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Abstract

Classical Factor Analysis decomposes a covariance matrix into a low-rank and a diagonal part. In this paper we will

extend this idea in two ways. We will study the case where we have more than one covariance matrix, and these matrices

share the diagonal component. We will also extend Factor Analysis by replacing the diagonal part with a more general

data structure. We will solve this problem via non-linear optimization, where we will exploit the Kronecker structure and

arrive at a Newton-Krylov based algorithm. We will also provide an algorithm to find the Maximum-Likelihood solution

taking advantage of Krylov based solvers.

1 Introduction

Eigenvalue decomposition (EVD) is at the heart of many

subspace based signal processing techniques. However, the

application of EVD limited to systems with identical com-

ponents and noise models. In other words we must be able

to model the noise covariance matrix as σ2I where σ2 is

the variance of the noise and I an identity matrix. If the

noise covariance matrix is known, calibration and whiten-

ing techniques can be used as pre-processing procedures to

make EVD applicable for systems where this assumption

does not hold. However a more preferable approach is to

develop techniques that can replace EVD for more practical

and generic data models.

Using Factor Analysis (FA) [1, 2, 3] for array processing

has been suggested by [4] to address the case where the

noise is unknown, independent and different for each ele-

ment in the array i.e. the noise covariance matrix is a di-

agonal matrix with unknown elements. For cases where

the noise covariance matrix is no longer diagonal but has

a known structure, Extended FA (EFA) has been suggested

[5].

The mentioned techniques work on a single covariance ma-

trix. However in many applications the desired subspace

changes rapidly which means that a series of short-term

covariance matrices are available. In this paper we will

show that applying subspace estimation techniques for each

short-term covariance leads to sub-optimal estimates, since

the stationarity of the diagonal (or extended structure) is

not used. To address this issue we will develop a technique

based on EFA that estimates the desired subspaces jointly

and is flexible enough to include generic noise models. We

will also show that some undesired signals, like interfering

sources, can be modeled using EFA.

Estimating the unknown parameters leads to a non-linear

optimization problem. We will develop a Gauss-Newton-

Krylov based technique that solves the non-linear optimiza-

tion efficiently in both memory usage and complexity.

The setup of this paper is as follows: In Sec.2 we dis-

cuss the data and covariance models, in Sec.3 we derive

the Cramér-Rao bound for the estimated parameters, in

Sec.4 describes the algorithm we use to estimate the pa-

rameters and in Sec.5 we use simulations to evaluate the

performance of the proposed method.

2 Data Model and Problem Defini-

tion

We assume to have access to a series of sample covariance

matrices R̂k where k = 1, ...,K, from K independent "snap-

shots", each containing N samples. We assume the follow-

ing model for E {R̂k}= Rk :

Rk = AkAH
k +ΨΨΨ (1)

where Ak is a low rank matrix of size P×Qk with Qk < P

for all k, H is the Hermitian transpose and ΨΨΨ is a positive-

definite matrix that is assumed to be stationary. Depending

on the application we are interested in Ak and ΨΨΨ or only

one of them. In many applications we are just interested in

the column span of Ak.

A common application for ΨΨΨ is to represent the noise co-

variance matrix of the system. For a system which is cal-

ibrated or has identical components, it is common to as-

sume that ΨΨΨ = σ2IP, where IP is a P×P identity matrix.

In this case the column span of Ak can be estimated using

an eigenvalue decomposition of Rk. In other words let the

(economical) singular value decomposition (SVD) of Ak be

Ak = UkΣΣΣkVH
k

where Uk is a semi-unitary matrix of size P×Qk forming

an orthonormal basis for the column space of Ak, Vk is a

Qk ×Qk unitary matrix forming an orthonormal basis for

the row space of Ak and ΣΣΣk is a Qk ×Qk diagonal matrix

containing the singular values. Similarly let the eigenvalue
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decomposition of Rk be

Rk = QkΛΛΛkQH
k .

Then for the case where ΨΨΨ = σ2IP = σ2QkQH
k we have

Qk =
[
Q1,k Q2,k

]
=
[
Uk Q2,k

]
.

As mentioned, this makes it possible to find the subspace

for Ak, from Rk, using eigenvalue decomposition of Rk.

However this technique fails when ΨΨΨ takes another model.

In this paper we will allow more general models for ΨΨΨ and

discuss techniques for finding Ak and ΨΨΨ from noisy esti-

mates R̂k. We will also estimates Ak and ΨΨΨ jointly. The

joint covariance matrix of the entire dataset can be found

using the independence of the data-matrices to be

Rtotal =

⎡
⎢⎣

R1 . . . 0

0
. . . 0

0 . . . RK

⎤
⎥⎦

=

⎡
⎢⎣

A1AH
1 . . . 0

0
. . . 0

0 . . . AKAH
K

⎤
⎥⎦+ IK ⊗ΨΨΨ (2)

where ⊗ is the Kronecker product.

2.1 Joint Factor Analysis

The first generalization that we are going to consider is

modeling ΨΨΨ = D where D is a positive definite unknown

diagonal matrix. For a single covariance matrix, this de-

composition is known as Factor Analysis (FA).

We are interested in finding D and Ak. One way to achieve

this is by applying FA to each covariance matrix separately

to find D̂k and Âk, and then use D̂ = 1/K ∑k D̂k to estimate

D. Then we can use whitening techniques and find a better

estimate of the subspace of Ak.

However we propose Joint Factor Analysis (JFA), for esti-

mating Âk and D̂ using the entire dataset. We will demon-

strate, using Cramér-Rao bound and simulations, that this

approach gives estimates with lower variance and we avoid

re-estimating the subspaces using whitening.

2.2 Joint Extended Factor Analysis

Factor Analysis can be extended to a more general model

for ΨΨΨ where a certain structure is assumed to be known for

ΨΨΨ. Here we consider ΨΨΨ of the form

ΨΨΨ = M�ΨΨΨ

where � is the Hadamard or element-wise multiplication

and M is a symmetric matrix containing only ones and ze-

ros. We call M a mask matrix. We can model various types

of covariance matrices using this approach (for example:

block-diagonal matrices, band matrices, sparse matrices,

etc.). We assume M to be known based on the applica-

tion. Similar to JFA we propose Joint Extended FA (JEFA),

where we are interested in estimating Ψ̂ΨΨ and Âk jointly. For

this problem the total number of unknowns that need to be

estimated is

n = 2P
K

∑
k=1

Qk + tr(M2) (3)

Note that for M = I where I is an identity matrix of appro-

priate size, this model reduces to diagonal factor analysis.

Before we introduce the algorithm to estimate the desired

parameters, we derive the Cramér-Rao bound for the vari-

ance of the estimates.

3 Cramér-Rao Bound

Some general results from multivariate statistical analysis

are as follows. Suppose that θ̂θθ is the maximum likeli-

hood estimator of θθθ 0. Then the asymptotic distribution of

(θ̂θθ − θθθ 0) is N (0,C) where C is the inverse of the Fisher

information matrix F. C is the Cramér-Rao lower bound

(CRB) for an unbiased estimator. For normally distributed

data with covariance matrix R, the Fisher information ma-

trix is

F = NJH(R−T ⊗R−1)J

where J = ∂vec(R)/∂ θθθ T .

Suppose now that F is singular, then for identifiability we

need to pose additional constraints on θθθ , say h(θθθ 0) = 0,

where h(θθθ ) is a vector of functions. Let the Jacobian of

h(θθθ ) be given by

H(θθθ ) :=
∂h(θθθ )

∂ θθθ T
.

The constrained CRB, C, is then given by [6]

C = U(UHF(θθθ 0)U)−1UH (4)

where U is a semi-unitary matrix, and the columns of U

form an orthonormal basis for the null-space of H such that

H(θθθ 0)U(θθθ 0) = 0. The constraints should be chosen such

that UHF(θθθ 0)U is invertible.

We will now apply these results to our situation. First

we consider only a single snapshot Rk with model Rk =
AkAk +ΨΨΨ, as given by (1). We will parametrize vec(ΨΨΨ) as

vec(ΨΨΨ) = SU ψ +SLψ̄ +(IP ◦ IP)d ,

where .̄ is the complex conjugate, SL and SU are suitable

selection matrices based on the structure of M, the entries

of the strictly upper-triangular part of ΨΨΨ are stacked into

the vector ψ , its diagonal entries d = vecdiag(ΨΨΨ). The un-

known complex parameters are stacked into a vector θθθ k,

θθθ k =

⎡
⎢⎢⎢⎢⎣

vec(Ak)
vec(Āk)

ψ
ψ̄
d

⎤
⎥⎥⎥⎥⎦ (5)

To derive the Fisher information matrix, we partition the

corresponding Jk = ∂vec(R)/∂ θθθ T
k , to conform with the
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partitioning of θθθ k such that Jk = [JAk
,JĀk

,Jψ ,Jψ̄ ,Jd]. Us-

ing Wirtinger derivatives we find

JAk
= (Āk ⊗ IP)

JĀk
= (Ip ⊗Ak)KP,Qk

Jψ = SU (6)

Jψ̄ = SL

Jd = (IP ◦ IP)

where KP,Q is a permutation matrix such that vec(XT ) =
KP,Qvec(X) for X a P×Q matrix. We also used the relation

vec(Rk) = (Āk ⊗ IP)vec(Ak)+vec(ΨΨΨ)

= (IP ⊗Ak)KP,Qk
vec(Āk)+vec(ΨΨΨ).

The unconstrained Fisher information Fk is singular, be-

cause the FA model is invariant with respect to a multipli-

cation of the matrix Ak with a unitary matrix at the right, in-

cluding a phase change for each column. For identifiability,

we need to pose Q2
k constraints on the matrix Ak. Without

loss of generality we choose AH
k Ak to be diagonal (which

poses Qk(Qk−1) real-valued constraints), and diag(AT
k Ak)

to be real (which poses another Qk constraints).

To write this as a function h(θθθ k) = 0, let E1 = (IQk
◦ IQk

)T

and let E2 be a complementary set of rows such that

[ET
1 ,E

T
2 ]

T is a permutation matrix. Then E1vec(AT
k Ak) se-

lects the diagonal elements of AT
k Ak, and E2vec(AH

k Ak)
selects the off-diagonal entries of AH

k Ak. The constraint

function h = [hT
1 ,h

T
2 ]

T is then

h(θθθ k) =

[
h1(θθθ k)
h2(θθθ k)

]
=

[
E1vec(AT

k Ak −AH
k Āk)

E2vec(AH
k Ak)

]
= 0

and its Jacobian H(θθθ k) is

H(θθθ k) =
[
HAk

0 0 0
]

where

HAk
=

[
∂h1

∂vecT (Ak)
∂h1

∂vecT (Āk)
∂h2

∂vecT (Ak)
∂h2

∂vecT (Āk)

]
,

and the trailing zeros correspond to derivatives of h(θθθ k)
with respect to ΨΨΨ, Ψ̄ΨΨ and d. The needed derivatives are

given by

∂h1

∂vecT (Ak)
= E1

[
(IQ ⊗AT

k )+(AT
k ⊗ IQ)KP,Q

]
∂h1

∂vecT (Āk)
=−E1

[
(IQ ⊗AH

k )+(AH
k ⊗ IQ)KP,Q

]
∂h2

∂vecT (Ak)
= E2(IQ ⊗AH

k )

∂h2

∂vecT (Āk)
= E2(A

T
k ⊗ IP)KP,Q

Using QR or SVD on H(θθθ k), we can find a basis Uk for the

null-space of H(θθθ k), and calculate the Constrained CRB

Ck for a single measurement.

The performance of FA on each snapshot separately, fol-

lows by assuming that the estimates θ̂θθ are independent,

then for D̂ = 1/K ∑k D̂k the CRB becomes

Cd = 1/K2 ∑
k

Cd,k, (7)

where Cd,k is the sub-matrix of Ck corresponding to d. This

bound is higher than the bound we will drive for the entire

dataset shortly.

Now that we have the Fisher Information for each snapshot

we can use them to find the CRB of the entire dataset. Be-

cause the time samples are independent, the joint pdf for

the total dataset is given by

p(X1,X2, ...,XK ; θθθ ) = ∏
k

pk(Xk; θθθ k) (8)

where X is a P×N data matrix for each snapshot. Loglike-

lihood of the entire dataset then becomes

l(θθθ ) = ∑
k

lk(θθθ k). (9)

For simpler representation we redefine the unknowns as

θθθ Ak
=

[
vec(Ak)
vec(Āk)

]
. (10)

and

θθθ ΨΨΨ =

⎡
⎣ΨΨΨ

Ψ̄ΨΨ
d

⎤
⎦ . (11)

Now we need to find the gradients of the new loglikelihood.

First we take derivatives with respects to θθθ Ak
. If we assume

that all Ak are independent i.e. ∂ lk(θθθ k)/∂A j = 0 for k �= j

and we find
∂ l(θθθ )

∂ θθθ Ak

=
∂ lk(θθθ k)

∂ θθθ Ak

(12)

which is the same as for estimating the ML separately.

However for ΨΨΨ we have

∂ l(θθθ )

∂ θθθ ΨΨΨ
= ∑

k

∂ lk(θθθ k)

∂ θθθ ΨΨΨ
. (13)

Now we can write the Fisher information for the entire

dataset as

Ftotal,AkAk
= Fk,AkAk

(14)

Ftotal,AkA j
= 0 k �= j (15)

F
total,AkΨΨΨ

= F
k,AkΨΨΨ

(16)

F
total,ΨΨΨΨΨΨ = ∑

k

F
k,ΨΨΨΨΨΨ (17)

or in matrix form

Ftotal = N

⎡
⎢⎢⎢⎢⎣

F1,A1A1
0 . . . F

1,A1ΨΨΨ
0 F2,A2A2

. . . F
2,A2ΨΨΨ

...
. . .

. . .
...

FH

1,A1ΨΨΨ FH

2,A2ΨΨΨ . . . ∑K
i F

k,ΨΨΨΨΨΨ

⎤
⎥⎥⎥⎥⎦ . (18)
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where the Fk can be calculated using the results above as

Fk,AkAk
=

[
JH

Ak

JH
Āk

](
R−T

k ⊗R−1
k

)[
JAk

JĀk

]
(19)

F
k,AkΨΨΨ

=

[
JH

Ak

JH
Ā j

](
R−T

k ⊗R−1
k

)
JΨΨΨ (20)

F
total,ΨΨΨΨΨΨ = JH

ΨΨΨ

[
K

∑
k

(
R−T

k ⊗R−1
k

)]
JΨΨΨ (21)

where

JΨΨΨ =
[
SU SL (IP ◦ IP)

]
.

Because the constraint matrix is only a function of θθθ Ak
, the

constraint matrix for the entire dataset becomes

Htotal =

⎡
⎢⎢⎢⎢⎣

HA1
0 . . . 0

0 HA2
. . .

...
...

. . .
. . . 0

0 . . . 0 HAK

0 0 0

⎤
⎥⎥⎥⎥⎦ .

Because Htotal is very sparse, we can use efficient QR de-

composition algorithms to find a unitary basis, Utotal for its

null space efficiently.

The Constrained CRB can now be found, similar as before,

using Ftotal and Utotal .

4 Algorithm

In this part we discuss some techniques to estimate the un-

known parameters. As we will show this leads to a non-

linear optimization problem that we will solve using a vari-

ation of a Jacobian-free Newton-Krylov (JFNK) technique

[7] and a matrix-free Gauss-Newton-Krylov (MFGNK) [8].

The main idea behind the Newton-Krylov technique is to

solve the linear system needed to find the direction of

descent using Krylov subspace based solvers. Krylov-

subspace based algorithms find the solution to a linear sys-

tem such as Bx = y by repeated calculation of the matrix

vector product Bv where, for a square B, v is a vector hav-

ing the same length as the unknown vector x. In many

applications, and as we will demonstrate in our case, B

is related to the Jacobians and the multiplications can be

performed using these Jacobians. The JFNK and MFGNK

techniques avoid storing the Jacobian by using a Taylor ex-

pansion to approximate the needed matrix vector products

[7, 8]. The Kronecker structure of the Jacobians derived in

the previous section allows us to develop a method that also

avoids storing the Jacobians but does exact computation of

the matrix vector product similar to the work done in [9].

We will discuss Non-linear Weighted Least Squares (NL-

WLS) and the Maximum Likelihood (ML) for finding Ψ̂ΨΨ
and Âk.

4.1 Non-linear Weighted Least Squares

We start by vectoring and stacking all the covariance ma-

trices to form a measurement vector

r̂ =
[
vecT (R̂1) . . . vecT (R̂K)

]T
, (22)

and similarly

r(θθθ ) =
[
vecT (R1(θθθ )) . . . vecT (RK(θθθ ))

]T
, (23)

where

θθθ =
[
θθθ T

A1
. . . θθθ T

AK
θθθ T

ΨΨΨ

]T
. (24)

We can estimate the unknown parameters in θθθ using NL-

WLS defined as

θ̂θθ = argmin
θθθ

‖(WT/2 ⊗W1/2)[r̂− r(θθθ )]‖2
2 (25)

where W is a weighting matrix. The optimum weighting

matrix is the covariance matrix of the entire dataset W =
R−1

total, however because we have only access to R̂k we use

W =

⎡
⎢⎣

R̂−1
1 . . . 0

0
. . . 0

0 . . . R̂−1
K

⎤
⎥⎦ (26)

which will give an asymptotically optimal solution for a

Gaussian distributed data matrix [10].

A very common iterative technique for solving nonlin-

ear optimization problems is the Gauss-Newton algorithm,

where the Hessian is replaced by the Gramian of the Jaco-

bians [11]. The updates are similar to Newton updates and

are given by

θ̂θθ
j+1

= θ̂θθ
j
+μ jΔΔΔΔ (27)

where ΔΔΔ is the direction of descent. To find ΔΔΔ we need to

solve

B(θθθ )ΔΔΔ = g(θθθ ) (28)

where

B(θθθ ) = JH(θθθ )(WT ⊗W)J(θθθ ) (29)

and g(θθθ ) is the gradient of the NLWLS given by

g(θθθ ) = JH(θθθ )(WT ⊗W)[r̂− r(θθθ )]. (30)

We will drop the dependency on θθθ from the notation and

write only J and r because θθθ does not change while we are

solving for ΔΔΔ. We will continue the iterations given by (27)

until ‖g(θ̂θθ
( j)
‖2 < ε where ε > 0 depends on the desired ac-

curacy. This concludes the Gauss-Newton algorithm. The

key step is solving the linear system in (28). We will dis-

cuss a Krylov based method for solving this system to find

ΔΔΔ.

4.2 Krylov-Based Methods

There are various Krylov subspace based solvers, an

overview of these solvers can be found for example in [12].

We know from our study of the Fisher information that the

solution to the problem is not unique, this means that the

Jacobians and hence B is singular. One possible Krylov

solver that is capable of finding a solution for singular ma-

trices is the Minres-QLP algorithm [13] and for this reason

we have chosen this solver for our iterative approach.

The most expensive computation during the Minres-QLP

iterations is the multiplication of the matrix B with a vector,
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i.e operation of the form u = Bv. We will now show how

we can achieve this multiplication without needing to store

the Jacobians using the Kronecker structure.

In order to calculate u = Bv for B given in (29), we define

an intermediate result z = Jv. Given the fact that v, u have

the same dimensions as θθθ and z has the same dimensions

as r we are going to partition them in the same manner

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vec(VA1
)

vec(VĀ1
)

...

ST
U vec(VΨΨΨ)

ST
L vec(VΨΨΨ)

(IP ◦ IP)
T vec(VΨΨΨ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vec(UA1
)

vec(UĀ1
)

...

ST
U vec(UΨΨΨ)

ST
L vec(UΨΨΨ)

(IP ◦ IP)
T vec(UΨΨΨ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(31)

and

z =

⎡
⎢⎣

vec(Z1)
...

vec(ZK)

⎤
⎥⎦ (32)

To find u we will compute UAk
, UĀk

and UΨΨΨ . We note that

if VĀk
= V̄Ak

then UĀk
= ŪAk

which means that only UAk

needs to be calculated.

The Jacobian for the entire dataset is given by

J =
∂vec(R)

∂ θθθ T
=

⎡
⎢⎢⎢⎣

JA1
JĀ1

. . . 0 JΨΨΨ
0 . . . 0 JΨΨΨ

0
. . .

. . . 0 JΨΨΨ
0 . . . JAK

JĀK
JΨΨΨ

⎤
⎥⎥⎥⎦ (33)

and hence using z = Jv, (32) and (6):

vec(Zk) = (Āk ⊗ IP)vec(VAk
)

+(IP ⊗Ak)KP,Qvec(VĀk
)+vec(VΨΨΨ)

= vec
(

VAk
AH

k +AkVH
Ak

+M�VΨΨΨ

)
where we have used VĀk

= V̄Ak
. It follows directly from

unvectorizing both sides that

Zk = VAk
AH

k +AkVH
Ak

+M�VΨΨΨ . (34)

This means that we can calculate Jv by only reshaping the

vector v to appropriate matrices and applying (34). The

variables Ak are the current estimates of unknown parame-

ters.

The next matrix vector multiplications that we need is

zW = (WT ⊗W)z. Using the properties of Kronecker prod-

ucts it is straightforward to show that

WT ⊗W =

⎡
⎢⎣

R̂−T
1 ⊗ R̂−1

1 . . . 0

0
. . . 0

0 . . . R̂−T
K ⊗ R̂−1

K

⎤
⎥⎦ , (35)

thus zW = (WT ⊗W)z can be calculated using

ZWk
= R̂−1

k ZkR̂−1
k (36)

and

zW =

⎡
⎢⎣

vec(ZW1
)

...

vec(ZWK
)

⎤
⎥⎦ . (37)

The final product we need to calculate is u = JHzW. From

the structure of (33), we see that

vec(UAk
) = JH

Ak
vec(ZWk

)

vec(UĀk
) = JH

Āk
vec(ZWk

).

Unvectorizing both sides and applying (6) we find

UAk
= ZWk

Ak (38)

UĀk
= ZT

Wk
Āk.

The remaining term UΨΨΨ is given by:

UΨΨΨ =
K

∑
k=1

M�ZWk
. (39)

To summarize, in order to calculate Bv we reshape v into

VAk
and VΨΨΨ and use (34), (36), (38) and (39) to find the

result. The gradient g can be calculated in a similar manner

by using Zk = R̂k −Rk. The procedure that performs these

steps is provided to Minres-QLP which then solves for ΔΔΔ.

By assuming VĀk
= V̄Ak

we showed in (34) that Zk is Her-

mitian, and because R̂−1
k is Hermitian so is ZWk

. From the

properties of Hermitian matrices we have ZT
Wk

= Z̄Wk
and

thus UĀk
= ŪAk

. We still need to show that the assump-

tion about VĀk
is valid. It can be shown that Minres-QLP

provides v that have the property VĀk
= V̄Ak

when solving

BΔΔΔ = g if g has this property. Calculating g is achieved by

setting Zk = R̂k −Rk and following the procedure above.

Because both R̂k and Rk are Hermitian, it follows that the

needed property holds for g and hence for v.

4.3 Maximum Likelihood

An alternative to the NLWLS solved in Sec. 4.1 is to max-

imize the likelihood function (9). A Hessian-free (similar

to Jacobian and matrix free) variation in combination with

Krylov solvers have been suggested in [14]. However by

using the results of the previous section we will develop a

method based on the scoring method, where the Hessian is

replaced by the Fisher information matrix [15]. We already

have derived the Fisher information for the entire dataset.

We will denote this method Scoring-Krylov (SK).

The scoring method as presented by [15] can be summa-

rized as

θ̂θθ
( j+1)

= θ̂θθ
( j)

+μ jΔΔΔ

where ΔΔΔ is the solution to

Ftotal(θθθ )ΔΔΔ = ∇θθθ l(θθθ )

Using the same technique as we have done to find the

derivatives for NLWLS we find the derivative of the likeli-

hood to be

∇θθθ l(θθθ ) = JH(θθθ )(R−T (θθθ )⊗R−1(θθθ ))(r̂− r(θθθ )).
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Figure 1

(a) Attentuation as the function of SNR for different techniques.
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(b) Angle difference between the estimated subspace and true sub-

space.
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This similarity between the ML and (NL)WLS is well

known and is also studied in [10]. Given the definition of

the gradient and the Fisher information, we observe that

the same techniques used for NLWLS can be applied to

ML. We only need to replace the weighting matrix to be

the current best estimate of R(θθθ ). However this approach

requires the inversion of the covariance matrices at each it-

eration. If based on the structure of M, inversion of ΨΨΨ is

computationally more accommodating then the Woodbury

matrix identity can be used to find the inverse with less

complexity.

This means that the SK method is similar to the NLWLS

with the exception of the weighting matrix. Also in appli-

cation of Minres-QLP the only step that needs modification

is (36), where we replace R̂k with Rk(Â
( j)
k , Ψ̂ΨΨ

( j)
) (note that

j remains the same during the Minres-QLP iterations).

This will allow us to find the ML solution using the advan-

tages of the Krylov based solvers without the need to store

the Fisher information matrix or the Jacobians.

5 Simulations

We will evaluate the performance of the proposed model

and algorithm using a series of simulations. We will start

by studying performance of JFA and then we will simu-

late a direction of arrival (DOA) estimation scenario using

JEFA.

5.1 Subspace Performance

In this section we study the performance of FA and JFA

where we take ΨΨΨ = σ2IP, so we can compare the perfor-

mance to EVD.

For this simulations we have chosen Qk = 2, P = 5, K = 5

and σ = 1. We study the subspace estimation performance

for various signal to noise ratios (SNR) ranging from −5

dB to 20 dB. Each sample covariance matrix is generated

using N = 100 samples and Ak is generated as a random

complex matrix.

Two metrics are used to measure performance of the esti-

mated subspace. We use the estimated subspaces to find a

projection matrix into the null-space of Âk which we will

denote by P̂k and we measure

Subspace error =
‖P̂kAAH P̂k‖F

‖AAH‖F

.

In Fig. 1a the result of this simulations is presented. As

FA and JFA have to estimate more parameters, we expect

a drop in performance compared to EVD. This simulation

shows that this occurs for FA at low SNR. JFA exploits the

stationarity of the noise component and hence has a quite

small performance penalty with respect to EVD.

The other metric we use is the angle between two sub-

spaces calculated using MATLAB command subspace.

This result is shown in Fig. 1b. The subspace angle differ-

ence between the true and estimated subspaces decreases

as SNR increases. JFA follows the performance of EVD

with a very small gap.

Because JFA has a more general model, it is applicable in

many practical situations and we have shown that applying

this technique in classical scenarios where ΨΨΨ = ΣΣΣ2IP does

not result in a significant performance loss.

5.2 DOA Estimation using EJFA

In this scenario we use the estimated subspace from EVD,

EJFA and EFA as the input to a DOA estimator based on

ESPRIT. We simulate K = 10 with Qk = 2 targets moving

along the tracks T1 and T1 as illustrated in Fig. 3 between

the snapshots. We have a uniform linear array with P = 7

receivers that observe the targets, however P0 = 5 of these

receivers are contaminated with unknown interfering sig-

nals. We will model the interfering signal as a stationary

unknown colored noise which leads to a mask matrix de-
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Figure 2

(a) Result of Beamforming on AkAH
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(b) Result of Beamforming on Rk
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Figure 3

(a) DOA results for EVD + ESPRIT
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(b) DOA results for EFA + ESPRIT
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(c) DOA results for JEFA + ESPRIT
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fined by

M =

[
1P0

1T
P0

0

0 I2

]
where 1P0

is a P0 ×1 vector with all entries equal to unity.

The sample covariance matrix for each snapshot is obtained

using N = 100 samples.

Fig. 2a shows the result of matched filter beamforming on

the simulated data when there is no infereferer present and

Fig. 2b shows the effect of the interfering signals. Because

of the limited resolution of the device, the beamformer can-

not differentiate the two signals in the last snapshot.

We present the Monte-Carlo (MC) results of ESPRIT for

each snapshot based on the subspace estimated by different

algorithm in Fig. 3.

• Because ΨΨΨ �= σ2I, EVD is not able to recover the cor-

rect subspace and hence as illustrated in Fig. 3a the

estimated subspace is biased, (note that the bias is dif-

ferent between each snapshot and is a function of both

Ak and ΨΨΨ and the wild behavior shown in this figure

does not disappear by increasing the MC runs).

• Fig. 3b shows the result obtained by applying the EFA

separately on each snapshot followed by ESPRIT. Be-

cause the resolution decreases for higher angles (as

can be seen in Fig. 2a) and because not the entire

dataset is used the variance of the DOA estimates is

higher for the first few snapshots, also as the targets

get closer it is more difficult to differentiate their sub-

space. Both problems affect the performance of EFA.

• The performance of JEFA is illustrated in Fig. 3c. Be-

cause both the correct data model has been used and

estimation is done over the entire dataset, JEFA is able

to recover the subspaces and hence the DOA estimates

more accurately.

5.3 Cramér-Rao Bound simulation

In this part we investigate the performance of the proposed

algorithm using the Cramér-Rao bound. We use a setup

with P = 5, Qk = 2, ΨΨΨ = D with diagonal element rang-

ing from 0.5 to 1.5. Two different approaches have been

compared. The first approach is to apply FA separately and

then use D̂ = 1/K ∑k D̂k. The other approach is to estimate

using JFA.
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Figure 4 Cramér-Rao Bound

We use

E {‖D̂−D‖2
F}= E {vec(D̂−D)Hvec(D̂−D)}

= tr[E {vec(D̂−D)vec(D̂−D)H}]≥ tr(CΨΨΨ)

where CΨΨΨ is the sub-matrix of CRB corresponding to ΨΨΨ,

to measure performance. We estimate E {‖D̂−D‖2
F} us-

ing Monte Carlo simulations. Fig. 4 shows the result of

this simulations. This figure clearly illustrates that the pro-

posed joint estimation reaches the CRB asymptotically and

that applying the estimation separately followed by an aver-

aging results in a sub-optimal estimation with higher vari-

ance.

6 Conclusion

We have provided a method for jointly estimating the non-

stationary low-rank and stationary structured part of a se-

ries of covariance matrices by developing efficient algo-

rithms based on Newton-Krylov optimization techniques.

An algorithm to find the ML estimates has also been pre-

sented.

The Cramér-Rao bound for the entire dataset has been pro-

vided and the performance of the algorithm have been il-

lustrated using simulations.

The general structure of the data model should make appli-

cation of this technique possible in a wide range of signal

processing applications.
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