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Spatial Filtering of RF Interference in Radio
Astronomy Using a Reference Antenna Array

Ahmad Mouri Sardarabadi, Alle-Jan van der Veen, and Albert-Jan Boonstra

Abstract—Radio astronomical observations are increasingly
contaminated by RF interference. Assuming an array of tele-
scopes, a previous technique considered spatial filtering based on
projecting out the interferer array signature vector. A disadvan-
tage is that this effectively reduces the array by one (expensive)
telescope. In this paper, we consider extending the astronomical
array with a reference antenna array, and develop spatial filtering
algorithms for this situation. The information from the reference
antennas improves the quality of the interferer signature vector
estimation, hence more of the interference can be projected out.
Moreover, since only the covariance data of the astronomical
array has to be reconstructed, the conditioning of the problem
improves as well. The algorithms are tested both on simulated and
experimental data.

Index Terms—Array signal processing, interference cancella-
tion, radio astronomy, reference antenna, spatial filtering.

I. INTRODUCTION

R ADIO astronomical observations are increasingly con-
taminated by man-made RF interference. In bands below

2 GHz, we find TV and radio signals, mobile communication
(GSM), radar, satellite communication (Iridium) and local-
ization beacons (GPS, Glonass), etc. Although some bands
are specifically reserved for astronomy, the stop-band filters
of some communication systems are not always adequate.
Moreover, scientifically relevant observations are not limited
to these bands. Hence, there is a growing need for interference
cancellation techniques.
The output of a radio telescope is usually in the form of corre-

lations: the auto-correlation (power) of a single telescope dish,
split into frequency bins and integrated over periods of 10–30
seconds or more, and/or the cross-correlations of several dishes.
The astronomer uses several hours of such correlation obser-
vations to synthesize images and to create frequency-domain
spectra at specific sky locations (in particular for the study of

Manuscript received April 01, 2015; revised July 31, 2015; accepted
September 08, 2015. Date of publication September 28, 2015; date of current
version December 16, 2015. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Eduard Jorswieck.
A preliminary version of this paper appeared in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Montreal, QC, Canada,
May 2004 [1].
A. M. Sardarabadi and A.-J. van der Veen are with Department of Electrical

Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
(e-mail: a.mourisardarabadi@tudelft.nl).
A.-J. Boonstra is with ASTRON, 7990 AA Dwingeloo, The Netherlands.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2015.2483481

spectral emission and absorption lines). Current systems for in-
terference cancellation mostly operate at the post-correlation
level, by rejecting suspect correlation products in the time-fre-
quency plane, or by specialized imaging algorithms. Spatial fil-
tering at shorter time scales (pre-correlation) is not commonly
applied, but would offer interesting possibilities in the first-stage
suppression of continuously present wideband interference in
bands that are currently avoided by astronomers. An example is
the band between 174–240 MHz, which is currently being pop-
ulated by Digital Audio Broadcast (DAB) transmissions but is
also of interest for the LOFAR radio telescope.
Depending on the interference and the type of instrument,

several kinds of RFI mitigation techniques are applicable.
Overviews can be found in [2]–[6]. E.g., intermittent inter-
ference such as radar pulses can be detected using short-term
Fourier transforms and the contaminated time-frequency cells
omitted during long-term integration to order 10 s [2]. Similarly,
during postprocessing we can suppress intermittent signals
using time-frequency blanking, where detection can be based
on anomalous power or higher order spectral kurtosis [7]–[9].
However, many communication signals are continuous in time.
For a single-dish single-feed telescope, there are not many other
options1 than to consider an extension by a reference antenna
which picks up only the interference. In this case LMS-type
adaptive cancellation techniques have already been proposed
by [12]–[14].
With an array of telescope dishes (an interferometer), spa-

tial filtering techniques are applicable as well. The desired in-
strument outputs in this case are correlation matrices, inte-
grated to order 10 s (more generally: the time over which astro-
nomical array signals can be considered stationary, also taking
the rotation of the earth into account). Based on short-term cor-
relationmatrices (integration to e.g., 10ms) and narrow subband
processing, the array signature vector of an interferer can be es-
timated and subsequently projected out. The resulting long-term
averages of these matrices are mostly interference-free, but they
are biased because of the missing dimensions. Such a projection
operation also affects the sensitivity and beam-shape of the array
[15]. If the projection vector was sufficiently varying, the bias
can be corrected for [16], [17]—we describe this technique in
more detail later in Section III-B. For stationary interferers (e.g.,
TV stations or geostationary satellites), this might not work very
well, and the correction has to be done during image formation
[18]. A special case of a “stationary” interferer is interference
entering on only a single telescope dish. The projections will
simply remove that channel, and the information can never be

1Exceptions are techniques based on higher-order statistics [10] or estimation
of outliers in variance [11].
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Fig. 1. Telescope array augmented with a reference phased array. A “telescope” could also be a beamformed “station” output, where a station consists of an array
of antenna elements.

recovered. A third limitation is that for relatively weak interfer-
ence the estimate of the signature vector will not be very accu-
rate so that it will not be perfectly cancelled.
To improve on these aspects, we consider in this paper to ex-

tend the telescope array with one or more reference antennas.
These might be simple omnidirectional antennas, located close
to an interfering source (e.g., a poorly shielded computer in the
observatory), or a satellite dish pointing into the direction of
a geostationary satellite. Most flexibility is obtained by using
a phased array which can adaptively be pointed towards the
strongest interferers. In the experiment in Section VII, we have
used a focal plane array that was mounted on one of the tele-
scope dishes, pointing to zenith.
In the context of phased array telescopes consisting of sta-

tions that each form beams on the sky, such as LOFAR or SKA,
the equivalent of a “telescope” is a station beam. The refer-
ence array may then be a separate array, or remaining degrees of
freedom of the stations (e.g., independent beams). It may also
consist of the individual station antenna outputs, if we have ac-
cess to them, or a subset of these.
The generic set-up considered in this paper is shown in Fig. 1.

The telescope signals (or station beams) are split into narrow
sub-bands and correlated to each other over short time intervals
(say to order 0.01–1 second). The reference signals are corre-
lated along with the telescope signals as if they were additional
telescopes, and spatial filtering algorithms that project out con-
taminated dimensions can be applied to the resulting short-term
integrated covariance matrices. These matrices could also be
used to adaptively beam-steer the reference array towards an
interferer. The output of the spatial filter is long-term integrated
(say to order 10 seconds), and formally we have to apply a cor-
rection matrix to correct for the projected dimensions. The aim
of the present paper is to develop spatial filtering algorithms that
act on the short-term covariance matrices.
In the literature, several papers have appeared which pro-

pose to apply some form of spatial filtering on extended ar-
rays. Briggs et al. [19] consider a single dual-polarized tele-
scope (two channels), augmented with two reference antennas.
With their technique a single interferer can be cancelled; it is

not immediately obvious how it can be extended to more gen-
eral cases (more antennas, more interferers). Kocz et al. [20]
propose a projection based spatial filter specifically for multi-
beam receivers and show its application for detecting pulsars.
Jeffs et al. [21], [22] propose spatial filtering algorithms along
the lines of [16], [17]; we will summarize their approach in
Section III-B and subsequently make extensions which may
improve the performance. Hellbourg et al. [23] use cyclosta-
tionarity of RFI signals to improve the projection estimation
while using the same projection correction technique used in
[16], [17]. The improvements discussed in this paper are hence
equally applicable to their technique.
The structure of the paper is as follows. In Section II, we

define the data model and state the problem. In Section III,
we present a number of existing spatial filtering algorithms. In
Section IV, we extend on these, and also present a more generic
(Maximum Likelihood) approach. Section V discusses the theo-
retical performance of these algorithms. Section VI shows sim-
ulation results, and Section VII shows results on experimental
data.

A. Notation
Superscript denotes matrix transpose, overbar denotes

complex conjugate, and complex conjugate transpose,
denotes the stacking of the columns of a matrix in a vector
and is the inverse operation. creates a diag-
onal matrix out of a vector, creates a vector from
diagonal elements of a matrix, and constructs a
block-diagonal matrix.

denotes the Kronecker product, a Khatri-Rao product
(column-wise Kronecker product), and the entrywise multi-
plication of two matrices of equal size. The expectation operator
is , the covariance of an estimated matrix is defined as

where .
For two Hermitian matrices and , the notation

signifies that is positive semidefinite.
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II. PROBLEM STATEMENT

A. Data Model
Assume we have a telescope array (primary array) with

elements, and a reference array with elements.2 The total
number of elements is .
We consider complex signals received at the antennas

in a sufficiently narrow subband. For the interfer-
ence free case the primary array output vector is modeled
in complex baseband form as

where is the vector of tele-
scope signals at time , is the received sky signal, assumed
on the time scale of 10 s to be a zero-mean stationary complex
Gaussian vector with covariance matrix (the astronomical
‘visibilities’), and is the noise vector. In the general
case for an uncalibrated antenna array where the noise on each
element is independent and Gaussian, the noise covariance ma-
trix is a diagonal matrix , where is a
vector of noise powers on each element, and if the array is cal-
ibrated this simplifies to . The astronomer is interested in

.
If an interferer is present the primary array output vector is

modeled as

where is the interferer signal with spatial signature vector
which is assumed stationary only over short time intervals.

Without loss of generality, we can absorb the unknown ampli-
tude of into and thus set the power of to 1.
Consider now that we also have a reference antenna array.

The outputs of the reference antennas are stacked into a
vector , modeled as

It is assumed here that the contribution of the astronomical
sources to the reference signals is negligible. The noise on
the reference antenna array is assumed to be independent and
Gaussian with a diagonal covariance matrix. For an uncali-
brated array , and for a calibrated array it is

.
Stacking all antenna signals in a single vector

, and similarly for , ,
, we obtain

(1)

Wemake the following additional assumptions on this model:
(A1) The noise covariance matrices could be either un-
known diagonal matrices or they could be known from cal-
ibration, e.g., from observations of nearby uncontaminated
frequencies.
(A2) . This is reasonable as even the strongest
sky sources are about 15 dB under the noise floor.

2In subsequent notation, the subscript ‘0’ will generally refer to the primary
array and ‘1’ to the reference array.

(A3) The processing bandwidth is sufficiently narrow, so
that possible multipath propagation of the interferer will
add up to a single signature vector and the interferer
is seen as a single source. For this it is at least required that
the maximal propagation delay along the telescope array is
small compared to the inverse bandwidth.
(A4) The interferer signature is stationary over short
processing times (say less than 10 ms). It may or may not
vary over longer periods. Note that even interferers fixed
on earth will appear to move as the earth rotates and the
telescopes track a source in different direction. This effect
depends on the look direction and the maximal baseline
length of the telescopes. (The earlier mentioned window
of order 10 s over which is stationary is derived from
this as well.) The rotation of the telescopes and the associ-
ated delay compensation (‘fringe stopping’) introduced to
keep the astronomical signals coherent, give rise to phase
changes of the entries of which for long baselines
are significant already over short time intervals. The ampli-
tudes will change because the interferer is usually received
via the side lobes of the telescope antenna response, which
are highly non-constant and cause temporal variations for
tracking dishes or beamformed stations.

The model (1) with a calibrated array was considered in [16].
The model is easily extended to multiple interfering sources, in
which case we obtain

or equivalently

where has columns corresponding to interferers,
and is a vector with entries.

B. Covariance Model
Let be given observations , where is the

sampling period. We assume that is stationary at least over
intervals of , and construct short-term covariance estimates

,

where is the number of samples per short-term average. All
interference filtering algorithms in this paper are based on ap-
plying operations to each to remove the interference, fol-
lowed by further averaging over resulting matrices to obtain
a long-term average.
Considering the as deterministic, the ex-

pected value of each is denoted by , which can be written
in block-partitioned form as

According to the assumptions, has model

(2)
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where is the interference-free covariance ma-
trix, contains the astronomical visibili-
ties, and is the diagonal noise covariance
matrix. The objective is to estimate the interference-free covari-
ance submatrix (long-term estimate) .

III. EXISTING ALGORITHMS

A. Traditional Subtraction Technique
For very high INR where the noise on the reference antennas

is negligible , a classical technique for interference
removal using a reference antenna is based on taking the co-
variance of the primary antennas, , and subtracting the es-
timated contribution of the interferers, . In effect, the
rank deficiency of the interference term

is exploited: if and moreover has full
column rank , then the first columnsmust be linear combina-
tions of the remaining . Under these conditions, one can show
that , where denotes the Moore-
Penrose pseudo-inverse, so that

Following this observation, inspection of (2) and assuming
shows that a ‘clean’ instantaneous covariance estimate

is

The final ‘clean’ covariance estimate is obtained by averaging
over such matrices to obtain a long-term estimate

(3)

Briggs et al. [19] derive essentially this algorithm and several
variants of it, for the special case of and . Jeffs et
al. [21] describe the same technique as a generalization of the
classical Multiple Sidelobe Canceller.
The mentioned conditions on entail that this technique

can be used for at most interferers, and only if the reference
antennas are sufficiently independent so that they receive inde-
pendent linear combinations of the interferers. Unlike some of
the techniques to be discussed in later sections, the technique
does not rely on the variation of : in principle, can be
stationary.
Note that there is no detection of the number of interferers,

and the noise power is assumed to be very small. This simplifies
the algorithm but might also limit its performance. With noise,
the estimate is biased since contains a noise term. Obvi-
ously, if the noise covariance is known, the noise term could be
subtracted. However, if the INR of the reference array happens
to be poor, the inversion of the corrected (small) term gives rise
to instabilities; the resulting estimate does not even have
to be positive definite. Hence, for stability reasons, it is better
not to remove the bias. This limits the performance for low INR
as seen in simulations. Considering that the low INR case is

important, this technique cannot be applied in many practical
cases.

B. Spatial Filtering Using Projections
In [16], a spatial filtering algorithm based on projections was

introduced, and subsequently analyzed in [17]. Although that
algorithm did not assume the presence of reference antennas, it
can also be used in our current situation. We will first discuss
the case where the spatial signature of the interferers are deter-
ministic or known, then we will generalize it to the case where
it is estimated from the data.
1) Deterministic or Known Spatial Signature: Suppose that

an orthogonal basis of the subspace spanned by interferer spa-
tial signatures is known. Let the basis vectors be the
columns of a matrix . We can then form a spatial projection
matrix ,

(4)

which is such that . When this spatial filter is applied
to the data covariance matrix,

then all the energy due to the interferers will be nulled:

If we subsequently average the modified covariance matrices
, we obtain a long-term estimate

(5)

is an estimate of , but it is biased due to the projection.
To correct for this we first write the two-sided multiplication
as a single-sided multiplication employing the matrix identity

. This gives

(6)

where

If the interference was completely removed then

(7)

where

In view of this, we can apply a correction to to obtain
the corrected estimate

(8)

If the interference was completely projected out then is an
unbiased estimate of the covariancematrix without interference.
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This algorithm was introduced in [16] and its performance was
discussed in [17].
The main computational complexity is in constructing and

inverting it, as this is generally a very large matrix .
Inversion of this would require operations, but because
the inverse is applied to only a single vector this can be reduced
to using numerical techniques.3 Note in this respect that,
for large and sufficiently varying , is usually quite close
to an identity matrix, and the hope would be that the correction
can be omitted or highly simplified under such conditions.
The reconstructed covariance matrix is size . In the

present case, we are only interested in the submatrix corre-
sponding to the primary antennas. Hence, the estimate produced
by the algorithm is the submatrix in the top-left corner,

.
2) Unknown Spatial Signature, Known Noise Covariance:

The spatial signatures of the interferers are generally unknown,
but if the noise covariance is known the interfering subspace
can be estimated from an eigen-analysis of the sample covari-
ance matrices . If is not a multiple of , then we first
have to whiten the noise to make the noise powers on all an-
tennas the same. This is done by working with .
Without interference and assuming is negligible compared
to , all eigenvalues of this matrix are expected to be close to 1.
With interferers, eigenvalue become larger, and the eigen-
vectors corresponding to these eigenvalues are an estimate of

.
Remarks:
1) The algorithm relies on the invertibility of , which is con-

structed from projection matrices. Each projection matrix
is rank deficient. Hence, is invertible only if the spatial
signature vectors which are projected out are sufficiently
varying. In [17] it was noted that for , usually already
3 different projections are sufficient to guarantee that is
full rank.

2) The algorithm is inefficient in the sense that it first recon-
structs the complete covariance matrix, then selects the
submatrix of interest. Since more parameters (the complete
covariance) are estimated, the performance (estimation ac-
curacy) is reduced.

3) If the noise covariance is not known, then the eigenvalue
decomposition can be replaced by a more general Factor
Analysis decomposition, see Section IV-B.

4) Regarding the subspace estimation, the maximum number
of interferers is constrained by . Each has size

and rank ; invertibility requires at least
(in case the projected subspaces are com-

pletely arbitrary).
In summary, this spatial filtering algorithm does not really

take advantage of the reference antennas. In the processing, it
treats them like ordinary antennas. The only benefit obtained
from them is that, with an improved INR, the estimate of the
interference subspace will be better, so that the interference can
be filtered out better. The performance is then limited by the
conditioning of (thus the variability of the spatial signature
vectors).

3In comparison, image formation techniques work with correlation matrices
of size and have a complexity of .

IV. NEW ALGORITHMS

A. Improved Spatial Filter With Projections
Taking the above remarks into account, we derive an im-

proved algorithm. Compute the projections and long-term av-
erage of the projected estimates as before in (5). Then (7)
applies:

Based on this, we previously set , which
is the solution in Least Squares sense of the covariance model
error minimization problem, . Now, in-
stead of this, partition as in (2) into 4 submatrices. Since we
are only interested in recovering , the other submatrices in
are replaced by their expected values, respectively ,

, . This corresponds to solving the re-
duced-size covariance model error minimization problem,

The solution of this problem reduces to a standard LS problem
after separating the knowns from the unknowns. Thus, rearrange
the entries of into

where , and repartition accordingly, to
obtain the equivalent problem

(9)

where and . The advantage
compared to the preceding algorithm is that is a tall matrix,
and better conditioned than . This improves the performance
of the algorithm in cases where is ill-conditioned.
Remarks:
1) The subspace estimation has not changed, and the max-

imum number of interferers is still constrained by .
Now has size and invertibility requires at least

, in case the projected subspaces are com-
pletely arbitrary.

2) Even if the interferers are located stationary ( constant),
is expected to have full column rank and hence the im-

proved algorithm can estimate the astronomical covariance
(provided ).

3) The same advantage holds in case an interferer only con-
taminates one of the primary antennas ( has only one
nonzero entry). Without reference antenna, the projection
is always the same and cannot be corrected: the correla-
tions corresponding to that antenna are lost. With a refer-
ence antenna, they can be recovered.
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4) Asymptotically for large INR of the reference array, the
algorithm is seen to behave similar to the traditional sub-
traction technique described in Section III-A.

5) We assumed that is known from calibration. For an
uncalibrated array we can use Factor Analysis to estimate

, as described next in Section IV-B.

B. Factor Analysis

Factor Analysis (FA) [24] is a multivariate statistical tech-
nique that decomposes a covariance matrix into the sum of a
low rank matrix and a diagonal matrix. Factor Analysis gener-
alizes Principal Component Analysis (PCA), i.e., the low-rank
approximation of a matrix using an Eigenvalue Decomposition
(EVD). More general than PCA/EVD, FA includes an unknown
diagonal matrix to represent the noise covariance, whereas in
PCA/EVD this matrix is assumed to be a multiple of . Using
FA, we can operate on an uncalibrated array.
If we ignore the astronomical correlations , then the short-

term covariance matrices are modeled as in (2),

(10)

where is a diagonal and is low rank. Given ,
FA estimation techniques obtain and , where

is an unidentifiable unitary matrix. However, the subspace
is identified. As before, collect an orthonormal basis

for this subspace in a matrix . Then we can form projec-
tions as before in (4) and proceed with the algorithms in
Section III-B or Section IV-A. From this point on, the astro-
nomical correlations are properly taken into account.
Several estimation algorithms are listed in [25]. In general,

the complexity is of per short-term correlation matrix.
Detection of the number of interferers can be based on the
generalized likelihood ratio test (GLRT), specifying a certain
false-alarm ratio [26], or on more advanced model selection
techniques (a summary is given in [27]) which are out of scope
for this paper.
Remarks:
1) In the above approach, short-term covariance matrices are

treated independently, resulting in independent estimates
. These should all be equal to the same diagonal , but

that aspect was not taken into account. As an improvement,
we can form a more accurate long-term estimate

and use this to whiten the short-term covariance matrices,
. We can then proceed with the algorithms

in Section III-B or Section IV-A. The subspaces are esti-
mated from the whitened model. As is more accurate
than each , this is expected to lead to more accurate re-
sults. In practical algorithms, the long-term estimate can
also be based on a sliding-window estimate or on another
estimate from the past, so that the covariance data does not
have to be revisited.

2) Regarding identifiability of the model (10), considerations
are based on comparing the number of equations to the

number of parameters, while including constraints to ar-
rive at a unique . For complex-valued data,4 a covari-
ance matrix estimate provides (real) equations, whereas

has (real) parameters, has parameters, and
the unknown rotation matrix is fixed using (real)
constraints (explained in Section V-D). This gives a total
number of “degrees of freedom” as [25]

and for identifiability we need the problem to be overdeter-
mined, i.e. . This translates to (whereas
previously we only had ).

C. Direct ML Estimation Using Extended Factor Analysis
As we will show here, the data model (2) satisfies the Ex-

tended Factor Analysis (EFA) model which we introduced in
[25]. This will allow us to directly find a Maximum Likelihood
(ML) estimate for .
In the EFA model, the diagonal noise covariance matrix is

generalized to the interference-free covariance matrix which
has specified entries that can be nonzero. This is done using a
symmetric “masking” matrix , consisting of entries that are 0
or 1, which constrains via the equation . Thus,
a ‘1’ entry in corresponds to an unknown parameter in
that needs to be estimated, whereas a ‘0’ indicates that the cor-
responding entry in is known to be zero (this model reduces
to classical FA if ).
The covariance model (2) is

(11)

where we are interested in estimating the unknown square ma-
trix and, for an uncalibrated array, is unknown. Thus,
the appropriate masking matrix such that is

If we replace by (i.e., for each snapshot we estimate
an independent ), then we can apply the algorithms for esti-
mating and that were introduced in [25]. In that paper,
following a Maximum Likelihood approach, it was proposed to
maximize

with respect to and . The maximum can be found using
various optimization techniques, and in [25] a steepest descent
algorithm was detailed.
Each will give us an estimate , and is simply the

upper left sub-block of this matrix. The long-term estimate is
given by

(12)

A necessary condition for identification is that the degree of
freedom . Compared to FA, we see that the parameters

4This generalizes the real-valued case as documented in [24], [28].
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of are now replaced by the (real) parameters in .
Thus, we require

to be larger than 0. With and solving for the number
of reference antennas we find

(13)

Thus, if is small, we need , and if is large,
we need .
Remarks:
1) For each snapshot unknowns are estimated.

The computational complexity of the steepest descent al-
gorithm in [25] is per snapshot. The
term is caused by the inversion of , which can be
reduced to by using a power iteration, assuming the as-
tronomical source powers are small. The complexity will
then be per snapshot. Note that no expensive post-
processing as in (8) or (9) is needed.

2) Although each snapshot is processed with a Maximum
Likelihood estimator, the overall algorithm is not max-
imum likelihood as is estimated using an average of
the in (12).

3) If not all primary antennas receive the RFI, then should
be replaced by in (13), where is the number of pri-
mary antennas that receive RFI.

4) This approach assumes that the number of interferers is
known. If this is not the case we can follow a similar ap-
proach as was suggested in Section IV-B.

V. PERFORMANCE ANALYSIS

The result of the algorithm is , an estimate of the true co-
variance matrix . As a measure of accuracy, we will deter-
mine the covariance of in four cases: (i) interference free,
(ii) the spatial signatures are known, (iii) the spatial signa-
tures are estimated, and (iv) the EFA model.
The covariance of the short-term averages is defined by

where , and

Assuming Gaussian sources (sky signals and interference), the
covariance of the short-term avarages is given by the standard
result,

(14)

A. Case I: Interference-Free
In the interference free case, without filtering, is given by

Then, from (14), the covariance of is given by

where . Because ,

(15)

For white noise, , and

(16)

This interference-free result gives a reference performance for
the estimation of in the case with interference.

B. Case II: Interference With Known Spatial Signatures
Suppose the subspace spanned by the spatial signatures

of the interferers is deterministic and perfectly known. In that
case the interference will be completely removed and the algo-
rithms are unbiased by design. We first consider the algorithm
in Section III-B. The estimate of the full-size is given by

(17)

where , and is the projection
onto the orthogonal complement of . (Note that and are
Hermitian.) Thus the covariance of the long term estimate is

where

(18)

and . The estimation errors and are un-
correlated for , and . Thus,

Multiplication by projects out the contribution of the inter-
ferers , so that
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If we assume (for simplicity of analysis), then

Thus,

(19)

The final estimate is a submatrix of . Its performance is
a submatrix of . Compared to (15), this indicates that (a
submatrix of) determines the relative performance of the
spatial filtering algorithm of Section III-B. The conditioning of

depends on the variability of , the spatial signatures of
the interferer. For large and sufficiently varying ,
and the performance is expected to be similar to the interfer-
ence-free case.
The algorithm in Section IV-A is slightly different:

Thus, (with for simplicity of analysis)

(20)

It is known that for any tall matrix for which is full column
rank

(cf. [29, lemma 3.1]). Choosing a selection matrix such
that , it can be deduced that the algorithm of
Section IV-A is always more efficient than the algorithm of
Section III-B.

C. Case III: The Variance of for Interference With
Deterministic Spatial Signatures
In practice the spatial signatures are unknown and their

column span will be estimated. Because of the estimation error,
the projection is not perfect and there will be a residual which
might affect the performance.
Again we first study the algorithm in Section III-B. As before,

let be a projection such that , and denote the
estimate of by . The estimate of the full size is then

(21)

where , . Define the errors

and likewise for , etc.
Equation (7) is not true because and are not inde-

pendent. The algorithm is not unbiased anymore, but it can be
shown that the bias of is , whereas the standard de-
viation is as we show next.
We employ a first-order perturbation analysis. From (21),

(22)

where we can write

(23)

and

We next show that
. Indeed,

and

so that

Since , and likewise
for the third term, only the first term remains. It follows that

Inserting in (22) and using (23) gives

Since , the first two terms cancel, and we
remain with

The rest of the derivation is the same as before in (17), hence
the performance is in first order unchanged even if the pro-
jections are estimated. The same holds for the algorithm of
Section IV-A.
We showed that for a single long-term estimate , the bias

is dominated by the standard deviation of the estimate. In com-
bining multiple long-term estimates (as is done in imaging), the
variance reduces and a concern may be that the bias affects the
final results. In this respect, it is important to note that the bias is
only present on the diagonal elements of [17], and that this
does not impact current imaging algorithms. This is discussed
in Section V-E.

D. Case IV: The CRB of and Asymptotic Statistics of EFA
Some general results from multivariate statistical analysis are

as follows. Suppose that is the maximum likelihood estimator
of . Then the asymptotic distribution of is
where is the inverse of the Fisher informationmatrix . This is
the Cramér-Rao lower bound (CRB) for an unbiased estimator.
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In Appendix A we derive the CRB for a single short-term esti-
mate , i.e., the covariance of , and we
denote it by .
As a maximum likelihood technique, the EFA algorithm ap-

plied to a single short-term estimate is unbiased and will asymp-
totically reach the CRB, hence its asymptotic performance is
given by . The long-term estimate in EFA is obtained
by simply averaging the short-term estimates (assuming the es-
timates are independent), so that its performance is given by the
covariance matrix

(24)

Using simulations we will show that this asymptotic per-
formance of EFA is achieved for a moderate number of
samples and/or INR. The subtraction algorithm described in
Section III-A also estimates the long-term estimate by
averaging short-term estimates, so that a lower bound on its
performance is given by this asymptotic performance of EFA.
However, we will show by simulations that because of the bias
in this algorithm, the bound is not reached.
In reality, the short-term estimates are not independent as the

data model shows that they have in common, and an ideal
algorithm would do a joint estimate over the entire data set of

covariance matrices. The CRB on the long-term estimate for
is also derived in Appendix A and the corresponding bound

for is denoted by .

E. Performance for Long Term Integration (Imaging)
So far we have discussed the statistics for a single long-term

estimate . In many astronomical applications we need to
combine a large number of these estimates in order to boost
the desired signals to detectable levels. One example of such
application is producing a two dimensional image of the sky.
Fourier based imaging (called the ‘dirty’ image in astronomy,

i.e., prior to further deconvolution) can be viewed as computing
a weighted average of the entries of the long-term covariance es-
timates [18]. If estimates are averaged, then the variance of
the estimates is scaled by . Without RFI, the individual es-
timates have a variance given by (16). With RFI removal using
projections, the estimates have a slightly higher variance given
by (19) or (20). The performance penalty corresponds to the
missing data in the projected dimensions, which is natural and
acceptable.
The main worry for astronomers would come from any bias

that is present in the long-term covariance estimates. The fol-
lowing remarks can be made.
• As a maximum likelihood technique, the EFA is not bi-
ased. However, a bias can be present in case a weak inter-
ferer is present but not detected (i.e., model mismatch in
the EFA). This is a natural limitation in any interference
removal technique. The residual interference must be de-
tected and removed after further averaging.

• The projection techniques have a bias, but this bias is
present on the diagonal entries of the long-term covari-
ance estimates [17]. Many imaging techniques routinely
omit these diagonal entries (the auto-correlations of the
antennas) because they are dominated by the system noise.
Alternatively, it is possible to correct for the bias to a

certain extent [17]. A second source of bias corresponds
to RFI that is present but not detected (which as men-
tioned above is a common problem for RFI mitigation
techniques).

In any case, the averaging inherent in the imaging process has a
tendency to wash out any residual interference.
In the next section we use the CRB to show that the funda-

mental bound on the total variance of the estimated covariance
is very close to the RFI free case, and we also show that the pro-
posed algorithms are close to this bound provided that the RFI
is strong enough to be detected.

VI. SIMULATIONS

We first test the performance of the algorithms in a simulation
set-up. We use antennas, with primary antennas
(telescopes) and reference antennas. For simplicity, the
array is a uniform linear array with half-wavelength spacing and
the same noise power on all antennas.
The astronomical source is simulated by a source with a con-

stant direction-of-arrival of 10 with respect to array broadside.
The source has with respect to each primary
array element, and for the reference antenna.
The interferer is simulated by a source with a randomly gen-

erated and varying complex , and varying INRs. This corre-
sponds to a Rayleigh fading interferer. A GLRT is performed
with a false alarm probability of to detect the interfering
signal.
The following algorithms are compared:
— the traditional subtraction method, Section III-A, denoted

‘Trad Filter’,
— the spatial filtering algorithm using projections and eigen-

value computations, Section III-B, denoted ‘eig-ref’,
— the improved spatial filtering algorithm with reduced-size

covariance reconstruction, Section IV-A, denoted ‘eig-ref-
red’ and for Factor Analysis version ‘fa-ref’,

— the version that uses Extended Factor Analysis is denoted
as ‘EFA’, Section IV-C,

— for comparison, the spatial filtering technique without ref-
erence antenna, denoted ‘eig-no-ref’, the covariance esti-
mate without RFI (‘RFI free’), and the estimate obtained
without any filtering (‘no-filter’).

Fig. 2(a) shows the relative mean-squared-error (MSE) of the
primary filtered covariance estimate compared to the theoret-
ical value , for varying interferer powers on
the primary array. Here, we took short-term sam-
ples and long-term averages, which is unrealistically
small but serves to illustrate the effect of limited variability of

(only two different vectors). The interferer array gain was
of 5 dB. Similarly, Fig. 2(b) shows the MSE for

varying INR difference and an of 10 dB. The amplitudes
and phases are varying after each short-term averaging period
(i.e., the interferer is Rayleigh fading).
In Fig. 3, we consider a case where the RFI enters the primary

array on only a single element. In Fig. 3(a), the is varied,
while the INR difference is 0 dB and we consider a shorter
short-term integration time and a longer long-term
averaging time than before. Similarly, Fig. 3(b) shows
the MSE for varying short-term integration samples , for an

of 10 dB.
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Fig. 2. Simulation with limited variability of the interferer array response vector . Relative MSE (a) as function of interferer power at the primary array
elements (b) as function of the interferer power difference between the reference elements and the primary elements.

Fig. 3. (a) Simulation with the interferer entering on only a single primary antenna. Relative MSE (a) as function of interferer power at the primary elements (b)
as a function of short-term integration samples .

As reference line, we show the CRB derived in (38). Be-
cause this is a matrix, we use the following relation between the
MSE and the trace of the CRB:

(25)

hence is a bound on the MSE performance of the pro-
posed algorithms. The MSE is estimated using Monte-Carlo
runs.
Observations are:
— The new algorithms that use projections with a reference

antenna array (eig-ref-red and fa-ref) operate close to the
CRB and have a great advantage over the spatial filtering

algorithm without reference antenna (eig-no-ref) in case
the -vector is not sufficiently varying [see Fig. 2(a)]. The
MSE performance is flat for varying INR and INR differ-
ence, which is very desirable. Moreover, it is very close to
the RFI-free case. Using FA to find the projections does
not noticeably degrade the performance of the filter even
though more parameters are estimated.

— The CRB is generally close to the RFI-free case. For low
INR, the performance can be better than the CRB because
the RFI is not detected and the CRB does not take this
model mismatch into account.

— The EFA method also performs well for reasonable INR
difference. It operates close to its theoretical performance
bound unless the RFI is not detected. However, this bound
is seen to be appreciably higher than the CRB in some sim-
ulations. This is because the EFA estimates the parameters
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Fig. 4. Reference focal-plane array mounted on a dish.

of each short-term covariance matrix separately, whereas
they have parameters in common (i.e., ). Joint processing
would be better.

— The new algorithms are often better than the subtraction
technique (Trad Filter). The subtraction is only accurate if
the INR difference is large compared to the INR at the pri-
mary array. If the INR difference is small, or if the INR
at the primary array is relatively large, then the subtrac-
tion technique fails. This is probably caused by the bias
in the inverted term (power of the interferer, with added
noise power). It makes the algorithm not reliable to use.
As is illustrated in Fig. 3(b) the traditional subtraction does
not improve with a higher number of short-term samples
which indicates that this is not an efficient estimator.

— If the interferer enters only on one telescope and on the
reference antenna, as in Fig. 3, then the algorithm without
a reference antenna is performing poorly: it cannot recon-
struct the contaminated dimension. The algorithms with
reference antennas perform fine.

In summary, based on these simulations, we recommend to con-
sider ‘fa-ref’ and ‘eig-ref-red’ (Section IV-A), which are very
similar with ‘fa-ref’ being slightly more general. We expect that
EFA can be improved by introducing joint processing.

VII. EXAMPLES ON EXPERIMENTAL DATA

A. Experiment I

To test the algorithm on actual data, we have made a short ob-
servation of the strong astronomical source 3C48 contaminated
by Afristar satellite signals. The set-up follows Fig. 1. The pri-
mary array consists of of the 14 telescope dishes of the
Westerbork Synthesis Radio Telescope (WSRT), located in The
Netherlands. As reference signals we use of 52 ele-
ments of a focal--plane array that is mounted on another dish of
WSRT which is set off-target (see Fig. 4) such that it has no dish
gain towards the astronomical source nor to the interferer.
We recorded 13.4 seconds of data with 80 MS/s, and pro-

cessed these offline. Using short-term windowed Fourier trans-
forms, the data was first split into 8192 frequency bins (from
which we used 1537), and subsequently correlated and averaged

over samples to obtain short-term covari-
ance matrices.
Fig. 5(a) shows the autocorrelation and crosscorrelations on

the primary antennas and Fig. 5(b) shows the autocorrelation
of 6 reference antennas. The interference is clearly seen in the
spectrum. The interference consists of a lower and higher fre-
quency part. The low frequency part is stronger on the reference
antenna and the higher part stronger on the primary antenna.
However, because of a relatively high number of reference an-
tennas the total INR, as we will see, is high enough for the al-
gorithms to be effective.
Because no calibration step has been performed we use a gen-

eralized likelihood ratio test (GLRT) [26] to detect if each fre-
quency bin is contaminated with RFI and then we use FA to
estimate the noise powers and the signal spatial signature. The
result of whitening the spectrum with the estimated result of FA
is shown in Fig. 6(a).
The resulting auto- and crosscorrelation spectra after filtering

are shown in Fig. 7. The autocorrelation spectra are almost flat,
and close to 1 (the whitened noise power). The cross-correlation
spectra show that the spatial filtering with reference antenna has
removed the RFI within the sensitivity of the telescope. Also it
shows the power of using FA and EFA at this stage in the pro-
cessing chain, as they do not require the array to be calibrated.

B. Experiment II
In a second experiment, we use raw data from the LOFAR

station RS409 in HBA mode 5 (100–200 MHz), acquired via
the transient buffer board. Data from the 46 (out of 48) x-polar-
ization receiving elements are sampled with a frequency of 200
MHz and correlated. Samples are then divided into 1024 sub-
bands with the help of tapering and an FFT. From these samples
we form covariance matrices with an integration time of
19 ms for each subband. No calibration was done
on the resulting covariance matrices.
The LOFARHBA has a hierarchy of antennas, where a single

receiving element output is the result of analog beamforming
on 16 antennas (4 4) in a tile. During the measurements
the analog beamformers were tracking the strong astronomical
source Cyg A.
The received spectrum is shown in Fig. 8. Above 174 MHz,

the spectrum is heavily contaminated by wideband DAB trans-
missions.
We have used 6 of the 46 receiving elements as reference

array for our filtering techniques and the rest as primary array.
Because we do not have dedicated reference antennas and that
the data is already beamformed the assumption that the source is
too weak at each short integration time (19ms) is not completely
valid. Also the assumption that the sky sources are much weaker
on the reference antennas is not valid in this case because the
reference array elements are also following Cyg A. Finally, we
have the same exposure to the RFI on the secondary array as we
have on the primary so there is no additional RFI gain for the
secondary array.
To illustrate the performance of the filtering technique we

produce snapshot images of the sky (i.e., images based on
a single covariance matrix). For an uncontaminated image,
we have chosen subband 250 at 175.59 MHz, see Fig. 9(a),
while for RFI-contaminated data we take subband 247 at



SARDARABADI et al.: SPATIAL FILTERING OF RF INTERFERENCE IN RADIO ASTRONOMY USING A REFERENCE ANTENNA ARRAY 443

Fig. 5. Observed spectrum from (a) the primary telescopes and (b) 6 of the reference antennas.

Fig. 6. (a) Spectrum of primary antenna after whitening. (b) Average normalized correlation coefficients without filtering.

Fig. 7. Averaged normalized correlation coefficients (a) after filtering using method in Section IV-A and (b) after using EFA.

175.88 MHz, see Fig. 9(b). These two subbands have been
chosen because they are close to each other (in frequency) and
we expect that the astronomical images for these bands would
be similar. Subband 247 is heavily contaminated and has a

10 dB flux increase on the auto-correlations and a 20 dB in-
crease on the cross-correlations.
The repeated source visible in Fig. 9(a) is Cyg A; the repeti-

tion is due to the spatial aliasing which occurs at these frequen-
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Fig. 8. Spectrum received at a LOFAR HBA station.

cies (the tiles are separated by more than half a wavelength).
The contaminated image in Fig. 9(b) shows no trace of Cyg A;
note the different amplitude scale which has been increased by
a factor 100.
Fig. 10(a) shows the image after filtering the RFI using the

algorithm with FA and projections (‘fa-ref’) as presented in
Section IV-A, and Fig. 10(b) shows the image after using EFA
(Section IV-C). Both images are nearly identical, and very sim-
ilar to the clean image in Fig. 9(a)).
Remarks:
— These data show an example where the contaminated por-

tion of the spectrum is broad, limiting the applicability of
time-frequency blanking (post-processing).

— Both filtering techniques appear robust against the mod-
eling errors implicit in this experiment setup.

— The resulting covariance estimates produces snapshot im-
ages comparable to an RFI-free channel.

Unfortunately the available data collection system at LOFAR
did not allow us to create images with longer integration times.

VIII. CONCLUSIONS
Spatial filtering algorithms for removing RFI on covariance

matrix estimates using reference antennas have been proposed,
applicable to both calibrated and uncalibrated arrays. For the
uncalibrated case, Factor Analysis is used to estimate the in-
terference subspace. An algorithm to estimate RFI-free covari-
ance matrices directly using Extended Factor Analysis (EFA)
has also been presented. The statistical performance of the pro-
posed algorithms has been evaluated and the CRB for the entire
dataset is presented.
These algorithms generalize previously proposed spatial fil-

tering algorithms that did not use a reference array. Simulations
show that using a reference array is beneficial even if the refer-
ence antennas receive less interference power than the primary
antennas. Another advantage of a reference array is that the al-
gorithms are applicable even if the interference enters on only
a single primary antenna, which was not the case for the pre-
viously proposed projection algorithm. The algorithms for un-
calibrated arrays based on FA and EFA have also been tested

on experimental data from astronomical instruments to illustrate
their applicability and performance in real-world scenarios; the
results are very encouraging.
A disadvantage of the projection techniques is that they re-

quire a computationally unattractive matrix inversion which is
needed to correct the covariance estimates for the missing (pro-
jected) dimensions. The EFA technique is a direct technique
which averages maximum likelihood estimates of cleaned short-
term covariance matrices; it is computationally more attractive.
Unfortunately, the simulations indicate that the EFAmethod has
a lower performance for low INR and/or low number of sam-
ples. The key of the problem is that EFA processes short-term
covariance matrices independently and does not exploit that
they have a common term . The solution is in joint processing
of these matrices, which will be addressed in future work.

APPENDIX A
DERIVATION OF THE FISHER INFORMATION MATRIX AND CRB
In this section we derive the CRBs, and discussed

in Section V-D.
For normally distributed data with covariance matrix , the

Fisher information matrix is given by Bangs’ formula [30]

where

Suppose now that is singular, then for identifiability we need
to pose additional constraints on , say , where
is a vector of functions. Let the Jacobian of be given by

The constrained CRB, , is then given by [31]

(26)

where is a semi-unitary matrix, and the columns of
form an orthonormal basis for the null-space of such that

. The constraints should be chosen such that
is invertible.

We will now apply these results to our situation. First we
consider only a single snapshot withmodel ,
with as given by (11).
The unconstrained Fisher information is singular, because

the model is invariant with respect to a multiplication of the
matrix with a unitary matrix at the right, including a phase
change for each column. For identifiability, we need to pose

constraints on the matrix . Without loss of generality we
choose to be diagonal (which poses real-valued
constraints), and to be real (which poses another
constraints).
In order to find the Fisher information we will parametrize

as
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Fig. 9. (a) Clean subband 250 and (b) Contaminated subband 247.

Fig. 10. (a) Result of filtering using ‘fa-ref’ and (b) result of filtering using EFA.

where and are suitable selection matrices, the entries
of the strictly upper-triangular part of are stacked into the
vector , its diagonal entries into , and . The
unknown complex parameters are stacked into a vector ,

(27)

where

(28)

Using this parametrization we can partition the Fisher informa-
tion matrix as

To find these submatrices, we partition the corresponding Ja-
cobian , conforming to the partitioning of , such that

. Using Wirtinger derivatives we
find

where is a permutation matrix such that
for a matrix. We also used the relation

To write the constraints on as a function , let
and let be a complementary set of rows such

that is a permutation matrix. Then
selects the diagonal elements of , and se-
lects the off-diagonal entries of . The constraint function

is then
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and its Jacobian is

where

and the trailing zeros correspond to derivatives of with
respect to , and .
Using QR or SVD on , we can find a basis for the

null-space of , and calculate the Constrained CRB for
a single snapshot.
As showned above, the constraint function depends

only on and its derivatives with respect to are zero. This
allows us to partition as

Using this partitioning and (26) we have

(29)

and hence

(30)

The CRB for is the sub-matrix of with respect to
and , which we will denote by .
Now that we have the Fisher Information and CRB for each

snapshot we can use this to find the CRB of the entire dataset.
Because the time samples are independent, the log-likelihood of
the entire dataset then becomes

(31)

where is a data matrix for each snapshot. To find the
gradients of this log-likelihood, we first take derivatives with
respect to . If we assume that all are independent, so that

for , we find

(32)

which is the same as for estimating theML separately. However,
for we have

(33)

Now we can write the Fisher information for the entire dataset
as

...
. . . . . .

...
(34)

where the submatrices follow from the previous results as

(35)

(36)

(37)

where

Because the constraint matrix is only a function of , the con-
straint matrix for the entire dataset becomes

...
...

. . . . . .

which is very sparse. We can use QR decomposition algorithms
to find a unitary basis, for its null space efficiently.
The constraint CRB can now be found, same as before, using

and . Using thematrix inversion lemma on the final
result we obtain the expression for as

(38)

The CRB for is the corresponding submatrix of and it
is denoted by .
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