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we would like to trade off extra redundancy for error performance.
Next, we consider the channel RMSE for SNR= 20 dB when the
orderLh is overestimated andP = M + Lh in Fig. 10 and when
the order is overestimated withP = 19 in Fig. 11. In Fig. 10, we
see the beneficial effects of having a larger prefix, whereas Fig. 11
shows the graceful degradation when the channel is overestimated.

Experiment 2: In this experiment, we consider the effect of the
cycle chosen on the resulting channel error in estimating the two-
ray channel above. Fig. 12 considers the performance of the OC
approach forI = 100; P = 19; M = 15; SNR= 20 dB, and 120 M
symbols for cycles 1. . . 6, whereas Fig. 13 considers similarly the
performance using the TC approach with cycles 1 and 2. . . 7. Cycle
selection seems to have an effect on the channel error, but asymptotic
performance analysis is required to determine its precise role.

Experiment 3: Now, we look at the probability of bit error for
an OFDM system. In Fig. 14, we plot the RMS symbol estimation
error, and in Fig. 15, we plot the probability of bit error (assuming
Gray coding in selection of the 16 QAM symbols) estimated over
500 Monte Carlos of 500 M data for an OFDM system withM = 15
andP = 19, with and without a(15; 11) two symbol-error correcting
Reed–Solomon (RS) equivalent code for the artificial channelh =
[1; 2; 1;�1; 1]=

p
8. We used the standard OFDM ZF and MMSE

structures [12] to equalize theLh = 4 channel above. Next, we
consider the same channel andM = 15 and P = 17 to observe
the effects of channels longer than the cyclic prefix. We estimate the
channel as before but look at MMSE equalization with and without
the use of impulse response shortening [9] and RS(15;11) coding.
We used an eight-tap, zero-delay shortening filter derived from the
estimated channel. In Fig. 16, we plot the RMS symbol estimation
error, and in Fig. 17, we plot the estimated probability of error. For
comparison purposes, in Figs. 15 and 17, we plot the MMSE uncoded
and coded solutions for the case whenh(n) = �(n) as well as
when there is no attempt at equalization. In Fig. 15, we see that
the performance of the system using equalization with our channel
estimate approaches the performance of the case whereh(n) = �(n).
From Fig. 17, we see that impulse response shortening may be a
beneficial technique when combined with our channel estimate since
it reduces the the error floor present in the unshortened scenario.
Performance of impulse response shortening varies with the channel
and may be improved by changing shortening parameters. Further
improvements may be obtained using vector MMSE or vector MMSE
decision feedback equalizers at the expense of further complexity [6].
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On the Equivalence of Blind Equalizers
Based on MRE and Subspace Intersections

David Gesbert, Alle-Jan van der Veen, and A. Paulraj

Abstract—Two classes of algorithms for multichannel blind equalization
are the mutually referenced equalizer (MRE) method by Gesbertet
al., and the subspace intersection (SSI) method by van der Veenet al.
Although these methods seem, at first sight, unrelated, we show here that
certain variants of the SSI and the MRE methods both optimize a new
blind criterion, which is referred to as maximum coherenceand, thus, are
equivalent.

Index Terms—Array signal processing, fractionally spaced equalization,
mobile communications, multichannel blind equalization.

I. INTRODUCTION

Blind equalization has been an active research area during the last
few years. Two major factors appear to drive the wide interest in
this topic. First, there is an increasing number of interesting and
promising applications in the area of digital communications: wireless
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(a) (b)

Fig. 1. (a) Equalizer with delayk and (b) superequalizer, combining the outputs of several equalizers at different delays.

or otherwise. Second, it was recognized that channel oversampling,
either temporally (fractionally spaced equalizers) or in space (antenna
arrays), leads to a multichannel data representation that offers several
new leverages for solving the blind equalization problem and, thus,
enhances its applicability.

From an algebraic perspective, oversampling leads to a low-rank
model for the output vector signal. This has been extensively ex-
ploited in the so-called second-order statistics and algebraic methods
for the single-input, multiple-output (SIMO) identification problem
[1]. At least three classes can be identified. The first tries to estimate
the channels, viz., e.g., [2]–[4], the second considers the estimation of
channel inverses (equalizers) [5]–[7], and the third attempts to recover
the transmitted symbols directly from a (typically small) batch of
output samples without resorting to channel/equalizer estimates [8],
[9].

Categories 2 and 3 have the advantage of bypassing the channel
estimation step, and this can result in increased robustness. The direct
symbol-estimation methods [8], [9] have sometimes been called row-
span methods as they exploit the row-span information of the data
matrix to find the vector of unknown symbols. Following a seemingly
different strategy, MRE techniques [6] estimate a collection of
channel equalizers by forcing them to produce the same (unknown)
output sequence up to fixed equalization lags. The goal of this
correspondence is to demonstrate that these two methods are, in fact,
identical with small differences arising only due to variations in the
implementation.

In this correspondence, we first provide a new perspective of
the row-span method of [9] by showing that the symbol estimates
produced by this technique can be regarded as the outputs of linear
equalizer averaged across all equalization lags. We show that these
equalizers optimize amaximal coherence(MC) criterion. Finally,
we show the equivalence between the MC criterion and a particular
member in the class of MRE criteria.

Notation: For a vectorx, xt is its transpose,x� its conjugate-
transpose, andkxk its `2-norm. A sequence (row vector) with entries
xi is denoted byx = [xi].

II. DATA MODEL

A. Data Matrices

A digital symbol sequence[si] is transmitted through a medium
and received by an array ofM � 1 sensors. The received signals
are sampledP � 1 times faster than the symbol rate, which, here,
is normalized toT = 1. Hence, during each symbol period, a total
of MP measurements are available, which can be stacked intoMP -
dimensional vectorsxi asxi = [x1i ; � � � ; x

MP

i ]t. Assuming an FIR
channel, we can modelxi as the output of anMP -dimensional vector
channel with impulse response[h0; h1; � � � ; hL�1], whereL denotes

the channel length. In the noise-free case,xi is then given by

xi =

L�1

k=0

hksi�k: (1)

Consider a finite block of data, and define themMP � N block-
Toeplitz data matrix

X (i) =

xi xi+1

. . . xi+N�1

xi�1 xi

. . .
. . .

. . .
. . .

. . .
. . .

xi�m+1

. . .
. . .

. . .

:

N is the block length, whereasm can be interpreted as the memory
of an equalizer acting on the rows ofX (i). Let n = L + m � 1.
From (1),X (i) has a factorization asX (i) = HS(i), whereH is an
mMP � n channel matrix, andS(i) is anL +m � 1 � N signal
matrix, viz.

H =

h0 � � � hL�1 0

. . .
. . .

. . .
0 h0 � � � hL�1

and

S(i) =

si si+1
. . . si+N�1

. . .
. . .

. . .
. . .

si�n+1
. . .

. . .
. . .

: (2)

We will assume thatH is tall (mMP � L+m�1) andS(i) is wide
(L+m�1 � N ) so that this is a low-rank factorization. This requires
at leastMP � 2 and a sufficiently largem andN . We assume that
H has full column rank; therefore, we can recover any row ofS(i) by
taking linear combinations of the rows ofX (i). Finally, the matrices
S(i) are supposed to have full row rank.

B. Equalizers

An equalizer with delayk acting onX (i) tries to reconstruct the
k + 1st row of S(i)

w
�

kX
(i) = [si�k si�k+1 � � �]:

See Fig. 1(a). SinceS(i) hasn rows, there is a total ofn possi-
ble delays, and hence, there aren different equalizerswk (k =
0; � � � ; n� 1). Note, in particular, thatw�

iX
(i) = [s0 s1 � � �], and

hence

w
�

iX
(i) = w

�

kX
(k)
; i; k = 0; � � � ; n� 1: (3)

If m is large enough, thenX (i) is rank deficient, leading to
nonuniqueness for the equalizersfwig. Any vector from the left null
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space ofX (i) may be added. The null space component is removed if
we require the equalizer to have minimum norm. We can also define
the equalizer to act on a minimal basis of the row span ofX (i) rather
thanX (i) itself. Thus, we introduce the SVD’s

X (i) = Ui�iV
(i)
; i = 0; � � � ; n� 1:

If X (i) has rankn, thenUi hasn orthonormal columns,V (i) has
n orthonormal rows, and�i is a diagonal matrix containing then
nonzero singular values. The rows ofV (i) form an orthonormal basis
for the row span ofX (i). A “normalized” equalizer acting onV (i)

is calledti, which is related towi via ti = �iU
�

i wi. Similarly to
regular equalizers, we have (fori; k = 0; � � � ; n � 1)

t
�

i V
(i) = [s0 s1 � � �]

and

t
�

i V
(i) = t

�

kV
(k)
: (4)

C. Superequalizers

Define

XT =

X (0)

...
X (n�1)

; VT =

V (0)

...
V (n�1)

: (5)

“Superequalizers” are long vectors that collect several equalizers with
different delays, each reconstructing the same sequence[s0 s1 � � �].
They act on the dataXT or on the normalized dataVT , respectively

w
� = [w�

0 � � � w�
n�1]; t

� = [t�0 � � � t�n�1]:
It is interesting to consider the superequalizer as combining the out-
puts of the regular equalizers, forming an average over all admissible
delays. (By itself, it can also be interpreted as an ordinary equalizer
of lengthn+m� 1 at delayn� 1.) See Fig. 1(b). Note that there is
an issue of how to weight the outputs of each equalizer to combine
them in an optimal fashion.

III. B LIND EQUALIZATION

A. Subspace Intersection Method

The problem of blind equalization is, for given a data matrixX , to
find a factorizationX = HS, whereS meets the required Toeplitz
structure. Since a Toeplitz matrix is generated by a single vector
in a linear way, this translates to findings = [s0 s1 � � � sN�1]
such thats lies simultaneously in row(X (0)), row(X (1)), � � �, and
row(X (n�1)), where “row(�)” stands for the row span. The goal of
subspace intersection methods (SSI’s) such as in [8] and [9] is to find
the single vectors, which is in the intersection of alln subspaces.

Numerically, there are several ways to compute the intersection.
The algorithm proposed in [8] constructs the union of the complement
of all row spans and takes the complement again. The problem with
this is that the complementary spaces can be highly dimensional
(orderN each). The “minimum noise subspace” (MNS) technique
[10] is a method to prune the dimensions of each complementary
space without changing the resulting union too much, thus greatly
reducing the complexity. Although it was proposed in a different
context, it could be translated to apply to the current situation, but
the pruning would still incur a loss in performance.

It was proven in [9] that since the rows ofV (i) form a minimal
and “orthonormal” basis for row(X (i)), the exact intersection can
also be obtained by constructing the matrixVT in (5) and looking for
the right singular vector corresponding to thelargest singular value
of VT . This computation has a complexity that is much smaller than
the algorithm in [8] and smaller than what the MNS technique would

give. Nonetheless, even with noise perturbations, we find exactly the
same output sequence as that produced by the algorithm in [8]. The
corresponding principal left singular vector ofVT can be interpreted
as the superequalizer that returns this sequence.

In particular, it is proven in [9] that iftssi is the principal left
singular vector ofVT andn = L+m� 1, then (without noise)

t
�
ssiVT = �[s0 s1 � � � sN�1]

where� is some nonzero scalar that makes the output sequence have
norm 1. Because of the normalization, the largest singular value
of VT is bounded by

p
n. This bound is attained whent�ssi =

[t�0 � � � t�n�1], where each component by itself is an equalizer on the
normalized signals [viz. (4)], returning a multiple�i of [s0 s1 � � �].
In fact, all scaling�i will be the same.

Thus, tssi is a superequalizer in the sense of Section II-C. The
corresponding equalizer on unnormalized dataXT is denoted by
wssi and related totssi via

wssi = [w�
0 � � � w�

n�1]
�
; wi = Ui�

�1
i ti: (6)

B. Maximal Coherence Criterion

The principal left singular vectortssi of VT can also be expressed
in terms of a criterion on the unnormalized received data. Indeed,
tssi can be written as

tssi = arg max
kuk =1

u
�RV u

whereRV = VTV
�
T . Define the (empirical) correlation matrices

Ri; j = X (i)X (j)

RX = XTX
�
T =

R0; 0 � � � R0; n�1

...
...

Rn�1;0 � � � Rn�1;n�1

and

R0 =

R0; 0 0

. . .
0 Rn�1; n�1

:

ThenRX = R1=2
0 RVR1=2�

0 , where

R1=2
0 =

R
1=2
0; 0 0

. . .
0 R

1=2
n�1; n�1

and R1=2
i; i := Ui�i.

It follows that w�RXw = u
�RV u for u = R1=2�

0 w. Now,
denote bywssi the corresponding superequalizer provided by the
SSI method [related totssi as in (6)]. By substitution,wssi is found
to optimize the constrained criterion

wssi = arg max
w R w=1

w
�RXw = arg max

w R w=1
Jssi (7)

whereJssi is given by

Jssi :=

n�1

i=0

w
�
iX (i)

2

and the constraint can be written as

w
�R0w =

n�1

i=0

w
�
iX (i)

2

= 1: (8)

Thus, the subspace intersection solution is also obtained by maxi-
mizing the power of the sum of all equalizer’s outputs, subject to
the constraint that the sum of the powers is kept constant.The SSI
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w
�Xmre = 0 Xmre: =

X (0) X (0) � � � X (0) �X (0)

�X (1) X (1) X (1) � � � X (1)

�X (2) �X (2) � � �
. . .

. . .
�X (n�1) �X (n�1)

(8a)

method maximizes the coherence of the equalizer’s outputs.Indeed,
in the noise-free case, all equalizers return thesameoutput sequence
[s0 s1 � � �] up to a common scaling. Note that this is true only in the
case of the constraint specified in (8).

C. The MRE Method

The idea behind the mutually referenced equalizer (MRE) method
for blind equalization [6] is to exploit the relations in (3) by finding
a vector ofn equalizersw = [w�0 � � � w�n�1]

� that simultaneously
minimizes all differenceskw�iX

(i)�w�kX
(k)k2. This can be written

as a least-squares problem,1 as shown in (8a) at the top of the page.
To avoid trivial solutions,w should be constrained, e.g., by fixing
one of its entries or its norm. Another suitable constraint is one that
keeps the sum of output powers to a constantw

�R0w = 1. The
motivation for this particular choice is that it avoids trivial null space
solutionsw�iX

(i) = 0 8 i, which is necessary in the noise-free case.
Thus, we obtain

wmre := arg min
w R w=1

Jmre

Jmre :=

n�1

i=0

n�1

k=0

w
�

iX
(i) �w�kX

(k)
2

: (9)

We elaborate and find

Jmre=w
�XmreX

�

mrew

=2w�

(n�1)R0;0 �R0;1 � � � �R0;n�1

�R1;0 (n�1)R1;1 �
...

...
�Rn�1;0 � � � (n�1)Rn�1; n�1

w:

It thus follows that

Jmre + 2Jssi = 2nw�R0w:

Under the constraintw�R0w = 1, we finally obtain

min
w R w=1

Jmre = 2n� max
w R w=1

Jssi:

This means thatwmre � wssi.
Hence, we conclude that the SSI method and the extended MRE

method under the output power constraint are identical. Note that the
MRE method can use several other constraints; however, only the
one presented here guarantees the equivalence of the two methods.

D. Remarks

The SSI method here is slightly different from the version in [9].
There, the sequence was extended with additional tail symbols, which
changed the definition ofVT such that only a single matrixV (0)

was needed so that only a single data matrix has to be normalized,
leading to computational savings. This implementation of the SSI
method is asymptotically identical to the one presented here, which

1The equation is reminiscent of the cross-relation method in [4], but this
connection is only optical. Here, we estimate equalizers and not the channel,
as in [4]. More importantly, the CR method does not cross-relate delays of the
full data matrices but rather theMP scalar subchannels so that the superscript
(i) in X (i) has a different meaning.

was chosen for expository reasons. With noise, the SSI method on
normalized dataVT and on original dataXT are slightly different.
The reason is that with noise, eachX (i) is always full rank, whereas
V

(i) is presumably obtained from a truncated SVD, resulting in an
approximaten-dimensional basis for the row span ofX (i). If we omit
the truncation, i.e., defineV (i) to contain allmMP right singular
vectors ofX (i), then the solution is exactly equal to the SSI method
on VT .
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