Parametrization of Hankel-norm approximants of time-varying systems

Alle-Jan van der Veen and Patrick Dewilde
Delft University of Technology
Department of Electrical Engineering
2628 CD Delft, The Netherlands
email: allejan@dutentb.et.tudelft.nl, dewilde@dutentb.et.tudelft.nl

Abstract

The classical time-invariant Hankel-norm approximation problem is generalized to the time-varying context. The input-output operator of a time-varying bounded causal linear system acting in discrete time may be specified as a bounded upper-triangular operator T with block matrix entries $T_{i j}$. For such an operator T, we will define the Hankel norm as a generalization of the time-invariant Hankel norm. Subsequently, we describe all operators T^{\prime} which are closer to T in (operator) norm than some prespecified error tolerance Γ, and whose upper triangular part admits a state realization of minimal dimensions. The upper triangular part of T^{\prime} can be regarded as the input-output operator of a causal time-varying system that approximates T in Hankel norm.

1. INTRODUCTION

For time-invariant systems, the Hankel norm approximation problem (its minimal degree version) reads as follows [1]. Let $T(z)=t_{0}+t_{1} z+t_{2} z^{2}+\cdots$ be in the Hardy space H_{∞}, and define the Hankel operator $H_{T}=\left[t_{i+j+1}\right]_{i, j=0}^{\infty}$. Then, for a predefined error tolerance γ, find a transfer function $T_{a}(z)$ for which rank $H_{T_{a}}$ is minimal, such that $\left\|H_{T-T_{a}}\right\| \leq \gamma$. Recall that the rank of H_{T} is the system order of T, i.e., the minimal number of states that are required in a state realization of $T(z)$. A fundamental result, proven in [1], is that there exists an approximant T_{a} for which the state dimension is equal to the number of singular values of H_{T} which are larger than γ. The generalization to time-varying systems was derived by the authors in [2]. In this presentation, we will emphasize one of the results in this paper, namely the fact that all Hankel-norm approximants are described by a certain chain-fraction representation.

2. DEFINITIONS AND PRELIMINARY RESULTS

Define the space of non-uniform ℓ_{2}-sequences as follows. Let $M_{i} \in \mathbb{N} \backslash\{\infty\}$, for all integers i, and for each i define the vector space $\mathcal{M}_{i}=\mathbb{C}^{M_{i}}$. Then $\mathcal{M}=\cdots \times \mathcal{M}_{i} \times \cdots$ is a space of sequences whose entries are vectors of non-uniform dimensions, and

$$
\ell_{2}^{\mathcal{M}}=\left\{x \in \mathcal{M}:\|x\|_{2}<\infty\right\}
$$

[^0]is the space of such sequences with bounded two-norm. Such sequences will represent signals in our theory. The space of bounded operators $T=\left[T_{i j} j_{i, j=-\infty}^{\infty}\right.$ with entries $T_{i j}$ which are $M_{i} \times N_{j}$ matrices acting on such sequences is
$$
\mathcal{X}(\mathcal{M}, \mathcal{N})=\left[\ell_{2}^{\mathcal{M}} \rightarrow \ell_{2}^{\mathcal{N}}\right] .
$$

We also define the space of upper operators as

$$
\mathcal{U}(\mathcal{M}, \mathcal{N})=\left\{T \in \mathcal{X}: T_{i j}=0, i<j\right\}
$$

and likewise, the space \mathcal{L} of lower and \mathcal{D} of diagonal operators is defined. An operator $T \in \mathcal{X}(\mathcal{M}, \mathcal{N})$ can be regarded as the input-output operator of a time-varying system acting on non-uniform sequences: an input sequence $u \in \ell_{2}^{\mathcal{M}}$ is mapped by T to an output sequence $y=u T \in \ell_{2}^{\mathcal{N}}$. The sequence $\left[T_{i j}\right]_{j=-\infty}^{\infty}$ (the i-th row of T) is the impulse response to an impulse at time i, and hence, for an LTI system, T has a Toeplitz structure. In the present notation, a causal system has an input-output operator $T \in \mathcal{U}$.

An operator $T \in \mathcal{U}$ has a time-varying state realization $\left\{A_{k}, B_{k}, C_{k}, D_{k}\right\}_{-\infty}^{\infty}$ if its blockentries are given by

$$
T_{i j}= \begin{cases}0, & i>j \\ D_{i}, & i=j \\ B_{i} A_{i+1} \cdots A_{j-1} C_{j}, & i<j\end{cases}
$$

A realization is called strictly stable if $\lim _{n \rightarrow \infty} \sup _{i}\left\|A_{i+1} A_{i+1} \cdots A_{i+n}\right\|^{1 / n}<1$. In this case, the multiplication $y=u T$, with $u=\left[\begin{array}{llll}\cdots & u_{0} & u_{1} & \cdots\end{array}\right]$ and $y=\left[\begin{array}{llll}\cdots & y_{0} & y_{1} & \cdots\end{array}\right]$ is equivalent to the set of equations

$$
\begin{aligned}
& x_{k+1}=x_{k} A_{k}+u_{k} B_{k} \\
& y_{k}=x_{k} C_{k}+u_{k} D_{k}
\end{aligned} \quad k=\cdots, 0,1, \cdots,
$$

in which x_{k} is introduced as the state. Note that state dimensions need not be constant.
In order to determine realizations with minimal state dimensions, we associate to an operator $T \in \mathcal{U}$ (or $T \in \mathcal{X}$) the collection of operators $\left\{H_{k}\right\}_{-\infty}^{\infty}$ which are submatrices of T :

$$
H_{k}=\left[T_{k-i-1, k+j} j_{i, j=0}^{\infty}=\left[\begin{array}{ccc}
T_{k-1, k} & T_{k-1, k+1} & \cdots \\
T_{k-2, k} & T_{k-2, k+1} & \\
\vdots & & \ddots
\end{array}\right]\right.
$$

The H_{k} play the same role as the Hankel operator of T in the time-invariant case, although they do not possess a Hankel structure. In particular,

Theorem 1 ([3]) Let $T \in \mathcal{U}, d_{k}:=\operatorname{rank} H_{k}<\infty$ (all k). Then T admits a realization $\left\{A_{k}, B_{k}, C_{k}, D_{k}\right\}_{-\infty}^{\infty}$ where $A_{k}: d_{k} \times d_{k+1}$. This realization is minimal.

In view of this theorem, we define statedim $(T):=\left[\operatorname{rank} H_{k}\right]_{-\infty}^{\infty}$. We call T locally finite if all entries of this sequence are finite.

3. HANKEL NORM APPROXIMATION

The Hankel norm of $T \in \mathcal{X}$ is defined as

$$
\|T\|_{H}:=\sup _{k}\left\|H_{k}\right\|
$$

The Hankel norm is a seminorm, and weaker than the operator norm, as submatrices of a matrix have smaller norm than the matrix itself.

The time-varying Hankel-norm approximation problem can be formulated as follows. Given $T \in \mathcal{U}$ and a diagonal parameter operator $\Gamma \in \mathcal{D}$ ($\Gamma>0$ and invertible), find $T^{\prime} \in \mathcal{X}$ such that
(1) $\left\|\Gamma^{-1}\left(T-T^{\prime}\right)\right\| \leq 1$,
(2) statedim $\left(T^{\prime}\right)$ is minimal (pointwise).

Then $T_{a}:=$ (upper part of T^{\prime}) can be called a Hankel-norm approximant of T of minimal state dimension, as $\left\|\Gamma^{-1}\left(T-T_{a}\right)\right\|_{H}=\left\|\Gamma^{-1}\left(T-T^{\prime}\right)\right\|_{H} \leq\left\|\Gamma^{-1}\left(T-T^{\prime}\right)\right\| \leq 1$.

Theorem 2 ([2]) Let $T \in \mathcal{U}$ be locally finite and have a strictly stable realization. Partition the singular values of $\left(H_{\Gamma^{-1} T}\right)_{k}$ as $\left(\sigma_{+}\right)_{i, k} \leq 1,\left(\sigma_{-}\right)_{i, k}>1$, and suppose that $\sup _{i, k}\left(\sigma_{+}\right)_{i, k}<1, \inf _{i, k}\left(\sigma_{-}\right)_{i, k}>1$. Let N_{k} be the number of elements of the set $\left\{\left(\sigma_{-}\right)_{i, k}\right\}_{i}$. Then there exists an operator $T^{\prime} \in \mathcal{X}$ satisfying
(1) $\left\|\Gamma^{-1}\left(T-T^{\prime}\right)\right\| \leq 1$,
(2) $\operatorname{statedim}\left(T^{\prime}\right) \leq\left[N_{k}\right]_{-\infty}^{\infty}$.

It is possible to show that statedim $\left(T^{\prime}\right)_{k}<N_{k}$ cannot occur. A suitable T^{\prime} can be constructed by the following recipe [2]:

1. Determine an inner system $U \in \mathcal{U}$ (satisfying $U U^{*}=I, U^{*} U=I$) such that $U T^{*} \in \mathcal{U}$.
2. Interpolation: construct a J-unitary operator $\Theta \in \mathcal{U}$ (satisfying $\Theta^{*} J_{1} \Theta=J_{2}$, $\Theta J_{2} \Theta^{*}=J_{1}$ for certain signature operators $J_{1,2} \in \mathcal{D}$) such that

$$
\left[\begin{array}{ll}
U^{*} & -T^{*} \Gamma^{-1}
\end{array}\right] \Theta=:\left[\begin{array}{ll}
A^{\prime} & -B^{\prime}
\end{array}\right] \in\left[\begin{array}{ll}
\mathcal{U} & \mathcal{U}
\end{array}\right] .
$$

3. Define $T^{\prime}=\Gamma \Theta_{22}^{-*} B^{\prime *}=T-\Gamma\left(\Theta_{12} \Theta_{22}^{-1}\right)^{*} U$.

To outline the proof that this T^{\prime} satisfies the two conditions in the theorem, let us remark that under the posed conditions on $\Gamma^{-1} T$ one can construct the operators U and Θ. In addition, one can show that $\left\|\Theta_{12} \Theta_{22}^{-1}\right\|<1$ so that $\left\|\Gamma^{-1}\left(T-T^{\prime}\right)\right\| \leq 1$. Finally, it is not hard to see from $T^{\prime}=\Gamma \Theta_{22}^{-*} B^{\prime^{*}}$ with $\Theta_{22}^{-*} \in \mathcal{X}$ and $B^{\prime^{*}} \in \mathcal{L}$ that statedim $\left(T^{\prime}\right) \leq \operatorname{statedim}\left(\Theta_{22}^{-*}\right)$. With more effort, one shows that there exists a Θ for which statedim $\left(\Theta_{22}^{-*}\right)_{k}=N_{k}$, so that also the second requirement of the theorem is fulfilled.
U and Θ can be computed using state space techniques, and in this way a state realization of T_{a} can be obtained [2]. A suitable Θ can also be computed by a recursive generalized Schur procedure [4].

4. ALL APPROXIMANTS

The next issue is to determine all $T^{\prime} \in \mathcal{X}$ satisfying the two conditions in theorem 2. The solution will be that all such T^{\prime} are given by $T^{\prime}=T+\Gamma S^{*} U$, where S is given by a linear fractional transformation of Θ and a free parameter S_{L}, which is upper and contractive (the previous solution is obtained by setting $S_{L}=0$). In particular, the following two theorems hold true, showing that more, resp. all approximants are obtained.

Theorem 3 ([2]) Let $T \in \mathcal{U}, \Gamma \in \mathcal{D}$ be as in theorem 2 and define U, Θ as before, where $\operatorname{statedim}\left(\Theta_{22}^{-*}\right)_{k}=N_{k}$. Let $S_{L} \in \mathcal{U},\left\|S_{L}\right\| \leq 1$. Put $S=\left(\Theta_{11} S_{L}-\Theta_{12}\right)\left(\Theta_{22}-\Theta_{21} S_{L}\right)^{-1}$.

Then $T^{\prime}:=T+\Gamma S^{*} U$ satisfies
(1) $\left\|\Gamma^{-1}\left(T-T^{\prime}\right)\right\| \leq 1$,
(2) statedim $\left(T^{\prime}\right)=\left[N_{k}\right]_{-\infty}^{\infty}$.

Theorem 4 ([2]) Let T, Γ, U, Θ be as in theorem 3. Let $T^{\prime} \in \mathcal{X}$ be any operator satisfying
(1) $\left\|\Gamma^{-1}\left(T-T^{\prime}\right)\right\| \leq 1$,
(2) $\operatorname{statedim}\left(T^{\prime}\right) \leq\left[N_{k}\right]_{-\infty}^{\infty}$.

Define $S=U\left(T^{* *}-T^{*}\right) \Gamma^{-1}$ and $S_{L}=\left(\Theta_{11} S+\Theta_{12}\right)\left(\Theta_{21} S+\Theta_{22}\right)^{-1}$. Then

$$
\begin{aligned}
& S_{L} \in \mathcal{U},\left\|S_{L}\right\| \leq 1, \\
& S=\left(\Theta_{11} S_{L}-\Theta_{12}\right)\left(\Theta_{22}-\Theta_{21} S_{L}\right)^{-1} .
\end{aligned}
$$

In fact, statedim $\left(T^{\prime}\right)=\left[N_{k}\right]_{-\infty}^{\infty}$, so that there are no approximants of order less than $\left[N_{k}\right]_{-\infty}^{\infty}$.
In this paper, we will only provide an outline of the proofs. It is straightforward to show that, in both theorems, $\left\|S_{L}\right\| \leq 1 \Leftrightarrow\|S\| \leq 1 \Leftrightarrow \Gamma^{-1}\left(T-T^{\prime}\right) \| \leq 1$. The main point to prove in the first theorem is that T^{\prime} has state dimensions as specified and in the second theorem that $S_{L} \in \mathcal{U}$. These proofs are related; the line of reasoning is as in [5], although the winding number argument is to be replaced by the following proposition:

Proposition 1 ([2]) Let $A \in \mathcal{U}, A^{-1} \in \mathcal{X} ; X \in \mathcal{X},\|X\|<1$.
Let $N_{k}=\operatorname{statedim}\left(\text { lower part of } A^{-1}\right)_{k}^{*}$. Then
statedim $\left(\text { lower part of }(I-X)^{-1} A^{-1}\right)_{k}^{*}=N_{k}+p_{k}$
iff statedim(lower part of $A(I-X))_{k}^{*}=p_{k}$.
The application of this proposition to theorem 3 is as follows. Put $A=\Theta_{22}, X=$ $\Theta_{22}^{-1} \Theta_{21} S_{L}$, for any $S_{L} \in \mathcal{U},\left\|S_{L}\right\| \leq 1$. Then $(I-X)^{-1} A^{-1}=\left(\Theta_{22}-\Theta_{21} S_{L}\right)^{-1}$. Hence

$$
\begin{aligned}
& \text { statedim(lower part of } \left.\Theta_{22}^{-1}\right)_{k}^{*}=N_{k} \text { and } \Theta_{22}-\Theta_{21} S_{L} \in \mathcal{U} \\
& \left.\Rightarrow \quad \text { statedim(lower part of }\left(\Theta_{22}-\Theta_{21} S_{L}\right)^{-1}\right)_{k}^{*}=N_{k}
\end{aligned}
$$

This implies that $T^{\prime *} \Gamma^{-1}=\left(A^{\prime} S_{L}+B^{\prime}\right)\left(\Theta_{22}-\Theta_{21} S_{L}\right)^{-1}$ has statedim(lower part of $\left.T^{\prime *} \Gamma^{-1}\right)_{k}^{*} \leq$ N_{k}. A similar argument gives equality.

REFERENCES

[1] V.M. Adamjan, D.Z. Arov, and M.G. Krein, "Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem," Math. USSR Sbornik, vol. 15, no. 1, pp. 31-73, 1971. (transl. of Iz. Akad. Nauk Armjan. SSR Ser. Mat. 6 (1971)).
[2] P.M. Dewilde and A.J. van der Veen, "On the Hankel-norm approximation of uppertriangular operators and matrices," Integral Equations and Operator Theory, vol. 17, no. 1, pp. 1-45, 1993.
[3] A.J. van der Veen and P.M. Dewilde, "Time-varying system theory for computational networks," in Algorithms and Parallel VLSI Architectures, II (P. Quinton and Y. Robert, eds.), pp. 103-127, Elsevier, 1991.
[4] A.J. van der Veen and P.M. Dewilde, "On low-complexity approximation of matrices," subm. Linear Algebra and its Applications, 1992.
[5] J.A. Ball, I. Gohberg, and L. Rodman, Interpolation of Rational Matrix Functions, vol. 45 of Operator Theory: Advances and Applications. Birkhäuser Verlag, 1990.

[^0]: ${ }^{0}$ In U. Helmke e.a., editor, Systems and Networks: Mathematical Theory and Applications (Proc. Int. Symposium MTNS-93); volume 2, pp. 895-898, Regensburg, Germany, 1994. Akademie Verlag.

