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ABSTRACT

Linear image deconvolution for radio–astronomy isan ill–posed
problem. For this reason a-priori knowledge is crucial for improv-
ing the performance of the deconvolution. In this paper we show
that combining non–negativity constraints with an upper bound on
the magnitude of each pixel in the image can significantly improve
the image formation algorithm. We also show that the minimum
variance distortionless response (MVDR) dirty image provides
the tightest upper bound among all beamformers. We then show
how LS-MVI image formation a;gorithm can be reformulated as
a preconditioned weighted least squares algorithm. The resulting
algorithm can be efficiently solved using the active–set method. The
performance of the algorithm is demonstrated in simulation and
compared with constrained least squares based on the classical dirty
image.

Index Terms— Radio astronomy, array signal processing, con-
strained optimization, Krylov subspace, LSQR, MVDR, image de-
convolution

1. INTRODUCTION

Since the early days of radio astronomy many deconvolution tech-
niques have been developed to solve the image formation problem.
The basic idea behind a deconvolution algorithm is to exploit a-
priori knowledge about the image in order to solve the ill-posed
imaging problem. The first algorithm and the most popular of
these techniques is the CLEAN method proposed by Högbom [1].
Subsequently the maximum entropy algorithm (MEM) with var-
ious entropy functions was proposed in [2], [3], [4] and [5] and
the current implementation by Cornwell and Evans [6] is the most
widely used. Beyond these two techniques there are several exten-
sions in various directions: extensions of the CLEAN algorithm
to support multi-resolution and wavelets as well as non co-planar
arrays and multiple wavelengths such as the W-projection [7] and
the A-projection algorithm (see the overview paper [8]). MEM tech-
niques have been also extended to take into account source structure
through the use of multiresolution and wavelet based techniques [9],
global non-negative least squares was proposed by Briggs [10], ma-
trix based parametric imaging such as the Least Squares Minimum
Variance Imaging (LS–MVI), maximum likelihood based tech-
niques in [11], [12], [13] and sparse L1 reconstruction in [14] and
[15]. Source modeling is an important issue and various techniques
to improve modeling over simple point source models by using
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shapelets, wavelets and Gaussians [16] have been implemented. A
more extensive overview of classical techniques and implementation
issues is given in [17] or [18].

Better performance analysis of imaging as well as the develop-
ment of computationally efficient techniques are some of the major
challenges for the radio astronomical signal and image processing
community. This is likely to become a more critical problem for
the future generation of radio interferometers that will be built in
the next two decades such as the square kilometer array (SKA) and
its prototypes, the Low Frequency Array (LOFAR), the Allen Tele-
scope Array (ATA) and the Long Wavelength Array (LWA). These
radio-telescopes are composed of many stations (each station made
up of multiple antennas that are combined using adaptive beamform-
ing). They will have significantly increased sensitivity and band-
width compared to traditional radio interferometers, and some of
them will operate at much lower frequencies. Improved sensitiv-
ity will therefore require a much better calibration, the capability to
perform imaging with much higher dynamic range in order to reduce
the effect of the residuals of powerful foreground sources inside and
outside the field of view and better handling of non-coplanar arrays.

In contrast to non-linear deconvolution techniques, least squares
based techniques offer a computationally efficient closed form ap-
proach [19]. Unfortunately, the deconvolution problem becomes
ill–posed as the resolution increases [19]. To overcome this prob-
lem, a non-negativity constraint has been proposed using the non–
negative least squares algorithm (NNLS) [20]. In order to benefit
from the vast literature related to solving least square problems on
one hand and to gain from the non-linear processing offered by stan-
dard deconvolution techniques on the other hand, we propose to re-
formulate the imaging problem using an active set approach with
two additional constraints as well as a low-dimensional fine fitting
of the parameters. We generalize several of the sequential paramet-
ric techniques into an active–set weighted least squares algorithm
[21] with weighting derived to allow the introduction of high res-
olution techniques such as the LS-MVI ([12]). This reformulation
will allow us to obtain computationally efficient imaging algorithms
that are closely related to existing non-linear sequential source esti-
mation techniques with the benefit of accelerated convergence due
to tighter upper bounds on the power distribution over the complete
image. The Karush Kuhn Tucker (KKT) total power constraint is en-
forced over the complete image not only at the location of the source.
This in turn eliminates the inclusion of negative flux sources and
other anomalies that appear in some existing sequential techniques.
Specifically, we show that the pixel values are bounded also from
above by the minimum variance distortionless response (MVDR)
dirty image [11] and then we extend the idea behind NNLS and for-
mulate the multichannel imaging as an optimization problem with
both lower and upper bounds.

The structure of the paper is as follows: In section 2 we describe



the basic data model. Section 3 we describe the imaging algorithm.
We end up with a simulated experiments comparing the algorithm
to previously proposed constrained least square algorithm [22]. We
end up with conclusions and extensions. Due to space limitations,
the implementation details of the active set technique as well as com-
parison of the algorithm to other algorithms on real data will appear
in the full version of this paper [23].

2. DATA MODEL

Assume that a radio telescope with p antennas is observing the sky.
In this paper we use the data model proposed by Leshem et al. [11],
[24]. For simplicity we assume a single frequency measurement and
the generalization to multi-frequency synthesis follows the model
of [11]. To distinguish between the true (and unknown) position
of the sources and the position of each pixel in the image we use
tilde to represent parameters that depend on the true position of the
sources. Following [11] we are given estimates R̂k of the antenna
measurements covariance (also known as the visibility) at snapshots
k = 1, ...,K. Since the received signals and noise are Gaussian,
these covariance matrices form sufficient statistics for the imaging
problem [11]. We also define

r̂k = vect(R̂k) (1)

Stacking these measurements in a vector we can form the total mea-
surement vector for the system which becomes

r̂ =
[
r̂T1 , . . . , r̂TK

]T
. (2)

.
The measured covariance matrices are noisy versions of the true

covariance matrices. These are composed of the sky contribution and
the receivers noise covariance matrices. Following [24] the model
covariance matrices are given by:

Rk = E{ykyH
k } = ÃkΣ̃ÃH

k + Rn,k, (3)

where Σ̃ = E{s̃s̃H} and Rn,k are sky brightness and the noise
covariance matrix respectively. By assuming that sky sources are
independent and stationary, we can model Σ̃ = diag(σ̃) where

σ̃ =
[
σ̃1 , . . . , σ̃q

]T (4)

represents the the brightness of the sources. We will use the terms
brightness and source power interchangeably for the rest of this pa-
per.

Vectorizing both sides of (3) we get

rk = vect(Rk) = (Ã∗k ◦ Ãk)σ̃ + rn,k (5)

where rn,k = vect(Rn,k). Stacking the vectorized covariances for
all of snapshots together we obtain

r =
[
rT1 , ..., r

T
K

]T
= Ψ̃σ̃ + rn (6)

where Ψ̃ =

[(
Ã∗1 ◦ Ã1

)T
, ...,

(
Ã∗K ◦ ÃK

)T ]T
and rn =[

rTn,1, ..., r
T
n,K

]T
. The imaging problem amounts to estimating

the locations and brightness of all the sky sources from the sample
covariance estimates R̂1, ..., R̂K . We also define the block diago-
nal matrices R = diag{R1, ...,RK} and R̂ = diag{R̂1, ..., R̂K}.
These will be used for computing the asymptotically optimal weight-
ing matrix for the weighted least squares algorithm.

3. THE IMAGE FORMATION ALGORIHTM AS A
REGULARIZED CONSTRAINED LEAST SQUARES

ALGORITHM

The imaging problem aims to find the spatial power distribution
over the sky, given a set of covariance matrices at snapshots, k =
1, ...,K. We define a grid for the image and try to estimate the
power on the grid. Assuming that the grid is sufficiently fine this
will provide a good estimate of the image. Threfore we replace Ã
with the array response matrix towards the grid pixels A and σ̃ with
σ in (3) and obtain

Rk = Akdiag(σ)AH
k + Rn,k. (7)

In this new model A is a p ×M matrix and σ is a M × 1 vector,
where M is the number of pixels. Similarly Ψ̃ changes to

Ψ =
[
(A∗1 ◦A1)T , ..., (A∗K ◦AK)T

]T
. (8)

Hence for a given r̂ in (2), we want to estimate the power of each
pixel. Note that A, Ψ and σ depend on the position of the pix-
els on the gridded image. The change of notation is to indicate the
difference between the pixel locations and the true (and unknown)
location of the sources.

Now that we have defined a grid the imaging equation (6) be-
comes

r = Ψσ + rn. (9)

For a sufficiently fine grid this approximates the solution of the dis-
crete source model. However, working entirely in the image domain
leads to a gridding related noise floor. This is solved by fine adapta-
tion of the location of the sources and estimating the true locations in
the visibility domain. We can now reformulate (9 as a Least Squares
(LS) estimate of σ as is done in [19]. Solving the imaging problem
with LS reduces to the following minimization problem

min
σ

1

2K
‖r̂−Ψσ‖2. (10)

Unfortunately when the number of pixels is large the problem is ill-
posed and (9) has infinitely many solutions [19]. Therefore, solving
this problem requires some kind of regularization. Typically image
formation algorithms exploit external information regarding the im-
age in order to regularize the ill-posed problem. For example max-
imum entropy techniques [2, 3] impose a smoothness condition on
the image while the CLEAN algorithm [1] exploits the fact that most
of the image is empty. To regularize the problem we follow [20]
who required non-negativity of every pixel in the image. This leads
to a lower bound σ ≥ 0. The NNLS problem can thus be given as:

minσ
1

2K
‖r̂−Ψσ||2

subject to: 0 ≤ σ
(11)

We now improve the NNLS regularization by exploiting our knowl-
edge regarding the dirty image and bounding the pixel powers also
from above. such that σ ≤ γ for some upper bound γ. We will
motivate and discuss different choices for γ.

By closer inspection of the ith pixel on the dirty image, we see
that for ith pixel we have

σw,i =
∑
k

wH
i,kRkwi,k =

∑
k

wH
i,kai,kσia

H
i wi,k+

∑
k

wH
i,kRr,kwi,k

(12)
If we require that

wH
i ai =

√
K (13)



where
wi =

[
wT

i,1 . . . wT
i,K

]T (14)

we obtain that
σw,i = σi + wH

i Rrwi. (15)

Since Rr is positive definite, we obtain that we always have:

σi ≤ σw,i. (16)

Following [25]the optimal beamforming vectors wi which satisfy
(13) and minimize the second term on the right hand side of (15).
The beamforming vectors are given by:

wi =

√
K

aH
i R−1ai

R−1ai. (17)

The dirty image formed by substituting (17) into (15) is called the
MVDR dirty image [12]. Each pixel of the MVDR dirty image is
given by

σMVDR,i =
K
∑

k aH
i,kR−1

k ai,k(∑
k aH

i,kR−1
k ai,k

)2

=
1

1
K

∑
k aH

i,kR−1
k ai,k

. (18)

It is useful to write (18) in a vector form:

σMVDR = D−1
MVDRΨH(R−T ⊗R−1)r, (19)

where
DMVDR =

1

K
diag2

(
AHR−1A

)
. (20)

By substituting this vector into (16) the upper bound becomes

σ ≤ σMVDR. (21)

Given the fact that wi minimizes the positive error in output of the
beamformer shows that the MVDR dirty image forms the tightest
upper bound on the power of each pixel among all beamforming
vectors. Using this as an additional constraint can improve the speed
of convergence and also the quality of the solution. This improves
the results of [22] which was based on the classical dirty image. The
constrained LS (CLS) imaging problem can now be formulated as:

minσ
1

2K
‖r̂−Ψσ‖2

subject to: 0 ≤ σ ≤ γ
(22)

where γ can be chosen either as γ = σMF for the matched filter dirty
image or γ = σMVDR for the MVDR dirty image.

The upper bound (21) assumes that we know the true covariance
matrices Rk. However in practice we only measure R̂k which is
subject to statistical fluctuations. Choosing a confidence level of
6 times the standard deviation of the dirty images ensures that the
upper bound will hold with probability 99.9% for all the pixels in an
image of 1000x1000 pixels.

σ ≤ α σ̂MVDR (23)

where
σ̂MVDR,i =

C
1
K

∑
k ai,kR̂−1

k ai,k

(24)

is an unbiased estimate of the MVDR dirty image, andC = N/(N−
p) is a bias correction constant. The unbiased estimate can also be
written in vector form as

σ̂MVDR = D−1ΨH(R̂−T ⊗ R̂−1)r̂, (25)

where
D =

1

KC
diag2

(
AHR̂−1A

)
. (26)

It is well known that the statistical properties of a LS solution can
be improved in the Gaussian case by applying a proper weighting
which leads to a weighted least squares (WLS) problem [26]. The
proper weighting uses R−1. However, if R̂ is a consistent estimate
of R using R̂ provides an asymptotically optimal weighting. This
leads to the cost function:

fWLS(σ) =
1

2
‖
(
R̂−T/2 ⊗ R̂−1/2

)
(r̂−Ψσ) ‖2 (27)

The WLS problem is now given by

minσ fWLS(σ)
subject to: 0 ≤ σ ≤ γ.

(28)

As we have shown in (10), the LS solution is related to the classical
(matched filter) dirty image. Similarly we can show that by defining
a diagonal preconditioner and applying it to the WLS we can relate
this new preconditioned WLS (PWLS) problem to the MVDR dirty
image. This will also allow us to understand the relation between
the WLS solution and the LS-MVI algorithm [12]. The diagonal
preconditioner with this property given by (26). Now we can rewrite
(27) as

fWLS(σ) =
1

2
‖
(
R̂−T/2 ⊗ R̂−1/2

) (
r̂−ΨD−1Dσ

)
‖2 (29)

Substituting σ̌ = Dσ we obtain that (28) is equivalent to solving

σ̌ = arg minσ̌
1
2
‖
(
R̂−T/2 ⊗ R̂−1/2

) (
r̂−ΨD−1σ̌

)
‖2

subject to: 0 ≤ σ̌ ≤ Dγ
(30)

and setting σ = D−1σ̌. This is correct since D is a positive diag-
onal matrix. The relation between this function and MVDR leads to
better detection and hence better estimation results when we solve
the constrained problem.

The problem (29) can be solved efficiently using an active set
algorithm together with a Krylov space based updates. These issues
will be discussed in the full version of this paper [23].
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Fig. 1: True source

4. SIMULATIONS

In this section we will evaluate the performance of the proposed
method on a simulated image. An array of 100 dipoles (p = 100)
with random distribution is used. 3 frequency channels each with a
bandwidth of 195kHz and two snapshots (K=2) have been used. The
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Fig. 2: MF Dirty Image
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Fig. 3: Solution of the constrained LS image after convolution with
a Gaussian beam.
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Fig. 4: Image cross–section.
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Fig. 5: MVDR dirty image.

simulated source is a combination of a strong point source and two
extended structures. The extended sources are composed from seven
Gaussian shaped sources, one in the middle and 6 on a hexagon
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Fig. 6: Preconditioned WLS Image after convolution with a Gaus-
sian beam.
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Fig. 7: MVDR dirty image and preconditioned WLS cross–section.

around it. Figure 1 shows the simulated image in dB scale. The
background noise level that is added is 10 dB below the the extended
sources. Figures 2 and 5 show the matched filter and MVDR dirty
images respectively. Figures 3 and 6 show the reconstructed images,
after deconvolution and smoothing with a Gaussian clean beam, for
the LS and MVDR deconvolution with MF and MVDR dirty images
as upper bounds respectively. A cross section of the images has been
illustrated in Figures 4 and 7. Remarks:

• As expected MVDR dirty image has a much better dynamic
range and lower side–lobes;

• due to better initial dirty image and upper bound the precon-
ditioned WLS deconvolution gives a better cleaned image.
However a trade off is made between the resolution of the
point source and correct shape of the extended sources when
we use the Gaussian beam to smoothen the image.

• the cross sections show the accuracy of the magnitudes. This
shows that not only the shape but also the magnitude of the
sources are better estimated using preconditioned WLS.

5. CONCLUSION

In this paper we provided an improved constrained least squares
(CLS) image formation algorithm. We have demonstrated its supe-
riority over previously proposed CLS algorithms in a simulated ex-
periments. The full version of this paper [23] will provide examples
for the simulated 3C catalog as well as measured data. It will also
provide the full implementation of the algorithm which is computa-
tionally simple but requires careful use of Krylov spaces to prevent
the need to store very large matrices. Future work will show how
to combine the proposed approach with the robust adaptive selective
sidelobe canceler [27].
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