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Abstract—The secondary surveillance radar (SSR) is a
transponder system used in air-traffic control. With the increase
in air-traffic, replies from airplanes may overlap in time at
ground station receivers, which results in loss of all replies
for classic receivers. Blind source separation algorithms were
proposed to separate such a mixture by the properties of
SSR replies. Two known algebraic algorithms, the Manchester
decoding algorithm (MDA) and the multishift zero-constant
modulus algorithm, have the best performance but they still have
performance degradation in cases with either small overlapping
ratios or equal residual carrier frequencies. In this paper, we
propose a modified subspace intersection method based on signed
URV decompositions to preprocess the received data matrix
for MDA. The proposed algorithm works on three successive
time slots with the target time slot locating in the center and
significantly improves the performance of MDA in all cases.
Especially, in cases with small overlapping ratios, it touches the
upper bound of the performance it can achieve. It shows the
most stable performance compared with previous algorithms.

I. INTRODUCTION

The secondary surveillance radar (SSR) is currently used in
air-traffic control. In SSR ground stations, a rotating scanning
beam is used to interrogate airplanes. The airplanes respond
by transmitting SSR replies, burst pulse trains, modulated
on carriers at 1090MHz. With the increase in air-traffic,
the received replies may overlap in time at ground station
receivers, which results in loss of all replies if simple receivers
are used. By using antenna arrays in the ground stations, these
replies can possibly be separated by methods such as blind
beamforming.

To separate the overlapping replies, several algorithms were
proposed, such as [1], [2], [3], [4], [5], [6]. Two algebraic blind
source separation algorithms in [1] have the best performance
at present, which are the Manchester decoding algorithm
(MDA) and the multishift zero-constant modulus algorithm
(MS-ZCMA). However, both algorithms have limitations. M-
DA successfully separates replies when the replies are fully
overlapping, but it fails when the replies trend to be non-
overlapping. MS-ZCMA works well when the replies have
unequal residual carrier frequencies (RCF) but it always fails
with equal RCFs.

In this paper, we propose a new algorithm using sub-
space intersection (SI) based on signed URV decompositions
(SURV) [7], called SI+SURV, to improve the performance
of MDA. In this algorithm, we aim at recovering the target
reply in the target time slot overlapped by interference replies
from adjacent time slots. The principle is to convert the

nonstationary data matrix for MDA into a stationary one. This
algorithm initially works on the received data matrix across
three successive time slots. By properly dividing this data
matrix into submatrices, common signals and interferences are
categorized. SI+SURV is then applied on these submatrices to
find the interference-free subspace for the common signals.
After projection onto this subspace, the replies with small
overlapping ratios are filtered out in the data matrices. Next,
the submatrices corresponding to the three time slots are added
together to form a stationary data matrix for MDA, which
finally finds the beamformer for the target reply.

II. DATA MODEL AND PRELIMINARY

SSR replies [8]: SSR communication has two different
protocols: mode A/C and mode S. Mode A/C is an old protocol
and will be replaced by mode S. A mode S reply frame
contains either 56 or 112 binary symbols. These bits are
encoded by Manchester coding, 0 to [0, 1] and 1 to [1, 0]. A
preamble [1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0] is added to the
head of the encoded bits to form the source binary sequence b̄.
Then b̄ is modulated by a kind of pulse-amplitude modulation
(PAM) (pulses are absent for 0s) [8] into the transmitted signal

z(t) =

Np∑
n=1

b̄np(t− nT ), (2.1)

where b̄n is the n-th bit of b̄, p(t) is a PAM pulse, Np ∈
{128, 240}, and T = 0.5µs is the symbol period. In the
following part of this paper, we call z = {z(nT )}1≤n≤Np ∈
R1×Np as a “SSR reply”. We use denotation zk(t) and zk for
the k-th reply.

Scenario: Consider d mode S replies of equal length re-
ceived by an antenna array of M (M ≥ d) elements in the
three successive time slots (See Fig.2.1). Data matrices of the
three time slots are given by Xk ∈ CM×Ns , k = 1, 2, 3. Two
extension matrices for the first and the third slots are given
by Xek ∈ CM×Ne , k = 1, 3. We will call these time slots
by their corresponding data matrices. X2 is the target slot, the
start of which is determined from rank tracking algorithms [9]
(A rank rising edge indicates the coming of one target reply).
The target reply z1 is contained in X2. If more than one reply
appear in X2, we select one of them to be the target reply.
Two safe margins, each Na bits long (although not equal in
practice), are assumed to the both ends of z1 inside X2. Let

2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing

978-1-4577-2105-2/11/$26.00 ©2011 IEEE 181



Reply 1

Reply 2

Reply 3

Reply 4

Reply 5

p
N

s
N

s
N

s
N

e
N

e
N

Time

a
N

a
N

Slot 1 Slot 2 Slot 3

Fig. 2.1. The three successive time slots.

X = [Xe1 X1 X2 X3 Xe3 ]. We have the data model

X = ÃB̃(S⊙Φ) +N, (2.2)

where ⊙ is the Schur-Hadamard (pointwise multiplication)
operator, X = [x1,x2, . . . ,xN ] ∈ CM×N , N = 3Ns + 2Ne,
xn = x(nTs), 1 ≤ n ≤ N , is the received data matrix,
Ã = [ã1, ã2, . . . , ãd] ∈ CM×d is the array response matrix,
B̃ = diag{b̃1, b̃2, · · · , b̃d} ∈ Rd×d contains the source power,
S = [sH1 , sH2 , . . . , sHd ]H ∈ Cd×N (“H” is the conjugate
transpose) is the source data matrix,

Φ =


1 φ1

1 · · · φN−1
1

1 φ1
2 · · · φN−1

2
...

...
. . .

...
1 φ1

d · · · φN−1
d

 , φk = ej2π∆fkTs (2.3)

contains the phase shifts caused by RCFs ∆fk (up to ±3MHz)
for sources, and N ∈ CM×N is the white Gaussian noise
matrix with covariance Rn=E(nnH)=σ2

nI. Ts is the sample
period. We set Ts = T .

Taking the start of z1 as the reference time point, replies
have relative delays τk (τ1 = 0) so that sk = z̃k(nTs − τk),
where z̃k(t) is the extension of zk(t) to the considered time
interval. Although synchronization of all replies is impossible
in overlapping cases, it does not affect the performance of
MDA since it is based on the special property of SSR replies
which holds for arbitrary delays [8]. Without loss of generality,
we assume all the received replies have the same timing and
integer delays τk = nT , n ∈ Z. Especially, for the replies
overlapping z1, we define overlapping ratios (OVR) rk by

rk = lk/Np,−Np ≤ τk ≤ Np, (2.4)

where lk = Np − |τk| is the number of overlapping samples
between zk and z1.
Ã and S are unknown. Our objective is to find the beam-

former w1 ∈ CM×1 for s1 (also for z1) such that

ŝ1 = wH
1 X, (2.5)

where ŝ1 is the estimate of s1.
The additional assumptions are

1. Columns of Ã are linearly independent.
2. The replies are generated from random i.i.d. binary data.
3. The noise-free problem (N=O) is essentially identifiable

[8], [10].

Manchester decoding algorithm [1]: This algorithm is based
on the Manchester encoding property: A received mode S reply
satisfies the following property independent of arbitrary delays

z(t− T )z(t)z(t+ T ) = 0, ∀t ∈ R. (2.6)

This property still holds for z̃k(t) and sk. MDA computes the
third order tensors of the received data X based on the above
property to form a tall matrix P. The beamformers W are
found by solving a joint diagonalization problem that finds
the vectors best spanning ker(P).

Signed URV decomposition [9]: SURV implicitly computes

CCH = Y1Y
H
1 −Y2Y

H
2 = AAH −BBH (2.7)

and the column subspace bases of the indefinite matrix CCH

from the following factorization

M

+ −
[Y1 Y2]Θ =

d1 d2

[QA QB]

+
d1

+ −
d2

−

[LA 0 LB 0], (2.8)

or in a compact form

[Y1 Y2]Θ
′ = [QA QB] [LA LB] , (2.9)

where the sign + and − above matrices denote the positive and
negative signatures of the corresponding columns, [A B] =
[QA QB] [LA LB], Θ′ is part of the J-unitary matrix Θ [11]
for corresponding nonzero columns, [LA LB] ∈ CM×M is a
lower triangular matrix, and [QA QB] ∈ CM×M is a unitary
matrix. We call the subspace spanned by the columns of QB

(orthonormal basis) or B “the negative subspace” and the sub-
space spanned by the columns of A “the positive subspace”.
QA is the orthogonal complement of the negative subspace.
d1 is the dimensionality of the positive subspace and d2 is the
dimensionality of the negative subspace. M = d1+d2. SURV
provides subspace estimates with good properties as

ran{QB} ⊂ ran{Y2}. (2.10)

Subspace intersection based on SURV [7]: SI+SURV finds
the interference-free subspace for the common signals in two
observations with different interferences. Steps are listed as
follows.
1. Collect two received noisy data matrices

Yk = ÃsSk + ÃfkFk +Nk ∈ CM×Ny , k = 1, 2, (2.11)

where Ãs and Ãfk are the array response matrices of
common signals and interferences, respectively.

2. Let Y = [Y1 Y2] and project Y onto its principal
subspace Y = UH

p Y = [Y1 Y2].
3. Form two SURVs in compact forms

+ − −
[αY1 Y2 γI]Θ′

1 = [QA1 QB1 ]
+ −

[LA1 LB1 ], (2.12)
+ − −

[αY2 Y1 γI]Θ′
2 = [QA2 QB2 ]

+ −
[LA2 LB2 ], (2.13)

where |α| ≥
√

Ny+
√
M√

Ny−
√
M

, γ =
√
α2 − 1γn is a threshold

for noise power compensation in the negative subspace for
the low signal-to-noise ratio (SNR) case with large α, and
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γn = βσn(
√
Ny +

√
M) is a threshold used in subspace

tracking algorithms [9], [12], [13].
4. Subspace intersection [14]: Compute SVD [QA1 QA2 ] =

Udiag(σk)V
H . Let U′

c = U(:, 1 : d̂c) such that σk ≥√
2, 1 ≤ k ≤ d̂c, and σk <

√
2, k ≥ d̂c+1. Then

ran{U′
c}=ran{QA1}∩ran{QA2}. Let Uc = UpU

′
c. We

have ran{Uc} = ran{Ãf1 , Ãf2}⊥. The columns of Uc are
the orthonormal basis of the interference-free subspace for
the common signals in Y.
In the considered scenario, signals and interferences are

categorized by dividing X into submatrices. In principle, we
treat the target reply and other replies nearly fully overlapping
it as the common signals.

III. IMPROVED SEPARATION ALGORITHM

In this section, we propose a new preprocessing algorithm
for MDA. As discussed in [1], MDA has problems of conver-
gence with small OVRs, where ker(P) becomes larger and the
solution is no longer unique. To get rid of this imperfection,
we propose to add the three matrices Xk, k = 1, 2, 3 together
to form a stationary data matrix. Previous to this addition,
we perform SI+SURV on X. This preprocessing provides two
advantages:
1. No partially overlapping replies in the final data matrix.
2. Replies with small OVRs (rk < 0.5) will be filtered out

before MDA.

A. The Algorithm

Given the data model defined in Section II, we apply a
modified SI+SURV on the following matrices.

Y1 = [Xe1 X1 X2 ] ,Y2 = [X3 Xe3 ] , for (2.12). (3.1)
Y1 = [Xe1 X1 ] ,Y2 = [X2 X3 Xe3 ] , for (2.13). (3.2)

Algorithm 1: Improved blind separation algorithm for SSR.
Step 1. Do SI+SURV to find Uc and d̂c.
Step 2. If d̂c = 0, Uc = I. Then do projection X′

k =
UH

c Xk, k = 1, 2, 3.

Step 3. Do the addition X′ =
3∑

k=1

X′
k.

Step 4. Do MDA on X′ to find the beamformers W =
[w1,w2, · · ·wd̂c

] ∈ CM×d̂c .
For a finite number of samples (Ns, Ne), α must satisfy [7]

|α| ≥ Ns +Ne

2Ns +Ne
·
√
Ns +Ne +

√
M

√
Ns +Ne −

√
M

. (3.3)

We set γ = 0 because in the real scenario the difference
in power between replies is not big and SNR is normally
high. Note that in Step 3, it brings three times more noise
power into X′ but it is worthy doing as mentioned before.
The computational complexity of SI+SURV is of O(M2N).

B. Parameter Selection

The values of Na and Ne need to be discussed. Na shows
the uncertainty of determining the start of the target reply due
to the limitation of the practical rank tracking algorithm [9],
where Na is half the length of the sliding window Nw. Na can

TABLE 4.1
PARAMETERS OF REPLIES.

DOA1 Delay RCF (MHz)
Reply 1 30◦ τ1 = 0 -1.0
Reply 2 −20◦ 0 ≤ τ2 ≤ Np 2.0
Reply 3 50◦ −Np ≤ τ3 ≤ 0 1.2
Reply 4 10◦ τ4 > Np 0.3
Reply 5 −30◦ τ5 < −Np 0.0

1 Direction of arrival.

not be set too large (it also puts limitation on Nw), otherwise
the data in X′ become nonstationary. From the results in [1],
Na must satisfy Na ≤ 0.2Np. Ne is set to collect enough
samples for replies partially overlapping the two ends of X.
Under the assumption M ≥ d, we can set Ne = Np at most
but in the following simulation we set Ne = Np/4.

IV. SIMULATION RESULTS

In this section, we compare the performance of our proposed
algorithm with original MDA and MS-ZCMA.

Consider 5 replies in the scenario defined in Section II. All
replies have equal power. A linear antenna array with elements
spaced at half wavelengths is used. M = 10, fs = 2MHz
(Ts = 0.5µs), Np = 100, Ns = 120, Na = 10 (Nw = 20),
Ne = 25, β = 1.3. Other parameters are listed in Table 4.1.
Reply 2 and 3 overlap the target reply, Reply 1, and will be
shifted according to given OVRs (we set r2 = r3). Reply 4
and 5 do not overlap Reply 1 and stay fixed at given time
positions.

Signal and interference powers are defined for every symbol.
The signal-to-interference ratio SIR := 10log10(σ

2
1/σ

2
f ), and

SNR := 10log10(σ
2
1/σ

2
n), where σ2

1 and σ2
f are the symbol

power of the target reply and other replies, respectively. The
performance measure is the residual signal-to-interference-
plus-noise ratio (SINR), which is found as

sinr(a,w) :=
wH(aaH)w

wH(ĀĀH − aaH + σ2
nI)w

, (4.1)

SINR := max(sinr(ā1,w1), . . . , sinr(ā1,wd̂c
)), (4.2)

where Ā = ÃB̃, ā1 is the first column of Ā.
The algorithms in figures are named as our proposed al-

gorithm (“SI+MDA”), the directly applied Manchester decod-
ing algorithm (“MDA”), the multishift zero-constant modulus
algorithm (“MS-ZCMA”), and the standard minimum mean
square error algorithm (“SMMSE”) on known s1. MDA, MS-
ZCMA and SMMSE are directly applied on X.

Fig. 4.1 shows the averaged SINR of algorithms at given
OVRs with equal RCFs. SMMSE gives the upper bound. MDA
and MS-ZCMA both show unstable performance in the entire
region, while SI+MDA shows much more stable performance.
SI+MDA touches the upper bound when OVR is small and
turns into a “flat” performance when OVR goes over 0.5,
where the gap between SI+MDA and SMMSE is due to the
tripled noise power.

Fig. 4.2 shows a similar result to Fig. 4.1 but here RCFs
are unequal. In Fig. 4.2, MS-ZCMA is expected to work better
than in Fig. 4.1 but it still gives unstable performance because
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Fig. 4.1. Performance of algorithms at given OVRs with equal RCFs.
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Fig. 4.2. Performance of algorithms at given OVRs with different RCFs.

it depends on optimized shifts, which is hard to explore, and
moreover, the number of interferences are more than in [1].
Contrarily, SI+MDA sill gives the same performance as in
Fig. 4.1.

Fig. 4.3 shows the averaged SINR of algorithms at given
SNRs with equal RCFs. OVR is fixed to 0.1. It is seen from
Fig. 4.3 that SI+MDA gives the same performance to SMMSE
while MDA and MS-ZCMA give much worse performance.

V. CONCLUSION

We proposed an improved blind separation algorithm for
overlapping secondary surveillance radar replies. This algorith-
m significantly improved the performance of the Manchester
decoding algorithm in all cases, especially in cases with
small overlapping ratios. This algorithm was shown robust to
equal or unequal residual carrier frequencies. Contrary to the
previous algorithms, this algorithm worked well on a larger
number of replies with any overlapping patterns. The presented
idea can be also applied to separate signals in other similar
asynchronous systems, e.g. constant modulus signals.

0 5 10 15 20 25 30
−30

−20

−10

0

10

20

30

40

SNR/dB

S
IN

R
/
d
B

Averaged SINR of beamformers
Equal residual carrier frequencies
Number of Monte Carlo runs =1000,
M = 10, d = 5,
Np = 100, Ne = 25, Ns = 120, Na = 10,
SIR = 0dB, r = 0.1,
Target DOA: [30◦],
Interf. DOA: [−20◦, 50◦ , 10◦,−30◦],
α = 0.98491.

SI+MDA

MDA

MS-ZCMA

SMMSE

Fig. 4.3. Performance of algorithms at given SNRs with equal RCFs.
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