
C/) 

0 

CD 

I? '5 

w C>) 

* * * * * * 
t* * < 
KITH 

"wifi11 Virw 

Sparse Approximations of Inverse Matrices 

*>>«& L5 
i ^ Si 55^6 

Harry Nelis 

^ a ^ *ai 
=5 CD 

J B t- """ 

JJF-1 



, < l < Sparse Approximations 
'I V"' 1 of Inverse Matrices 

Harry Nelis 

%i 

Delft University of Technology 

October 1989 



Sparse Approximations 
of Inverse Matrices 

XX tt 

**** 
- > »• ' € * ' * * * » 

i •<* 

Proefschrift 

ter verkrijging van de graad van doctor 
aan de Technische Universiteit Delft, 
op gezag van de Rector Magnificus, 

prof. drs. P.A. Schenck, 
in het openbaar te verdedigen 

ten overstaan van een commissie 
aangewezen door het College van Dekanen 
op maandag 30 oktober 1989 te 16.00 uur 

door 

Hendrik Willem Nelis 

geboren te Haarlem 
electrotechnisch ingenieur TR diss 

1760 



Dit proefschrift is goedgekeurd 
door de promotor prof.dr.ir. P. Dewilde 



Contents 

Preface iii 

1 Introduction 1 
1.1 Background 2 
1.2 Contributions 6 
1.3 Notation and Basic Concepts 7 
1.4 Some Previous Results 10 

2 Optimal Sparse Approximations 13 
2.1 Monotone Transitive Sets 13 
2.2 Arbitrary Sets 21 
2.3 Concluding Remarks 25 

3 The Wiener-Hopf Factorization 27 
3.1 The Factorization 29 
3.2 A Linear Fractional Description 42 

4 The Schur Algorithm 47 
4.1 The Algorithm 47 
4.2 Error Analysis 55 

5 Iterative Algorithms 59 
5.1 The Algorithms 59 

i 



6 A n Extens ion of t h e Schur Algor i thm 65 
6.1 The Algorithm 65 
6.2 Error Analysis 74 
6.3 Concluding Remarks 80 

7 A Mode l Reduc t ion E x a m p l e 83 
7.1 The Problem 83 

7.2 Results 89 

8 Concluding R e m a r k s 97 

S a m e n v a t t i n g 105 

A b o u t t h e A u t h o r 107 

ii 



Preface 

T HE SOLUTION of many problems in science and engineering reduces 
ultimately to the inversion of a positive definite matrix. This may be a 
substantial burden when the matrix is large (e.g., 10,000 X 10,000), as 

for example in modeling problems. Special features of the original, physical 
problem may be brought in to reduce the number of computations. In this 
dissertation we impose structure on the inverse of the matrix — we assume 
that it can be approximated by a sparse matrix. 

We show how techniques from inverse scattering theory such as the 
Wiener-Hopf factorization and the Schur algorithm can be used to determine 
an optimal or suboptimal sparse approximation to the inverse of a posi
tive definite matrix. Only entries in the original matrix that correspond to 
nonzero entries in the approximation are used. The algorithms that are pro
posed have a complexity that is proportional to the number of these nonzero 
entries. 

Chapter 2 deals with the problem of determining an optimal sparse 
approximation to the inverse of a positive definite matrix. We first consider 
the case where the sparsity pattern is monotone transitive, and show that the 
triangular factors of the inverse of the so-called maximum entropy extension 
— we use the entries in the original matrix that correspond to nonzero entries 
in the approximation, and (implicitly) estimate the others — are suboptimal 
sparse approximations in the Frobenius norm to the triangular factors of the 
inverse of the original matrix. When the sparsity pattern is arbitrary, this 
result does not hold, but of all matrices whose inverse has the desired sparsity 
pattern the maximum entropy extension is closest to the original matrix in 
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the Kullback-Leibler measure. 
Chapter 3 describes a generalization of the Wiener-Hopf factoriza

tion theory to the case of general, finite dimensional, positive definite matrices 
that are specified on a block band. This theory provides the link between 
classical inverse scattering theory and matrix extension theory. It succeeds 
in constructing a global solution to a generalized inverse scattering problem, 
which turns out to be equivalent to the maximum entropy extension problem. 
The solution and, consequently, the triangular factors of the inverse of the 
maximum entropy extension are obtained by solving a set of linear equations. 

Chapters 4, 5, and 6 are devoted to algorithms for computing the 
inverse of the maximum entropy extension. When the sparsity pattern is 
staircase, we use the Schur algorithm to compute the triangular factors of 
this matrix. The algorithm is very well suited for implementation on an array 
processor of the systolic or wavefront type. For general sparsity patterns we 
depend on iterative algorithms. As these algorithms consume much time 
and storage, we devise an algorithm for computing an approximation to the 
inverse of the maximum entropy extension for the important case where the 
sparsity pattern is a multiple band. The algorithm is an extension of the 
Schur algorithm, and computes the inverseof the maximum entropy extension 
of a matrix that is close to the original. 

Chapter 7 is about an application: the modeling of parasitic capac
itances in a large integrated circuit. It shows the power of the methods that 
are proposed — we are able to obtain an accurate model for a system with 
a large number of conductors, while recent literature considers the modeling 
of a few conductors already as a hard problem that is worthy of publication. 
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Chapter 1 

Introduction 

MODELING is an essential step in the analysis and design of large and 
complicated systems in science and engineering. A prime example 
is the design of dikes and drainage systems in civil engineering 

practice, where a detailed model is needed to calculate the flow of ground 
water (think of, e.g., the seepage through and below the dams). Other ex
amples can be found in, for example, aerodynamics, geophysics, (solid state) 
integrated circuit design, and structural mechanics. In most cases deriving 
the equations that govern the phenomena is not unduly difficult, but solving 
them in closed form appears to be impossible. Numerical techniques such 
as the finite element method have been developed that provide ways of find
ing approximate solutions. They discretize the equations, and convert the 
problem into a purely algebraic one in which a matrix has to be inverted. 
The matrix, however, is often so large, that even with powerful computers 
modeling remains unfeasible. 

All models are approximate, but in many cases we can suffice with a 
lower order, simpler model that still retains the main features of the original. 
Approximation in this sense is called model reduction, and it is the topic of 
this dissertation. The techniques that are developed approximate the inverse 
of a positive definite matrix by a sparse one, and can be used, for instance, in 
combination with the boundary element method, a finite element method for 
problems that are posed in integral equation form (many problems described 
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2 CHAPTER 1 INTRODUCTION 

by partial differential equations, e.g., any problem in electromagnetics, can 
be reformulated in such a way). The method has the advantage that models 
do not have to be extended to the infinite boundaries of open systems, and 
that the number of variables that have to be handled is reduced. The latter 
is offset to some extent, because every boundary element is generally related 
to every other, so that the resulting matrix is dense. The inverse of the 
matrix (which is still very large) is the model, and to reduce the model, we 
approximate the inverse by a sparse matrix. 

We show how techniques from classical inverse scattering theory 
such as the Wiener-Ilopf factorization and the Schur algorithm can be used 
to determine an optimal or suboptimal sparse approximation to the inverse 
of a positive definite matrix. The algorithms that are proposed compute the 
inverse of the so-called maximum entropy extension of the original matrix 
— only entries that correspond to nonzero entries in the approximation are 
used, the others are implicitly estimated — or a close approximation to it, 
depending on the desired sparsity pattern. They have a complexity that is 
proportional to the number of nonzero entries in the approximation. 

In this chapter we start out with a survey of the literature on matrix 
extensions. We proceed with an overview of the new results in this thesis, 
introduce the notation, and, finally, review some earlier results on maximum 
entropy extensions. 

1.1 Background 
Suppose that A = [a,j] is a positive definite matrix. Furthermore, suppose 
that it is only partially specified — it is specified only on a subset S of the 
set of index pairs { (i,j) \ i,j = 1, . . . , n } — and assume that the diagonal 
entries are specified. In [DG81] Dym and Gohberg studied the case where 
S is a block band — see Figure 1.1. They showed that for this case there 
is a unique positive definite extension of A — an extension of A is a matrix 
that coincides with A on S — whose determinant is maximal, and that 
this matrix is the unique positive definite extension whose inverse is zero 
on the complement of S. Due to the analogy with the maximum entropy 
inequality in spectral estimation theory (see, e.g., [Bur75]), they called it the 
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Figure 1.1: A matrix that is specified on a block band. Specified entries are 
marked with an ' x ' ; unspecified entries are blank. 

maximum entropy extension. In [GJSW84] Grone et al. generalized the above 
results to sets S that contain the diagonal pairs, but are arbitrary otherwise. 
They showed that a unique maximum entropy extension of a positive definite 
matrix that is specified on such a set exists, and that its inverse vanishes on 
the complement of the set. 

The method used in [DG81] to construct the maximum entropy 
extension of a positive definite matrix that is specified on a block band is 
based on the inversion of contiguous principal submatrices of that matrix. In 
[DGK80] Delsarte et al. followed a similar approach to compute the triangu
lar factors of the inverse of a completely specified, positive definite matrix, 
thereby in fact generalizing an algorithm known in estimation theory as the 
Levinson algorithm [Lev47]. The problem of computing these factors can be 
viewed as a time variant estimation problem, since any positive definite ma
trix can be interpreted as the covariance matrix of a [part of a] time varying 
stochastic process. Computing the triangular factors of the inverse of the 
maximum entropy extension of a partially specified, positive definite matrix 



CHAPTER 1 INTRODUCTION 

then corresponds to solving a partial correlation (PARCOR) problem. In 
[DVK78] Dewilde et al. showed how partial correlations for one dimensional, 
time invariant stochastic processes can be determined by using an algorithm 
known in interpolation theory as the Schur algorithm [Schl?]. It soon be
came apparent that this algorithm can be used advantageously to determine 
partial correlations even for time varying processes [Dep81, LK81]. This 
property of the Schur algorithm was exploited by Morf and Delosme [MD81] 
to devise an algorithm for computing the triangular factors of the inverse 
of a completely specified, positive definite matrix. In [DD87] Dewilde and 
Deprettere showed how this algorithm can be used to compute the triangu
lar factors of the inverse of the maximum entropy extension of a positive 
definite matrix that is specified on a staircase band — see Figure 1.2. The 

X X 

X X 

X X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

/ 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

' 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X 
X 

X 
X 

X 
X 

X 
X 

Figure 1.2: A matrix that is specified on a staircase band. 

algorithm requires 0(nb2) operations and 0(nb) storage, where n is the size 
of the matrix and b the average width of the band. It is very well suited for 
implementation on an array processor of the systolic or wavefront type. In 
the same paper Dewilde and Deprettere showed that, except for a diagonal 
bias factor, the triangular factors of the inverse of the maximum entropy 



1.1 BACKGROUND 

extension give an optimal approximation in the Frobenius norm (also known 
as the Hilbert-Schmidt norm) to the triangular factors of the inverse of the 
completely specified matrix. 

Various iterative algorithms for computing the inverse of the maxi
mum entropy extension of a Toeplitz-block Toeplitz matrix that is specified 
on a multiple band — see Figure 1.3 — have been proposed [LM81, LM82, 
RP87]. These algorithms, however, either have trouble converging or are 
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Figure 1.3: A matrix that is specified on a multiple band. 

computationally very expensive. In [DD88] Dewilde and Deprettere pro
posed a fast algorithm for computing an approximate inverse of a general, 
positive definite matrix that is specified on a triple band S. They assumed 
that certain conditions on the completely specified matrix are satisfied. The 
approximation is the inverse of a matrix that closely matches the partially 
specified matrix. It does not have zeros in every entry on the complement of 
S, but can be represented and computed efficiently. 
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1.2 Contributions 
Suppose that A is a positive definite matrix. Chapter 2 deals with the prob
lem of determining an optimal sparse approximation to A~] (the inverse of 
A) that is zero on the complement of a set S. We first consider the case where 
S is monotone transitive — see Figure 1.4 — and show that the triangular 
factors of the inverse of the maximum entropy extension of the part of A with 
support on S are suboptimal sparse approximations in the Frobenius norm 
to the triangular factors of A"1 . When «S is arbitrary, this result does not 
hold, but of all matrices whose inverse vanishes on the complement of S the 
maximum entropy extension is closest to A in the Kullback-Leibler measure. 

X 
X 
X 

X 

X 

X 
X 
X 
X 

X 

X 
X 
X 
X 

X 

X 
X 
X 
X 
X 

X 

X 

X 
X 

X 

X 

X 

X 
X 
X 
X 

X 
X 
X 
X 

X 

X 
X 
X 
X 
X 

X 
X 
X 
X 
X 

X 

X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 

X 

x 
X 

X 

X 

X 
X 

X 

X 

Figure 1.4: A matrix with support on a monotone transitive set. Nonzero 
entries are marked with an ' x ' ; vanishing entries are blank. 

Chapter 3 describes a generalization of the Wiener-Hopf factoriza
tion theory to the case of general, finite dimensional, positive definite matrices 
that are specified on a block band S. This theory provides the link between 
classical inverse scattering theory and matrix extension theory. It succeeds 
in constructing a global solution to a generalized inverse scattering problem, 
which turns out to be equivalent to the maximum entropy extension problem. 
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The solution and, consequently, the triangular factors of the inverse of the 
maximum entropy extension are obtained by solving a set of linear equations. 

Chapters 4, 5, and 6 are devoted to algorithms for computing the 
inverse of the maximum entropy extension when S is a staircase band, an 
arbitrary set, and a multiple band respectively. The last case is of major in
terest — multiple bands arise in problems with multi dimensional geometries, 
for example, when the boundary element method is used to model a three 
dimensional system and in two dimensional spectral estimation (see, e.g., 
[Nin89] and [LM81]). In contrast to the case where S is staircase, however, 
no closed solution to the extension problem exists, and we have to be satisfied 
with an approximate solution. We devise an extension of the Schur algorithm 
for computing such an approximation, provided that certain conditions are 
satisfied. It computes the inverse of the maximum entropy extension of a 
partially specified matrix that is close to the original and specified on the 
same set S, and requires 0(nc2) operations and 0(nc) storage, where n is 
the size of the matrix and c the average number of elements in the set per 
row of the matrix. 

Chapter 7 is about an application: the modeling of parasitic capac
itances in a large integrated circuit. It shows the power of the methods that 
are proposed — we are able to obtain an accurate model for a system with 
a large number of conductors, while recent literature considers the modeling 
of a few conductors already as a hard problem that is worthy of publication. 

1.3 Notation and Basic Concepts 

We denote matrices by italic uppercase letters. Matrices have complex en
tries, unless we state otherwise. We denote the (i,j) entry of A by (-4), or 
a,ij, the complex-conjugate transpose of A by A', the kth power of A by Ak, 
and the direct sum of A and B by A © B. The symbols 0 and I denote the 
zero matrix and the identity matrix. Their size is defined by the context. 

£ and Q denote the operators that project a matrix on its upper 
and lower triangular part respectively. P_ is the projection operator on the 
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diagonal. For example, for A = [a i ;], i, j = 1 , . . . ,n , 

<?A) = { a,J i f?'-j; 
— '*3 I 0 otherwise, 

(CM).. = 
= ' j 

a.j if i > j ; 
0 otherwise, 

and 

(P A) _ I «u if * = i; 
—o u I 0 otherwise. 

The symbols det A, log A, tr/1, and | | /1 | | denote the determinant, the natural 
logarithm, the trace, and the Frohenius norm of A. The condition number 
K ( / 1 ) is defined as K(A) = \\A\\\\A~l\\. 

A matrix 5 is called contractive if / - S'S is positive definite; [r A] 
is called admissible if (1) T and A are upper triangular, (2) T is invertible, 
and (3) r _ 1 A is contractive. 

If A is positive definite, then LA and A/4 refer to the (unique) 
upper triangular matrices with positive diagonal entries that satisfy A = 
LAL\ = MAMA. We always assume that the diagonal entries in A are 
equal to one, which does not impair generality, because we can always con
vert A to ( £ 0 4 ) " 2 / l ( £ 0 / l ) " i We next attach to A (with P_QA = I) the 
impedance matrix GA — I + 2(.P - P_ )A and the scattering matrix SA = 
(GA + I)~l(GA - I). GA and SA are related via the Cayley transforma
tion, and the following properties are equivalent: 

- A = \{G4 -f G'A) is positive definite; 

- SA is contractive; 

- [\{GA + I) \{GA - / ) ] is admissible. 

If A is only partially specified, then £ and AME denote the set of positive 
definite extensions and the maximum entropy extension of A respectively. 

A subset S of the set of index pairs { (i,j) | i,j = 1 , . . . , n } is called 
a 
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- block band if it is of the form { (i,j) \ \i - j \ < b } — see Figure 1.1; 

- staircase band if for all i < k < I < j [i > k > I > j] (i,j) 6 S implies 
that (k,l) 6 S — see Figure 1.2; 

- multiple band if it is of the type shown in Figure 1.3. 

- monotone transitive set if for all i < j < k [i > j' > k] (i,j) 6 <S and 
(i,k) € S implies that (j,k) £ S — see Figure 1.4; 

We always assume that S contains the diagonal pairs (i,i). 
The symbol J denotes the matrix 

J = ƒ 0 
0 - / 

A matrix 0 is J-unitary if Q'JQ = J. An elementary ./-unitary matrix is a 
rank-two correction to the matrix ƒ © ƒ of the form 

0 

0 
where 1 < i < n, n + 1 < j < 2n, n is the size of the identity, ch = 
1/y 1 - \p\2, sh = p/y 1 - \p\2, and \p\ < 1. We denote this matrix by 
Q(i,j,p). Clearly, 0 ( i , j,pf JQ(i,j,p) = J. 
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We denote block matrices by bold uppercase letters. If we partition 
A as a block matrix, then we denote the block matrix by A. Conversely, if 
we interpret A as a matrix with scalar entries, then we denote it by A. If A 
is positive definite, then L . and M . refer to the (unique) upper triangular 
block matrices with upper triangular diagonal blocks with positive diagonal 
entries that satisfy A = L A I A = M ^ M * . The symbol A(i.j) denotes the 
principal submatrix of A that lies in the rows and columns indexed by i,. ..,j. 
□ [A;(i, j)] is the block matrix that satisfies ( □ [ A ; ( K J ) ] J (i.j) = A, and is 
zero otherwise — it is an embedding of A in a zero matrix. Its size is defined 
by the context. 

To ease the notation, we suppress as much of the subscripts as pos
sible. For example, we write LME instead of LA whenever its identity is 
clear. 

1.4 Some Previous Results 
Finally, we review three important results on maximum entropy extensions 
that have appeared in the literature. We start out with the well-known 
inequality of Hadamard. 

T h e o r e m 1.1 ( H a d a m a r d ' s inequal i ty) Let A = [a,j], i,j = 
1 , . . . , n, be positive definite. Then, 

n 

det A < ] J a„. 
;=i 

Moreover, equality holds if, and only if, A is diagonal. 

We restate this result as follows. Suppose that A is positive definite, and 
that only its diagonal entries are specified. Then, there is a unique matrix B 
in £ (the set of positive definite extensions of A) such that 

d e t £ = m a x { d e t £ | E £ €}. 

Moreover, B is the unique positive definite extension whose inverse is diagonal 
(since B is diagonal). Thus, the following result of Dym and Gohberg is a 
generalization of Hadamard's inequality. 
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Theorem 1.2 ([DG81]) Let A = [a,j] be a positive definite matrix 
that is specified on a block band S = {{i,j) | \i - j \ < b}. Then, there is a 
unique matrix B in £ such that 

det B = max{ det E \ E € £ } . 

Moreover, B is the unique positive definite extension whose inverse satisfies 

(B-')tJ = 0 V(i,j)£S. 

The following result of Grone et al. in turn is a generalization of the result 
of Dym and Goh berg. 

Theorem 1.3 ([GJSW84]) Let A be a positive definite matrix 
that is specified on a set S that contains the diagonal pairs, but is arbitrary 
otherwise. Then, there is a unique matrix B in £ such that 

det B = max{ det E \ E G 8 }. 

Moreover, B is the unique positive definite extension whose inverse satisfies 

We give the proof of Theorem 1.3 in Chapter 5. As mentioned above, we call 
B the maximum entropy extension of A and denote it by AME. 
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Chapter 2 

Optimal Sparse 
Approximations 

SUPPOSE THAT A is positive definite. In this chapter we address the 
problem of determining an optimal sparse approximation to A~l that 
is zero on the complement of a set S. More precisely, we seek the upper 

triangular matrix F that is such that ||7 — FL\\ is minimal and F'F is zero 
on the complement of S — F is a triangular factor of the approximation. We 
first consider the case where S is monotone transitive. Using the fact that for 
such a set F must vanish on the upper triangular part of the complement of S, 
we show that the minimum occurs for F = (DjjED)Lj^E, where D is defined 
as 2. L (the diagonal of L), etc., and the maximum entropy extension is based 
on the part of A with support on S. When S is arbitrary, this argument and 
result do not hold. We next show, however, that of all matrices whose inverse 
vanishes on the complement of S AME is closest to A in the Kullback-Leibler 
measure. 

2.1 Monotone Transitive Sets 

The notion of monotone transitive sets was introduced by Rose [Ros72], who 
studied the problem of fill-ins in the triangular factors of sparse, positive 

13 



14 CHAPTER 2 OPTIMAL SPARSE APPROXIMATIONS 

definite matrices, and showed that if a positive definite matrix C is zero on 
the complement of a set 5 , then its triangular factor M vanishes on the upper 
triangular part of the complement of the set, irrespective of the values of the 
entries in C, if, and only if, S is monotone transitive. Hence, if F is upper 
triangular, and F'F vanishes on the complement of a monotone transitive 
set, then F must be zero on the upper triangular part of the complement of 
the set. Clearly, block bands and staircase bands are monotone transitive. 

With S Rose associated a graph Q that has a vertex for every index 
i and an undirected edge between vertex i and j if (i, j) G S. He proved that 
there is a permutation matrix P such that the support of PCP' is monotone 
transitive if, and only if, every cycle in Q that consists of four edges or more 
contains a chord, i.e., an edge joining two nonconsecutive vertices in the 
cycle. Graphs with this property are said to be chordal or triangulated. For 
example, if C is as shown in Figure 2.1, then the cycle 2 - 7 - 10 — 5 — 2 has 
four edges yet no chord — we cannot permute C to a matrix with monotone 
transitive support. If, however, we partition C into blocks of size 4 x 4 , then 
the graphs of the principal submatrices C( l , 2 ) and C(2,3) are chordal — 
see Figure 2.2. Arranging the rows and columns of C ( l , 2 ) according to the 
order 1 - 5 - 2 - 6 - 3 - 7 - 4 - 8 , we see that the support of the permuted 
matrix is staircase and hence monotone transitive. 

Chordal graphs also have import on the existence of positive definite 
extensions of partially specified, not necessarily positive definite Hermitian 
matrices. In [GJSW84] Grone et al. showed that if Q is chordal, and all 
completely specified principal submatrices with support on S are positive 
definite, then positive definite extensions necessarily exist, and if Q is not 
chordal, then they do not in general exist. 

The following results are generalizations of the approximation the
orems in [DD87] to the case of monotone transitive sets. T denotes the set 
of upper triangular matrices that vanish on the upper triangular part of the 
complement of S. DA is defined as DA = P.QLA-

L e m m a 2.1 Suppose that A = [dij], i,j = 1 n, is a positive 
definite matrix that is specified on a monotone transitive set S. and let F 6 T 
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Figure 2.1: A matrix with support on a multiple band and its graph. Nonzero 
entries are marked with an 'x ' ; vanishing entries are blank. 
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Figure 2.2: The principal submatrix C(l,2), the permuted matrix, and their 
graph. 

and II G T. Then, 

lQ(FAlI-) = g0(FA,fEH-). 

Proof Suppose that B = A - AME. Because for all i < j < k 
(i,j) € S and (i,k) € S implies that (j.k) € S and hence (k,j) 6 S — S is 
monotone transitive — and B vanishes on S, we have that for all (i.j) in the 
upper triangular part of 5 

k=i 
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Because II is upper triangular and zero on the upper triangular part of the 
complement of S, it follows that 

g0(FBH") = 0 

and hence 
lQ{FAH-) = lQ{FAMEtr). 

■ 
L e m m a 2.2 Let A and F be as defined in Lemma 2.1. Then, 

2-ro{FA(DMELMlE)')=ZoF-

Proof Because Aj}E vanishes on the complement of S, and S is 
monotone transitive, we have that Lj^E G T, and the first equality in the 
lemma follows directly from Lemma 2.1. Furthermore, by the same lemma, 

IO{FA^DME^MBT) - 10{FAME(DME^E)') 

= UFLMEDME), 

which evaluates to JLQF, as F and LME are upper triangular and Dj£E is 
diagonal. ■ 

The second assertion in Lemma 2.2 can be interpreted as a reproduc
ing property — taking the 'generalized inner product' [F,DjfEL]^E]A = 
2.Q{FA(D~MEL'ME)*) (the inner product is a matrix, not a scalar) reproduces 
the diagonal of F. 

Let II denote the operator that projects a matrix on T with respect 
to the inner product {B,C)A = tr(BAC'), and let \\B\\A = J(B,B)A. 

L e m m a 2.3 Let A be as defined in Lemma 2.1, F upper triangular, 
and II e T. Then, 

g0(FAH') = lQ(U(F)AH'). 
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Proof Suppose that K s= F — ITF. From the definition of II we 
have 

(A', H)A = tr(KAH') = 0 V ƒ/ É f. 

Specializing ƒ/ to E,j , for all ( t , j ) in the upper triangular part of S, where 

/ x = f 1 if(*,/) = (i,j); 
V »i/fcj | 0 otherwise, 

we obtain that A'/l is zero on the upper triangular part of S. Hence, KA is 
equal to N + 0, for some strictly lower triangular N and an upper triangular 
0 that vanishes on the upper triangular part of S. 

Because NII" is strictly lower triangular, and OH" vanishes on the 
diagonal — O is upper triangular and zero on the upper triangular part of 
S, and H vanishes on the upper triangular part of the complement of S — 
it follows that 

P 0 (A ' / l / / - ) = P0( ,V//-) + £ 0 ( O / / - ) = 0 

and hence 
P0(FAH-) = L0(n(F)Air). 

Theorem 2.1 Suppose that A is positive definite, and let S be a 
monotone transitive set. Furthermore, let T be the set of upper triangular 
matrices that vanish on the upper triangular part of the complement of S. 
Then, 

1. m i n { | | 7 - FL\\ \ F e T) occurs for F = {D]^BD)Lj^E, where the 
maximum entropy extension is based on the part of A with support on 
S; 

2- 11/ - {(D-M
l
ED)LllE) L\\ = Jti (l-(DÜED)2). 
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Proof Suppose that F £ T. Because by Lemma 2.3 

Z0(U(L-')AF-)=10(D-F'), 

and by a proof similar to the proof of Lemma 2.2(2) 

lo {{(DMED)LME) AF') =gQ(D*n, 

we have 

tr ( n ( L - ' M f ) = tr [[{D-M\D)L-M\) AF*} V F e f . 

Since A is invertible, it readily follows that 

m - 1 = {D-M\D)L-^E. 

Hence, 
min{p-> -F\\A | Fef) 

and, consequently, 
m i n { | | / - F Z : | | | F e ^ } 

- HL"1 - F\\A = \\I - FL\\ - occur for F = (D^D)^. 
Because by Lemma 2.2(1) 

UL~MEAL-M'E) = / , 

we have 

t r {{{D-M\D)LiïE) A{{DjiED)Li}Ey} = tr ({D^ED)2) , 

so that 

V - {(D-M\D)L-M\) L\\ = ]/tr(l~2(D-JED)2 + (D-M
i
EDf) 
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We close this section with a simple example. 

Example 2.1 Suppose that 

A -
1 a 
a 1 

where a lies between —1 and 1, and let «S = {(1,1), (2,2)}. Then, 

y/l -a2 0 
L = 

y l - Q 2 a 
0 1 and D = 0 I 

and the maximum entropy extension of the part of A with support on S is 
given by 

r i o 
AME = 0 1 

Furthermore, 

L\fE ~ 
1 0 
0 1 and D ME 

1 0 
0 1 

and to find the minimum of { \\I - FL\\ \ F 6 T), where 

F = 

and T is the set of diagonal matrices, we minimize 
L 

ƒ o 
0 g 

\\I-FL\\ = yj{\-J>/T=tf) +(fa)2 + (l-g)2. 

In the minimum the partial derivatives with respect to ƒ and g must vanish, 
which implies that ƒ = v l̂ - ft2 and g = 1 — the minimum occurs for 

y/\ - a2 0 
0 1 F = 

which, indeed, is equal to {DMED)LME. The minimum itself is given by 

V-{(D*MBl>)LÜE)L\\ = \a\. 
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2.2 Arbitrary Sets 
In contrast to the monotone transitive case, F does not necessarily vanish 
on the upper triangular part of the complement of S when S is arbitrary. 
Moreover, in the general case F = (D'j^ED)L^}E, the optimal solution when 
S is monotone transitive, does not satisfy the constraint that F*F is zero on 
the complement of S. Another norm to measure the distance between two 
positive definite matrices A and B is 

X(A,B) = - (ir(AB-x)- logdetfAB"1)} 
71 \ / 

- 1 , 

where n is the size of A and B. This norm was introduced by Lev-Ari et al. 
in [LPK89], and is known as the Kullback-Leibler measure. It is related to 
the norm 

tiA,B) = \\I-LëlLAf 

in the following way. 

P ropos i t ion 2.1 Let A and B be positive definite. Then, 

\(A,B) = pi(A,B) + 2\(DA,DB), 

where n is the size of A and B. 

Proof Because similar matrices have equal traces, 

fi(A,B) = tr(I-2LglLA + LB1ALg-) 
= tT(AB~l) - 2 t r (D A Dg l ) + n. 

Furthermore, 

X(A,B) = i ( t r ( i 4 B - 1 ) - l o g d e t ( > 1 5 - 1 ) ) - 1 

= ^(tT(AB-1)-2\ogdet(DADsl))-l, 

and the proof of the lemma follows readily. 
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The Kullback-Leibler measure obeys a useful triangle equality. B 
denotes the set of positive definite matrices whose inverse is zero on the 
complement of S. 

Lemma 2.4 ([LPK89]) Let A be a positive definite matrix that is 
specified on a set S that contains the diagonal pairs, but is arbitrary otherwise. 
Then, for all B € B 

\(A,B) = \(A,AME) + \(AME,B). 

Proof Suppose that E is an extension of A. Because A - E vanishes 
on S, and # _ 1 on the complement of S, we have 

and hence 
£0(AB-l) = lQ(EB-i). 

Substituting E by AME, and subsequently B~x by Aj}E, we obtain 

and 

Therefore, 

n(\(A,AME) + \(AME,B)) = tt(AAj}E)-logdet(AAj}E)-n + 

iv(AMEB-x)- l o g d e t ( ^ W £ B ~ i ) - n 

= t r ( > l 5 - 1 ) - l o g d e t ( / 1 5 - 1 ) - n 
= nX(A,B). 

Lemma 2.4 implies that AME is the element in B that is closest to A. We 
summarize this result in the following theorem. 
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Theorem 2.2 ([LPK89]) Suppose that A is positive definite, let 
S be a set that contains the diagonal pairs, but is arbitrary otherwise, and 
let B be the set of positive definite matrices whose inverse vanishes on the 
complement of S. Furthermore, assume that 

X(A,B) = ^ ( t r f / l B - 1 ) - l o g d e t ( A B ~ 1 ) ) - 1, 

where n is the size of A and B. Then, 

m\n{\(A,B)\ B G B) 

occurs for B = AME, where the maximum entropy extension is based on the 
part of A with support on S. 

We proceed with an example. 

E x a m p l e 2.2 Suppose that 

A = 1 a 
a 1 

where a lies between - 1 and 1, and let S = { (1 ,1 ) , (2 ,2 )} . Then, the 
maximum entropy extension of the part of A with support on S is given by 

^ME ~ 
1 0 
0 1 

and to find the minimum of { \(A, B)\ B 6 B], where 

B = b 0 
0 c 

b > 0 and c > 0, and B is the set of diagonal matrices with positive diagonal 
entries, we minimize 
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Setting the partial derivatives with respect to b and c to zero, we obtain that 
6 = 1 and c = 1 — the minimum occurs for 

2? = 
1 0 
0 1 

which, indeed, is equal to AME. The minimum itself is given by 

A(/l ,4M E)=-i log(l-a2) . 

For future reference, we state two more results. The first is a gen
eralization of Lemma 2.2(1) to arbitrary sets (instead of diagonals, however, 
it deals with traces). The second gives an expression for ||7 - L^jEL\\. 

L e m m a 2.5 Let A be as defined in Theorem 2.2. Then, 

tv(L7x}EAL^E) = trI. 

Proof By the fourth equality in the proof of Lemma 2.4 

Because similar matrices have equal traces, it follows that 

tx(Ll}EAL-M'E) = tr(AA;K}E) = t r / . 

Proposition 2.2 Let A be as defined in Theorem 2.2. Then, 

\\I-L-M\L\\ = ^2tr(I-D-M\D). 

Proof Because 

11/ - L-M
l
EL\\ = y/tril - 2Ll}EL + L-X}EAL-M-E). 

the proof of the lemma follows directly from Lemma 2.5. 
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2.3 Concluding Remarks 
In many applications A is specified only on S (or we just do not want to com
pute the entries on the complement of <S). Consequently, F = {D^ED)LjJE, 
the matrix that minimizes ||7 - FL\\ when S is monotone transitive, is un-
computable — D = £ 0 £ , and L is unknown, because A is only partially 
specified. From Proposition 2.2 and Theorem 2.1(2), however, we see that 

¥ ~ LMEM\2 -V- {WMEWME) if = tr ((' - VdaDf) , 
which tends to zero as D^ED approaches I. By Theorem 2.1(2) this happens 
when (D]^ED)Lj}E and Z,-1 are close, and it follows that in that case LjfE 

is a suboptimal solution to 

m i n { | | / - F £ | | \F€ T). 

When S is arbitrary, the problem of determining F such that | | / — FL\\ is 
minimal and F'F is zero on the complement of S is still an open problem. 
We illustrate the above with an example. 

E x a m p l e 2.3 Suppose that 

A- 1 a 
a 1 

where a lies between - 1 and 1, and let S = { (1 ,1) , (2,2) }. Then, 

L = y/l - a 2 

0 
a 
1 

and D = v / l - a 2 0 
0 1 

the maximum entropy extension of the part of A with support on S is given 
by 

and 

LJUE ~ 

AME ~ 

\ 1 0 1 
0 1 an 

1 0 
0 1 

d ^ 

y 

E = 
[ 1 0 1 

0 1 
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Furthermore, 

and 

\\I - ((DjtED)Lj}B) L\\ = \a\ 

\\I-Lj}EL\\ = yj2(l-y/l=tf), 

and it follows that 

\\i - LJIEL\\2 -11/ - ((DJ}BD)LJ}E) L\\2 = (i- y r ^ ) \ 

which tends to zero as a approaches zero — the suboptimal solution L~^E 

gets better when 

{D-M
l
ED)L-M\ = 

become closer. 

Vl-a2 0 
0 1 and X - ' = 

1 -a 
v/1 - a 2 \/\ - a 2 

0 1 

The following chapters (Chapters 3-6) are devoted to algorithms for comput
ing L~M£. In the next chapter we show that if S is a block band, then LjJE 

can be found by solving a set of linear equations. When S is staircase, we 
can obtain this factor by using the Schur algorithm, which is described in the 
subsequent chapter. For the general case we depend on iterative algorithms 
for computing A^}E. Two of them are described in the following chapter. As 
these algorithms consume much time and storage, the last chapter describes 
an algorithm for computing an approximation to Aj)tg when S is a multiple 
band. 



Chapter 3 

The Wiener-Hopf 
Factorization 

SUPPOSE THAT A is a positive definite matrix that is specified on a 
block band <S. In this chapter we show that LjjE and Mj^l

E can be 
found by solving a set of linear equations. We present a generalization 

of the Wiener-Hopf factorization theory to the case of general, finite dimen
sional, positive definite matrices that are specified on a block band, and 
derive a global solution to a generalized inverse scattering problem, which 
turns out to be equivalent to the maximum entropy extension problem. The 
solution and, consequently, the triangular factors of the inverse of the maxi
mum entropy extension are obtained by solving a set of linear equations. We 
also give a linear fractional description of all contractive extensions of S (the 
scattering matrix related to A). 

We embed our matrices in doubly infinite ones — in fact, doubly 
infinite zero and identity matrices — and think of them as operators on I2, the 
Hilbert space of doubly infinite sequences with quadratic norm. Operations 
with matrices of this type are bounded, and coincide with well-defined actions 
of operators on I2. We embed A in a doubly infinite identity matrix, and 

27 
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denote the embedding by A : 

U)« = a,-j if i,j = l , . . . , n ; 
$fj otherwise, 

where 

6a = 1 if«=i; 
0 otherwise. 

Similarly, we embed G, L, M and A^g and GME, LX1E. M\/g in doubly 
infinite identity matrices. S and 5 W £ are embedded in doubly infinite zero 
matrices. The symbols Ö and ƒ denote the doubly infinite zero matrix and 
the doubly infinite identity matrix. The symbol J denotes the matrix 

J = / 0 
Ö - / 

With the notation developed so far we have A = ^(6' + G') = LL' = M'M 
— i — — 1 — 

and S = (G + I) (G — I). Similar relations hold for the doubly infinite 
matrices related to AME. 

We write A as a power series of a unitary shift matrix Z: 
oo 

A = £ AkZk, 
k=—oo 

where the A fc's are diagonal matrices and 

2 = 
• ■ . 0 1 Ü 

" ■ • O O 1 

0 0 0 

(the box marks the 11-entry of the matrix). For convenience' sake. Table 3.1 
gives the directions in which the entries of a matrix are shifted when it is 
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7 

z 

Z' 

Ï 

• 

T 

i 

Z 

-* 

/ 

\ 

Z' 

-

\ 

/ 

Table 3.1: Directions in which the entries of a matrix are shifted when it is 
pre- or postmultiplied by Z. 

pre- or postmultiplied by Z. For example, the (2,3) entry gives the result of 
premultiplication by Z and postmultiplication by Z*. 

We denote the space of bounded operators on /2 by C. The symbols 
H and K. denote the subspaces of £ whose operators have power series repre
sentations with vanishing coefficients of strictly negative and strictly positive 
powers of Z respectively. An operator in H is called upper triangular, one in 
K, lower triangular. In this chapter P_ and Q denote the operators that project 
an operator in C on 7ï and K. respectively. For the case of general operators 
on I2 these definitions have to be extended, but that is not necessary here. 

3.1 The Factorization 

First, some remarks. The maximum entropy property in Lemma 3.1, Theo
rem 3.1, and Corollary 3.1 — they deal with matrices related to AME — is 
not essential. We can state these results for any positive definite extension 
of .4, but have chosen for this approach to economize on notation. Further
more, all propositions for embeddings also hold for the corresponding finite 
dimensional matrices. 
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L e m m a 3.1 Let A be a positive definite matrix that is specified on 
a set S that contains the diagonal pairs, but is arbitrary otherwise. Then, 
there are unique matrices B, C, D, Ë such that 

SI ME 
ME 
I = 

B Ö 
C I 

'ID' 
0 E 

—* 

— ■ 

B Ö 
C I 

'ID' 
0 E 

- 1 - 1 

- 1 - 1 

(3.1) 

where (1) B, Ê and C, D are embeddings of finite dimensional matrices in 
doubly infinite identity and zero matrices respectively, (2) B G K. and Ê € H, 
and (3) B and Ê have positive diagonal entries. 

Proof Because SM[? is contractive, there are unique matrices B, 
C, D, E such that 

'ME 
ME 
I 

- 1 [fl Ol 
C I 

ID' 
0 E 

'BO] 
C I 

ID' 
0 E 

(3.2) 

where B is lower triangular, E upper triangular, and B and E have positive 
diagonal entries. When we embed SME and C and D in doubly infinite zero 
matrices and B and E in doubly infinite identity matrices, we obtain 

« ME 
ME 
I 

- 1 [ B Ö 1 
C I 
ID' 
Ö Ê 

[ B O | 
C I 

'ID' 
0 E 

The inverses of the factors in this equation reduce to the inverses of the 
related finite dimensional matrices, and, consequently, are lower and upper 
triangular respectively (with positive diagonal entries). We next prove the 
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uniqueness of the first factorization — the uniqueness of the second is proved 
in a similar way. 

Suppose that 

/ 
SME 

i - i 
ME 
I = FF' = HH', 

where both F and H and their inverses are lower triangular with positive 
diagonal entries. Because H~lF = H'F~', and H~lF and H~F~" are lower 
and upper triangular respectively, we have that H~lF is diagonal. In fact, 
H~lF is equal to ƒ — its diagonal entries are positive, because they evaluate 
to the products of the diagonal entries in H~l and F, which have positive 
diagonal entries, and can only be equal to one, since H~lF = (H~lF)~* — 
so that F = H. The above suffices to prove uniqueness for our case, where 
infinite dimensional matrices are embeddings of finite dimensional matrices 
in doubly infinite zero or identity matrices. ■ 

A more general case is treated in [R.R85]. 

T h e o r e m 3.1 Suppose that A is a positive definite matrix that is 
specified on a setS that contains the diagonal pairs, but is arbitrary otherwise, 
and let B, C, D, Ë be as defined in Equation 3.1, that is, 

I 
S\IE 

$ME 
Ï = 

\ B ö] 
C I 

r / D' 
Ö E 

— « 

[ B Ö 1 
C Ï 

'ID' 
Ö Ë 

- i 

- i 

where (1) B, Ë and C, D are embeddings of finite dimensional matrices in 
doubly infinite identity and zero matrices respectively, (2) B € AC and Ê G H, 
and (3) B and Ë have positive diagonal entries. Furthermore, assume that 

0 = B D 
C Ë (3.3) 

Then, 0 
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1. is J-unitary; 

2. can be decomposed as 

0 = 

1,= 1.« 
2&ME + 1T ~2@ME-1) 

1,= 1 . . 
-sf&MB-*T n(GME + I) 

LME Ö 

Proof The first assertion follows from the various relationships be
tween B, C, D, Ë. By the same relations, and using those between GME 
and SME, we obtain 

0 = / DË-1 

CB~l I 
B 0 
Ö Ë 

ƒ -S.XfE 
-SME I 

B 0 
Ö Ê 

\(GME + n' -\{GME-J) 1(GME + Ï)-B 0 

0 2(GME+I)-1Ê -\{GME-D* \{GME-rt) 

and because \{GME + I)B~' is upper triangular with positive diagonal en
tries, and 

(\(GME + nB--)(\(GME + ï)B--y = 

2^GME + W ~ SMES~ME)-JSGME + Ó = yf@MB + G W E ) = ^M£' 

we have 2(GWE + / )"*B = LjfE. In a similar way, 2(GME + t)~~l Ë = &jgB* 

Corollary 3.1 Let 0 be as defined in Equation 3.3. Then, 

[I 7]0 = [(B + C)(D + Ê)} = [LlfE Stjfo). 

Proof The proof of the corollary follows directly from Theo
rem 3.1(2). ■ 
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In the following results we use the fact that if A is specified on a 
staircase band «S, then the related scattering matrix 5 is specified on the 
strictly upper triangular part of S, and vice-versa. This can be seen from the 
relations 

S^iG + iyHG-I) 
and 

G = (I+S)(I-S) - i 

from which it follows that entries in S on the strictly upper triangular part 
of <S are exclusively dependent on entries in G on that same part of S, and 
conversely. Furthermore, as G and GME coincide on the strictly upper tri
angular part of S, this also implies that S and SME coincide on that part of 
the band. 

Lemma 3.2 Let A be a positive definite matrix that is specified on 
a staircase band S. Then, the maximum entropy extension of 

I S 
S* I 

(in which the entries in S on the upper triangular part of the complement of 
S are unspecified) is equal to 

S'ME 
$ME 

I 

Proof Let B and C be as defined in Equation 3.2. By Corollary 3.1 
we have B + C = LjjE. Because B is lower triangular, and C is equal to 
-S"MEB and hence strictly lower triangular — S"ME is strictly lower trian
gular — it follows that 

det B = det LjfB. 
From Equation 3.2 we obtain 

det 1 JME = Idetfll"2 
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and hence, by the first equation, 

det 
S\fE 

'ME 
I 

= det A ME-

The chain of equalities leading to this result is independent of the 
maximum entropy property. For every positive definite extension K of A we 
have likewise that 

/ SK det 
S'K I 

= det K, 

and it follows that 

max{ det ' SK 
S'K 

A É £ } = max{ det A' | K € £} = det AME = 

det 
s ME 

'ME 
I 

Lemma 3.3 Suppose that A = [dij] is a positive definite matrix 
that is specified on a block band S - {(i,j) \ \i - j \ < b } , and let B, C, D, 
È be as defined in Equation 3.1. Then, 

B 6 fC 
c e z~xK 
D e zn 
Ben 

and 

ZbB e H 
zbc e H 
z-bD e K ' 
z~hË e K 

Proof The left half of the inclusions has already been shown. By 
Lemma 3.2 the maximum entropy extension of 

/ S 
s- i 

is equal to 

'ME 
'ME 

I 
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and by Equation 3.2 

n - i 
I 

$ME 
$ME 

I 
BB" 
CB' 

BC' 
I + CC' 

I + DD' 
ED' 

DE' 
EE" 

From Theorem 1.3 we obtain that BC' and, consequently, as B is lower 
triangular, C" vanish on the upper triangular part of the complement of 5 , 
which implies that C € Z~bH and hence ZbC € H. Furthermore, it follows 
that ƒ + C'C is zero on the complement of S, and because I + C'C = B'B, 
we conclude that B vanishes on the lower triangular part of the complement 
of the set, so that ZbB £ H. Symmetric properties are true for D and Ë. ■ 

Theorem 3.2 Suppose that A = [dij] is a positive definite matrix 
that is specified on a block band S — {(i,j) \ \i — j \ < b}, and let T+ be 
derived from the related scattering matrix S as T+ = V_(ZbS*). Then, 

1. the generalized Wiener-Hopf equations 

F + Z(r+H) = FÖ' 

Q(f;F) + # = ö 
(3.4) 

/? + p(r+^) = ö 
£(f;A') + N = No" 

have a unique solution {F,H,K,N}, where (a) F, N and H, K are 
embeddings of finite dimensional matrices in doubly infinite identity 
and zero matrices respectively and (b) F and N have positive diagonal 
entries (FQ and NQ are the constant terms in the power series decom
positions of F and N); 

2. the B, C, D, Ë defined by 

B = N, C = Z'bK, D = HZb, Ë = Z'bFZb 
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satisfy Equation 3.1: 

'ME 
ME 
I = 

B Ö 
C I 

I D ' 
0 E 

— w 

- -

[ B Ö ' 
C I 

ID' 
0 E 

- 1 

- 1 - 1 

where (a) B, Ë and C, D are embeddings of finite dimensional matrices 
in doubly infinite identity and zero matrices respectively, (b) B 6 K. and 
Ê G H, and (c) B and Ë have positive diagonal entries. 

Proof Suppose that f = ZbS'ME and T_ = (7 - Z)(2bSm
K1E). Be

cause r + = P{ZhS') = R(2bS'XfE) - - 5 and SME coincide on the first b 
upper diagonals — we have T = f_ + f+. From Equation 3.1 we find, for 
example, by direct verification, that 

r* r 

anc 
ƒ T 
r* I 

= 

= 

r ö z h ' 
[J ö 

' Ö Zh ' 
I Ö j 

' 0 Zb' 
I Ö 

S'i 

I 
\1E 

ID' 
L ö Ê 

'ID' 
Ö Ë 

2bÉZmb ö 
DZ'b I 

\ d 2b' 
I ö 

ö 2b ' 
I ö 

ö 2b ' 
I ö 

— r 

$ME 
I 

— ■ 

- l 

Ö 
Z' 

Ö 
2-

ZbË2' 
DZ'b 

I $ME 
. s-ME I 

Bö' 
C I 
Bö' 
C I 

— w 

- 1 

Ö 
z-
Ö 

Z' 

Ö 
Z'b 

I' 
* Ö 

I' 
b Ö 
k o l 

7 

/ 
Ö 

- 1 

[ Ö 7 1 
Z'6 0 

7 ' 
b 0 

7 " 
b Ö 
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/ ZbC 
Ö B 

r I ZbC^ 
0 B 

and with 

we have 

F = ZbËZ'b, H = DZ'b, K = ZbC, N = B 

ƒ f 
r / 
/ r 
r- / 

F 
H 

K 
N 

F— 
Ö 

Ö 
A ' - -

(3.5) 

Projecting the equations on the first rows of Equation 3.5 on H, and those 
on the second rows on tC, we obtain 

(3.6) 
£A + £(f II) = £F-
Q(T-F) + gH = Ö 

£A' + P(fJV) = Ö 
g(T'K) + gN = gN~' 

From the definition of F, II, K, N and Lemma 3.3 we have F Z.H, H £ K,, 
K € H, N € fC, so that 

gF = F, QH = H, PA- = A', gN = N. 

Furthermore, 

P(f/7) = P ((f_ + f+)/7) = £(f+ /7) 

g(T-F) = g ( ( r : + T'+)F) = £ ( f ; F ) 

and £F~* = FQ", and similarly, 

£(rA0 = £((r_ + T+)N) = g(r+N) 
g(T-k) =g((t: + f;)A-) = £(r;A-) 
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and QiV-* = iV0*. Substituting these identities in Equation 3.6, we obtain 
Equation 3.4. Uniqueness follows by remarking that Equation 3.4 is actually 
equivalent to Equation 3.5, which in turn is equivalent to Equation 3.1. ■ 

The Wiener-Hopf technique of Theorem 3.2 is due to Dym and Gohberg 
[DG79] (see also [DG88]). A general scheme for dealing with contractive 
and positive extension problems, which covers the Dym-Gohberg approach, 
is described in [GKW89a, GKW89b] and [Woe89]. 

We next show how Theorem 3.2 leads to a set of linear equations 
that is based on a Hankel matrix whose entries are equal to the diagonals of 
r+ (or, equivalently, those of 5). 

Corollary 3.2 Suppose that A and Y+ = P_{ZbS") are as defined in 
Theorem 3.2, and let 

m 

and 

r = 

fc=0 

To f ,Z tmZr 

VxZ 

0 TmZm 

where m = b - 1 (and f0 = 56*, f\Z = ZS'b_x tmZm = Zh~xS\). Then, 

1. T is contractive; 

2. the sets of linear equations 

(3.7) I 
r-
i 
r* 

r 
i 

r 
i 

F 
H 

K 
N 

Fo 
0 

0 
No 
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have a unique solution {F,H, K,N}, where (a) 

F = 

r 

Fo 

FXZ 

FmZm 

, F0 = 

■ 

Fo* 

Ö 

0 

, H = 

r -i 

H0 

H-iZ' 

H.mZ*™ 

K = 

• 

A'o 

RXZ 

KmZm 

, N = 

■ 

No 

N.XZ' 

N-mZ'm 

, N0 = 

iv; 

o 

ft,) the Fk 's, Nk 's and Ilk % Kk 's ore embeddings of finite dimen
sional diagonal matrices in doubly infinite identity and zero matrices 
respectively, and (c) Fo and No have positive diagonal entries; 

3. the B, C, D, Ë defined by 

B = N, C = Z'bK, D = HZb, É = Z'bFZb, 

where 

0 m 0 m 

N= £ ÜkZk, K = Y,ï<kZk, 11= £ Hkz\ F=YJFkZ\ 
k=-m k=0 k=-m k=0 

satisfy Equation 3.1. 
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P r o o f The proof of the theorem follows when we split Equations 3.4 
and 3.5 into separate equations for each power of Z- The operator that 
corresponds to f in Equation 3.5 is contractive — f is contractive. Because 
T is a block in this operator, it follows that T is contractive as well. This in 
turn implies that Equation 3.7 has a unique solution. ■ 

Because we have embedded our matrices in (doubly infinite) zero and identity 
matrices, Equation 3.7 reduces to a finite number of equations. 

Corollary 3.3 Let A and Q be as defined in Theorem 3.2 and Equa
tion 3.3. Then, 0 and, consequently, L~jjE and M^/E are uniquely determined 
by Equation 3.7. 

P r o o f The proof of the corollary follows directly from Corollar
ies 3.2 and 3.1. ■ 

Corollaries 3.2 and 3.3 imply that to determine the factorization 

I 
S"\1E 

$ME 
I = 

\ B 0 l 
C I 

'ID' 
0 E 

—• 

— * 

\ B ö] 
C I 

ID' 
0 E 

- l 

- l 

where (1) B, Ë and C, D are em beddings of finite dimensional matrices in 
doubly infinite identity and zero matrices respectively, (2) B 6 K, and Ë 6 H, 
and (3) B and Ë have positive diagonal entries, and, consequently, to obtain 

0 = B D 
C Ë 

and LjfE and Mj^l
E, we only need to know the first b upper diagonals of 

SME (which are equal to those of 5). We illustrate the above with a simple 
example. 



3.1 THE FACTORIZATION 41 

E x a m p l e 3.1 Suppose that 

A = 
1 
a 
? 

a 
1 
a 

? 

a 
1 

where a lies between - 1 and 1, and let S = { {i,j) \ \i — j \ < 1 }• Then, 

5 = 
0 
0 
0 

a 
0 
0 

? 

a 
0 

and T+ = 
0 0 0 
0 a 0 

0 0 0 

and the second set of equations in Equation 3.7 reduces to 

1 
0 
0 
0 
0 
0 

0 
1 
(] 

(} 

Q 

0 

0 
0 
1 
0 
0 
0 

a 
f) 
0 
1 
0 
0 

(1 
a 
I) 
0 
1 
0 

0 1 
0 
0 
0 
0 
1 

r*i 
0 
0 

R, 

0 
0 

0 
k2 
0 
0 

n2 

0 

0 
0 
/.-, 
0 
1) 

" 3 

II 

0 
0 
0 
1 
0 
0 

0 
0 
0 
0 

«r 
0 

f) 
0 
0 
0 
0 

Tl7 

which has a unique solution, because the coefficient matrix is positive definite 
1 < a < 1. It follows that 

N = 

1 

VT a' 
0 

0 

1 
Vl -a2 

0 0 1 

and K = 

—a 
vT a' 

0 

^ 1 -a2 

0 0 

0 
— Q 
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and, indeed, N + Z*K is equal to the embedding of 

1 

LME ~ 

^ME anc* AME evaluate to 

-a 

A~l -
nME -

y/\ - a2 

—a 
0 
1 

y/\ - a 2 y/\ - a 2 

0 ^ = 1 

l-a2 

- a 
1 -a2 

0 

1 - a 2 

1 + a 2 

1 - Q 2 

—a 

0 

1 - Q 2 

1 
1-a2 1 - a2 ■ 

and 4 M E = 
1 

Q 

a2 

a 
1 
a 

a2 

a 
1 

The 0 matrix occuring in the LIS (Lossless Inverse Scattering) the
orem of [DD87] and the one occuring in [DG88] are related in the following 
way: the former is given by 

r B D 

L C È 

the latter by 

N II 
K F = 

I 0 
L ö Zb 

B D 
C E 

I 0 
0 Z'b 

where B, C, D, E and F, H, A', N are as defined in Theorem 3.2. 

3.2 A Linear Fractional Description 
We now show that if S is a block band, then 

0 = B D 
C Ê 
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Then, 
Next, suppose that T - 1 A = StZb+l, where St is upper triangular. 

[/ S]Q = f [/ (f"1 A)] = f [/ (S,Zb+l)\. 

Since 0 and Z are /-unitary and unitary respectively, we have 

/ - SS" = f ( / - ( f - 1 A ) ( f - 1 A)") f* = f (/ - S,Sf) f', 

and as S is contractive and f invertible, we conclude that f - 1 A and St are 
contractive. Equation 3.8 now follows by direct calculation. 

Because the construction given above is dependent only on the en
tries in S on the strictly upper triangular part of «S, the last assertion in the 
theorem also holds. ■ 

We close this section with an example. 

E x a m p l e 3.2 Suppose that 

A = 

where a lies between - 1 and 1, and let S = { (i,j) | \i - j \ < 1 } . Then, 

1 
a 
1 

a 
1 
Q 

? 

a 
1 

5 = 
0 
0 
0 

Or 
0 
(J 

? 

a 
0 

and 

R = 

1 
A / 1 - O 2 

0 

0 

1 
Vl -a2 

0 0 1 

C = 

0 
—a 

y/\ - a 2 

0 

0 

0 
—a 

0 

0 

yr^2 
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D = 

0 —o 

0 0 

0 

—a 

0 0 0 

E = 

o 
i 

y/T^Q2 

0 0 

0 

0 
1 

Vl-a? . 
With 5; a contractive, upper triangular matrix of size 3 x 3 and 0 the (1,1) 
entry of this matrix Equation 3.8 reduces to 

S = 
0 a 0(1-a2) 
0 0 a 
0 0 0 

When S{ ranges over all contractive, upper triangular matrices, 0 varies 
between —1 and 1, and we obtain all contractive extensions of S. Using the 
relations between S and the impedance matrix G, we find that all positive 
definite extensions of A are given by 

A = 
a 

1 a a2+ 0(1-a2) 
a 1 a 

2 -"-/?(! -a2) a 1 
, where - I < 0 < 1. 

The maximum entropy extension results when 0 = 0. 



Chapter 4 

The Schur Algorithm 

SUPPOSE THAT A is a positive definite matrix that is specified on a 
staircase band S. In this case we can use the Schur algorithm presented 
in [DD87] to compute L^E and M$E. The algorithm requires 0(nb2) 

operations and 0{nb) storage, where n is the size of the matrix and b the 
average width of the band, and is very well suited for implementation on an 
array processor of the systolic or wavefront type. In this chapter we review 
the algorithm, and give an estimate of || ƒ — L~^jEL\\. 

4.1 The Algorithm 
The Schur algorithm is based on the following results of Dewilde and Depret-
tere. 

Theorem 4.1 ([DD87]) Suppose that A = [aij], i,j = l , . . . , n , 
is a positive definite matrix that is specified on a staircase band S, and let 
T = i ( G + I) and A = \(G- I). Then, 

1. there are elementary J-unitary matrices 0 j , . . . , 0 m such that 

[ r A ] e , - - - 0 m = [ r m A m ] , (4.i) 

where Tm and Am are upper triangidar and Am vanishes on the upper 
triangular part of S; 

47 
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2. the product 0 = 0 i • • - 0 m can be decomposed as 

0 = 
2^GME + ')" -\(GME 

-$(GME-iT > 

-I) 'ME 

0 Mjöi 
(4.2) 

Proof The existence of 0 j , . . . , 0 m is proved by induction. To be
gin with, [r A] is admissible — T and A are upper triangular, T is invertible, 
and r - 1 A contractive, because r r * — AA* is equal to A and hence positive 
definite and T is invertible — and A is zero on the upper triangular part of 
a staircase band, namely the diagonal. 

Now, suppose that for some k 

1. [Tk-i Afc_i] is admissible; 

2. Ak-\ vanishes on the upper triangular part of some staircase band 
Sk-i. 

Assume that Sk = $k-i U {(z, j), ( j , i ) } , where {i,j) is such that Sk is 
staircase, and let i < j and 

{6k-i)ii 
Ok = Q(i,n + j,ptJ) with pij = -— ^-. 

where |p ( j | < 1, because (**-i)^/(7*-i)« is the {i,j) entry of I ^ A ^ , , 
which is contractive, as we have assumed that [Tk-\ A t - i ] is admissible, 
and the modulus of an entry of a contractive matrix is smaller than one. 
Furthermore, let 

[Tk^ Ak-i]Qk = [Tk A*]. 

Then, 

1. [Vk Ak] is admissible — Tk and Ak are upper triangular. Tk is invertible, 
and r^"1 Afc contractive, because TkT'k — AfcA£ is equal to 

[r* Ak)J[Tk AkY = [IVi Ak-x}OkJ®'k[rk-i A ,_ , ] ' 
= [Tk-x Ak-iWk-i Ak-i]" 
= F r ^ . - A . ^ A ^ , fc-11 fc-1 
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and hence positive definite, as we have assumed that [ I \_ i Ak-i] is 
admissible, and Tk is invertible; 

2. A,t is zero on the upper triangular part of Sk — (ó/t_i),-,- is eliminated, 
and no fill-ins are produced. 

We proceed with the second part of the theorem. Because all 0^'s 
are J-unitary, the product 0 = 0 i ■ • - 0 m is J-unitary, and by a proof similar 
to the proof of Theorem 3.1(2), we can decompose it as 

0 = 
\(GB + I)" -\{GB-I) 

-\{GB - I)' \(GB + I) 

LB' 

0 

0 

MB1 

where B is some positive definite matrix, so that 

[II]Q^{L-B'M^\. 

With the help of this equation and by direct calculation it is easy to verify 
that Lg" and Mg1 vanish on the lower and upper triangular part of the 
complement of S respectively. 

By Equation 4.1 

[\(G + I) \(G - I))Q = [Tm Am], 

and by the above decomposition of 0 

[\{GB + / ) \{GB - /)]© = [LB 0]. 

Subtracting this equation from the previous one, and using the second equal
ity, we find 

1-(G-GB)[L-B'Mgi) = [(Tm-LB)Am] 

and hence 
±(G-GB) = AmMB. 
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Since A m is upper triangular and zero on the upper triangular part of S, 
and MB is upper triangular, it follows that A m M g vanishes on the upper 
triangular part of S, and hence that G and GB coincide on that part of the 
band. For this reason, and because LB" and Mg1 vanish on the lower and 
upper triangular part of the complement of S respectively, we conclude that 

D = AME. m 
The 0 matrix in Theorem 4.1 is the same as the one in Theorem 3.1. 

Corollary 4.1 ([DD87]) Let 0 be as defined in Theorem 4.1. 

[I I]Q = \L-KJE Mü\). (4.3) 

P r o o f The proof of the corollary follows directly from Equation 4.2. 

Then, 

The Schur algorithm computes L^jE and Mj£g in two steps. First, 
it computes the elementary J-unitary matrices 0 j , . . . , 0 m defined in Equa
tion 4.1. Starting from [V A], it determines 0 | so that <512 is eliminated when 
[r A] is postmultiplied by 0 , : 

0 ! = 0 ( 1 , n + 2 , p l 2 ) with />r2 = — - ■ 

The result is [r A]0i = [T\ A]], where T\ is upper triangular. Aj strictly 
upper triangular, and (^i)12 = 0. Next, it computes 0 2 so that (^i)23 is 
eliminated when [Ti Ai] is postmultiplied by 0 2 : 

0 2 = 0(2, n + 3,/)23) with p23 = ~ (*l)23 
(7.) 22 

The /),j's are called reflection coefficients and will be generically attached to 
A. When for some k the entries on the first upper diagonal of A;- have been 
eliminated, Ok+t is determined so as to eliminate the first entry on the second 
upper diagonal, etc. The recursion ends when for some m all entries in A m 

on the upper triangular part of S are zero. Next, Equation 4.3 is evaluated 
— [ƒ ƒ] instead of [T A] is postmultiplied by 0 j • • - 0 m . We proceed with an 
example. 
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E x a m p l e 4.1 Suppose that 

A = 
1 
a 
1 

a 
\ 
a 

1 
a 
1 

where a lies between - 1 and 1, and let S — {(i,j) \ \i - j \ < 1 } . Then, 

[rA] = 
1 
0 
0 

a 
1 
0 

? 

a 
1 

0 
0 
0 

0 
0 
(i 

? 

Q 

0 

and to eliminate the entries on the first upper diagonal of A, we postmultiply 
[r A] by 

0 i = 

I 
0 0 

0 1 0 
0 0 1 
0 

—a 
0 0 

0 0 
VI -a2 

0 0 0 

0 -a 0 
0 0 0 
0 0 0 

0 0 I 

and 

02 = 

r i o 

y/\ - a 2 

0 0 
0 0 
0 0 

n ~a 

L V\-a2 

0 

0 

1 
0 
0 

0 

0 0 0 

n n " ° 0 v / i - « 2 

0 0 0 
1 0 0 
0 1 0 

n n l 
>/l - a2 J 
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The product 0 = 0102 evaluates to 

1 

0 = 

V / T ^ Q 2 

0 

0 
0 

—a 

o 

0 

v/1 - a 2 

0 1 

0 

1 

0 
0 

—a 
/P^ 

—a 
v / 1 - a 2 

0 0 

0 0 

0 

—a 

0 
0 
1 

vT^ 2 

0 0 

0 

0 
1 

v T ^ a 2 . 

[ƒ / ]0 is equal to 

v / T ^ 2 

-a 
0 
1 

v/l - Q 2 V / T ^ 2 

0 " ^ » 
v/1 - a 2 

— Q 

0 
\ / l - a 2 

1 
0 

—a 
Vl - a 2 v / l - a 2 

0 0 * _ 
v/T^ 2 

so that 

and 

^A/E ~ 

1 
v/T-^o2 

—a 
0 

1 
v / l - a 2 \ / l - a 2 

0 ^ = ^ » 
v/1 - Q 2 

^ M E = 

—a 

0 
v/1 - a 2 0 

—a 
v/1 - r»2 v/1 - a2 

o o - i 
Vl-Q2 J 
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AME a n d AME a r e 6 ' v e n by 

A'1 -
AME ~ 

1 
1 - a 2 

—a 
1 - a 2 

0 

—a 
1 - a 2 

1 + a2 

1 - a 2 

- a 

—a 
1 - o2 

1 - a 2 1 - a 2 

and AME = a 
2 a 

a a* 
1 a 
a 1 

It is easy to verify that the Schur algorithm requires 0(nb2) oper
ations and 0(nb) storage, where n is the size of A and b the average width 
of S. A flow-graph representation of the algorithm is shown in Figure 4.1, 
where A is 5 x 5 and S = {(i,j) \ \i - j \ < 2 } . A node denotes a virtual 
processor, a box a delay, and a '•' a 'don't care'. The operation of a node is 
as follows: from the first two input values, x t and t/i say (with |xi | > |yi |) , 
it computes p = -y\/x\ and 

[*i V\ 1 P 
P" 1 Vi - \P\ 

for all subsequent input values Xk and y^ 

[xk Vk) 

= [yjx\ - y\ 0], 

^ 

i' 
l = [*'* y'k}-

The algorithm is very well suited for implementation on a systolic or wave-
front array processor. A node can be realized as a pipelined CORDIC (Co
ordinate Rotation Digital Computer) device (see [Vol59, Wal71, LHDB88]). 
The one described in the last reference is capable of achieving a throughput 
of 107-108 floating point operations per second, and measures about 1 square 
centimeter. 

We cannot use the Schur algorithm to compute L~j£E and Mj^E 

when A is specified on a set other than a staircase band. If, however, there 
is a permutation matrix P such that B = PAP" is specified on a staircase 
band — in Chapter 6 we shall encounter matrices of this type — then we use 
the following theorem to compute A^}E from B^fE. 
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0 0 1 

0 0 1 0 j al2 1 

0 0 1 0 0 

0 1 0 0 0 
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0 

«34 

«24 
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1 
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0 

0 

0 

(1 

1 

y/i - IPI3 9' 1 

> ^A/E ^m 

= [*' y'\ 

Figure 4.1: Flow-graph representation of the Schur algorithm. 
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Theorem 4.2 Suppose that A is a positive definite matrix that is 
specified on a set S that contains the diagonal pairs, but is arbitrary oth
erwise, and let B as PAP", where P is a permutation matrix. Then, 
AME = P'BMEP-

Proof The maximum entropy extension is the (unique) positive def
inite extension whose determinant is maximal. Because det B = d e t P d e t A 
(detP)*, and d e t P is constant, it follows that BME = PAMEP", so that 
AME = P'V-M\P. ■ 

Because B is specified on a staircase band, we determine the triangular factors 
of BjjE by using the Schur algorithm, which requires 0(nb2) operations and 
0(nb) storage, where n is the size of the matrix and b the average width of 
the band. The computation of BT)E from its triangular factors demands the 
same amount of resources — the triangular factors of B^E are banded. For 
these reasons, and because we obtain B and AjJE by reindexing the entries 
of A and Bj^E, which asks almost no efTort, we can compute A^}E in 0(nb2) 
operations and with 0(nb) storage. 

Remember that we have assumed that the diagonal entries in 
A are equal to one. If this is not the case, then we normalize A to 
C = (gQA)-2A(ZQA)-2, compute 

LcME
 a n ^ ^CME kv u s i n g the Schur al

gorithm, and by an argument similar to the one used in the proof of Theo
rem 4.2, determine L~.' as (PnA)~ïL7.' and M 7 1 as (?nA)~ïMrl ■ 

AME V = 0 ' ^ME *ME V = 0 ' ^ME 

4.2 Error Analysis 
We return to the case where <S is staircase and the diagonal entries in A are 
equal to one. The following theorem gives an estimate of ||7 - L~^EL\\. DA 

is defined as RQLA. 

Theorem 4.3 Suppose that A = [aij], i,j = l , . . . , n , is a positive 
definite matrix that is specified on a staircase band S, and let pij be the ijth 
reflection coefficient of A. Furthermore, let 6, = max{ j \ (i,j) € S }. Then, 

I I ' - *MWI = 
\ 

n n , 
2"-2E n >/i-iwi 

i=l j=6, + l 
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Proof By Proposition 2.2 

||ƒ - Ll}EL\\ = y/2tr(I - DÜED). 

and with the help of Equation 4.3 and by direct calculation it is easy to verify 
that 

b, tó)«= n i 

,-=,•+! ^ 1 - \pij\ 

If S were equal to the full set {(i.j) \ i,j = l , . . . , n } . then A^,E would be 
equal to A, so that 

" 1 

(i-')„= n j = . + i ^ l - \pij\ 

(for j = i + 1,.. .,b{ the /?,;-'s are the same as in the previous equation) and 
hence 

{Li}EL)ti= n \A-ipo-i2. 
j=b, + l 

and the proof of the theorem follows readily. ■ 

We express ||7 - \(D\}[rD)L^}Ej L\\, the distance between L~x and 
its optimal sparse approximation — see Chapter 2 - - in a way similar to 
Theorem 4.3: 

n n 

, » - £ n o-- \pi) n-\\I-{{DJ}ED)1$B)L\\ = 

With increasing 6,'s ||7 - Lj}EL\\ and | | / - l(DlJEü)L'^E\ L\\ tend mono-
tonely to zero. 

We next show that if | | / - Lg 'LA \ \ is small, then .1 is close to B, 
and similarly for / 1 _ 1 and B~]. 

T h e o r e m 4.4 Suppose that A and B are positive definite, and let 

'B LA\ \I-LZlLA\\<€, 
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where e < 1. Then, 

\\A-^(A - B)A~i2\\ < 2e + 0(e2) 

and 
\\Ai{A-x - B-x)Ah\\<2e^O{e2). 

Proof Because the QR factorization of A~ï is unique, and 

we have 
A-? = QL-A\ 

where Q is unitary. Hence, as the Frobenius norm is invariant under unitary 
transformations, 

\\A-HA-B)A-12\\ = \\L-AHA-B)L-A'\\. 

Now, suppose that I - LglLA — E. Then, LB = LA(I - E)~l, 
H^ll < e < 1, and because | | £ | | < 1, 

00 

(I-ETl = EE^ 
<fc=0 

and it follows that 

\\A-%{A-B)A-\\\ = \\LA\A-B)LA-\\ 
= \\I-LA

xBL-/\\ 
= \\I-{I-E)-\l-E)-\\ 

oo / oo \ * 
k 

fc=0 \ k=0 

< 2e + 0(e2). 
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In a similar way, 

||/4i(i4-> - B~X)A?\ = \\L'A(A-* - B-*)LA\\ 
= \\I-LAB-*LA\\ 
= \\I-(I-EY(I-E) 
< 2< + 0(e2). 

Theorem 4.4 implies that ||A *(A — AME)A ?|| and ||v4ï(/l J - .4 \ / £ ) / l2 | | are 
essentially twice | | / - LjjEL\\ (of which an estimate is given in Theorem 4.3). 



Chapter 5 

Iterative Algorithms 

SUPPOSE THAT A is a positive definite matrix that is specified on a 
set S that contains the diagonal pairs, but is arbitrary otherwise. In 
this case we depend on iterative algorithms for computing AjJE. They 

consume much time and storage — in each iteration step a matrix (of the 
same size as A) has to be inverted — and for that reason, have little value 
in practice. In this chapter we suffice with sketching their basic idea. 

5.1 The Algorithms 
We start out with the proof of Theorem 1.3, which is reproduced here. 

T h e o r e m 1.3 ( [GJSW84]) Suppose that A is a positive definite 
matrix that is specified on a set S that contains the diagonal pairs, but is 
arbitrary otherwise. Then, there is a unique matrix B in € such that 

det B = max{ det E \ E e € }. 

Moreover, B is the unique positive definite extension whose inverse satisfies 

(S-'X^O V(t,i)*5. 

The proof of the theorem is based on the following results. 

59 



60 CHAPTER 5 ITERATIVE ALGORITHMS 

Lemma 5.1 ([GJSW84]) Let A be as defined in Theorem 1.3. 
Then, the function f(E) = logdet E is strictly concave on £. 

Proof Suppose that B e £ and C G £■ Then, for all 0 < a < 1 
aB + (1 - a)C £ £ — £ is convex. Furthermore, there is a matrix F with 
det F = 1 such that 

F'BF = H and F'CF = A', 

where II and A' are diagonal (see, e.g., [GV83]), and because de t (a / / + (1 -
a)K) > a det H + (1 — a) det K, and the function log z is strictly concave, it 
follows that for all 0 < a < 1 

log det (af l + (1 - a)C) = log det (F' (aB + (1 - o ) c ) F J 

= logdet (aH + (1 - a) / i ' ) 

> a logdet / / + (1 - a) logdet A' 
= a log det 5 + (1 - a ) logdet C. 

Lemma 5.2 Let A be as defined in Theorem 1.3. Then, f(E) = 
log det £ is bounded on £. 

Proof The proof of the lemma follows directly from Hadamard's 
inequality — see Theorem 1.1. ■ 

Lemma 5.3 Let A be as defined in Theorem 1.3. Then, for {i,j) ^ 
S the partial derivative of f(E) = logdet E with respect to etJ is given by 

del3 ~(t '« 

(dj = aij if{i,j)£S). 
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Proof We follow Lev-Ari in [Lev85]. Because log det £ = t r l o g E 
for any positive definite E, we have 

= (E-%. 

We proceed with the proof of Theorem 1.3. 

Proof £ is an open, convex set whose limit points are singular, 
positive semidefinite extensions. Because by Lemmas 5.1 and 5.2 f(E) is 
strictly concave and bounded on E, and f(E) = - c o for singular extensions, 
it follows that f(E) = logdet E and, consequently — (\ogz)~l = e2 is strictly 
monotone increasing — det E have a unique global maximum on £. 

Suppose that the maximum occurs for E = B. Then, we have for 
this extension 

and we obtain from Lemma 5.3 that 

( 2 T % = 0 V(i,j)ÏS. 

The proof of Theorem 1.3 suggests that to determine AME, we can 
maximize f(E) = log det E over S by using standard techniques for (uncon
strained) nonlinear optimization. We illustrate the idea by the method of 
steepest ascent (see, e.g., [Lue73]). H(E) denotes the gradient of f(E) with 
respect to the entries in E on the complement of <S: 

N „ = {E-% \i(i,j)tS; 
0 otherwise 
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(it measures the departure of E~l from being zero on the complement of S). 
Steepest ascent starts with an initial guess for AME, that is, some positive 
definite extension of A (which may be difficult to find), Ao say. Next, it 
computes the gradient Ho = H(A0), the direction in which f(E) increases 
most rapidly, and determines Ao such that f{Ao + Xolh) is maximal (and, of 
course, Ao + Ao/fo positive definite). This is a one dimensional optimization 
problem, which can be solved by, for example, Newton's method. The next 
guess for AME is 

Ax = Ao + A0//o, 
etc., and the procedure ends when for some k Ak is close enough to AME. 
The method is computationally very expensive — in each iteration step we 
have to compute ƒ/*, which amounts to inverting Ak-

In [LPK89] Lev-Ari et al. showed that the dual of maximizing 
logde tE subject to E (E E is to minimize tr(AC) - logdetC - n sub
ject to C G C, where C is the set of positive definite matrices that van
ish on the complement of S. Hence, to compute AJ,}E, we can minimize 
g(C) = t r ( / l C ) - l o g d e t C overC by using, for instance, the method of steep
est descent. It is readily verified that for (i,j) G S the partial derivative of 
g(C) with respect to c,j is given by 

and we denote the gradient of g(C) with respect to the entries in C on S by 
K{C): 

(K(C)) = f ^-(C-% if (ij)e s-, 
0 otherwise 

(it measures the departure of C _ 1 from being an extension of A). Steepest 
descent is analog to steepest ascent, but it goes in the opposite direction. It 
starts with an initial guess for A]^E, that is, a matrix that vanishes on the 
complement of S (e.g., the identity), Co say. Next, it computes A'o = A'(Co), 
and determines Ao such that g(Co - Ao A o) ' s minimal and Co — AoA'o positive 
definite (-Ko is the direction in which g(C) decreases most rapidly). The 
next guess for Aj^E is 

C\ = Co — AQAQ, 
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etc., and the method proceeds until for some k Ck is close enough to Aj^E. 
Clearly, the dual problem has the same disadvantage as the original: solving 
it requires a lot of time and storage. 
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Chapter 6 

An Extension of the Schur 
Algorithm 

SUPPOSE THAT A is a positive definite matrix that is specified on a 
multiple band S. Because a multiple band is not staircase, and no 
permutation matrix P exists such that PAP" is specified on such a 

band, we depend on iterative algorithms for computing Aj}E. As we have 
seen in the previous chapter, these algorithms consume much time and stor
age, and we have to be satisfied with a close approximation to AjJE that 
can be computed efficiently. In this chapter we present an extension of the 
Schur algorithm for computing such an approximation, provided that certain 
conditions are satisfied. It computes the inverse of the maximum entropy 
extension of a partially specified matrix that is close to A and specified on 
the same set S, and requires 0(nc2) operations and 0(nc) storage, where n 
is the size of A and c the average number of elements in S per row of A. 

6.1 The Algorithm 
First, we describe the structure of the triangular factor Lj^*£ of the inverse 
of the maximum entropy extension of a positive definite block matrix that is 
specified on a block band. 
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T h e o r e m 6.1 Let A = [a/t/j, k,l = l , . . . , m , 6e o positive definite 
block matrix with blocks a^j of size n^ X n/ /Aa/ W specified on a block band 
B = {(k,l) | \k - l\ < b). Then, the columns of L^*£ are such that for 
1 = l , . . . , m - 6 - 1 

( % ) H = f e W ) ) W ' *-!,...,« + •! 
(Lw*£;)fc/ = 0 . fc = f + é + l , . . . , m , 

and /or / = m - 6 , . . . , m 

Proof We follow Dym and Gohberg in [DG81]. Let n 0 and II_ 
denote the operators that project a matrix on B and the lower triangular part 
of the complement of B respectively. Furthermore, suppose that X = [x*/], 
k, I — l , . . . , m , is an upper triangular block matrix with blocks x*/ of size 
nk x n/, and that the columns of X~* are such that for / = 1 m - b — 1 

M „ = (LA<uJ(fc_,+l)1. *=i <+>; 

( X - ) = 0 , fc = l + 6 + l , . . . , m , 

and for / = m — 6 , . . . , m 

(X—) = fL*". i mxl , fe = l m. 
\ Jkl V A("l-fc'm)/(/c-(„1-6)+l)(/-(m-6)+l) 

We shall prove that X"* = L7TE, and hence that L ^ - is as described above. 
Clearly, X~* is lower triangular with lower triangular diagonal 

blocks with positive diagonal entries, and X ~ " X _ 1 vanishes on the com
plement of B. We now define 

E = n_E + n0E + (n_E)* 

with 
n_E = - n_(n0(A)x—)x-
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and 
n0E = n0A, 

and show that XX* = E, an extension of A. 
It follows from the definitions of E and X - * that E X - " is zero on 

the strictly lower triangular part of B, and that X _ 1 E X _ * has identities on 
the diagonal. Because X - * is lower triangular, we have 

n_(Ex-) = n_ (n_(E) x - ) + n_ (n0(E) x - ) + n_ ((n_E)* x—) 
= n_(E)x- + n_(n0(A)x-) 
= o, 

and hence that EX""* is upper triangular. Since 

X - ^ E X - * ) = (EX-*)*X—, 

and X - 1 and EX~" are upper triangular, it follows that X _ 1 E X ~ " is di
agonal — the left-hand side of the equation is upper triangular, and the 
right-hand side lower triangular — and hence equal to the identity, so that 
XX* = E. ■ 

We illustrate Theorem 6.1 with a simple example. 

E x a m p l e 6.1 Suppose that 

A = 

where a is a scalar between - 1 and 1, and let B = {(k,l) | \k - l\ < 1 }. 
Then, 

1 
Q 

? 

a 
1 
a 

1 "| 
a 
1 

LA[l,2) ~ 

1 
V l - a 2 

—a 
0 

and L A(2,i) 

1 

-a 
L Vl -a2 

0 
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and 

UME -

AME and AME evaluate to 

A'1 -HME -

l 
0 

- Q l 

\T\ -a2 

1 
1 - a 2 

—a 
1 - Q 2 

0 

—a 
I-a2 

1 + a2 

1 - a 2 

—a 

0 
—a 

1 - a 2 

1 
1 - a 2 1 - a 2 -

(I 

0 

1 

and A ME a 
a a 
1 a 
a 1 

We return to the case where A is specified on a multiple band S. 
Theorem 6.1 implies that if it were possible to partition A as A = [a*.-;] so 
that for some block band B - {(k,l) \ \k - l\ < 6} the blocks on B are 
specified and the blocks on the complement of B are unspecified, then L ^ . 
would be found from the triangular factors of the inverses of the principal 
submatrices A( / , / + 6). Clearly, we cannot partition A in this way, but it has 
the following property (to which we shall refer as Property M): 

A can be partitioned as A = a*.-/], kj = l , . . . , m , so that for some 
block band B = { (k,l) \ \k-l\ < 6} (1) the partially specified principal 
submatrices A ( / , / + b) can be permuted to Hermitian matrices that 
are specified on a staircase band and (2) the blocks on the complement 
of B are unspecified. 

For example, if A is as shown in Figure 6.1, then we can partition it into 
blocks of size 4 x 4 , so that A( 1,2) and A(2,3) can be permuted to Hermitian 
matrices that are specified on a staircase band — see Figure 6.2 — and the 
blocks on the complement of {(k,l) | \k — /| < 1} are unspecified. 

We now assume that the triangular factors of the inverses of the 
maximum entropy extensions of the principal submatrices A( / , / + 6) are close 
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1 2 3 4 5 6 7 8 9 10 11 12 

A = 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

" X X 
X X X 

X X X 
X X 

X X 
X X X 

X X X 
X X 

X X 
X X X 

X X X 
X X 

X X 
X X X 

X X X 
X X 

X X 
X X X 

X X X 
X X 

' 

X X 
X X X 

X X X 
X X 

X X 
X X X 

X X X 
X X 

Figure 6.1: A matrix that is specified on a multiple band. 

approximations to the triangular factors of the inverses of the correspond
ing submatrices in the completely specified matrix. The approximations are 
suboptimal — the principal submatrices A( / , / + b) can be permuted to Her-
mitian matrices that are specified on a staircase band, and the triangular 
factors of the inverses of the maximum entropy extensions of these matrices 
are suboptimal sparse approximations (in the Frobenius norm) to the tri
angular factors of the inverses of the permuted versions of the completely 
specified matrices (see Chapter 2). Next, we approximate L~* by a lower 
triangular matrix that is composed of (the first columns of) the triangular 
factors of the inverses of the maximum entropy extensions of the principal 
submatrices A( / , / + b) — see the following definition. 

Definition 6.1 Suppose that A = [a,j], i,j= 1 , . . . , n, is a positive 
definite matrix with property M, and let Ljj" be a lower triangular block 



70 CHAPTER 6 AN EXTENSION OF THE SCHUR ALG. 

1 2 3 4 5 6 7 1 5 2 6 3 
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X X X 
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X X 

X X 
X X X 

X X X 
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X X X 

X X X 
X X 

X X 
X X X 

X X X 
X X 

1 
5 
2 
6 
3 
7 
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X X X 
X X X 
X X X 
X X X 

X 
X 

X 
X 
X 
X 
X 
X 

4 8 

X 
X 
X X X 
X X 
X X 
X X 

X 
/ 
X 

Figure 6.2: The principal submatrix A( l , 2 ) and the permuted matrix. 

matrix whose columns are such that for I = I,... ,m — b — 1 

(LTS) = ( L - I * , , M ) , k = l l + b; 

(l»i")w = 0, k = l + b + l,...,m, 
and for I = m - 6 , . . . , m 

\L"')ki = (LA(m-5,m)MJ ( ; ._ ( m_ 6 ) + 1 ) ( ,_ ( m_ 6 ) + 1 ) - k = l in-

Then, the hierarchical approximation of A is defined as AH - LHL)}. 

The adjective 'hierarchical' refers to the fact that AH is the maximum en
tropy extension of a block matrix that is specified on a block band B in which 
the largest principal submatrices are (nearly) equal to the maximum entropy 
extensions of the corresponding submatrices in A. 

The hierarchical approximation of A has two shortcomings. To begin 
with, its inverse does not vanish in every entry on the complement of S. It 
does, except in the positions that correspond to unspecified entries in the 
blocks &ki w ' l h \k —1\ < b — 1 and 2 < k,l < m - \. For example, if A is 
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as shown in Figure 6.1 and partitioned as before, then Ajj1 does not vanish 
in the positions that correspond to unspecified entries in a22- Furthermore, 
it is not possible to determine Lj/" or Aj/1 in an efficient way. Although 
the inverses of the maximum entropy extensions of the principal submatrices 
A( / , / 4- b) can be computed efficiently — see Chapter 4 — this is not the 
case for their triangular factors (the factors of the inverses are not sparse). 

To obtain an approximation to A~l that vanishes on the complement 
of S, we seek (1) a matrix B with the property that Ajj1 + B is zero on the 
complement of S and (2) a C that vanishes on the complement of S, and that 
is such that \\Afi (B — C)Afi || is small and B — C positive semidefinite. We 
define the new approximation as -4^' + B — C — it is zero on the complement 
of S, close to Ajj, and positive definite. We take 

m - f c - l r _ j 
B= £ D (A(l,l + b)ME(2,b+\))~ -Al+\,l + b) 

i - i 

(6.1) 

because (after some direct calculations) Als + B appears to be equal to 

m-b 

£ D [A( / , / + &);/E; (/,/ + &)], 

which vanishes on the complement of S — the matrices of which it is com
posed are zero on the complement of S — and it can be computed efficiently 
(we obtain its components as described in Chapter 4). We can formulate the 
problem of finding an optimal choice for C as a nonlinear optimization prob
lem, which can be solved by using standard techniques, but these methods 
are computationally very expensive. 

For this reason, we assume that A(/ + 1, / + b)j}E is a good approxi
mation to ( A ( / , / + 6 ) M £ ( 2 , 6 + 1 ) ) _ 1 (for the sake of clearness: A ( / + 1 , / + 6 ) A / E 
is the maximum entropy extension of the principal submatrix of A that lies in 
the rows and columns indexed by / + 1 , . . . , / + 6and A ( / , / - | - & ) A / E ( 2 , 6 + 1) the 
principal submatrix of A(/, l + b)\fE that lies in the rows and columns indexed 
by 2 , . . . , 6 + 1). The approximation is suboptimal — A(/ + 1,/ + b)jJE can 
be permuted to a Hermitian matrix with support on a staircase band, and 

file:////Afi
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the triangular factors of this matrix are suboptimal sparse approximations 
(in the Frobenius norm) to the triangular factors of the permuted version of 
( A ( / , / + 6 ) M E ( 2 , 6 + 1 ) ) - 1 . We define 

m-b-l 
C= J2 D [A(/ + l,/ + 6 f e ( / + l , / + 6)l. (6.2) 

/ = i 

It is zero on the complement of 5 , and its components are suboptimal sparse 
approximations to the components of B, but we have violated the condition 
that B — C must be positive semidefinite (it is indefinite). We proceed with 
the following definition. 

Definition 6.2 Suppose that A = [a,-j], i,j= 1 , . . . , n, is a positive 
definite matrix with property M, and let 

m — b m—6—1 

A Ï J = £ D [ A ( U + *>ME;(U + *J -Dü[A(/+l,/+6)ï/E;(/+l,/ + 6)]. 
1=1 i=\ 

Then, the sparse-inverse approximation of A is defined as Asi. 

T h e o r e m 6.2 Suppose that A = [a,j], i,j = l , . . . , n , is a positive 
definite matrix with property M — it is specified on a multiple band S, and 
can be partitioned as A = [a*/], k,l = 1 , . . . , m, so that for some block band 
B = { (k,l) | \k — l\ < 6} (1) the principal submatrices A(l,l + b) can be 
permuted to Hermitian matrices that are specified on a staircase band and 
(2) the blocks on the complement of B are unspecified — and let AS1 be as 
defined in Definition 6.2. Then, A^j 

1. is zero on the complement of S; 

2. can be computed in 0(nc2) operations and with 0(nc) storage, where c 
is the average number of elements in S per row of A. 

P r o o f Because Ag] is equal to Ajj1 + B — C, where B and C are 
as defined in Equations 6.1 and 6.2, and A~^ + B and C vanish on the 
complement of S, the first property holds. Furthermore, A( / , / + b)"jyE and 
A(/ + l»f + ^)«fjs c a n b e computed as described in Chapter 4, and the second 
assertion is readily verified. ■ 
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Because by assumption \\Afi (B - C)Afi || is small, we conjecture that ASI 

(which is equal to Ajj1 + B -C) may fail to be positive definite only when A 
(and hence A[{) is ill conditioned. This conjecture has been confirmed by nu
merical experiments — see [Gen90, Mei90], the next chapter, and Figures 6.3 
and 6.4, where A is 21 X 21 (it is the covariance matrix of 2 two dimensional 
sinusoids in white noise), S is a triple band, and the width of the bands in 
S is 2. The first figure shows ||7 - Lj^EL\\, \\I - L^)L\\, and 10 times the 
smallest singular value of Agj (which gives an idea of the positivity of Ag'j) 
as a function of the condition number n(A)\ the second gives the condition 
numbers of A~^E and A^j, also as a function of K(A). If K(A) is less than 

600 800 
K ( A ) 

1400 

Figure 6.3: The norms | | / - LjjEL\\ (solid) and \\I - Lg]L\\ (dotted) and 10 
times the smallest singular value of Ag] (dashed) as a function of n(A). 
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1400 

1200-

1000 

600 800 
K ( A ) 

1400 

Figure 6.4: The condition numbers K(ASJ) (solid) and K{AXJE) (dotted) as 
a function of K(A). 

400, then | | / — L7fEL\\ and ||/— L^j L\\ are close and AZj is well conditioned 
and positive definite. When K(A) increases, the condition of A^] gets worse, 
and the sparse-inverse approximation loses its meaning. 

6.2 Error Analysis 
We now derive bounds on the distance between Asl and A, and similarly for 
A^j and A'1. We start out with estimating | | / - Ljj L\\. 

Theorem 6.3 Suppose that A = [a,j], i,j = l , . . . , n , is a positive 
definite matrix with property M — it is specified on a multiple band S, and 
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can be partitioned as A = [a^.;], kj = l , . . . , m , (assume that the blocks a/,/ 
are ofsizenkXni) so that for some block band B = { (k,l) \\k—l\<b} (1) the 
principal submatrices A(l,l + b) can be permuted to Hermitian matrices that 
are specified on a staircase band and (2) the blocks on the complement of B are 
unspecified — and let AH be as defined in Definition 6-1. Let p^ be the ijth 
reflection coefficient of A, and let /»/,-,- and Si be the ijth reflection coefficient 
and the support of PA(l, I + b)P" respectively. Furthermore, assume that for 
1= l , . . . , m - 6 - 1 

I- \pij\ < c for i = ei + l,...,ni and j = ƒ/ + ! , . . . , » , 

and for I = 1 , . . . , m - b 

2. \pnj\ <efori=l,...,glandj = bii + l,...,gl, 

l-i 1+b l+b 
where e < 1, e/ = ^ nr, ft = ^ R r , 9i = 5 Z " r ' an(l bU = max{j ' | (i,j) G 

r = l r = l r=l 
Si}. Then, 

\I-LJ1H\\< 
\ 

m—b—\ m — b 

/=1 /=1 

where 7/ = 1 - (n - fi)\e2 + 0(e4), 61 = tie2 + 0(c4), and U is the number of 
elements in the upper triangular part of the complement of Si. 

The first condition in Theorem 6.3 corresponds to the assumption that L~jyE is 
a close approximation to L - 1 ( | | / - IyjJEIj\\ is small); the second corresponds 
to the assumption that the triangular factors of the inverses of the maximum 
entropy extensions of the permuted versions of the principal submatrices 
A(l,l + b) are good approximations to the triangular factors of the inverses 
of the permuted versions of the corresponding submatrices in the completely 
specified matrix. 

To prove the theorem, we need two more results. The first one is due 
to Stewart [Ste77], and gives perturbation bounds for the QR factorization 
of a matrix. 
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Lemma 6.1 ([Ste77]) Suppose that A is a square and nonsingular 
matrix, and let A = QR, where Q is unitary and R upper triangular with 
positive diagonal entries. Furthermore, assume that E is such that A + E is 
nonsingular, and that 

A + E = (Q + W)(R + F), 

where Q + W is unitary and R + F upper triangular with positive diagonal 
entries. Then, for \\E\\ sufficiently small, 

\\FR-1\\<2K(A)^-. 
\\A\\ 

With the help of this result, and denoting Ap — PAP" and Bp — 
PBP", where P is a permutation matrix, we next show that if ||7 - LgpLA \\ 
is small, and L~A is well conditioned, then ||7 - Lg1 LA\\ is small as well. 

Lemma 6.2 Suppose that A and B are positive definite, and let 
Ap = PAP' and Bp = PBP', where P is a permutation matrix. Further
more, let 

\\I-L-B
l
pLAp\\<e. 

Then, 
\\I~LIXLA\\<2K{L£)€. 

Proof Because the QR factorizations of L^1 P and Z,^1 P are 
unique, and 

and 

we have 

and 

L-A'L-A' = P'L-A;L-APP 

UB LB - ' LjBpLBpl ' 

L-A
iP = QAKl 

'AP1 -VA^A 

'JBpP - QB^B 
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where QA and QB are unitary. Identifying LA P with A in Lemma 6.1, 
L~B

X P with A + E, LA
l with # , and L^ with 72 + F, we obtain 

P B ^ - ^ H = \U-BpLAp-I)L-/pP\\ 

< <UAPP\\ 

(\\E\\ < e\\A\\) and hence 

\\I-L-B
1LA\\<2K(L-ApP)e 

(||i*\ff-1|| < 2K(/1) | | .E | | / | | /1 | | ) . Because the Frobenius norm is invariant under 
unitary transformations, we have n{LA

l P) = K(LA
1). ■ 

We proceed with the proof of Theorem 6.3. 

Proof Let A(/) be shorthand for A(/,/+6). Adding and subtracting 
a number of terms, we obtain 

m—b 
tT(LjALjn = £ t r ( L ^ ( , l M E A ( / ) L r ( , ) M £ ) -

m-fc-l 
£ t r (^ ( ( ) M E ( 2 i 6 + 1 ) A(/ ) (2 ,6 + l)Lr ( / )ME(2, fc+1)). 

Because by Lemma 2.5 

and similar matrices have equal traces it follows that 

m—6—1 , _ i \ 
t r (L^AL7/) = trI-r £ tr I - A(/)(2,6+ 1 ) ( A ( / ) M £ ( 2 , 6 + 1 ) ) " ) 

and hence, as 

||I - LT^LH2 = trl - 2tr(L7/L) + t r (L^ AL^"), 
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that 
| | I - L ^ L | | 2 = (6.3) 

m —6—1 / —\\ 
2 t r I - 2 t r ( L ^ L ) + £ tr I - A(/)(2,6+ 1 ) ( A ( / ) M £ ( 2 , 6 + 1))" ) . 

tel v ' 
We now derive a lower bound on t r (L^L) . It is readily checked 

that for / = l , . . . , m — 6 - 1 

where 

wt = © n \/i - IPÖI2. 

Because |/?,j| < e for i = e/ + 1,.. .,n/ and j =s /j + l , . . . , n , i t follows that 

tr(L7/L) / ;>T,tr(LX1
( 0 M £LA ( 0)n 

and hence 

tr(L7/L)> £ 7/tr(LX ,
( / )M£LA(/ )) i i+tr(LX1

(m_b)M£LA(m_6)). (6.4) 

We next need an upper bound on tr(I — A(l)(2,b+ 1)( A(/)Jvƒ£(2,fc + 
l))-1)• Because 

I'1 - LA(0ME
LA(0H2 = t r I " 2lr<LA(/>„s

LA<l)> + tr(LA<,>A,EA(')LA*<0ME)> 

and 

we have 
tr(LAm,. L A m ) = trl - - | | I - L . ' ., LA m | |* (6.5) I 

and hence 
t r ( LA(/)M£(2.Hl)LA(/)(2,6+l)) = 
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t r i — — I — Li A ,,, L,,... 2 " M')ME A(/) 'A(OME A ( / ) V 

Since 
( L A m . . B

L A m ) , , -

.X , 
- l 

"AfOMEaö+l^AtOafc+l 

trI-2tr(LA
1

( 0 M E ( 2 b + 1 )LA ( , ) ( 2 i 6 + 1 )) + tr(A(/)(2 

this implies that 

t r ( l - A ( / ) ( 2 , 6 + l ) ( A ( / ) M E ( 2 , 6 + l ) ) 
- i 

ML A ( / ) M L A ( / p-2 t r I+ | | I -L A ( , ) M L A ( / ) | | - | | I -L A
1

( / ) M £ ( 2 ( ) + 1 ) L A ( ; ) ( 2 i 6 + 1 ) | | , 

so that 
t r ( l - A( / ) (2 ,6+ l ) (A( / ) M E (2 ,6 + l ) ) " 1 ) < (6.6) 

- l 2tT(L~Mi)ME
LMi))n ~ tol + ||I - L J K I W A C O M ■ 

and it follows from Equations 6.3-6.6 that 
m—6—1 m-6 

I I I - L ^ L f < E 2(l-7 , ) t r (I 'A
1

( 0 j l f BLA ( / ))u +EllI-LA1 ,OMB
LA(oll2-

/=i ;=i 

Denoting PA(l)P' by C(7), we obtain from Theorem 4.3 that 

I1 LC(/)MB
LC(J)I 

\ 

91 91 

i-lj-bti+, 

Because \piij\ < e for i = 1,.. .,gt and j = &/, + l,...,<//, it follows from 
Lemma 6.2 that 

and as by Equation 6.5 

t r ( L A ( / ) M E
L A ( 0 ) n < SU 

the proof of the theorem follows readily. ■ 
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Theorem 4.4 implies that ||A ï(A-AH)A l\\ and ||/l2(-4 ' - AH
l )Aï\\ are 

essentially twice ||7 — L7,1 L\\ (of which an estimate is given in Theorem 6.3). 

— it In a way similar to Theorem 6.3 we can estimate \\Afi (AH - ASI)Afi 
is equal to \\Afi (B — C)Af{ ||, where B and C are as defined in Equations 6.1 
and 6.2. From standard perturbation theory (see, e.g., [HJ85]) we obtain that 
if \\Afi (Ajf1 - Ag))Aff || < 1, then 

\\A~HHAH-ASI)A^\\< 

and it follows that both / 4 - 1 , Ajj1, and -4^] and A, AH, and ASI are close. 

6.3 Concluding Remarks 
To illustrate the above, we use the method of steepest descent described in 
Chapter 5 to minimize the function g(C) = tr{AC) - logdetC subject to 
C € C — the minimum occurs for C = A]JE — where A is 21 x 21 (it is the 
covariance matrix of 2 two dimensional sinusoids in white noise), K(A) ~ 98, 
S is a triple band, the width of the bands in S is 2, and C is the set of 
positive definite matrices that vanish on the complement of S. Figure 6.5 
shows the course of the Frobenius norm of the gradient of g(C) for initial 
guesses Co = I and Co = Ag]. We see that Ag] and AJ^E are close — the 
gradient of g(C) for C - Ag], a measure for the departure of ASI from being 
an extension of A, is small. 

file:////Afi
file:////Afi
file:////Afi
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10 20 30 40 50 60 70 80 90 100 
number of iteration steps 

Figure 6.5: The Frobenius norm of the gradient of g(C) as a function of the 
number of iteration steps for initial guesses Co = I (solid) and Co = A^j 
(dotted). 
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Chapter 7 

A Model Reduction Example 

IN THIS CHAPTER we apply the techniques developed in the preceding 
sections to a modeling problem in electrical engineering: modeling the 
parasitic capacitance of interconnections in a VLSI (Very Large Scale In

tegration) circuit. This capacitance largely determines the performance of a 
chip, and has a global character — interconnecting lines may influence each 
other over long distances, in a way that is dependent on their relative posi
tion in the (three dimensional) space. Since modern chips have hundreds of 
interconnects that crisscross their surface — see Figure 7.1 for a moderate 
example — it is nearly impossible to model the scene with reasonable accu
racy. By using the methods described in the previous chapters, we are able, 
however, to obtain a reduced, yet accurate model for this complex situation. 

7.1 The Problem 
To determine the capacitance of interconnections in a VLSI circuit, we have to 
obtain a relationship between the potential of the conductors and the charge 
on their surfaces. For the three conductor problem shown in Figure 7.2 we 
have the following expression: 

<7i = cnt/i + c12(ui -v2) + ci3(vi - v3) 
q2 - c2i(v2 - vi) + C22V7 + C2s(v2 - v3) 

83 
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Figure 7.1: Interconnects in the layout of a chip. 

93 = C3i(v3 - l'l ) + C32(t>3 ~ 02) + C33V3, 

where </, and v, are the charge on and the potential of the ith conductor and 
C{j (i ^ j) is the coupling capacitance between conductor i and j (c„ is the 
capacitance between conductor i and the ground). 

For a system with m conductors we have 
m 

<?« = cuv, + ^2 cij(vi - VJ), i = 1 , . . , , m 

or, equivalently, 

m 

9. = 53c»»iöii *'= I,---,»», 
where 

cs,j = -Cij, i ^ j 
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cu 

C\2 
2 

cn c33 

Figure 7.2: Three conductors above the ground and the equivalent circuit. 

and 

m 
c»ii — 2-*,ciy 

Assembling the charges and potentials in the vectors 

Q = 
92 

and V = 
v2 
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and the csij's in the matrix Ca = [csij], we obtain 

Q = C,V. (7.1) 

Because the system is conservative, C„ is positive definite. The Cy's and 
Cj.-j's are called the network and s/jort circuit capacitances respectively, and 
the modeling problem consists in determining the cy's. 

The silicon composite in which the interconnects lie can be viewed as 
a sandwich of essentially dielectric silicon, silicon dioxide, and silicon nitride, 
bounded at the bottom by a conducting layer of higher doped silicon and 
at the top by a coating and air. We assume that the composite consists of 
stratified, homogeneous, dielectric layers — see Figure 7.3 — and that the 
ground plane is ideally conducting. 

air 

SiO: 

Si3N 

Figure 7.3: The silicon composite as a stratified medium. Conductors are 
hatched. 

The potential v(X) at a point .Y in the medium satisfies the Laplace 
equation, viz., 
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with as boundary condition that v(X) vanishes for X on the ground or at 
infinity. The solution to this equation is 

v(X) = Jg(X,Y)a(Y)dY, (7.2) 

where g(X,Y) is the appropriate Green's function, which describes the po
tential induced at X by a unit point charge at V, a{Y) is the charge density 
at Y, and the integration extends over the whole space (in fact, we integrate 
only where the charge density is nonzero, i.e., on the surfaces of the con
ductors). The Green's function for a medium with permittivity e is given 
by 

For ihe stratified medium shown in Figure 7.3 it is a superposition of such 
functions. 

By discretizing the charge on the surfaces of the conductors, we 
transform the Green's integral equation into a matrix equation. We concen
trate the charge on a web of edges that spans the conductor surfaces — see 
Figure 7.4 — and attach to every node in the mesh a finite element (FE) 
of the spider type (see [Nin89]). Spider i consists of the edges that are in-

Figure 7.4: FE mesh for a conductor. 

cident to node i and an elementary spline function ƒ,-($) with the following 
properties: 

- it slopes down linearly from its value at node i; 
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- it is zero at adjacent nodes and on the complement of the spider; 

- / fi(s)ds = 1, where the integration extends over the edges of the 
spider. 

We next approximate Equation 7.2 by 

v(X)=Y/(fg(X,s)fJ(s)ds)qJ, (7.3) 

where n is the total number of FE's, the integration extends over the edges 
of the j t h spider, and q^ is the charge on that element. 

By evaluating Equation 7.3 at every node, we find 

V = GQ, (7.4) 

where 

V = 

h 
" 2 

. s » . 

, 0 = 
9i 
92 

. 9n . 

Vj is the potential of FE ?', G = [gij], 

9ij = / g(Xi,s)fj(s)ds, 

and Xi is the position of node i. 
Denoting the FE-conductor incidence matrix by F - [fij], i = 

1 , . . . , n , j — 1 , . . . ,m, that is, 

r.. - J ' if F E » is on conductor j ; 
J,J ~ \ 0 otherwise, 

we obtain from Equations 7.1 and 7.4 that 

Q = F'Q = F'G^V = F-G~lFV, 
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and hence that 
C3 = F'G^F, 

and the network capacitances are calculated as 

cij = ~ c3ij) l r 3 

and 
m 

cii = / ,C3ij-

i=i 
The number of components in the model can be very large: for a 

system with 500 interconnects we have a circuit with 125,250 capacitances. 
Such a model provides too much detail, and requires too much storage. More
over, the computation of Cs is very expensive (for the above example and 
with 50 spiders per conductor we have to invert a 25,000 x 25,000 matrix, 
which takes O(1013) operations and O(109) storage) — we have to compute 
a reduced model. 

7.2 Results 
Many entries in Cs are so small that the corresponding network capacitances 
have almost no effect on the signals that propagate along the interconnec
tions. For this reason, we can approximate C, by a matrix that vanishes 
in the positions where C„ is small. Because of the special structure of the 
incidence matrix F, we can do so by approximating G'~' by a matrix that 
vanishes where G'-1 is small (Cs is equal to F*G~1F). As we have seen in 
the previous chapters, when the desired support S of the approximation is 
staircase, the inverse of the maximum entropy extension of the part of G with 
support on S is a suboptimal sparse approximation (in the Frobenius norm) 
to G _ 1 , and we can compute it efficiently: we approximate G'1 by Gj}E. 
When S is a multiple band, we determine G^j — it is close to Gj}E, which 
is an optimal approximation (in the Kullback-Leibler measure) to G~l, and 
it can be obtained in an efficient way. 

To illustrate the above, we approximate the circuit shown in Fig
ure 7.5, which consists of four conductors with one FE each (in this case Ca is 
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1 1 1 1 

Figure 7.5: Original network. 

equal to G"1). The first order approximation — see Figure 7.6 — is obtained 
by computing the inverse of the maximum entropy extension of the diagonal 
of G- The second order approximation results when the first upper and lower 
diagonals are also taken into account, etc. The fourth order approximation is 
equal to the original circuit. The circuits have the following properties: the 
first order circuit is such that the driving point capacitances of the nodes are 
the same as in the original circuit; the second order circuit is such that the 
2 x 2 capacitance matrices for the ports (1,2), (2,3), and (3,4) (assume that 
the nodes are numbered from left to right) are equal to those of the original 
circuit when the other nodes are floating, etc. 

When the FE's lie in the two or three dimensional space, we cannot 
number them such that the significant entries in the capacitance matrix form 
a staircase band. With a lexicographic ordering, and when only capacitances 
between nearest neighbor FE's are considered to be important, they form a 
multiple band — see Figure 7.7 (when we draw an arc between FE's with a 
direct coupling, we obtain Figure 2.1). 
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5/2 5/2 5/2 5/2 

- 5/4 

Figure 7.6: First, second, and third order approximation. 
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X X 
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X 
X X 
X X 

X 
X X 
X X 

Figure 7.7: Two dimensional numbering scheme and matrix. Nonzero entries 
are marked with an 'x ' ; vanishing entries are blank 
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The techniques described above have been integrated in a layout-to-
circuit extractor called SPACE (see [GenflO, Mei90]). The input is a layout 
specification. The output is a description of the circuit. The extractor defines 
a window of size w x w that is swept over the layout. Within the window a 
mesh of spiders is created, the entries in G on S are determined, and G$] is 
computed on the fly. 

We close this section with some experimental results that give an 
impression of the accuracy and efficiency of the method. We first consider 
a situation with 5 parallel conductors that lie 1/xm above the substrate and 
1.25/im apart. They are 1/zm high and wide, and have a length of 10/zm. The 
mesh for this geometry consists of 220 spiders, located l//m apart on top and 
bottom of the conductors — see Figure 7.8. The capacitance values and the 

Figure 7.8: FE mesh for 5 parallel conductors. 

cpu time and memory usage of SPACE are shown in Table 7.1. The last two 
figures refer to the matrix inversion only. The experiments were done on a 
HP 9000-840 computer with 8 Mbyte of physical memory. The case with the 
window of 10/xm x 10/im corresponds to an exact inversion of G. The c3,-,'s 
largely determine the timing of the circuit, and are already very accurate for 
small window sizes. 
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window 
( / jmx/ in i ) 

10 x 10 
8 x 8 
6 x 6 
4 x 4 
2 x 2 

Cl l Cj2 Cj3 <?i4 

(10- 1 8 F) 
1128 557.0 37.59 14.93 
1134 556.9 37.70 17.21 
1148 556.7 42.79 
1184 568.4 
1578 

c 1 5 CsU 

9.132 1716 
1746 
1748 
1752 
1578 

cpu time 
(min:sec) 

2:06 
1:30 
0:16 
0:15 
0:02 

storage 
(Kbyte) 

2441 
1196 
526 
169 
27 

Table 7.1: Capacitance values, cpu time, and memory usage for 5 parallel 
conductors. 

Tables 7.2 and 7.3 give the cpu time and memory usage for situa
tions with an increasing number of parallel conductors of increasing length. 
The former shows the results for an exact extraction. When the number of 
conductors is 14 or more, we cannot compute G - 1 - it requires too much 
storage. The latter corresponds to an approximate extraction (using a win
dow of 4/im x 4/im). 

# conductors 

5 
5 

10 
14 
20 

length 
(lim) 

10 
20 
20 
29 
41 

# spiders 

220 
420 
840 

1680 
3360 

# Green's 
evaluations 

21310 
88410 

353220 
-
-

cpu time 
(min:sec) 

2:11 
16:08 

176:11 
-
-

storage 
(Kbyte) 

1152 
4200 

16800 
-
-

Table 7.2: Cpu time and memory usage for an increasing number of parallel 
conductors of increasing length (exact extraction). 

Table 7.4 gives the results for a practical example: the extraction of a 
static RAM cell in a 1 fim CMOS technology (using a window of 6/mix3/*m). 
The FE mesh for this case is shown in Figure 7.9. 
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# conductors 

5 
5 

10 
14 
20 

length 
(/mi) 

10 
20 
20 
29 
41 

# spiders 

220 
420 
840 

1680 
3360 

# Green's 
evaluations 

12250 
26150 
55848 

122340 
253872 

cpu time 
(min:sec) 

0:15 
0:33 
1:06 
2:26 
5:14 

storage 
(Kbyte) 

169 
322 
322 
461 
645 

Table 7.3: Cpu time and memory usage for an increasing number of parallel 
conductors of increasing length (4/nn x 4/zm window). 

cpu time (min:sec) 
time for matrix inversion 
time for Green's evaluation 
memory (Mbyte) 

10:41 
5:25 
4:34 

6.9 

Table 7.4: Cpu time and memory usage for a CMOS static RAM cell. 

/TT-r-r-f ¥~Pi i nm-R 
Figure 7.9: FE mesh for a CMOS static RAM cell. 
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Chapter 8 

Concluding Remarks 

IN THIS DISSERTATION we have studied the problem of finding an opti
mal sparse approximation to the inverse of a positive definite matrix. It 
has been viewed as a model reduction problem. We have followed an ap

proach that is based on matrix extension theory and inverse scattering theory, 
and we have devised algorithms for determining an optimal or suboptimal 
approximation. The method can be applied, for example, to obtain reduced 
models for problems that are governed by the Laplace equation. For the case 
of modeling parasitic capacitances in VLSI circuits very good results have 
been obtained. We conclude this thesis by indicating some of the problems 
that have not been solved yet. 

In many problems we have an underlying stationarity or homogene
ity (invariance under displacements in time or space) property that often 
leads to the matrix A being Toeplitz. It is known that a Toeplitz matrix can 
be inverted in 0(n2) operations and with 0(n) storage, where n is the size 
of the matrix. For instance, see the first example in Chapter 4, where be
cause of the Toeplitz structure of A many of the computations are identical. 
In [KKM79] Kailath et al. studied the more general, so-called a-stationary 
case. The integer a, 1 < a < n, is called the displacement rank of the ma
trix, and provides a measure of how close a matrix is to being Toeplitz. They 
showed that a matrix with index a can be inverted with (about) a times as 
much computations and storage as required for a Toeplitz matrix. This also 

97 
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has impact on the computation of the inverse of the sparse-inverse approx
imation defined in Chapter 6 — see Definition 6.2. For example, consider 
the case where A is as shown in Figure 8.1 (matrices of this type arise in, 
e.g., two dimensional spectral estimation). The inverse of the sparse-inverse 

1 2 3 4 5 6 7 8 9 10 11 12 

A = 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

' 1 a 
a 1 

a 

c b 
d c 

d 

a 
1 
a 

b 
c 
d 

a 
1 

b 
c 

c d 
b c 

b 

1 a 
a 1 

a 

c b 
d c 

d 

d 
c 
b 

a 
1 
a 

b 
c 
d 

c 

a 
1 

b 
c 

"1 

c d 
b c d 

b c d 
b c 

1 a 
a 1 a 

a 1 a 
a 1 _ 

Figure 8.1: A Toeplitz-block Toeplitz matrix that is specified on a multiple 
band. 

approximation of A is given by 

+ □ A(2,3fe 2 , 3 ) ] - D [ A { 2 . 2 ) ^ ; ( 2 , 2 ) ] , A~s] = D [ A ( 1 , 2 ) - / £ ; ( 1 . 2 ) J 

and we only need to compute A(\.2)^}E and A(2,2)^ / '£: — A(2.3)^/£ ; is equal 
to A ( l , 2 ) ^ £ . To determine A(l,2)^ /

1
/j, we permute A ( l , 2 ) to a matrix that 

is specified on a staircase band — see Figure 8.2. This destroys the Toeplitz 
structure, but the permuted matrix has displacement rank a = 1 — we can 
determine the inverse of its maximum entropy extension with twice as much 
computations and storage as required for a Toeplitz matrix. 

Often there is structure in the physical problem, but the resulting 
matrix has a high displacement rank. For example, consider the problem of 
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1 2 3 4 5 6 7 8 1 5 2 6 3 7 4 
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Figure 8.2: The principal submatrix A( l , 2 ) and the permuted matrix. 

modeling parasitic capacitances in a VLSI circuit that has been described 
in Chapter 7. A memory chip has a very regular structure — it consists 
of thousands of identical cells — which would lead to a matrix with a low 
displacement rank, but irregularities at the boundaries and interconnections 
that crisscross the chip spoil the game. A technique for obtaining a model 
with a reduced complexity is proposed in [Gen90]. It is hierarchical — it 
computes a model for a cell and a model for the boundaries of the chip and 
the interconnects, and combines them to a model for the complete system — 
and based on heuristics. It can be shown, however, that assumptions similar 
to those made in Chapter 6 (replace 'maximum entropy' by 'sparse-inverse') 
and an error analysis similar to the one in that, chapter provide a justification 
for the method. 

Another area for further investigation is the derivation of other types 
of reduced models. For example, it is possible to represent the inverse of the 
hierarchical approximation defined in Chapter 6 — see Definition 6.1 — in a 
mixed form that consists of matrices with support on a staircase band and 
inverses of such matrices. Some computations with representations of this 
kind are efficient: for instance, the product of a vector and the matrix can 
be computed in an efficient way. 
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We hope that we have convinced the reader of the power of our 
approach, and that this booklet provides an impetus for further research in 
this fascinating field. 
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Samenvatting 

H ET OPLOSSEN van een groot aantal problemen in de natuurweten
schappen en de techniek leidt uiteindelijk tot het inverteren van 
een positief definiete matrix. Wanneer deze matrix groot is (bijv. 

10.000 x 10.000), zoals het geval kan zijn in modelleringsproblemen, is dit 
vrijwel onbegonnen werk. Om het aantal berekeningen te beperken, probeert 
men vaak eigenschappen van het oorspronkelijke, fysische probleem in reke
ning te brengen. In dit proefschrift leggen we structuur op aan de inverse 
van de matrix — we nemen aan dat hij benaderd kan worden door een ijle 
matrix (d.w.z. een matrix waarvan veel elementen gelijk aan nul zijn). 

Weiaten zien hoe technieken uit de inverse verstrooiingstheorie zoals 
de Wiener-Hopf ontbinding en het Schur algoritme gebruikt kunnen worden 
om een optimale of suboptimale ijle benadering van de inverse van een positief 
definiete matrix te bepalen. We gebruiken alleen elementen uit de oorspronke
lijke matrix die overeenkomen met niet-nul elementen in de benadering. De 
algoritmen die voorgesteld worden hebben een complexiteit die evenredig is 
met het aantal niet-nul elementen. 

Hoofdstuk 2 gaat over het bepalen van een optimale ijle benade
ring van de inverse van een positief definiete matrix. Eerst bekijken we 
het geval waar het ijlheidspatroon monotoon transitief is. We tonen aan 
dat de driehoeksfactoren van de inverse van de zogenaamde maximum en
tropie uitbreiding — we gebruiken de elementen uit de oorspronkelijke ma
trix die overeenkomen met niet-nul elementen in de benadering, en schatten 
de andere — optimale ijle benaderingen in de Frobenius norm zijn van de 
driehoeksfactoren van de inverse van de oorspronkelijke matrix. Wanneer het 
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ijlheidspatroon willekeurig is gaat dit niet op, maar van alle matrices die een 
ijle inverse hebben ligt de maximum entropie uitbreiding het dichtst bij de 
oorspronkelijke matrix in de Kullback-Leibler maat. 

Hoodstuk 3 beschrijft een veralgemening van de Wiener-Hopf ont
bindingstheorie naar het geval van algemene, positief definiete matrices met 
eindige dimensies die gespecificeerd zijn op een blok band. Deze theorie 
geeft het verband tussen de klassieke verstrooiingstheorie en de uitbreidings
theorie. Zij stelt ons in staat een globale oplossing van een veralgemeend 
invers verstrooiingsprobleem te construeren, dat gelijkwaardig blijkt te zijn 
aan het maximum entropie uitbreidingsprobleem. We bepalen de oplossing 
en daarmee de driehoeksfactoren van de inverse van de maximum entropie 
uitbreiding door een stelsel lineaire vergelijkingen op te lossen. 

Hoofdstukken 4, 5 en 6 gaan over algoritmen voor het berekenen 
van de inverse van de maximum entropie uitbreiding. Wanneer het ijlheidspa
troon een trapvorm heeft, gebruiken we het Schur algoritme om de driehoeks
factoren van deze matrix uit te rekenen. Het algoritme is bij uitstek geschikt 
om uitgevoerd te worden op een array processor van het systolische of golf
front type. Voor algemene ijlheidspatronen zijn we aangewezen op iteratieve 
algoritmen. Omdat ze veel berekeningen en geheugen vergen, leiden we voor 
het belangrijke geval waar het ijlheidspatroon een meervoudige band is een 
algoritme af om een benadering van de inverse van de maximum entropie 
uitbreiding te bepalen. Het algoritme is gebaseerd op het Schur algoritme, 
en berekent de inverse van de maximum entropie uitbreiding van een matrix 
die dicht bij de oorspronkelijke ligt. 

Hoofdstuk 7 behandelt een toepassing: het modelleren van para
sitaire capaciteiten in grote geintegreerde circuits. Hier blijkt de kracht van 
de methodes — we zijn in staat om een nauwkeurig model voor een systeem 
met een groot aantal geleiders te berekenen, terwijl men in de literatuur het 
modelleren van een systeem met slechts een paar geleiders al als een enorm 
probleem beschouwt. 
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S t e l l i n g e n 

behorende bij het proefschrift van 

Harry Nelis 

1. Het verschil tussen het schatten van één- en twee-dimensionale spectra 
is meer dan een dimensie. 

2. Een gereduceerd model geeft meer inzicht dan een gedetailleerd model. 
en het is makkelijker te berekenen. 

3. De maximum entropie uitbreiding van een Toeplitz-blok Toeplitz matrix 
die gespecificeerd is op een meervoudige band is niet meer Toeplitz-blok 
Toeplitz. 

4. Een alternatieve probleemstelling maakt het gebruik van parallel reken-
tuig vaak overbodig. 

5. Het keep-your-lane systeem op snelwegen drukt de maximum snelheid. 
en het geeft een rustiger verkeersbeeld. 

6. Met een geavanceerde tekstverwerker gaat het vervaardigen van een do
cument niet noodzakelijk sneller dan met een eenvoudige. 

7. The purpose of computing is insight, not numbers. — R. Hamming 

8. Het verkrijgen van goede resultaten is moeilijk. Ze op een duidelijke 
manier presenteren is zo mogelijk nog lastiger. 

9. Een promotie heeft veel weg van een (mini) triathlon: het is pas echt 
leuk als het voorbij is. 


