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ABSTRACT

The paperdiscussesa constructivesolution of the problem of the real-
ization of a given (strictly) contractivetime-varyingsystemas the partial
transferoperatorof a losslesssystem. The constructionis donein a state
spacecontextand givesrise to a time-varyingRiccati-typeequation. It is
the generalizatiorto the time-varyingcaseof the time-invariantDarlington
synthesis.

1. INTRODUCTION

In this paper we will solvethelosslessembeddingroblem(Darlingtonproblem[1, 2])
for strictly contractivetime-varying systemsin a state spacecontext. The problem
settingis the following.

Problem 1. (The embedding problem) Let be giventhetransferoperatofT of a con-
tractive causallinear time-varyingsystemwith n; inputsand ny outputsand finite di-
mensionalstatespaceandlet T be a given statespacerealizationof T (asin [3]):

A C XZ' = XA+UB
T= Y=UT =
[ B D|’ v Y = XC+UD
Thendeterminea unitary and causalmulti-port Z (correspondingo a losslesssystem)
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with statespacerealizationZ, suchthat T = Z;;. Seefigure 1.

Without loss of generalitywe can in addition require X to be a unitary realization:
(ZX=1, = =1). SinceT T+ T.T, =1, (whereT, = Z;), this will be possibleonly if
T is contractive(notin the strict sense).While it is clearthatcontractivityis a necessary
condition, it will be shownin the sequelthat strict contractivity of T is sufficient to
constructa solutionto the embeddingoroblem. (The extensionto the boundarycaseis
non-trivial.) Note that the condition[Z is lossless]implies thatthe numberof inputs of
> is equalto its numberof outputs,andthat the condition[X is unitary]impliesthat
is a “diagonal of squarematrices”andhencethat the systemorderof the embeddings
constant(evenif the systemorderof T is not).
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Fig. 1. Embeddingof T.

2. NOTATION

Thenotationin this paperis aninclusiveextensiorof the notationin [4, 3]. We consider
ageneralizatiorof /, sequenceX=[--- X4 Xo X; ---],in whicheachof the
entriesX; is an elementof a (row) vectorspaceC", with varyingdimensionsN; O N |
and such that the total enegy || X||3 = 3%, || X ||3 is bounded. We denotethe set
(Z - N) of indexsequenceby 7, andwith N [ Z saythatthe aboveX is anelement
of 4,(C*,C"), or C} for brevity. We adoptthe shorthand'.n” for the index sequenceéN
with all N; equalto the sameintegern.

Let N,P O Z. Following [4], we denoteby X'(C",CP) the class of bounded
operators(Cy — C}). E.g., a systemtransferoperatorT with n, input ports and ng
output ports is an operatorin X(C™,C ™). Standardsubsetsof X' are the spaceof
upper(causal) lower and diagonaloperators:

U = {ADX: A=0,i>j}

£ = {AOX: A=0i<]}

D =Un L.

For everyindex sequenceN O 7, we definethe k-th shift N® by (N("))i = Niy.
We will use the shorthandN* for N®, and likewise N~ = NCD. The shift operator
Z:cN o CV is definedby (X2); = X1, and the k-th diagonalshift on X O X is
XKW = ZkXZK,

Let A0 X. We definethe j-th diagonalA; O D of A by (Ay), = A . Hence
Aq is the maindiagonalof the operatorA, andfor positivej, Ay; is thej-th subdiagonal
aboveAy;. With this notation, A canformally be written in termsof its diagonalsas
A=y* ZA;, althoughthis expressiomeednot convegeat all. A classof operators
thatdo allow this representatiors the setof Hilbert-Schmidtoperatorg4]:

X ={ADX: [ Allis = i |Ayl3 < oo}
alongwith inner product(A,B) = trac§AB"), andnorm || A||Zs = (A,A) = tracdAAD).
Standardsubspacesn X, arell, =U n Xy, Lo, = L n Ay, D, = L5 n U, and standard

projectorsonto thesespacesare Py = Pp, andP = Py,.
For X 0 U», the diagonalexpansiorof X is X, definedby

X = Xog+ZXy+Z2Xg +-+ = Xy + XE]I)Z + XE]Z)ZZ ...
X = o X ]

For X O £,Z7%, the diagonalexpansiorof X is also desighatedy X, now definedby
X = Z‘l)([_l] + Z‘ZX[_z] - )(F_f%l)z-l + X{J_'g])Z‘Z ...

X = e g -]



Thesedefinitionskeepentriesof X thatare on the samerow in X alsoon the samerow
in X.

3. PRELIMINAR Y

In the sequel,we will needthe notion of a “top left” part of an operatorT in ¢/ in the
senseof thatpartof T thatmapsinputsin the “past”, £,Z?, to outputsin the past,£,Z %,
which will be shownto correspondo the top left part of the matrix representatiorof
T. To this end, definethe operatorKs and V in the following way.
Definition 1. Given a systemtransferoperatorT [J 2/. Thenthe operatorsK; and Vt
aredefinedas

Kr: ,sz_l - ,sz_l, UKt = Pﬁzz—l(UT)

Vt: ,sz_l - Dy, UV = Po(UT)
We can defineoperatorsKy and Vr that act on diagonalexpansiondJ and Y of U and
Y. Unlike Kt and V5, theseoperatorshavea matrix representation.

Theorem 1. If Y=UK; O £,Z?1 andD = UV O Dy, with U O £,Z72, thenthe matrix
representationsf the operatorsKt and Vs suchthatY = UKy andD = UV is given by

"o
¥ +
Ro=| o b en o U= | g
T= + + + T=

T2’ T’ Tow O - Ti3)

It is clearfrom the abovethat KT satisfiesthe relation

_ T[O] 00-.-
K™ = - (1)

Connectiorof T with Ky andVy.  Let T 0. ThenKy is representetdy aninfinite-size
matrix with diagonalentriesin D. Construct(infinite S|ze)submatr|ce$< (—o0 <i < )
of K7 by selectingthe i-th entry of eachdiagonalin K. The K; can be viewed as
time-varying matricesthat would be Toeplitz in the time-invariantcase. The K; are
double-mirroed “top-left” submatriceof T (seefigure 2). In the sameway, let V; be
the vectorrepresentatioof the operatorVr, obtainedby selectingthe i-th entry of the
diagonalrepresentatiof V.

4. CONTRACTIVITY

Definition 2. A hermitianoperatorA in X is strictly positive definiteif thereexistsan
£> 0 suchthat, for all U in X, Po(UAUY) = £Po(UUY) . Notation: A > 0.

It is a known resultthat an operatorA is strictly positive definiteif andonly if A=A"
andA™ existsin X.

Definition 3. Let T be a systemtransferoperatorin Z/. T is strictly contractiveif
| -TT > 0.

Becauseof theidentity | + T{I = TT)™T = (1 -T"T) ! it is clearthatl - TT” > 0
impliesthat| — T°T > 0 also.
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Fig. 2. K; andV, matricesare submatrice®of T.

Lemma 1. Let T be a systemtransferoperatorin /. If T is strictly contractive,then
Kt is strictly contractiveon its domain: | - KtK¥ > 0, | = KIKt > 0. We also have
that K7 is strictly contractive:l - KiKZ > 0, | - KIKt > 0.

At this point, we remarkthatif K is strictly contractive thenall K; are strictly con-
tractive,andlettingi — oo it follows that T is strictly contractive.Hencecontractivity
of T, Kt andK7 areequivalent.

Theorem 2. Let T [0/ be a systemtransferoperator If T is strictly contractive then
| = Tigy Tior — V2 (1 - KrKD 2V > 0.
PROOF SinceT is strictly contractive,K; andK{™® arealsostrictly contractive.Using
equation(1), we havethat
| =TT~ ViVr  ~ViKy
—KPVr | - KKy
From an applicationof Schurs inversionformula (seee.g., [5]), it is seenthat this
expressions positive definite if f
(1) 1-KKr>0
(2) |- T Ty — ViVr = VEZK(l - KIKr) L KV; > 0.
Thefirst conditionis satisfiedbecauseT is strictly contractive.The secondconditionis
equalto theresult. |

| - REDTRED

5. CONTRACTIVITY OF A STATE SPACE REALIZA TION

Let T 0 havea statespacerealization{A,B,C, D}, with A 0 D(C",CV). We denote
by C the controllability operator:
B+D
BH+2AGD
C = | graat2AtD

and we shall say that a realizationis uniformly controllableif C7*C > 0. (C is an
extensionof the usualcontrollability operatorto the presentcontext. Its derivationand
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manyrelatedissuesare discussectlsewherd6].) It canbe derivedthat V; = C [T, and
by usingthe abovestructureof C we alsohave

~ B
-1) — -1) )
Let the hermitianoperatorM in D(CN, C") be definedby
M = CH(I - K:KD) ™. (3)

M is well-definedif T is strictly contractive. It will play an importantrole in the
embeddindheoryto follow in thenextsection.In thatrespectthefollowing observation
is important. The contractivity conditionimplies that M = 0. If in additionthe state
spacerealizationis uniformly controllable,C™C > 0, thenalsoM > 0 andinvertible.

Theorem 3. Let T [0 ¢/ be a systemtransfer operatorwith state spacerealization
{A,B,C,D}. If T is strictly contractive,then the abovedefinedM satisfiesthe rela-
tions| — D™D - C"MC > 0, and

MY = ARMA +B™B + [A"MC + BD] (I - DD - C"MC)™* [D'B + C'MA .
If in additionthe statespacerealizationis uniformly controllable,thenM > 0.
PROOF The proof usesthe definition of M, equationg1,2), and Theorem2. O

6. ORTHOGONAL EMBEDDING

We will constructa solution to the embeddingproblem as statedin the Introduction
underthe following conditions.

Theorem 4. Let T be a boundedcausalLTV systemin 2/(C™, C'™), with statespace
realizationT. SupposeA O D(C",CN). A solutionto the embeddingproblemcanbe
constructedf T is strictly contractiveandthe givenrealizationT is uniformly control-
lable. This constructionwill yield a losslessrealizationZ for the embeddingsystemZ
with the following properties.

(1) Zisin(C",C™), with n=ny + ng, i.e., the embeddingaddsn, moreinputs
andn; moreoutputsto thoseof T. This n cannotbe smaller

(2) £ = {As,B5,C5,Ds} hasA; O D(C™,C™), wherem = max(N;). This m
cannotbe smaller

Stepl. of the constructionis to find a statetransformatiorR and matricesB, and
D»; suchthat the columnsof %,

R A C
(1)
ZZ = | B D R | ]
I B, D2

areunitary, i.e., (Z2)"=, = 1.
Lemma 2. A solutionto stepl. is obtainedby puttingM = R°R andsolving for M in
MDY = AfMA+B™B  + [A'MC + BD] (I -D"D - C"MC) ™ [D"B + CHVIA] .

ThesolutionM existsunderthecondition[ T is strictly contractivejandis strictly positive
definiteif [T is uniformly controllable]. Becauseof Theorem3, it is givenin closed
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form by equation(3). B, O D(C™,C") andD,; O D(C™, C™) are determinedas
Dy = (I-D™D-C™MC)¥2
B, = —(-D'D-C™MC)Y2[DB+CMA
PrOOF To solve step1, compute(Z,)"%,, andput M = R'R. From the orthogonality
conditionsthe equationamentionedn the theoremfollow directly. At this point, recall
Theorem3, and observethat the solutionto the last equationis preciselygiven by

M = CH1 - K:KD™C.
Sincethe realizationis uniformly controllable, Theorem3 assertghatthis M >> 0, so
thatit canbe factoredas M = R'R with R invertible. It alsofollows that D5,D2; > 0,
so that D,; cannothavelessthan.ny rows, and henceno lessthanng inputs mustbe

addedto T to yield a losslessembedding. |
Step2. Define¥), as¥, extendedby zerorowsto 54, 0 D(C ™" ¢cN):

I O m-Nyxn-
st = [ O m-nys- ] _ R A C [ R ]
2 z, | B D |
| BZ D21

Find matricesZ; O D(C ™"+ ¢™N'y and 2 O D(C ™M) ¢'™) suchthat
2= [Zl ZIZ 23]

is in D(C' ™M) (Mot 5 diagonalof squareunitary matricesof constantsize
(m+ng + ng). Putinto this form, step2. is alwayspossibleand reducesto a standard
exercisen linear algebra.
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