A and B, respectively
centered around a and b. Since we assume a and b to be “far enough”, for each
region one exponential is highly dominant. Fab and Faa simplify as:

Faa -
∫
B

e−2|x−a|2

e−|x−b|2 dx +
∫
A

e−|x−a|2 dx

and
Fab -

∫
B

e−|x−a|2 dx +
∫
A

e−|x−b|2 dx

Comparing both expression, it appears that Faa got most (all) of the energy of∫
exp−|x−a|2 , while Fab not, which is then neglectable with respect to Faa.

Lemma B.2.2 Define:

F11 =
∫
· · ·

∫
CM

e−
2

σ2 ||y||2∑
bl∈B e−

1
σ2 ||y+Mk(bk−bl)||2 yy

H dy

F12 =
∫
· · ·

∫
CM

e−
2

σ2 ||y||2∑
bl∈B e−

1
σ2 ||y+Mk(bk−bl)||2 yy

T dy
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where Bd denotes the set of all the binary vector of length d. Given that 1
σ2 ||Mk(bk−

bl)||2 is large enough for bk �= bl, we can accept the following approximation:

F11 - σ2(πσ2)MIM
F12 - 0

Proof Let us begin with F11:

F11 =
∫
· · ·

∫
CM

yyHe−
2

σ2 ||y||2∑
bl∈B e−

1
σ2 ||y+Mk(bk−bl)||2 dy

Considering that 1
σ2 ||Mk(bk − bl)||2 is large enough for bk �= bl, we can admit a

similar reasoning as in the previous lemma and limits ourselves on the area around
0:

F11 -
∫
· · ·

∫
(Around 0)M

yyHe−
1

σ2 ||y||2 dy

-
∫
· · ·

∫
(Around 0)M

 y1y
∗
1 . . . y1y

∗
M

...
...

yMy∗1 . . . yMy∗M

 e−
1

σ2 ||y||2 dy

then the elements are:

(F11)ij -
∫
· · ·

∫
(Around 0)M

yiy
∗
j e

− 1
σ2

∑ M
l=1 ||yl||2 dy1 . . . dyM

(F12)ij -
∫
· · ·

∫
(Around 0)M

yiyje
− 1

σ2
∑ M

l=1 ||yl||2 dy1 . . . dyM

with Eqn. (B.4) relates to:

(F11)ij - σ2(πσ2)M · δ(i− j)

while for F12, by circularity:
(F12)ij - 0

then the result holds.
For the next Lemma, recall that b is a equiprobable i.i.d. binary vector.

Lemma B.2.3 Denote Bd the set of all the binary vector of length d, and define
C(d)

B = 1
4 (1

T · 1+ Id), then: ∑
bk∈Bd

bkbT
k = 2dC(d)

B

Proof the proof is by induction. Beforehand, let us remind that:∑
bk∈Bd

bk = 2dE{b} = 2d−11d
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Now let us consider the case d = 2:

0+
[

1 0
0 0

]
+

[
0 0
0 1

]
+

[
1 1
1 1

]
=

[
2 1
1 2

]
= 22

[
1
2

1
4

1
4

1
2

]
Consider now the property true for any order d, and let us determine it for d + 1:∑

b′
k∈Bd+1

b′
kb

′T
k =

∑
bk∈Bd

[
bk

0

]
· [bT

k 0
]
+

∑
bk∈Bd

[
bk

1

]
· [bT

k 1
]

=
[

2dC(d)
b 0

0T 0

]
+

[
2dC(d)

b

∑
bk∈Bd

bk

(
∑

bk∈Bd
bk)T 2d

]

=
[

2d+1C
(d)
b 2d−11d

2d−11Td 2d

]
= Cd+1

B

which demonstrates that we have the property for the order d + 1.

B.2.3 Main body

We assume: xk = Mk.bk + nk with the conditional probability:

p (xk/Mk,bk) =
1

(πσ2)M
exp− 1

σ2 ||xk−Mk.bk||2

We sum over all the bk in Bd to get the conditional probability:

p (xk/Mk) =
∑

bk∈Bd

p (xk/Mk,bk)× p(bk)

where Bd is the set of all the possible bk of length d. Since p(bk) = 1
2d , it is equal

to:
p (xk/Mk) =

1
2d

1

(πσ2)M
∑

bk∈Bd

exp− 1
σ2 ||xk−Mk.bk||2

where with some abuse of notation, we drop now the d on Bd to use it as B. The
Fisher Information Matrix for the sample k is defined as:

I(k)
i,j = E

{
∂ ln p

∂λi
· ∂ ln p∗

∂λj

}
=

∫
· · ·

∫
CM

∂ ln p (xk/Mk)
∂λi

·∂ ln p (xk/Mk)
∂λj

p(xk/Mk) dxk

and the derivation of the log-likelihood gives:

∂ ln p (xk/Mk)
∂λi

=
1∑

bk∈B exp− 1
σ2 ||xk−Mk.bk||2

×
∑
bl∈B

1
σ2

[
bH
k

∂MH
k

∂λi
nk + nH

k

∂Mk

∂λi
bk

]
exp− 1

σ2 ||xk−Mk.bl||2
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After several manipulations, we get:

I(k)
i,j =

1
2d

1
(πσ2)M

1
σ4∑

bl,bk∈B

[
bH
k

∂MH
k

∂λi
F(11)(bk,bl)

∂Mk

∂λj
bl + bH

k

∂MH
k

∂λi
F(12)(bk,bl)

∂M∗
k

∂λj
b∗
l

+ bT
k

∂MT
k

∂λi
F(21)(bk,bl)

∂Mk

∂λj
bl + bT

k

∂MT
k

∂λi
F(22)(bk,bl)

∂M∗
k

∂λj
b∗
l

]
with the matrices F(ij)(bk,bl) defined as:

F(11)(bk,bl) =
∫
· · ·

∫
CM

[xk −Mkbk][xk −Mkbl]H

.
exp− 1

σ2 ||xk−Mk.bk||2 . exp− 1
σ2 ||xk−Mk.bl||2∑

bi∈B exp− 1
σ2 ||xk−Mk.bi||2 dxk

F(22)(bk,bl) = F∗
(11)(bk,bl)

F(12)(bk,bl) =
∫
· · ·

∫
CM

[xk −Mkbk][xk −Mkbl]T

.
exp− 1

σ2 ||xk−Mk.bk||2 . exp− 1
σ2 ||xk−Mk.bl||2∑

bi∈B exp− 1
σ2 ||xk−Mk.bi||2 dxk

F(21)(bk,bl) = F∗
(12)(bk,bl)

Given that 1
σ2 ||Mk(bk−bl)||2 is large enough for bk �= bl, we can use the Lemma

B.2.1 and neglect F(ij)(bk,bl). The FIM becomes:

I(k)
i,j =

1
2d

1
(πσ2)M

∑
bk∈B

1
σ4

bT
kMi,jbk (B.5)

with

Mi,j = 2Re
{

∂MH
k

∂λi
F(11)(bk,bk)

∂Mk

∂λj
+

∂MH
k

∂λi
F(12)(bk,bk)

∂M∗
k

∂λj

}
Let us change the origin: y = x−Mk.bk, the matrices then become:

F(11)(bk,bk) =
∫
· · ·

∫
CM

yyH exp− 2
σ2 ||y||2∑

bl∈B exp− 1
σ2 ||y+Mk(bk−bl)||2 dy

F(12)(bk,bk) =
∫
· · ·

∫
CM

yyT exp− 2
σ2 ||y||2∑

bl∈B exp− 1
σ2 ||y+Mk(bk−bl)||2 dy

The Lemma B.2.2 allows us to approximate these quantities to:

F(11)(bk,bk) = F(22)(bk,bk) = σ2(πσ2)M · IM
F(12)(bk,bk) = F(21)(bk,bk)) � F11(bk,bk)

≈ 0
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From Eqn. (B.5), we can transform the next quantity:

∑
bk∈B

bT
kMi,jbk = Tr

{
Mi,j .

( ∑
bk∈B

bkbT
k

)}

Using Lemma B.2.3 and the preceding value of F11, we find:

I(k)
i,j =

2
σ2

Tr
{
Re

{
∂MH

k

∂λi
· ∂Mk

∂λj

}
·C(d)

B

}
When integrating over k ∈ [1, . . . , N ], it leads to the general formula:

Ii,j =
2
σ2

N∑
k=1

Tr
{
Re

{
∂MH

k

∂λi
· ∂Mk

∂λj

}
·C(d)

B

}
(B.6)

But in our case it appears that the matrix Mk has only one column that depends
on a given parameter λi at a time k, mi

k, the derivative simplifies to:

∂Mk

∂λi
=

[
0 ∂mi

k

∂λi
0

]
replacing the derivative of Mk in Equation (B.6) gives the result in lemma (5.2.3).
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[23] D. Matić, N. Petrochilos, A. Trindade, F. Schoute, P. Comon, and R. Prasad,
“OFDM synchronisation based on the phase rotation of sub-carriers,” in Proc.
of 51st IEEE Vehicular Technology conference VTC, vol. 2, (Tokyo, Japan),
pp. 1260–1264, 15-18 May 2000. VTC 2000.

[24] D. Matic, N. Petrochilos, A. Coenen, F. Schoute, and R. Prasad, “Acquisition
of synchronisation parameters for OFDM using a single training symbol,” in
Second International Workshop on Multi-Carrier Spread-Spectrum and related
Topics, (Oberpffafenhofen, Germany), 15-17 September 1999. published as a
book by Kluwer.

[25] N. Petrochilos and A. van der Veen, “Blind time delay estimation in asyn-
chronous CDMA via subspace intersection and ESPRIT,” in Proc. of IEEE
ICASSP 2001, vol. 4, (Salt Lake City (UT)), pp. 2217–2220, May 2001.

[26] N. Petrochilos and P. Comon, “Blind identification of linear-quadratic chan-
nels with usual communication inputs,” in Proc. of SSAP 2000, (Pennsylvania,
USA), pp. 181–185, 14-16 Aug 2000.



BIBLIOGRAPHY 149

[27] N. Petrochilos and P. Comon, “Nonlinear channel identification and perfor-
mance analysis,” in Proc. of 2000 IEEE ICASSP, vol. 1, (Istanbul, Turkey),
pp. 209–202, 5-9 Jun 2000.

[28] N. Petrochilos, A. Leshem, and A. van der Veen, “Finite sample identifiability
of multiple constant modulus sources,” in Proc. of GRETSI 2001, (Toulouse,
France), 10-13 September 2001.

[29] International Civil Aviation Organisation, International standards and recom-
mended practices, aeronautical telecommunications: Annex 10, 1985.

[30] N. Petrochilos, “Reflectors detection by clustering,” Master Report et 10-84,
IRCTR, Feb. 1998.

[31] M. S. Bartlett, “Smoothing Periodograms from Time Series with Continuous
Spectra,” Nature, no. 161, pp. 686–687, 1948.

[32] M. Zoltowski, “On the performance analysis of the MVDR beamformer in the
presence of correlated interference,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 36, pp. 945–947, jun 1988.

[33] J. Capon, “High-Resolution Frequency-Wavenumber Spectrum Analysis,” proc.
IEEE, vol. 57, pp. 2408–2418, Aug 1969.

[34] P. Stoica and A. Nehorai, “MUSIC, Maximum Likelihood and Cramer-Rao
Bound,” IEEE Trans. on ASSP, vol. 37, pp. 720–741, may 1989.

[35] R. O. Schmidt, “A Signal Subspace Approach to Multiple Emitter Location and
Spectral Estimation,” phd thesis, Stanford Univ., Stanford, CA, Nov 1981.

[36] P. Stoica and K. Sharman, “Novel eigenanalysis method for direction estima-
tion,” IEE Proceedings F - Radar and Signal Processing, vol. 137, feb 1990.

[37] R. Roy and T. Kailath, “ESPRIT estimation of signal parameters via rotational
invariance techniques,” IEEE Trans. on acoustics, speech, and Signal Process-
ing, vol. 37, pp. 984–995, July 1989.

[38] A. van der Veen, M. Vanderveen, and A. Paulraj, “Joint angle and delay esti-
mation using shift-invariance techniques,” IEEE Tr. Signal Processing, vol. 46,
pp. 405–418, Feb. 1998.

[39] A. N. Lemma, A.-J. van der Veen, and E. Deprettere, “Analysis of Joint Angle-
Frequency Estimation Using ESPRIT,” IEEE trans. on Acoustics, speech, and
signal processing, 1999. to appear.

[40] M. Zoltowski, “Novel techniques for estimation of array signal parameters based
on matrix pencils, subspace rotations, and total least squares ,” in Proceeding
of ICASSP, vol. 5, (Ney York, USA), pp. 2861–2864, April 1988.



150 BIBLIOGRAPHY

[41] M. Haardt and J. Nossek, “Unitary ESPRIT: how to obtain increased estimation
accuracy with a reduced computational burden,” IEEE Transactions on Signal
Processing, vol. 43, pp. 1232–1242, may 1995.

[42] N. Yuen and B. Friedlander, “Asymptotic performance analysis of esprit, higher
order esprit, and virtual esprit algorithms,” IEEE Trans. on Signal Processing,
vol. 44, October 1996.

[43] A. L. Swindlehurst, S. Daas, and J. Yang, “Analysis of a decision directed
beamformer,” IEEE Trans. on Signal Processing, vol. 43, pp. 2920–2927, Dec.
1995.

[44] G. Golub and V. Pereyra, “The differentiation of pseudo-inverses and non-linear
least square problems whose variables separate,” SIAM J. Num. Anal., vol. 10,
pp. 413–432, 1973.

[45] J.-F. Cardoso and A. Souloumiac, “Jacobi angles for simultaneous diagonaliza-
tion,” SIAM J. Mat. Anal. Appl., vol. 17, pp. 161–164, Jan. 1996.

[46] N. Petrochilos and P. Comon, “ML estimation of SSR signals, identifiability,
and Cramer-Rao bounds,” in Proc. of EUSIPCO 2000, (Tampere, Finland), 5-8
Sept 2000.

[47] N. Petrochilos, A. Leshem, and A. van der Veen, “Finite sample identifiability
of multiple constant modulus sources,” IEEE letter on Sig. Proc., 2002. to be
submitted.

[48] S. M. Kay, Fundamentals of statistical signal processing: estimation theory.
Prentice Hall, 1993.

[49] A.-J. van der Veen, “Asymptotic properties of the algebraic constant modulus
algorithm,” IEEE trans. on Acoustics, speech, and signal processing, Aug. 2001.

[50] L. D. Lathauwer, “Signal Processing based on Multilinear Algebra,” phd thesis,
K.U.Leuven, Leuven, Belgium, Sep 1997.

[51] A. Weiss and B. Friedlander, “Almost blind steering vector estimation us-
ing second-order moments,” IEEE Transactions on Signal Processing, vol. 44,
pp. 1024–1027, April 1996.

[52] D. Astely, A. Swindlehurst, and B. Ottersten, “Spatial signature estimation for
uniform linear arrays with unknown receiver gains and phases,” IEEE Trans-
actions on Signal Processing, vol. 47, pp. 2128–2138, Aug 1999.

[53] G. Cardan, Ars Magna. Milan University Press, 1545.

[54] J. Stillwell, Elements of algebra. Springer, 1994. ISBN 0-387-94290-4.

[55] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press,
1985.



Summary 151

Summary
Air Traffic Control (ATC) centers aim at ensuring safety of aircrafts cruising in

their area. The information required to face this mission includes the data provided
by primary and Secondary Surveillance Radar (SSR). The first one indicates the
presence of an aircraft, whereas the second gives information on its identity and
altitude. All aircrafts contain a transponder, which send replies to the secondary
radar in a semi-automatic mode, indeed it is an exchange. The increase of the air
traffic implies that in a near future the actual SSR radar will not be able to perform
correctly, and that requires to improve the quality of the SSR radar. This thesis
proposes a possible improvement of the SSR.

We propose to replace at reception the rotating antenna by an antenna array to
gain spatial diversity, in order to perform beamforming. Given the density of the
traffic, high-resolution techniques are mandatory to separate the sources. This is a
blind source separation problem, but unlike standard cases, the sources are sending
packets (not continuously), the packets do not completely overlap (non-stationary
situation), the alphabet is binary but not antipodal ({0, 1} instead of {+1,−1}).
And the carrier frequencies are not identical. Among the problems to solve, two
main issues are the non- synchronisation of the sources, and the non-calibration of
the antenna.

This thesis presents new contributions to this field, including the identifiability of
parameters and related Cramer-Rao bounds, and the design of receiver algorithms
taking into account the specific encoding of the data (such as the MDA and the
ZCMA algorithms presented herein). The performance of these algorithms is tested
by extensive computer simulations as well as actual measurements; the setup of the
experimental platform is also part of the thesis framework.
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samenvatting

Algoritmes voor het scheiden van ”Secondary
Surveillance Radar” (SSR) transpondersignalen

De luchtverkeersleidingcentra zijn verantwoordelijk voor de veiligheid van vlieg-
tuigen in hun gebied. De informatie die hiervoor nodig is komt van twee radarsyste-
men: het hoofdradar en het ”Secondary Surveillance Radar” (SSR). De eerste geeft
een indicatie van de aanwezigheid van vliegtuigen aan de hand van hun reflecties, ter-
wijl de tweede informatie geeft over de identiteit en de hoogte van een vliegtuig. Alle
vliegtuigen hebben een transponder aan boord, die half-automatisch databerichten
terugstuurt naar het SSR radarstation. De toegenomen dichtheid in het luchtruim
betekent dat in de nabije toekomst het SSR systeem niet meer correct zal kunnen
fungeren, tenzij de kwaliteit van het systeem verbeterd wordt. Deze thesis stelt een
mogelijke verbetering voor.

We stellen voor om de roterende ontvangstantenne van het SSR systeem te ver-
vangen door een antenne array om spatiële vrijheidsgraden te creëren, en selectieve
bundelvorming mogelijk te maken. Gegeven de dichtheid van het vliegverkeer is
het noodzakelijk om hoge-resolutie algoritmes toe te passen om de bronsignalen te
scheiden. Dit is een zogenaamd ”blind” probleem (de boodschap en het kanaal zijn
beide onbekend), maar met verschillen ten opzichte van het standaard geval: de
bronnen zenden korte databerichten (niet continue), de berichten kunnen half over-
lappen (geen stationariteit), het alfabet is binair maar niet symmetrisch ({0, 1} in
plaats van {−1, 1}), en de draaggolf-frequenties zijn niet precies aan elkaar gelijk.
Bijkomende problemen is het feit dat de bronnen niet gesynchroniseerd zijn en de
antennes niet gecalibreerd.

Dit proefschrift presenteert nieuwe bijdragen in dit vakgebied, waaronder de
identificeerbaarheid van de parameters en de gerelateerde Cramer-Rao ondergrens
op de parametervariantie, alsmede het ontwerp van ontvangstalgoritmes die van de
specifieke codering van de data gebruik maken (de MDA en ZCMA algoritmes in
deze thesis). De kwaliteit van de algoritmes wordt getest door middel van uitgebreide
computersimulaties maar ook door echte metingen; het ontwerp en uitvoering van
een experimenteel platform hiervoor valt ook binnen het kader van het proefschrift.
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Bruno, Christina, Daniele, Dany, Dušan, Fiona, Francisco, Georgios, Jean-Pierre,
Klaus, Luuk, Marco, Marteen, Maya, Michiel, Miguel, Miki, Nuno, Paul, Pedro,
Pirhos, Plamy, Relja, Reto, Roger, Rute, Silke, Simon, Sotiris, Thanos, Victoria,
Vlad, Yannis, Jan-Willem, and Mhr. Crouwer (my last landlord) for their best ef-
fort to make Holland a decent place where to live.

Thanks to the friends that made their best effort to make Nice a decent place
where to live: Aurore, Blaise, Carine, Caroline (G. and B.), David, Herve (again R.
and G.), Jerome, Isabelle, and Marie.

Thanks to my IUFM-mates Bachera, Caroline, Eva, Frederic, Laurent, Nicolas
(P. and G.), Olivier, Pierre, Stephan, Tanguy, to make me pass the IUFM reality-
check.

Thanks to my friends from Toulon for their support: Guillaume, Mylene, Zook,
Mickey, Anne, David, Celine, Guitou... and also to all my friends I lost in this won-
derful and dangerous world. I apologize to whoever I forgot. Let us meet again, and
have a night of “Jeneveer”.



156 Acknowledgments

Thanks to my family, Lea’s family, and close relatives for their constant support.

Special thanks to Lea.

We were delighted, we all realized we were leaving confusion and non-sense behind
and performing our one and noble function of the time, move.”

– Jack Kerouac, “On the road” –



Curriculum vitae 157

Curriculum vitae
N. Petrochilos was born in Paris, France on the 10th of july 1970. He obtained
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