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Abstract— The implementation of a RAKE receiver for a quasi-
synchronous DS-CDMA (direct sequence code division multiple
access) system requires the estimation of the dominant path delays
for each user. Presented here is a blind method to estimate these
parameters. The algorithm takes advantage of various signal space
invariances in the frequency domain to isolate the subspace of in-
terest for each user, then uses ESPRIT on these subspaces to esti-
mate the delays. The method processes each user independently of
the others, is near-far resistant, and allows several delays per user.
Simulationsindicate afair accuracy.

1. INTRODUCTION

Third generation wireless communications networks such as
UMTSwill be based on wideband Direct Sequence Code Division
Multiple Access (DS-CDMA) schemes. A specific problem of
such systems in the uplink is that the transmitted user signals are
received over multipath fading channels with long delay spreads,
while the power ratio between any two users can be dramatically
large (the near-far problem). This necessitates advanced equaliza-
tion and detection structures at the base-station receiver. Practical
receivers are based on RAKE structures: abank of matched filters
which correlate the received signal with the desired user code at
severa delays, corresponding to the dominant path delays of the
user channel. In this case, but also in more advanced multi-user
receivers, accurate estimation of these delays is essential. A
second consideration is that in wideband CDMA, the amount of
training chips needed for channel estimation is proportional to
both the maximal delay spread and the number of users, and can
be quite substantial. It isthereforeinteresting to look at algorithms
that estimate path delays without using training chips, i.e. blindly.
In this paper we propose such an algorithm.

Intheliterature, recent worksthat specifically addressthe blind
delay estimation problemare[1, 2, 3]. Inthesepapers, only asingle
delay per user is assumed (this situation applies to asynchronous
narrowband CDMA). In [1], the Cramer-Rao Bound (CRB) on the
estimation varianceisderived for the multi-user case with one path
delay per user. The CRB indicates that the error variance of the
delay estimate of one user is independent from the parameters of
the other users, which suggests that near-far resistant algorithms
arepossible. WhileaMaximum-Likelihood estimator has been de-
rived, it has a high complexity because all delays are estimated
jointly. For this reason it is desirable to have separate estimators
for each user, asin the aforementioned articles. Our contribution
differs from the precedent in two aspects. we consider more than
one delay per user and we propose an algebraic, noniterative solu-
tion acting on ablock (frame) of data. The algorithmic principleis
similar to SI-JADE in [4].

2. DATA MODEL FORMULATION

We consider a K -user CDMA system with periodic codesof length
L.. Inaframe, user k£ emits N symbols s (n) taken from some
communication alphabet. His spreading code is denoted by a se-
quence [cx, (m)]=<_,, and his pulse shape is px(t). Let the sam-
pling period be T, normalizedto T = 1, sothat the chip periodis
T. = 1/L.. The code waveform by which the symbols are modu-
lated thus becomes

Lc

gk(t) = Z ce(m)pr(t —mTe),

m=1

which spans dlightly more than a symbol period, and the emitted
signal of user k is

ye(t) = D sk(n)gu(t — nTy).

We consider a quasi-synchronous system, in which differencesin
synchronization are small and can be incorporated as delaysin the
channel model.

We consider in this contribution a discrete multipath channel
disturbed by additive white complex Gaussian noise. The maximal
path delay is assumed to be less than a symbol period, or such that
the convolution of the channel with the user code waveform spans
at most two symbol periods. Each user k has L, paths, where the
¢-th pathisparametrized by adelay rf and acomplex gainaf. The
received signal is thus

o) = SN alwt-rH 4 )
k=1 (=1

= ZZsk(n)hk(t—nTs) + n(t),
k=1n=1

where the channel seen by the k-th user symbolsis

hi(t) = Zkaigk(t—r,f).

(=1

Theassumption onthe maximal delay entailsthat A (t) hassupport
only ontheinterval ¢ € [0, 2T%).

The received signa is subsequently sampled at a rate of P
timesthe chip rate (typically P = 2), and the samples are stacked



in PL.-dimensional vectors spanning a symbol period,
(i)
z(i + PLLC)
x(7) = .
e(i+1— 51-)
Using the channel model and the implication that at most two sym-

bols per user play arolein x(¢), we can derive that it has a model
of theform

x(i) = Y- I b [0 ]+ ),
k=1

where n(¢) isthe noise vector defined similarly asx(z), and
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(1)
We collect N samples of the data vector into a data matrix
x def x(1) =x(2) ... x(IN-1)
T x(@2) x(3) ... x(V) )
X isa2PL. x (N — 1) matrix with model
K
X = Y HiS; + N = HS + N, o)
k=1
whereH = [H; ... Hg]isa2PL. x 3K matrix, with
def | O hY n?
H;, = k k 3
K [ hg) hl(cZ) 0 ©)
and
sk(2)  sk(3) sk(IN)
S = Sk(l) Sk(2) sk(N— 1) .
Sk((]) Sk(l) sk(N— 2)

We will require that the factorization HS is alow-rank factoriza-
tion. For thisitisnecessary that 2PL. > 3K,and 3K < N — 1.
We al so need to assume that the noise bandwidth is larger than the
oversampling rate, so that the noise covariance matrix is diagonal
with equal diagonal elements.

3. DELAY ESTIMATION

Knowing X and the g, (t)’s, our god isto estimate thetime delays
for each user blindly, i.e. without knowledge of the symbolsS. We
first present the basic principle of the algorithm, and then derive
the details. The idea behind the algorithm is similar to that of the
SI-JADE algorithm [4].

3.1. Principle

The agorithm is based on the property that a convolution in time
isequivalent to amultiplication in frequency. For finite sequences
and the Discrete Fourier Transform (DFT), this property is strictly
speaking not valid, but approximately so if we perform sufficient
oversampling (this model mismatch causes the estimator to be
slightly biased). Denote by F the Discrete Fourier Transform ma-
trix, and apply F to the column h;, with model asin (1),
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with fei{=3 0 3pr, 3~ 2pL.)
Hence, the spectrum is equa to the frequency code pulse
Gr(f) times a sum of complex exponentials. Denote
£
Ore = exp (;}’;Z’“) ar, = [ab,...,ar*]T, construct
0" as
1 1
Gk,l gk,Lk
®§c+) _ 6% 1 o Oir,
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and let G, beadiagonal matrix whose diagonal entriesare G (f).
Then we can write (4) as

1)

Fhy=F [2{3) ~ GO ay, .
k

Similarly, let J be a diagonal matrix with entries (J);,; = —1'**
and construct the matrix ©{~) = 3O, then

Let us now consider Hy, in (3). Note that

_p® 0 1 0
h?l) ] 1/2 0 1/2 | .
k

M .o
H, = [ " h
1/2 0 —1/2

& L0
hk hk
Denoting the latter matrix by O, we obtain that

) 0 b
FH; = ak] ‘}'[ po| [© ©

GOy [g‘k

where

Observethat ®,, satisfiesashift-invarianceproperty: all subsets of
n consecutive rows have the same column span. Our approach will
thus be to estimate the column span of FH, and look for vectors
that have thisinvariance structure, discarding all other vectors that
do not have this property. The parameters of interest can then be
obtained by an application of the ESPRIT algorithm.



Fig. 1. Spectrum of the spreading code, G (f), and the interval
selected by the truncating matrix.

3.2. Noisglesscase

We first describe the algorithm in the noisefree case. Assume that
X has alow-rank factorization, and consider the SVD of X:

X = HS = U,2,V,,

whereU, : 2PL. x 3K isanisometric matrix, X, : 3K x 3K is
adiagonal matrix containing the singular values, and V, : 3K x
(N — 1) isaco-isometric matrix. Assuming that S has full rank,
we know that span{U,} = span{X} = span{H}, so that there
isaninvertiblematrix that maps U, toH. We now apply F toU,:

where P isatal (234, Ly, + K) x 3K matrix of full column
rank, and * represents the last columns of equation (5) for each k.
Note that the column span of @y, isinvariant under left multipli-
cation by J, and the same holds for G, ®y, since G, isdiagonal.
On the other hand, the last columns denoted as * do not have this
invariance property. Thus, we can remove these columns by inter-
secting the subspaces spanned by the columnsof U, andJFU,:

def

U < span{FU,} N span{J - FU,}

[G1®1 | -+ | GkOK ]P',

where P isatal 23| Lj, x 2K matrix of full column rank.

The next objective is to retrieve the column span correspond-
ing to the user of interest. We would like to premultiply U by the
inverse of G, so that we obtain columns of the desired user that
are shift-invariant (the columns of ®;), whereasall other columns
arenot. A complicationisthat G, containssmall entries (seefigure
1), due to the oversampling of the bandlimited pulse shape gx (),
and we do not wish to invert these entries. However, we can define
arectangular selection matrix J. that selects a consecutive subset
of rows of G, containing the large entries. Typicaly, J. has size
2L, x 2P L,. (We assumethat the user codes are such that they do
not introduce spectral nullsin the selected interval.)

Suppose that user 1 is the user of interest. Define D1 =
(JcG1JH)~1J,. We premultiply U by D;:

D1U=[Jc®1 | D:1G;: O | ...|D1GK'@K ]P’-

User | Delayl | Delay 2

1 3.6285 | 10.3155
2 1.5345 3.1875
3 1.4895 5.8155
4 5.1285 | 11.8155
5 4.6380 7.5015

Table 1. Delays used for each user (in chips).

Our goal will beto extract from D; U amatrix with the same col-
umn span as J.®,. Since this component has the desired shift-
invariance structure, we can apply ESPRIT to estimate the delays.
There are however two complications: (z) the columns of J.®;
are not individually present in the column span of DU, but only
alinear combination of them (due to the compression by ai1); (i7)
the column span of D, U also contains contributionsfrom all other
users, although they are not shift-invariant.

We take care of thefirst problem by smoothing U in the usual
way, by collecting L, shiftsin alarger matrix. Thuslet J; be a
selection matrix that keepsrowss to 2L, — L1 + ¢ of amatrix, and
construct

U, =[1D\U, ..., J;,D,U].

Let @) consist of thefirst 2L, — L; + 1 rows of ®;. Dueto the
shift-invariance of ®1, we know that

span{U.} D span{(J:1J.)®:} = span{®1}.

To filter out the other columnsin the span of U, we again invoke
the shift-invariance of the desired subspace. By intersecting the
column spans of two or more shifts of U, only the shift-invariant
subspace will remain. Thus compute

U; = span{U"} nspan{UP} N - N span{ UM}, (6)

where the notation %) indicates the k-th shift on U,. Notethat the
smoothing step also introduced shifts of the undesired vectors cor-
responding to the other users. However, thesearenot shift invariant
over morethan L, shifts, henceif n > L1, we know that

U = 0P,

where P” isaninvertiblematrix and @ consistsof thefirst 2L, —
L1 —n+ 2rowsof ®;. Thefinal stepisto apply ESPRIT [5] to
Uy inorder to get {£6;,¢, £ € [1,..., L]}, and to estimate the
delays 7f from these.

4. SSIMULATIONS

We test the algorithm on simulated data involving K = 5 users
with random codes of length L. = 15. Each user has either 1 or
2 propagation paths, with delays as specified in table 1 (in simula-
tions where only one delay is used, it is the first one in the table).
We used for the pulse shape a raised-cosine pulse with a roll-off
factor 0.52 truncated at atotal length of 67.. The signal was over-
sampled P = 2 times. The results are averaged over 1000 inde-
pendent runs, with the worst 5% removed to suppress the outliers.

The received power o} of user k is defined as ||hg||*. In the
simulations, SNR denotestheratio between the power of user 1 and
the noise variance 0> = L E||n(3)||?, i.e. o7 /o>. The Near-Far
Ratio (NFR) is defined as the ratio o3 /o7, and we have given all
other users have the same power as user 2.

In the first simulation, we consider 5 users, each with one de-
lay, and aframe of N = 200 symbols. The matrices U, are then
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30 x 10, andwith Ly = 1, wecanusen = 2, 3, 4 shiftsin (6) for
the estimation of U¢. Figure 2 shows the standard deviation of 73
in chipsfor thefirst user asafunction of SNR. (The bias of the es-
timateswas smaller than their standard deviation.) All curveshave
the expected log-linear behavior. Apparently, taking more shiftsin
(6) improves the delay estimate.

In asecond simulation, we consider two paths per user, which
resultsin amatrix U, of dimension 30 x 20. SinceL; = 2 we
can only take n = 3, 4 shifts. Figure 4 presents the standard devi-
ationfor the estimator asafunction of the SNR, for N = 200 anda
near-far ratio of 0 dB. Both delays are equally well estimated, and
theversionwith 4 shiftshasbetter performancethan the 3 shift ver-
sion. Figure 3 shows the performance as function of NV, with the
SNR fixed at 15 dB and an NFR of 0 dB, with similar conclusions.
Finaly, figure5 presentsthe standard deviation as afunction of the
NFR, whilethe SNRis10 dB and N = 500. Itisseen that the pro-
posed algorithm is near-far resistant.

5. CONCLUDING REMARKS

A path delay estimator for DS-CDMA has been proposed, based
on subspaceintersection and ESPRIT. Simulationsindicate that the
proposed algorithm is Near-Far resistant and offers good perfor-
mance.
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