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Algebraic Algorithms to Separate Overlapping
Secondary Surveillance Radar Replies

Nicolas Petrochilos, Member, IEEE, and Alle-Jan van der Veen, Fellow, IEEE

Abstract—The secondary surveillance radar (SSR) is a
transponder system used in air-traffic control (ATC). Due to
growing traffic densities, it is increasingly likely that a ground
station receives a mixture of responses of various aircraft, partly
overlapping in frequency and time. Currently such “collisions”
are disregarded, at a loss of system performance and reliability. In
this paper, we propose to equip the ground station with an antenna
array, and investigate techniques to blindly separate such a mix-
ture based on source waveform properties. At baseband, a received
SSR signal consists of a binary sequence with alphabet 0 1 ,
modulated by a complex exponential due to the residual carrier
frequency. We present three algebraic algorithms to compute the
separating beamformers by taking into account the particular
modulation format of the received signal. The Cramér–Rao bound
(CRB) is derived, extensive simulations are presented, and an
experimental platform has been built to collect measurement data
and demonstrate the algorithms.

Index Terms—Array signal processing, blind source separation,
deterministic algorithms, secondary radar.

I. INTRODUCTION

SECONDARY surveillance radar (SSR) is essential for air-
traffic control (ATC). Unlike the primary radar, the SSR is

a communication radar (transponder system) that informs the
ATC about the identity and the altitude of aircraft [1]. An SSR
ground station uses a rotating scanning beam and transmits in-
terrogating queries, consisting of pulse trains modulated on a
carrier at 1030 MHz. Upon receiving a query, an aircraft re-
sponds by transmitting an SSR reply signal, a bursty pulse train
modulating a carrier at 1090 MHz and containing the requested
information. The system was designed in the 1950s, but is cur-
rently limited by the fact that all replies nominally use the same
carrier frequency, and may overlap in time. This occurs, e.g., if
two aircraft are close to each other but at different heights, or
when an aircraft responds to a query from a neighboring ground
station. If two responses overlap, the receiver cannot decode the
message and both are lost [2].
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To bring some relief, a new protocol (mode , for selective),
operating at the same frequencies, is currently being installed
[3]. In mode , aircraft can be individually addressed to give
a response, enabling short data communications between the
station and the aircraft. This new mode will also assist the
Traffic Advisory and Collision Avoidance System (TCAS)
by providing automated communication between the aircraft.
Nonetheless, also in this protocol, overlaps may occur.

Today, the ground station uses the same rotating antenna for
transmission and reception of SSR signals. We may envision the
following two extensions: 1) create a distributed system, where
the existing radar system is used for transmission of the queries
only, but where a network of receivers is placed at various loca-
tions and 2) equip each receiver with an array of antennas [4],
[5]. This enables multilateral location estimation and facilitates
message detection [4], [6], [7]. Indeed, at each receiver base sta-
tion, the overlapping reply signals can be separated using blind
beamforming, and subsequently, for each recovered signal, we
can detect the individual symbols and estimate the direction of
arrival (DOA) and the time of arrival (TOA). The combined in-
formation from several receivers allows multilateral location es-
timation at the system level. Estimating the beamformers and
the parameters at the receiver is the aim of this paper.

Blind source separation can be done based on properties of
the array response matrix or on properties of the source signals.
The former has as disadvantage that a carefully calibrated array
must be used, and that no multipath is tolerated. Therefore, we
consider the rich structure of the source signals as a feature for
separation. Indeed, SSR replies have a very structured source
model: Each sample at the receiver is the product of a binary
pulse-amplitude modulation (PAM) symbol taken from the al-
phabet , multiplied by a complex exponential (phase pro-
gression) due to the residual carrier frequency.

Blind source separation of SSR reply signals was first consid-
ered by Comon in [8]. This algorithm considered maximizing a
contrast function based on higher order statistics (HOS). How-
ever, it was noted by Petrochilos and Comon in [9] and [10]
that such HOS methods are unreliable because, for SSR mode

signals, all cumulants of order three, four, and five have a
large probability to be zero. Thus, algorithms using cumulants
of sixth order or higher need to be used.

In this paper, we present a collection of algorithms which im-
plicitly use sixth- and eighth-order statistics. The proposed al-
gorithms are algebraic: Similar to the analytic constant mod-
ulus algorithm (ACMA) [11], the beamformers are computed
from a batch of data by solving a joint diagonalization problem.
Some of these algorithms were first presented at conferences
[12], [13]. Here, we present the algorithms in a broader perspec-
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tive, and compare them in simulations and using experimental
data. Full details can be found in [5]. Follow-up work includes
[14], where an alternative time-domain approach has been pro-
posed for the restrictive case of two partly overlapping mode
replies with a sufficiently large time difference of arrival. This
paper concentrates on the complementary case where signals are
highly overlapping.

This paper is structured as follows. Section II introduces the
data model and lists the assumptions and some preliminary ma-
terial. Section III presents three properties of the source signals,
and Section IV uses these to derive three algorithms to find sep-
arating beamformers for each of the sources. Section V derives
the relevant Cramér–Rao bound (CRB), and Section VI com-
pares the algorithms in simulations. In the course of this work,
we have constructed an experimental platform consisting of an
array of four antennas. We apply the algorithms to measurement
sets collected with the array, and show the results in Section VII.
Notation: denotes the identity matrix, and and are the
vectors with all entries being equal to 0 and 1, respectively. We
denote by the complex conjugation, by the matrix
transpose, and by the matrix conjugate transpose.

denotes the mathematical expectation operator, and
is the operator that stacks the columns of a matrix into a single
vector . The notation refers to the Moore–Penrose inverse
(pseudoinverse). The symbol denotes the Schur–Hadamard
(elementwise) matrix product, and the Kronecker product.

II. DATA MODEL AND PRELIMINARIES

The SSR communicates via two different protocols: mode
and mode . The mode was initiated during World

War II, and is supposed to be soon totally replaced by mode .
In this paper, we make the assumption that only mode replies
are present. A combined model containing both mode and
mode replies is more complex, due to the slightly different
(incommensurate) pulse lengths.

A. Received Data Model

A mode reply frame contains either 56 or 112 bi-
nary symbols . The bits are encoded in a “Man-
chester encoding” scheme, where is coded as

and as . The transmitted
bit stream is a burst (packet) consisting of a preamble

followed by the
encoded data bits, i.e.,

(1)

with a total length . The preamble is aimed at
facilitating the detection of the start of a packet.

The mode reply signal emitted by the aircraft transponder
is a PAM of , and has the form

(2)

where is the th entry of , and is a (nominally) rect-
angular pulse of width 0.5 s, for mode .

Before being emitted by the antenna, the signal is upconverted
to have a center frequency . Nominally, this carrier frequency

is 1090 MHz, but the tolerance permitted by the Inter-
national Civil Aviation Organization (ICAO) is 3 MHz, thus

. (In future, this tolerance will be reduced to 1 MHz.)
Due to this possible carrier frequency mismatch, a residual fre-
quency will remain after downconversion by to
baseband. This residual carrier adds a significant phase rotation

to the transmitted symbols.
At the receiver, each antenna signal is downconverted and

sampled at rate . Not assuming temporal synchronization
within a symbol period, the received baseband signal

is described (up to a complex gain factor) as

(3)

where is the phase shift due to the residual
carrier frequency over a sampling period. This signal is actually
multiplied by an unknown complex gain factor representing the
effect of the channel, the receiver amplifier, and an initial phase
offset. This will be taken into account in Section II-B.

B. Problem Statement

We extend the single source model (3) to the reception of
a mixture of independent SSR source signals impinging on
an -element antenna array. The baseband antenna signals are
sampled at rate and stacked in vectors (size , where
the th entry corresponds to the th antenna signal). After col-
lecting samples, the observation model is

(4)

where is the received signal
matrix, is an unknown mixing matrix which in-
cludes the antenna responses, path coefficients, initial phase
offsets, the array signatures, and the complex gains of the
sources, is the source matrix,
where is a stacking of the source
signals, and is the noise matrix. We assume that the
sources have unit amplitude and that the noise is temporally
and spatially white.

Note that each source transmits data in packets of finite
length ( 128 or 240 bits) and with an arbitrary starting
time. Each source can thus have an arbitrary time offset (pos-
itive or negative integer) with respect to the start of the obser-
vation interval. To consider this effect, we apply zero-padding
and truncation operations to the data time series in (1) to
obtain a similar sequence , where

or

The source matrix has structure

(5)

where is the Schur–Hadamard (pointwise multiplication) op-
erator, and

...
...

...
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...
...

...

Although the algorithms which we will propose will not be
based on a calibrated array (i.e., a parametric structure for ),
it is sometimes interesting to make the following assumptions:
1) it allows comparison to source separation algorithms which
are based on direction finding, such as MUSIC and ESPRIT and
2) in some cases, the DOAs are also of interest, e.g., for local-
izing the aircraft (although this is the task of the primary radar),
or for assigning each retrieved message to the corresponding
aircraft (since the blind source separation algorithms retrieve
the messages in an arbitrary ordering). Thus, if the array is a
calibrated uniform linear array (ULA) with half-wavelength an-
tenna spacing, and if the multipath is negligible, we can further
write where is the
steering matrix, is the direction of incidence of the th source
with respect to the ULA boresight, is the array steering
vector defined as

(6)

and is a diagonal matrix containing the angle-dependent
antenna response, propagation gain, and initial phase offset of
each source.

Without considering this structure, may also reflect the im-
perfections of the array such as calibration errors, antenna cou-
pling effects, or inaccuracies in the position of the elements, and
propagation effects such as short-delay multipath (scattering in
the vicinity of the receiver array). As mentioned, for the purpose
of source separation, we do not consider this structure and only
assume the matrix to be left-invertible (this implies ).

Our aim is to compute beamformers , such
that is an estimate of the th SSR signal. In
this blind source separation context, we can only try to ensure
that each looks like an SSR signal (i.e., that certain prop-
erties are satisfied), and that the collection of signal estimates is
independent.

C. Preprocessing

In our application, is typically tall and full column rank,
but not square. To simplify our algorithms, we assume that first
a (standard) preprocessing is applied on to reduce its row
dimension from to . This is done by computing a singular
value decomposition (SVD) of

where and are unitary and is diagonal containing the
singular values in decreasing order. The number of signals is
detected from using standard rank detection tests, e.g., based
on likelihood ratios [15] or information theoretic criteria such as
Akaike information criterion (AIC) and minimum description
length (MDL) [16]–[18]. Let be a diagonal matrix containing
the largest singular values, and be an -dimensional
matrix containing the corresponding columns of , and define

Then, according to the model

This is the same model as we had before, except that is
and is and invertible. In the algorithms, we assume
that this preprocessing has been done, and we drop the primes
from the notation. The computational complexity (number of
multiplications) is of order .

The reduction in the number of rows in and is necessary
to avoid the existence of nullspace beamformers such that

. Indeed, such beamformers could be added to a valid
separating beamformer without changing the output signal,
and only changing the output noise. Hence, they would destroy
the uniqueness of the solution, and complicate the estimation
algorithms.

The data covariance whitening implied by premultiplying
with is not as essential, but has been applied in similar
algorithms because it causes the beamformers to converge
asymptotically in to the Wiener beamformer [19]. Wiener
beamformers are attractive because they optimize the output
signal-to-interference-and-noise ratio (SINR). Note that after
the prewhitening step, the noise is no longer spatially white.

D. Joint Diagonalization Problem

The algorithms to be proposed in the next sections lead to
joint diagonalization problems. To avoid being repetitious, that
problem is presented here in a more general setting.

Let be a square matrix. Its eigenvalue decomposition (if
it exists, i.e., if is regular) is a factorization ,
where is a diagonal matrix containing the eigenvalues , and

is an invertible matrix containing the eigenvectors as its
columns. These are the solutions to the equation .
Numerically, the eigenvalue problem is often replaced by the
Schur decomposition, which is the factorization [20]

where is unitary and is upper triangular. The diagonal en-
tries of are the eigenvalues. It can be obtained by introducing
the QR factorization of , with the advantage that the Schur
decomposition always exists whereas the eigenvalue decompo-
sition does not.

Similarly, the generalized eigenvalue problem (or matrix
pencil problem) for a pair of square matrices is to find
solutions to or the factorization . If

is invertible, this is the same as computing the eigenvalue
decomposition of . It is convenient to write this as a joint
decomposition. By introducing a matrix and and
two diagonal matrices , we obtain

(7)

The generalized eigenvalues are , but the added
generality allows to handle cases where and/or are sin-
gular, or some diagonal entries of and/or are zero. The
corresponding generalized Schur decomposition is

(8)
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where and are unitary and and are upper triangular.
This decomposition always exists and can be computed itera-
tively, e.g., using the QZ algorithm, Jacobi iterations, etc. [20].
The diagonal entries of and are those of and .

The joint diagonalization problem is a further generalization
of the aforementioned to more than two matrices

For , the problem is overdetermined, hence solutions,
in general, do not exist. However, for a set of matrices that on
the basis of model assumptions is expected to admit this fac-
torization, we can try to compute the matrix pair that
best diagonalizes the set of given matrices, usually in some
least squares sense. It can be computed using generalizations
of the QZ algorithm, Jacobi iterations [21], [22], [11], [23],
[24], alternating least squares [25], [26], or subspace fitting tech-
niques [27].

The problem can be further generalized by considering rect-
angular matrices , as in this paper. In particular, the alter-
nating least squares algorithms are readily generalized to handle
this situation. For matrices of size , the computa-
tional complexity is of order . Alternatively,
assuming (tall matrices) and to be of full column
rank , the problem for rectangular matrices can be reduced to
a joint diagonalization of square matrices as follows. Construct

and use an SVD to estimate the common
column space, which is equal to the column space of . Let
be a matrix containing an orthogonal basis ( columns), and de-
fine . Then, , with .
The is square and satisfies a joint diagonalization
model, and the standard algorithms apply.

III. SSR SIGNAL PROPERTIES

The model of a single SSR reply signal (3) gives rise to several
algebraic properties that will be used for blind source separation
in Section IV.

A. Encoding Properties

The Manchester encoding of the SSR signals gives rise to an
interesting temporal correlation property which is deterministic
and independent of the actual transmitted data. If we multiply
a sample from the first phase of the Manchester symbol by a
sample from the second phase, the result will always be equal
to zero. More generally, if we are unsynchronized to the begin-
ning of a Manchester symbol, we can multiply three consec-
utive -spaced samples and observe that the result is always
zero (see Fig. 1). A similar property holds for a single baseband
signal at the receiver, independent of a fractional sampling
offset and of the residual carrier frequency.

Property III.1: Independent of the transmitted data, a re-
ceived mode reply signal of the form (3) obeys

(9)

This property will be used to design a receiver algorithm to
separate multiple SSR signals.

Fig. 1. Manchester encoding property: The cross product of three consecutive
T -spaced samples is always equal to zero.

B. Zero/Constant Modulus Property

Due to the residual frequency, the received signal samples
are not binary as transmitted, but lie either on the unit

circle, or are equal to zero. Moreover, if two subsequent received
samples are nonzero, then these samples are related by a factor

. These observations lead to the following
two properties.

Property III.2: Static Property: is a zero-constant mod-
ulus (ZCM) source if

or

This is equivalent to

(10)

Property III.3: Dynamic Property: For any integer

or

(11)

This is equivalent to

(12)

Note that the mentioned properties also hold for the rows of
the source matrix , as defined in (5).

IV. SEPARATION ALGORITHMS

The properties presented in Section III are used to derive
three algorithms: Algebraic Zero-Constant Modulus Algorithm
(AZCMA), Manchester Decoding Algorithm (MDA), and Mul-
tishift Zero-Constant Modulus Algorithm (MS-ZCMA).1

A. AZCMA

The following algorithm was originally derived by Van der
Veen and Tol in [12] and is included here for reference. The
algorithm is derived for noise-free data (but will, of course, be
applied to noisy data). We consider Property III.2 and substitute

. This shows that is a beamformer which
returns a ZCM signal if and only if

1Matlab implementations of these algorithms are available from the authors
upon request.
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Using properties of Kronecker products, we can separate the un-
known from the known s. Note that the left-hand side
contains only third-order terms of the entries of , whereas
the right-hand side only has first-order terms. This imbalance
is overcome by defining

(which is constant for each ) and multiplying the right-hand
side by . This gives

where is the Kronecker product. Define matrices and
with rows and ,
respectively. Then, the ZCM separation problem is seen to be
equivalent to finding all solutions to

where (13)

To ensure an overdetermined system of equations, we require
and to be “tall,” i.e., . Equation (13) is then a

rectangular matrix pencil problem of the form . The
pencil is “singular,” i.e., and are not full rank, because the
structure of the rows of implies that some of its columns are
repeated. This causes additional nullspace solutions that need
to be avoided. Similarly, has repeated en-
tries, and we want our solutions to satisfy this structure. Because
it is known which entries are repeated, it is straightforward to
remove the duplicate entries in both and the corresponding
columns of and by defining a selection matrix of size

, such that

(14)

where generically has no repeated entries. Set

(15)

then, generically has no repeated columns and has full
column rank.2 At this point, the pencil problem is replaced by

(16)

where we will assume from now on that has full column
rank. Note that by construction has only nonzero columns.
Hence, there are at most nonzero solutions to (16). On
the other hand, for SSR signals, we know that there are pre-
cisely beamformers , so that there are at least nonzero
solutions. It follows that the pair has precisely gen-
eralized eigenvalues, necessarily equal to ; the other
eigenvalues are 0. The corresponding eigenvectors are trans-
formed to to add back the repeated entries.

2Specific situations still lead to P being singular, e.g., if two signals are
purely constant modulus, or if two sources share exactly the same frequency.
Such pencils can be analyzed using more advanced techniques (see, e.g., [28]),
but for the sake of simplicity, we will not consider them here. If such a situation
arises, the algorithm will fail.

At this point, there are two cases. If there are no repeated
nonzero eigenvalues, then the are (up to an arbitrary scaling)
equal to , from which is immediately
obtained, up to scaling. The correct scaling of follows from
the corresponding eigenvalue . Alternatively, if some of the
eigenvalues are repeated, then the corresponding eigenvectors
form an arbitrary basis of a subspace which contains the vectors
we are looking for. We need to find the correct linear combi-
nations such that the Kronecker structure holds: This is a joint
diagonalization problem as shown later.

In fact, the prewhitening step as described in Section II-C has
led to a data matrix with orthonormal rows. In this case,

, so that there are repeated eigenvalues
whenever two signals have an equal number of nonzero entries,
i.e., nearly always. We propose to avoid the detection of equal
eigenvalues and apply the joint diagonalization step to the full
collection of eigenvectors of the pencil (16), as follows.

Each eigenvector of size is a linear combination of the
solutions, or , for .
If we reshape a single vector into a
matrix, we obtain the rank-1 matrix . Simi-
larly, reshaping into a matrix , we obtain

(17)

where , and
is a diagonal matrix containing the coefficients .

Ignoring the structure of , the problem to obtain and the
from (17) is recognized as a joint diagonalization problem,

generalized to rectangular matrices. Thus, the algorithms men-
tioned in Section II-D can be applied.

With noise, we follow the same algorithm. With , the
pencil problem (16) is overdetermined. The usual reduction to
a pencil with square matrices amounts to a
projection of the column span of onto that of , and is a
form of noise mitigation. The square pencil has eigenvalues,
of which we keep the largest (the others are close to 0). The
corresponding eigenvectors are used in the joint diagonal-
ization step. This by itself is also an overdetermined problem,
hence provides additional noise mitigation.

The computational cost of the algorithm is determined
by the generalized eigenvalue decomposition of the pair

. The algorithm is summarized in Fig. 2. The
complexity is of order multiplications.

B. MDA

The Manchester encoding Property III.1 can be used to design
a receiver algorithm to separate multiple SSR signals. Indeed, if
we consider a beamformer such that satis-
fies (9), we obtain

(18)

for . To collect these conditions, define the
matrix as the stack of rows

for , so that

(19)
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Fig. 2. Summary of AZCMA (in brackets, the order of complexity of each step).

Fig. 3. Summary of MDA (in brackets, the order of complexity of each step).

Unlike the case in the previous algorithm, it is not necessary to
reduce the dimension of as the rows of the matrix do not
have redundant entries. On the other hand, operations similar to
(14) and (15) may improve the estimation and help force some
structure in the solutions .

The rest of the algorithm is quite similar to the one in
Section IV-A. For sources, there are linearly independent
separating beamformers , as shown in Proposi-
tion IV.1. Thus, we have linearly independent vectors that
belong to the kernel of . If the kernel is -dimensional, then
the subspace spanned by is exactly equal to
the kernel of , and a basis for the kernel must be a linear
combination of the . Thus, the algorithm is to estimate an
arbitrary basis for the kernel using the SVD of , find
linear combinations of the basis vectors to map them to the
structured vectors , and then, estimate the corresponding

from each vector .
The key step is to find the linear combinations of the basis

vectors. This is again a joint diagonalization problem in three
dimensions, similar to the case discussed in Section IV-A, and
can be solved for the s.

The algorithm is summarized in Fig. 3. The computational
cost of the algorithm is determined by the estimation of the
kernel of . The complexity is of order .

Proposition IV.1: Assume that is square and invertible, the
sources are statistically stationary and temporally totally over-
lapping, and that there is no noise. Then, for large number of
samples , the matrix will almost surely have rank ;
equivalently, its kernel will almost surely be of dimension .

The proof is given in Appendix VIII. The proposition implies
that for sufficiently large there are no other solutions than

, so that the problem is identifiable. Experi-
ence with similar algorithms indicates that is already of max-
imal rank once it is tall, i.e., is sufficient in practice [29],
[30]. This is because it is very unlikely that a random square or
tall matrix has a kernel unless there is a structural reason for it.
The proposition showed there is no structural reason.

A limitation of the algorithm is that, for completely or al-
most completely nonoverlapping SSR replies, there are addi-
tional vectors in the kernel. Indeed, if and are corre-
sponding beamformers, then vectors of the form

are in the kernel, because they correspond to conditions
, which is always satis-

fied for nonoverlapping source signals. The additional vectors
in the kernel will break the assumption on which the algorithm
is based (i.e., any vector in the kernel is a linear combination of
the ), and without further corrections the algo-
rithm will show poor performance in this situation.

C. MS-ZCMA

Let be a -dimensional beamforming vector to recover
. Using properties of the Kronecker

product, (12) from the ZCM Property III.3 becomes

(20)

Let be an -dimensional vector that contains
only the nonredundant elements of the Kronecker product

. We define by the matrix
such that . We also define

Then, (20) can be written as

(21)

Stacking the rows and , into matrices
and , respectively, we obtain

(22)
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Fig. 4. Summary of MS-ZCMA (in brackets, the order of complexity of each step).

where is and is .
This equation holds for all and is somewhat similar to the
matrix pencil problem (13) considered before, except that the
solution vectors on the left- and right-hand side of the equations
are not equal.

Various approaches are possible. As in Section IV-A, we can
multiply with to reach an equation that involves only

. A second approach is proposed in [12], called AFZA,
where the equation is written in terms of a single unknown
vector . A third approach which seems to work
better is outlined as follows.

To solve (22), we first need to find the common column span
of and . Let be a matrix whose columns form an
orthonormal basis of this subspace, and let and be
the orthogonal complements of over and . Then,
we can compute the decomposition into “common” and “not
common” subspaces as

where the are of full row rank. Inserting these
two equations into (22), we obtain

(23)

where the first matrix compound has full column rank by defi-
nition. Thus, we have

(24)

(25)

(26)

Since it is complicated to work with the three equations simul-
taneously, we propose in our algorithm to use only (26). This
equation holds for any , and we can obtain several similar con-
ditions by taking a range of different . Stacking the
matrices in a single matrix , we obtain

...
(27)

For SSR sources, there are linearly independent beam-
formers , and these correspond to indepen-
dent solutions: nonzero vectors in the kernel of . Note that
has columns. As with the preceding algorithms, for a suffi-
cient number of time-lags , the matrix becomes very tall and
will not have other vectors in the kernel.

Thus, the algorithm continues by estimating an arbitrary or-
thonormal basis for the kernel of the matrix . Sim-
ilar to the preceding algorithms, each vector of size of
this basis is a linear combination of the solutions, or

. Reshaping the into matrices , we
obtain , where , and the

are diagonal matrices containing the coefficients . This is
the standard joint diagonalization problem, and can be solved
for as in Section II-D.

The algorithm is summarized in Fig. 4. The computational
cost is dominated by the decomposition (23) for each . This
corresponds to the cost of a QR factorization of ,
which is of the order ; therefore, the complexity is of order

.
The set of time delays can be chosen arbitrarily,

as long as the matrix is expected to achieve its maximal rank.
To save some computational cost, we could initially take small
and let it grow until the estimate of the kernel of (updated
using subspace tracking algorithms) is considered not to change
anymore.

V. CRB

The CRB is a lower bound on the variance of unbiased param-
eter estimates. We consider here the deterministic CRB, which
considers the additive noise as stochastic, whereas the model pa-
rameters are regarded as deterministic unknown parameters.3 As
usual, we consider the noise variance as known, since it can
be estimated independently of the other parameters. Further, we
consider the case of known signals (matrix is discrete-valued
with entries and can be assumed as known for the small
perturbations of the parameters under which the CRB is valid).
In [32], one can find the CRB for a similar problem, which dif-
fers only by the absence of the matrix .

To obtain results which can be compared to DOA estima-
tion algorithms, we consider a calibrated array and write

, where , and
is the array response vector for a signal from direction

. The matrix is diagonal, and the diagonal entries contain

3The bound for this problem was first presented in [31].
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the complex gains of the sources as received by
the array. The unknown parameters are collected in a vector

.
The CRB on the variance of each parameter is given by the

corresponding diagonal entries of the inverse of the Fisher in-
formation matrix (FIM) [33].

Proposition V.1: In the case of known signals, the FIM is

FIM (28)

where

where is a di-
agonal matrix containing the phases

, and .
The proof is straightforward and presented in [31].

VI. SIMULATIONS

To demonstrate the effectiveness of the proposed algorithms
(AZCMA, MDA, and MS-ZCMA), we compare them to JADE
[21] (an HOS method based on fourth-order statistics), to
EF-ICA [34] (am HOS method which forces the statistical
independence of the outputs, based on FastICA), to AFZA (one
of the other methods proposed in [12]), to ESPRIT [35], and to
the CRB.4

For the simulations, we have considered a calibrated array of
elements, with an interelement distance of a half wave-

length and in absence of multipath. The array setup is chosen
to be able to compare to ESPRIT, and to have a simple way to
modify the conditioning of the problem by reducing the angle
separation between the sources. As source signals, we generated
a uniform random sequence of 100 SSR samples (50 Man-
chester encoded symbols with two samples per symbol). This is
a bit shorter than actual SSR packets, and does not include the
training preamble.

Unless specified otherwise, the default simulation parameters
are equal powered sources with a signal-to-noise ratio (SNR) of
30 dB per antenna element, DOAs equal to [70 , 110 ] mea-
sured from array end-fire, no time offsets (completely overlap-
ping data packets), and frequency offsets equal to

4We also compared to SOBI [36], but it did not perform well. We do not
present the results so as not to clutter the graphs.

Hz. We will subsequently vary the SNR, the DOA separa-
tion, and the time offset, respectively.

Most statistics are based on 10 000 independent Monte
Carlo runs. For MS-ZCMA, we choose the following set of

time delays , which has shown satisfactory results:
.

In this simulation, the computational complexity (number of
multiplications) of each of the algorithms is roughly flops
for AZCMA and MDA, and flops for MS-ZCMA.

We show performance first in terms of the failure rate, where
a failure is declared if we recover the same source twice, rather
than two independent sources. A failure is also declared if the
output SINR of any source is below 6 dB. For the cases without
failure, we estimate the DOA of each source via

where is the th column of , the pseudoinverse of
the matrix . To judge the quality of the beamformers, we
show the root-mean-squared error (RMSE) of the DOA esti-
mates, averaged over both sources. (The two sources have sim-
ilar RMSEs. Also, the behavior of the frequency estimates is
quite similar and is not shown for brevity.) We also present the
SINR at the output of the beamformer, which is defined as the
ratio of the power of the desired source over the combined power
of the interference sources plus the noise power.

In the first simulation, we vary the input SNR over the range
[5, 30] dB. Fig. 5(a) presents the corresponding failure rates. We
observe that JADE fails nearly always. The reason is that JADE
is based on exploiting differences in the fourth-order statistics,
whereas, for completely overlapping sources, the cumulants of
up to order five are expected to be small or zero [9], [10]: The
sources are “pseudo-Gaussian.” The EF-ICA includes a non-
linear step and, therefore, implicitly uses also statistics of order
above five. It could separate the sources, but the failure rate is
high (roughly 0.35). An explanation is that a large number of
samples (order few thousand) is needed to exploit the statistical
independence. The AZCMA has a high failure rate for SNRs
below 15–20 dB. The MDA and AFZA begin to fail for SNRs
below 10 dB, while MS-ZCMA and ESPRIT do not fail for
SNRs above 5 dB. Fig. 5(b) presents the RMSE of the DOA
for the cases without failure. For SNRs above 20 dB, AZCMA
and AFZA reach a floor of 0.1 in standard deviation. Note that
the MDA, the MS-ZCMA, and the ESPRIT algorithms are quite
near the CRB and are consistent. The erratic behavior of JADE
is partly due to the very small number of nonfailed runs. In
Fig. 5(c), the output SINR is shown as a function of the SNR.
The performance of the algorithms are quite similar, except for
JADE and EF-ICA. The output SINR is larger than the input
SNR by five up to nearly 6 dB, which is consistent with the
maximum gain of 6 dB that can be expected with four antennas
for a single signal.

In a second simulation, we varied the angle separation be-
tween the two sources. Note that, with four antennas, the array
beamwidth is about 45 . Fig. 6(a) shows again that JADE is not
reliable, and also EF-ICA has a very high failure rate. For small
angle separations (below 6 ), AZCMA and ESPRIT are the first
algorithms to break down. Only MDA, MS-ZCMA, and AZFA
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Fig. 5. Algorithm performance for varying SNR: (a) failure rate, (b) RMSE of
the DOA estimates, and (c) output SINR.

can handle very closely spaced sources. Fig. 6(b) demonstrates
that only MDA, MS-ZCMA, and ESPRIT can attain the CRB

Fig. 6. Algorithm performance for varying DOA separation: (a) failure rate,
(b) RMSE of the DOA estimates, and (c) output SINR.

for large angle separation. For all algorithms, there is room for
improvement for small angle separations. Failures are caused
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Fig. 7. Algorithm performance for varying time offset between the two data
packets: (a) failure rate, (b) RMSE of the DOA estimates, and (c) output SINR.

because, in the initial SVD, a signal singular vector will be re-
placed by a noise singular vector, which will make it impossible

Fig. 8. Experimental system.

to separate the two closely spaced sources. (The same happens
if the number of sources is underestimated.) Note that, in the
context of our application, it is rare to have small separations
because, typically, the receiver antenna array would be at a dif-
ferent location than the requesting radar beam. In Fig. 6(c), the
output SINR of all algorithms are again quite similar, except for
JADE and EF-ICA. The SINR tends to a limit of 36 dB for large
angle separation, which is equal to the initial input 30 dB plus
6 dB of antenna gain.

Finally, we simulate a varying time offset between the ar-
rival of the two data packets. Fig. 7(a) shows that AZCMA
and MDA cannot handle well cases of nonoverlapping sources,
because this leads to additional nullspace solutions in the ma-
trix pencils. On the other hand, as soon as the sources are not
completely overlapping, JADE performs well, since the sources
are not pseudo-Gaussian anymore. The EF-ICA performs worse
with increasing time offset until it gives 100% failure in case of
nonoverlapping sources. The MS-ZCMA and ESPRIT have an
acceptable failure rate performance over the range of time-delay
offsets. Fig. 7(b) shows that MS-ZCMA, JADE, and ESPRIT
have RMSE close to the CRB, with JADE having an error in-
crease for small time offsets and MS-ZCMA for nonoverlapping
packets. The output SINR presented in Fig. 7(c) confirms that
JADE performs better with increasing time-delay offset, while
the effect is opposite for AZCMA, MDA, and AFZA.

In summary, the simulations show that MS-ZCMA is overall
the most reliable algorithm, with the exception of cases with
completely nonoverlapping packets. The AZCMA is not com-
petitive. The MDA is a viable alternative (in view of its lower
complexity) for small delay offsets only. None of the regular
blind source separation algorithms is applicable.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

To test the algorithms on real data, we have developed a
four-channel phased array measurement system (see Fig. 8).
The array consist of six linearly equispaced antennas. The two
endpoint antennas are “dummy” and loaded with a matching
impedance, their presence is to make the coupling between
antennas uniform. The four central antennas feed different
receiving chains, which downconvert the signal from the radio
frequency (1090 MHz) to an intermediate frequency (10 MHz),
filter around the band of interest and amplify the signal. The
four signals are sampled at 50 megasamples per second and
digitized by a digital oscilloscope which also stores them for
later offline processing. The sampling resolution is 8 bits.
Offline, the signal is converted to a complex baseband signal
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using a Hilbert transform, digitally low-pass filtered with a
cutoff at an equivalent frequency of 10 MHz.

The array has not been calibrated. Measurements indicate that
the array response does not follow the ULA response, which
may be caused by coupling or multipath, e.g., due to nearby
metallic objects. For this reason, it is not possible to evaluate
the DOAs, and thus, we do not compare to the ESPRIT algo-
rithm. We limit ourselves to source separation in this section.
Moreover, we will not further investigate AZFA and EF-ICA as
their performances are not competitive.

B. Experimental Results

The array was installed on the roof of our building at the
Delft University of Technology, Delft, The Netherlands (ap-
proximately 90 m high, with several large radar dishes and
metallic structures nearby), and several data sets were recorded.
Most of the recorded data sets have a short time duration of
300 s, which is sufficient to contain a mode signal. In these
data sets, there were only a few cases of actual overlaps (we
are located 50 km away from the nearest major airport, so the
aircraft density is relatively low), but with very good SNR
(25–40 dB). We have created artificial data sets by randomly
mixing pairs of measured signals at different delay offsets, with
the advantage that the true delay offsets are known and that
we can easily manipulate the delay offsets, noise power, and
source powers (i.e., the SNR and SINR). (The array response
vectors and frequency offsets cannot be changed.) The mixing
is performed simply by adding the two received blocks and

over the four channels with an additional noise matrix

This gave in total 700 combinations to establish the algorithm
performance. Since we know the mixing and can easily estimate
the “true” array response vectors from the unmixed data sets, we
know the true mixing matrix [see (4)] in each experiment.
We use the pseudoinverse of this matrix to obtain a reference
performance.

We present the results from two series of experiments, where
we compare the performance of the algorithms to the pseudoin-
verse of the true mixing matrix .

In a first experiment, for every pair of sources, we add them
pairwise without time-delay offset, and vary the SNR by adding
complex Gaussian noise.

Fig. 9(a) shows the resulting failure rates as a function of
the SNR. Comparing to the simulation (see Fig. 5), we see that
AZCMA and JADE have similar performance (high failure
rates). The MDA, MS-ZCMA, and “known ” have somewhat
worse but still quite similar failure rates for the measured data.
Fig. 9(b) shows the output SINR as a function of the SNR.
It is consistent with the simulations. The performance of all
algorithms except JADE is similar to the case where the true
mixing matrix is known.

In a second experiment, we use equipowered sources, add
noise to achieve an SNR equal to 20 dB, and only vary the
time-delay offset. Fig. 10(a) presents the failure rate as a func-
tion of the delay of the second source, and 10(b) the output
SINR. Compared to the simulations (Fig. 7), AZCMA now also
has a high failure rate for small separations. Again, MDA has

Fig. 9. Performance results using data synthesized from measured single-
source data; varying input SNR: (a) failure rate and (b) output SINR.

sufficient performance only for small offsets, and is not reliable
for larger offsets. The MS-ZCMA has a good performance over
the complete range of offsets and is within 2 dB of the “known
mixing matrix” reference line. JADE requires large time offsets
for reliable performance, and in that case gets close to the ref-
erence line as well.

In summary, we have seen that the algorithms have similar
behavior in simulations as in experiments. The performance of
MS-ZCMA is close to the case of a known mixing matrix. The
MDA is reliable only for small time offsets between the overlap-
ping packets. Conversely, JADE is reliable only for large time
offsets. The AZCMA is not competitive.

VIII. CONCLUSION

We presented three algorithms (AZCMA, MDA, and
MS-ZCMA) to separate overlapping SSR replies impinging
on an antenna array. Simulations have shown that AZCMA
is not reliable, but MDA and MS-ZCMA behave reliably for
data packets that are highly overlapping. For small amounts of
overlap, only MS-ZCMA is reliable. The proposed algorithms
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Fig. 10. Performance results using data synthesized from measured single-
source data; varying time offsets between the two sources: (a) failure rate and
(b) output SINR.

use properties of the sources, hence can work with uncalibrated
or nonlinear arrays, which is an advantage over algorithms
based on the array manifold structure, such as ESPRIT. For
completely overlapping data packets, JADE is not applicable
because the fourth-order cumulants are expected to be small;
indeed, its performance is poor. For small amounts of overlap,
JADE is functional. We developed an experimental platform,
and demonstrated that MS-ZCMA performs quite well on real
data as well.

In actual implementations, we recommend that, first, a test is
made to detect if sources are nonoverlapping or partially over-
lapping. If so, simple algorithms can be used for estimating the
beamformers and separating the sources [14]. If it is detected
that sources are significantly overlapping, then MS-ZCMA and
MDA can be applied. The complexity of these algorithms is
higher, but not prohibitive since the number of simultaneous
sources is likely to be small. Together, this makes a good candi-
date for improving the reception of the next generation of SSR.

APPENDIX

PROOF OF PROPOSITION IV.1

We need to show that, for sufficiently large , the kernel of
is of dimension , and not larger than . We assume a stationary
situation (signals are present for ), so that we can apply
ergodicity. Using the model , we have

(29)

Let be a matrix with rows
, for . Then, can be written as

(30)

Since is invertible, is invertible as well, so
that the rank of is equal to the rank of .

Define the sample correlation matrix corresponding to
as . It has the same rank as as soon as

. We will verify the rank of as tends to infinity,
i.e., when converges to the correlation matrix of ,
under statistical assumptions on the data.

Denote the th sample of the th source as
, where is the transmitted symbol (0 or 1 with

equal probability) and is the residual phase rotation, random
on the unit circle. The th entry of is

where and , for
. As converges to .

Before demonstrating that the rank of is , we show
it in the case . Reorder the columns and the rows in order
to follow the triplets

. Then, the matrix
converges to a diagonal matrix whose diagonal entries are

which is of rank . There are precisely columns
equal to zero, which gives the kernel a dimension of two. The
rest of the matrix is block-diagonal with nonsingular blocks of
size .

Now, we consider the general case. For triplets that are not
equal up to a permutation , the residual
carrier induces the term to tend towards zero. By
reordering the rows and columns of , we transform it into
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a block-diagonal matrix, with the following three kinds of
submatrices.

1) The first kind of submatrices are of size for triplets
of the form , for , with value

where . These elements are equal to
zero because of the Manchester encoding Property III.1.
There are precisely submatrices of this kind. They thus
contribute dimensions to the kernel of .

2) The second kind of submatrices are of size for triplets
of the form and . Denote the corre-
sponding submatrices by . Given that any nondiagonal
entry of the matrix will contain at least three consecutive
samples of , Property III.1 ensures that they are equal to
zero. Then, the matrix converges to a diagonal matrix
whose diagonal entries are

which is full rank. There are precisely submatrices
of this kind.

3) The third kind of submatrices are of size for triplets
of forms and . Denote by the cor-
responding submatrices. A similar but more tedious anal-
ysis reveals that converges to a certain nondiagonal but
full-rank matrix. There are precisely
submatrices of this kind.

Hence, the rank of is equal to . Thus, as the number
of samples tends towards infinity, and will have rank

. By continuity, this will almost surely be the case for
finite but sufficiently large .
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University of Hawaii at Mānoa, Honolulu. His research interests are algebraic
methods for array signal processing, and parallel factor analysis (PARAFAC)
study for tensor decomposition.

Alle-Jan van der Veen (M’95–SM’03–F’05) was
born in The Netherlands in 1966. He received the
Ph.D. degree in electrical engineering (cum laude)
from the Delft University of Technology, Delft, The
Netherlands, in 1993.

Throughout 1994, he was a Postdoctoral Scholar
at Stanford University, Stanford, CA. Currently, he
is a Full Professor in Signal Processing at the Delft
University of Technology. His research interests are
in the general area of system theory applied to signal
processing, and in particular algebraic methods for

array signal processing, with applications to wireless communications and radio
astronomy.

Dr. van der Veen is the recipient of the 1994 and 1997 IEEE Signal Processing
Society (SPS) Young Author paper award. He was an Associate Editor for the
IEEE TRANSACTIONS ON SIGNAL PROCESSING (1998–2001), the Chairman of
the IEEE SPS Signal Processing for Communications Technical Committee
(2002–2004), and the Editor-in-Chief of the IEEE SIGNAL PROCESSING LETTERS

(2002–2005). Currently, he is the Editor-in-Chief of the IEEE TRANSACTIONS

ON SIGNAL PROCESSING, and member-at-large of the Board of Governors of
IEEE SPS.


