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ABSTRACT

The paper discussesa constructivesolution of the problem of the real-
ization of a given (strictly) contractivetime-varyingsystemas the partial
transferoperatorof a losslesssystem. The constructionis donein a state
spacecontextandgives rise to a time-varyingRiccati-typeequation. It is
thegeneralizationto the time-varyingcaseof the time-invariantDarlington
synthesis.

1. INTRODUCTION

In this paper, we will solvethe losslessembeddingproblem(Darlingtonproblem[1, 2])
for strictly contractivetime-varying systemsin a state spacecontext. The problem
settingis the following.

Problem 1. (The embeddingproblem) Let begiventhetransferoperatorT of a con-
tractivecausallinear time-varyingsystemwith n1 inputsand n0 outputsand finite di-
mensionalstatespace,andlet T be a given statespacerealizationof T (as in [3]):

T =

�
A C
B D � , Y = UT ⇔

�
XZ−1 = XA+ UB
Y = XC+ UD

Thendeterminea unitary andcausalmulti-port Σ (correspondingto a losslesssystem)

Σ =

�
Σ11 Σ12

Σ21 Σ22 � ,

with statespacerealizationΣΣΣ, suchthat T = Σ11. Seefigure1.

Without loss of generalitywe can in addition require ΣΣΣ to be a unitary realization:
(ΣΣΣΣΣΣ∗ = I, ΣΣΣ∗ΣΣΣ = I). SinceT∗T+ T∗

cTc = I, (whereTc = Σ21), this will be possibleonly if
T is contractive(not in thestrict sense).While it is clearthatcontractivityis a necessary
condition, it will be shown in the sequelthat strict contractivity of T is sufficient to
constructa solutionto the embeddingproblem.(The extensionto the boundarycaseis
non-trivial.) Note that thecondition[Σ is lossless]implies that the numberof inputsof
Σ is equalto its numberof outputs,andthat the condition[ ΣΣΣ is unitary] implies that ΣΣΣ
is a “diagonalof squarematrices”andhencethat thesystemorderof the embeddingis
constant(evenif the systemorderof T is not).
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2. NOTATION

Thenotationin this paperis aninclusiveextensionof thenotationin [4, 3]. Weconsider
a generalizationof � 2 sequencesX = [ ����� X−1 X0 X1 ����� ] , in which eachof the
entriesXi is an elementof a (row) vectorspace |CNi , with varyingdimensionsNi ∈ |N ,
and such that the total energy � X � 2

2 = � ∞
−∞ � Xi � 2

2 is bounded. We denotethe set
( ZZ → |N ) of indexsequencesby � , andwith N ∈ � saythat theaboveX is anelement
of � 2( |C1, |CN), or |CN

2 for brevity. We adopttheshorthand“ •n” for the indexsequenceN
with all Ni equalto the sameintegern.

Let N,P ∈ � . Following [4], we denoteby 	 ( |CN, |CP) the class of bounded
operators( |CN

2 → |CP
2). E.g., a systemtransferoperatorT with n1 input ports and n0

output ports is an operatorin 	 ( |C•n1, |C•n0). Standardsubsetsof 	 are the spaceof
upper(causal),lower anddiagonaloperators:


= � A ∈ 	 : Aij = 0, i > j �

= � A ∈ 	 : Aij = 0, i < j ��
=



∩



.

For every index sequenceN ∈ � , we definethe k-th shift N(k) by � N(k) �
i

= Ni−k.

We will use the shorthandN+ for N(1), and likewise N− = N(−1). The shift operator
Z : |CN → |CN+

is definedby (XZ)i = Xi−1 , and the k-th diagonalshift on X ∈ 	 is
X(k) = Z∗kXZk.

Let A ∈ 	 . We definethe j-th diagonalA[j] ∈
�

of A by � A[j] � i = Ai−j,i . Hence
A[0] is themaindiagonalof theoperatorA, andfor positivej, A[j] is the j-th subdiagonal
aboveA[0]. With this notation,A can formally be written in termsof its diagonalsas
A = � ∞

−∞ ZjA[j] , althoughthis expressionneednot convergeat all. A classof operators
that do allow this representationis the setof Hilbert-Schmidtoperators[4]:	 2 = � A ∈ 	 : � A � 2

HS = � i,j � Aij � 2
2 < ∞ �

alongwith inner product � A,B � = trace(AB∗), andnorm � A � 2
HS = � A,A � = trace(AA∗).

Standardsubspacesin 	 2 are



2 =



∩ 	 2,



2 =



∩ 	 2,
�

2 =



2 ∩



2, andstandard
projectorsonto thesespacesareP0 = P� 2 andP = P� 2.

For X ∈



2, the diagonalexpansionof X is
~
X, definedby

X = X[0] + ZX[1] + Z2X[2] + ����� = X[0] + X(−1)
[1] Z + X(−2)

[2] Z2 + �����
~
X = � X[0] X(−1)

[1] X(−2)
[2] ������� .

For X ∈



2Z−1, the diagonalexpansionof X is alsodesignatedby
~
X, now definedby

X = Z−1X[−1] + Z−2X[−2] + ����� = X(+1)
[−1]Z

−1 + X(+2)
[−2]Z

−2 + �����
~
X = � X(+1)

[−1] X(+2)
[−2] ����� �
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Thesedefinitionskeepentriesof X thatareon thesamerow in X alsoon thesamerow
in

~
X.

3. PRELIMINAR Y

In the sequel,we will needthe notion of a “top left” part of an operatorT in



in the
senseof thatpartof T thatmapsinputsin the“past”,



2Z−1, to outputsin thepast,



2Z−1,

which will be shownto correspondto the top left part of the matrix representationof
T. To this end,definethe operatorsKT andVT in the following way.

Definition 1. Given a systemtransferoperatorT ∈



. Then the operatorsKT andVT

aredefinedas

KT :



2Z−1 →



2Z−1 , UKT = P� 2Z−1(UT)
VT :



2Z−1 →

�
2 , UVT = P0(UT) .

We candefineoperators
~
KT and

~
VT that act on diagonalexpansions

~
U and

~
Y of U and

Y. Unlike KT andVT, theseoperatorshavea matrix representation.

Theorem 1. If Y = UKT ∈



2Z−1 andD = UVT ∈
�

2, with U ∈



2Z−1, thenthe matrix
representationsof the operators

~
KT and

~
VT suchthat

~
Y =

~
U

~
KT andD =

~
U

~
VT is givenby

~
KT = �������

T(+1)
[0] 0 �����

T(+1)
[1] T(+2)

[0] 0 �����
T(+1)

[2] T(+2)
[1] T(+3)

[0] 0 �����
...

. . . . . .

� �����! ~
VT = �������

T[1]

T[2]

T[3]
...

� �����! .

It is clearfrom the abovethat
~
KT satisfiesthe relation

~
K(−1)

T = ��� T[0] 00 �����
~
VT

~
KT

� �! . (1)

Connectionof T with KT andVT. Let T ∈



. Then
~
KT is representedby aninfinite-size

matrix with diagonalentriesin
�

. Construct(infinite size)submatricesK i (−∞ < i < ∞)
of

~
KT by selectingthe i-th entry of eachdiagonalin

~
KT. The Ki can be viewed as

time-varyingmatricesthat would be Toeplitz in the time-invariantcase. The Ki are
double-mirrored “top-left” submatricesof T (seefigure 2). In the sameway, let Vi be
the vectorrepresentationof the operatorVT, obtainedby selectingthe i-th entry of the
diagonalrepresentationof

~
VT.

4. CONTRACTIVITY

Definition 2. A hermitianoperatorA in 	 is strictly positivedefiniteif thereexistsan
ε > 0 suchthat, for all U in 	 2, P0(UAU∗) ≥ ε P0(UU∗) . Notation: A " 0.

It is a known result that an operatorA is strictly positivedefiniteif andonly if A = A∗

andA−1 existsin 	 .

Definition 3. Let T be a systemtransferoperatorin



. T is strictly contractiveif
I − TT∗ " 0 .

Becauseof the identity I + T∗(I − TT∗)−1T = (I − T∗T)−1 it is clearthat I − TT∗ " 0
implies that I − T∗T " 0 also.
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Lemma 1. Let T be a systemtransferoperatorin



. If T is strictly contractive,then
KT is strictly contractiveon its domain: I − KTK∗

T " 0, I − K∗
TKT " 0. We also have

that
~
KT is strictly contractive:I − ~

KT
~
K∗

T " 0, I − ~
K∗

T
~
KT " 0.

At this point, we remarkthat if
~
KT is strictly contractive,then all Ki arestrictly con-

tractive,and letting i → ∞ it follows that T is strictly contractive.Hencecontractivity
of T, KT and

~
KT areequivalent.

Theorem 2. Let T ∈



be a systemtransferoperator. If T is strictly contractive,then

I − T∗
[0]T[0] − ~

V∗
T (I − ~

KT
~
K∗

T)−1 ~
VT " 0 .

PRO
#

O
#

F SinceT is strictly contractive,
~
KT and

~
K(−1)

T arealsostrictly contractive.Using
equation(1), we havethat

I − ~
K(−1)∗

T
~
K(−1)

T =

�
I − T∗

[0]T[0] − ~
V∗

T
~
VT − ~

V∗
T

~
KT

− ~
K∗

T
~
VT I − ~

K∗
T

~
KT �

From an applicationof Schur’s inversion formula (seee.g., [5]), it is seenthat this
expressionis positivedefiniteif f�

(1) I − ~
K∗

T
~
KT " 0

(2) I − T∗
[0]T[0] − ~

V∗
T

~
VT − ~

V∗
T

~
KT(I − ~

K∗
T

~
KT)−1 ~

K∗
T
~
VT " 0 .

Thefirst conditionis satisfiedbecauseT is strictly contractive.The secondconditionis
equalto the result. $%
5. CONTRACTIVITY OF A STATE SPACE REALIZA TION

Let T ∈



havea statespacerealization � A,B,C,D � , with A ∈
�

( |CN, |CN−
). We denote

by & the controllability operator:

& = �������
B(+1)

B(+2)A(+1)

B(+3)A(+2)A(+1)

...

� �����!
and we shall say that a realizationis uniformly controllableif & ∗ &'" 0. ( & is an
extensionof the usualcontrollability operatorto thepresentcontext. Its derivationand
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manyrelatedissuesarediscussedelsewhere[6].) It canbe derivedthat
~
VT = & ⋅ C, and

by usingthe abovestructureof & we alsohave

~
V(−1)

T =

�
B& A � ⋅ C(−1) . (2)

Let the hermitianoperatorM in
�

( |CN, |CN) be definedby

M = & ∗(I − ~
KT

~
K∗

T)−1 & . (3)

M is well-definedif T is strictly contractive. It will play an important role in the
embeddingtheoryto follow in thenextsection.In thatrespect,thefollowing observation
is important. The contractivity condition implies that M ≥ 0. If in addition the state
spacerealizationis uniformly controllable,& ∗ &(" 0, thenalsoM " 0 andinvertible.

Theorem 3. Let T ∈



be a systemtransfer operatorwith state spacerealization� A,B,C,D � . If T is strictly contractive,then the abovedefinedM satisfiesthe rela-
tions I − D∗D − C∗MC " 0 , and

M(−1) = A∗MA + B∗B + ) A∗MC + B∗D * (I − D∗D − C∗MC)−1 ) D∗B + C∗MA* .

If in additionthe statespacerealizationis uniformly controllable,thenM " 0.

PRO
#

O
#

F The proof usesthe definition of M, equations(1,2), andTheorem2. $ %
6. ORTHOGONAL EMBEDDING

We will constructa solution to the embeddingproblemas statedin the Introduction
underthe following conditions.

Theorem 4. Let T be a boundedcausalLTV systemin



( |C•n1, |C•n0), with statespace
realizationT . SupposeA ∈

�
( |CN, |CN−

). A solution to the embeddingproblemcanbe
constructedif T is strictly contractiveandthe given realizationT is uniformly control-
lable. This constructionwill yield a losslessrealizationΣΣΣ for the embeddingsystemΣ
with the following properties.

(1) Σ is in



( |C•n, |C•n), with n = n1 + n0, i.e., the embeddingaddsn0 moreinputs
andn1 moreoutputsto thoseof T. This n cannotbe smaller.

(2) ΣΣΣ = � AΣ,BΣ,CΣ,DΣ � has AΣ ∈
�

( |C•m, |C•m), where m = maxi(Ni). This m
cannotbe smaller.

Step1. of theconstructionis to find a statetransformationR andmatricesB2 and
D21 suchthat the columnsof ΣΣΣ2,

ΣΣΣ2 = ���� R
I

I

� ��! ���� A C
B D
B2 D21

� ��! �
R−(−1)

I �
areunitary, i.e., (ΣΣΣ2)∗ΣΣΣ2 = I.

Lemma 2. A solutionto step1. is obtainedby puttingM = R∗R andsolving for M in

M(−1) = A∗MA + B∗B + ) A∗MC + B∗D * (I − D∗D − C∗MC)−1 ) D∗B + C∗MA* .

ThesolutionM existsunderthecondition[T is strictly contractive]andis strictly positive
definite if [T is uniformly controllable]. Becauseof Theorem3, it is given in closed
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form by equation(3). B2 ∈
�

( |C•n0, |CN−
) andD21 ∈

�
( |C•n0, |C•n0) aredeterminedas�

D21 = (I − D∗D − C∗MC)1/2

B2 = −(I − D∗D − C∗MC)−1/2 ) D∗B + C∗MA*
PRO

#
O
#

F To solve step1, compute(ΣΣΣ2)∗ΣΣΣ2, and put M = R∗R. From the orthogonality
conditionsthe equationsmentionedin the theoremfollow directly. At this point, recall
Theorem3, andobservethat the solutionto the last equationis preciselygiven by

M = & ∗(I − ~
KT

~
K∗

T)−1 & .

Sincethe realizationis uniformly controllable,Theorem3 assertsthat this M " 0, so
that it canbe factoredasM = R∗R with R invertible. It also follows that D∗

21D21 " 0,
so that D21 cannothaveless than •n0 rows, and henceno less thann0 inputsmust be
addedto T to yield a losslessembedding. $%

Step2. Define ΣΣΣ +2 asΣΣΣ2 extendedby zerorows to ΣΣΣ +2 ∈
�

( |C•(m+n1+n0), |CN−
):

ΣΣΣ +2 =

�
0(•m−N)×N−

ΣΣΣ2 � = ������
I

R
I

I

� ����! ������
0(•m−N)×N−

A C
B D
B2 D21

� ����! �
R−(−1)

I �
Find matricesΣΣΣ1 ∈

�
( |C•(m+n1+n0), |C•m−N−

) and ΣΣΣ3 ∈
�

( |C•(m+n1+n0), |C•n1) suchthat

ΣΣΣ = ) ΣΣΣ1 ΣΣΣ +2 ΣΣΣ3 *
is in

�
( |C•(m+n1+n0), |C•(m+n0+n1)): a diagonalof squareunitary matricesof constantsize

(m+ n1 + n0). Put into this form, step2. is alwayspossibleand reducesto a standard
exercisein linear algebra.
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