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ABSTRACT

Aims. Image formation for radio astronomy can be defined as estimating the spatial intensity distribution of celestial
sources throughout the sky, given an array of antennas. One of the challenges with image formation is that the problem
becomes ill-posed as the number of pixels becomes large. The introduction of constraints that incorporate a priori
knowledge is crucial.
Methods. In this paper we show that in addition to non-negativity, the magnitude of each pixel in an image is also
bounded from above. Indeed, the classical “dirty image” is an upper bound, but a much tighter upper bound can be
formed from the data using array processing techniques. This formulates image formation as a least squares optimiza-
tion problem with inequality constraints. We propose to solve this constrained least squares problem using active set
techniques, and the steps needed to implement it are described. It is shown that the least squares part of the problem
can be efficiently implemented with Krylov-subspace-based techniques. We also propose a method for correcting for the
possible mismatch between source positions and the pixel grid. This correction improves both the detection of sources
and their estimated intensities. The performance of these algorithms is evaluated using simulations.
Results. Based on parametric modeling of the astronomical data, a new imaging algorithm based on convex optimization,
active sets, and Krylov-subspace-based solvers is presented. The relation between the proposed algorithm and sequential
source removing techniques is explained, and it gives a better mathematical framework for analyzing existing algorithms.
We show that by using the structure of the algorithm, an efficient implementation that allows massive parallelism and
storage reduction is feasible. Simulations are used to compare the new algorithm to classical CLEAN. Results illustrate
that for a discrete point model, the proposed algorithm is capable of detecting the correct number of sources and
producing highly accurate intensity estimates.
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1. Introduction

Image formation for radio astronomy can be defined as esti-
mating the spatial intensity distribution of celestial sources
over the sky. The measurement equation (“data model”)
is linear in the source intensities, and the resulting least
squares problem has classically been implemented in two
steps: formation of a “dirty image”, followed by a deconvo-
lution step. In this process, an implicit model assumption
is made that the number of sources is discrete, and sub-
sequently the number of sources has been replaced by the
number of image pixels (assuming each pixel may contain
a source).

The deconvolution step becomes ill-conditioned if the
number of pixels is large (Wijnholds & van der Veen 2008).
Alternatively, the directions of sources may be estimated
along with their intensities, but this is a complex nonlin-
ear problem. Classically, this has been implemented as an
iterative subtraction technique, wherein source directions
are estimated from the dirty image, and their contribution
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is subtracted from the data. This mixed approach is the
essence of the CLEAN method proposed by Högbom (Hög-
bom 1974), which was subsequently refined and extended
in several ways, leading to the widely used approaches de-
scribed in (Cornwell 2008; Rau et al. 2009; Bhatnager &
Cornwell 2004).

The conditioning of the image deconvolution step can
be improved by incorporating side information such as
non-negativity of the image (Briggs 1995), source model
structure beyond simple point sources (e.g., shapelets and
wavelets (Reid 2006)), sparsity or `1 constraints on the im-
age (Levanda & Leshem 2008; Wiaux et al. 2009), or a
combination of both wavelets and sparsity (Carrillo et al.
2012, 2014). Beyond these, some fundamental approaches
based on parameter estimation techniques have been pro-
posed, such as the least squares minimum variance imag-
ing (LS-MVI) (Ben-David & Leshem 2008), maximum-
likelihood -based techniques (Leshem & van der Veen 2000),
and Bayesian-based techniques (H. Junklewitz et al. 2015;
Lochner et al. 2015). Computational complexity is a con-
cern that has not been addressed in these approaches.

New radio telescopes such as the Low Frequency Ar-
ray (LOFAR), the Allen Telescope Array (ATA), Murchison
Widefield Array (MWA), and the Long Wavelength Array
(LWA) are composed of many stations (each station made
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up of multiple antennas that are combined using adaptive
beamforming), and the increase in number of antennas and
stations continues in the design of the square kilometer
array (SKA). These instruments have or will have a sig-
nificantly increased sensitivity and a larger field of view
compared to traditional telescopes, leading to many more
sources that need to be considered. They also need to pro-
cess larger bandwidths to reach this sensitivity. Besides the
increased requirements on the performance of imaging, the
improved spatial resolution leads to an increasing number
of pixels in the image, and the development of computa-
tionally efficient techniques is critical.

To benefit from the vast literature related to solving
least squares problems, but also to gain from the non-
linear processing offered by standard deconvolution tech-
niques, we propose to reformulate the imaging problem as
a parameter-estimation problem described by a weighted
least squares optimization problem with several constraints.
The first is a non-negativity constraint, which would lead to
the non-negative least squares algorithm (NNLS) proposed
in (Briggs 1995). But we show that the pixel values are also
bounded from above. A coarse upper bound is provided by
the classical dirty image, and a much tighter bound is the
“minimum variance distortionless response” (MVDR) dirty
image that was proposed in the context of radio astronomy
in (Leshem & van der Veen 2000).

We propose to solve the resulting constrained least
squares problems using an active set approach. This re-
sults in a computationally efficient imaging algorithm that
is closely related to existing nonlinear sequential source es-
timation techniques such as CLEAN with the benefit of
accelerated convergence thanks to tighter upper bounds on
the intensity over the complete image. Because the con-
straints are enforced over the entire image, this eliminates
the inclusion of negative flux sources and other anomalies
that appear in some existing sequential techniques.

To reduce the computational complexity further, we
show that the data model has a Khatri-Rao structure. This
can be exploited to significantly improve the data manage-
ment and parallelism compared to general implementations
of least squares algorithms.

The structure of the paper is as follows. In Sec. 2 we de-
scribe the basic data model and the image formation prob-
lem in Sec. 3. A constrained least squares problem is formu-
lated, using various intensity constraints that take the form
of dirty images. The solution of this problem using active
set techniques in Sec. 4 generalizes the classical CLEAN al-
gorithm. In Sec. 5 we discuss the efficient implementation
of a key step in the active set solution using Krylov sub-
spaces. We end up with some simulated experiments that
demonstrate the advantages of the proposed technique and
conclusions regarding future implementation.

Notation

A boldface letter such as a denotes a column vector, a
boldface capital letter such as A denotes a matrix. Then
aij = [A]ij corresponds to the entry of A in the ith row
and jth column, ai = [A]i is the ith column of A, ai is
the ith element of the vector a, I is an identity matrix of
appropriate size, and Ip is a p× p identity matrix.

The symbol (·)T is the transpose operator, (·)∗ is the
complex conjugate operator, (·)H the Hermitian transpose,

‖ · ‖F the Frobenius norm of a matrix, ‖.‖ the two norm of
a vector, E{·} the expectation operator ,and N (µ,Σ) rep-
resents the multivariate complex normal distribution with
expected value µ and covariance matrix Σ.

A tilde, .̃, denotes parameters and related matrices that
depend on the "true" direction of the sources. However, in
most of the paper, we work with parameters that are dis-
cretized on a grid, in which case we drop the tilde. The grid
points correspond to the image pixels and do not necessarily
coincide with the actual positions of the sources.

A calligraphic capital letter such as X represents a set
of indices, and aX is a column vector constructed by stack-
ing the elements of a that belong to X . The corresponding
indices are stored with the vector as well (similar to the
storage of matlab “sparse” vectors).

The operator vect(·) stacks the columns of the argu-
ment matrix to form a vector, vectdiag(·) stacks the di-
agonal elements of the argument matrix to form a vector,
and diag(·) is a diagonal matrix with its diagonal entries
from the argument vector (if the argument is a matrix
diag(·) = diag(vectdiag(·))).

Let ⊗ denote the Kronecker product, i.e.,

A⊗B :=

 a11B a12B · · ·
a21B a22B · · ·
...

...
. . .

 .
Furthermore, ◦ denotes the Khatri-Rao product (column-
wise Kronecker product), i.e.,

A ◦B := [a1 ⊗ b1,a2 ⊗ b2, · · · ],

and � denotes the Schur-Hadamard (elementwise) product.
The following properties are used throughout the paper (for
matrices and vectors with compatible dimensions):

(BT ⊗A)vect(X) = vect(AXB) (1)

(B⊗A)H = (BH ⊗AH) (2)

(B⊗A)−1 = (B−1 ⊗A−1) (3)

(BT ◦A)x = vect(Adiag(x)B) (4)
(BC⊗AD) = (B⊗A)(C⊗D) (5)
(BC ◦AD) = (B⊗A)(C ◦D) (6)

(BHC�AHD) = (B ◦A)H(C ◦D) (7)

vectdiag(AHXA) = (A∗ ◦A)Hvect(X). (8)

2. Data model

We consider an instrument where P receivers (stations or
antennas) observe the sky. Assuming a discrete point source
model, we let Q denote the number of visible sources. The
received signals at the antennas are sampled and subse-
quently split into narrow sub-bands. For simplicity, we con-
sider only a single sub-band in the rest of the paper. Al-
though the sources are considered stationary, the apparent
position of the celestial sources will change with time be-
cause of the earth’s rotation. For this reason the data is
split into short blocks or “snapshots” of N samples, where
the exact value of N depends on the resolution of the in-
strument.

We stack the output of the P antennas at a single sub-
band into a vector yk[n], where n = 1, · · · , N denotes the
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sample index, and k = 1, · · · ,K denotes the snapshot in-
dex. The signals of the qth source arrive at the array with
slight delays for each antenna that depend on the source
direction and the Earth’s rotation (the geometric delays),
and for sufficiently narrow sub-bands these delays become
phase shifts, i.e., multiplications by complex coefficients.
The coefficients are later stacked into the so-called array
response vector. To describe this vector, we first need to
define a coordinate system. Assume a fixed coordinate sys-
tem based on the right ascension (α) and declination (δ) of
a source, and define the corresponding direction vector

β =

[
cos(δ) cos(α)
cos(δ) sin(α)

sin(δ)

]
.

The related earth-bound direction vector s with coordinates
(l,m, n) (taking earth rotation into account) is given by

s = Qk(L,B)β,

where Qk(L,B) is a 3 × 3 rotation matrix that accounts
for the earth rotation and depends on the time k and the
observer’s longitude L and latitude B. Because s has a unit
norm, we only need two coordinates (l,m), while the third
coordinate can be calculated using n =

√
1− l2 −m2.

For the qth source with coordinates (lq,mq) at the
kth snapshot, the direction vector is sq. Let the vector
ξi = [xi, yi, zi]

T denote the position of the ith receiving
element in earth-bound coordinates. At this position, the
phase delay (geometric delay) experienced by the q source
is given by the inner product of these vectors, and the ef-
fect of this delay on the signal is multiplication by a com-
plex coefficient akqi := exp(j 2π

λ ξTi sq), where λ is the wave-
length. Stacking the coefficients for i = 1, · · · , P into a
vector ak,q = ak(sq), we obtain the array response vector,
which thus has model

ak,q = ak(sq) =
1√
P
e
j2π
λ ΞT sq =

1√
P
e
j2π
λ ΞTQk(L,B)βq (9)

where Ξ is a 3×P matrix containing the positions of the P
receiving elements. We introduced a scaling by 1/

√
P as a

normalization constant such that ‖ak(sq)‖ = 1. The entries
of the array response vector are connected to the Fourier
transform coefficients that are familiar in radio astronomy
models.

Assuming an array that is otherwise calibrated, the re-
ceived antenna signals yk[n] can be modeled as

yk[n] = Akx[n] + nk[n], n = 1, · · · , N (10)

where Ak is a P × Q matrix whose columns are the array
response vectors [Ak]q = ak,q, x[n] is a Q× 1 vector repre-
senting the signals from the sky, and nk[n] is a P ×1 vector
modeling the noise.

From the data, the system estimates covariance matrices
of the input vector at each snapshot k = 1, · · · ,K, as

R̂k =
1

N

N∑
n=1

yk[n]yk[n]H , k = 1, · · · ,K . (11)

Since the received signals and noise are Gaussian, these co-
variance matrix estimates form sufficient statistics for the

imaging problem (Leshem & van der Veen 2000). The co-
variance matrices are given by

Rk = E{ykyHk }, (12)

for which the model is

Rk = AkΣAH
k + Rn,k, (13)

where Σ = E{xxH} and Rn,k = E{nknHk } are the source
and noise covariance matrices, respectively. We have as-
sumed that sky sources are stationary, and if we also as-
sume that they are independent, we can model Σ = diag(σ)
where

σ = [σ1 , . . . , σQ]
T (14)

represents the intensity of the sources. .To connect the co-
variance data model (13) to language more familiar to radio
astronomers, let us take a closer look at the elements of the
matrix Rk. Temporarily ignoring the noise covariance ma-
trix Rn,k, we note that

[Rk]ij =
1

P

Q∑
q=1

σqakqia
∗
kqi

=
1

P

Q∑
q=1

σqe
j 2π
λ (ξi−ξj)

T sq

=
1

P

Q∑
q=1

σqe
j 2π
λ [(xi−xj)lq+(yi−yj)mq+(zi−zj)

√
1−l2q−m2

q]

(15)

If we ddefine 1
λ [xi − xj , yi − yj , zi − zj ]T = [uij , vij , wij ]

T ,
then we can write [Rk]ij ≡ V (uij , vij , wij), where V (u, v, w)
is the visibility function, and (u, v, w) are the spatial fre-
quencies (Leshem et al. 2000). In other words, the entries of
the covariance matrix Rk are samples of the visibility func-
tion at a given frequency and time arranged in a matrix,
and (13) represents the measurement equation in matrix
form.

We can write this equation in several other ways. By
vectorizing both sides of (13) and using the properties of
Kronecker products (4), we obtain

rk = (A∗k ◦Ak)σ + rn,k (16)

where rk = vect(Rk) and rn,k = vect(Rn,k). After stacking
the vectorized covariances for all of the snapshots, we obtain

r = Ψσ + rn (17)

where

r =

 r1

...
rK

 , Ψ =

 A∗1 ◦A1

...
A∗K ◦AK

 , rn =

 rn,1

...
rn,K

 . (18)

Similarly, we vectorize and stack the sample covariance ma-
trices as

r̂k = vect(R̂k) , r̂ =

 r̂1

...
r̂K

 . (19)
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This collects all the available covariance data into a single
vector.

Alternatively, we can use the independence between the
time samples to write the aggregate data model as

R =

R1 . . . 0
...

. . . 0
0 . . . RK

 =

Q∑
q=1

σq(IK ◦Aq)(IK ◦Aq)H + Rn ,

(20)

where

Rn =

Rn,1 . . . 0
...

. . . 0
0 . . . Rn,K

 , (21)

Aq = [a1,q . . . aK,q] , q = 1, · · · , Q. (22)

3. The imaging problem

Using the data model (17), the imaging problem is to find
the intensity, σ, of the sources, along with their directions
represented by the matrices Ak, from given sample covari-
ance matrices R̂k, k = 1, · · · ,K. As the source locations
are generally unknown, this is a complicated (nonlinear)
direction-of-arrival estimation problem.

The usual approach in radio astronomy is to define a
grid for the image and to assume that each pixel (grid
location) contains a source. In this case the source loca-
tions are known, and estimating the source intensities is
a linear problem, but for high-resolution images the num-
ber of sources may be very large. The resulting linear es-
timation problem is often ill-conditioned unless additional
constraints are posed.

3.1. Gridded imaging model

After defining a grid for the image and assuming that a
source exists for each pixel location, let I (rather than Q)
denote the total number of sources (pixels), σ an I×1 vector
containing the source intensities, and Ak (k = 1, · · · ,K)
the P×I array response matrices for these sources. The Ak

are known, and σ can be interpreted as a vectorized version
of the image to be computed. (To distinguish the gridded
source locations and source powers from the “true” sources,
we later denote parameters and variables that depend on
the Q true sources by a tilde.)

For a given observation r̂, image formation amounts to
the estimation of σ. For a sufficiently fine grid, σ approx-
imates the solution of the discrete source model. However,
as we discuss later, working in the image domain leads to
a gridding-related noise floor. This is solved by fine adap-
tation of the location of the sources and estimation of the
true locations in the visibility domain.

A consequence of using a discrete source model in com-
bination with a sequential source-removing technique such
as CLEAN is the modeling of extended structures in the
image by many point sources. As we discuss in Sec. 6, this
also holds for the algorithms proposed in this paper.

3.2. Unconstrained least squares image

If we ignore the term rn, then (17) directly leads to least
squares (LS) and weighted least squares (WLS) estimates of
σ (Wijnholds & van der Veen 2008). In particular, solving
the imaging problem with LS leads to the minimization
problem

min
σ

1

2K
‖r̂−Ψσ‖2 , (23)

where the normalization factor 2K is introduced to simplify
the expression for the gradient and does not affect the solu-
tion. It is straightforward to show that the solution to this
problem is given by any σ that satisfies

HLSσ = σ̂MF (24)

where we define the “matched filter” (MF, also known as
the classical “direct Fourier transform dirty image”) as

σ̂MF =
1

K
ΨH r̂ =

1

K

∑
k

vectdiag(AH
k R̂kAk), (25)

and the deconvolution matrix HLS as

HLS =
1

K
ΨHΨ =

1

K

∑
k

(AT
kA∗k)� (AH

k Ak), (26)

where we have used the definition of Ψ from (18) (with tilde
removed) and properties of the Kronecker and Khatri-Rao
products. Similarly we can define the WLS minimization as

min
σ

1

2K
‖(R̂−T/2 ⊗ R̂−1/2)(r̂−Ψσ)‖2 , (27)

where the weighting assumes Gaussian distributed obser-
vations. The weighting improves the statistical properties
of the estimates, and R̂ is used instead of R because it is
available and asymptotically gives the same optimal results,
i.e., convergence to maximum likelihood estimates (Otter-
sten et al. 1998). The solution to this optimization is similar
to the solution to the LS problem and is given by any σ
that satisfies

HWLSσ = σ̂WLS, (28)

where

σ̂WLS =
1

K
ΨH(R̂−T ⊗ R̂−1)r̂ (29)

is the “WLS dirty image” and

HWLS =
1

K
ΨH(R̂−T ⊗ R̂−1)Ψ (30)

is the associated deconvolution operator.
A connection to beamforming is obtained as follows. The

ith pixel of the “Matched Filter” dirty image in equation
(25) can be written as

σ̂MF,i =
1

K

∑
k

aHk,iR̂kak,i,

and if we replace ak,i/
√
K by a more general “beamformer”

wk,i, this can be generalized to a more general dirty image

σw,i =
∑
k

wH
k,iR̂kwk,i. (31)
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Here, wk,i is called a beamformer because we can con-
sider that it acts on the antenna vectors yk[n] as zk,i[n] =
wH
k,iyk[n], where zk,i[n] is the output of the (direction-

dependent) beamformer, and σw,i =
∑
k E{|zk,i|2} is in-

terpreted as the total output power of the beamformer,
summed over all snapshots. We encounter several such
beamformers in the rest of the paper. Most of the beam-
formers discussed in this paper include the weighted visibil-
ity vector (R−T ⊗R−1)r. The relation between this weight-
ing and more traditional weighting techniques, such as nat-
ural and robust weighting, is discussed in Appendix A.

3.3. Preconditioned weighted least squares image

If Ψ has full column rank, then HLS and HWLS are non-
singular and a unique solution to LS and WLS exists; for
example, the solution to (24) becomes

σ = H−1
LS σ̂MF . (32)

Unfortunately, if the number of pixels is large, then HLS
and HWLS become ill-conditioned or even singular, so that
(24) and (28) have an infinite number of solutions (Wijn-
holds & van der Veen 2008). Generally, we need to improve
the conditioning of the deconvolution matrices and to find
appropriate regularizations.

One way to improve the conditioning of a matrix is to
apply a preconditioner. The most widely used and simplest
one is the Jacobi preconditioner (Barrett et al. 1994), which
for any matrix M, is given by [diag(M)]−1. Let DWLS =
diag(HWLS), then by applying this preconditioner to HWLS
we obtain

[D−1
WLSHWLS]σ = D−1

WLSσ̂WLS . (33)

We take a closer look at D−1
WLSσ̂WLS for the case where

K = 1. In this case,

HWLS = (A∗1 ◦A1)H(R̂−T1 ⊗ R̂−1
1 )(A∗1 ◦A1)

= (AT R̂−T1 A∗1)� (AH
1 R̂−1

1 A1)

and

D−1
WLS =


1

(aH1,1R̂−1
1 a1,1)2

. . .
1

(aH1,IR̂
−1
1 a1,I)2

 .
This means that

D−1
WLSσ̂WLS = D−1

WLS(R̂−T1 ⊗ R̂−1
1 )(A∗1 ◦A1)H r̂1

= (R̂−T1 A∗1D
−1/2
WLS ◦ R̂−1

1 A1D
−1/2
WLS )H r̂1,

which is equivalent to a dirty image that is obtained by
applying a beamformer of the form

wi =
1

aH1,iR̂
−1
1 a1,i

R̂−1
1 a1,i (34)

to both sides of R̂1 and stacking the results, σ̂i = wH
i R̂1wi,

of each pixel into a vector. This beamformer is known
in array processing as the minimum variance distortion-
less response (MVDR) beamformer (Capon 1969), and the
corresponding dirty image is called the MVDR dirty im-
age and was introduced in the radio astronomy context in

(Leshem & van der Veen 2000). This shows that the pre-
conditioned WLS image (motivated by its connection to the
maximum likelihood) is expected to exhibit the features of
high-resolution beamforming associated with the MVDR.
Examples of such images are shown in Sec. 6.

3.4. Bounds on the image

Another approach to improving the conditioning of a prob-
lem is to introduce appropriate constraints on the solution.
Typically, image formation algorithms exploit external in-
formation regarding the image in order to regularize the ill-
posed problem. For example, maximum entropy techniques
(Frieden 1972; Gull & Daniell 1978) impose a smoothness
condition on the image, while the CLEAN algorithm (Hög-
bom 1974) exploits a point source model wherein most of
the image is empty, and this has recently been connected
to sparse optimization techniques (Wiaux et al. 2009).

A lower bound on the image is almost trivial: each pixel
in the image represents the intensity at a certain direction,
so is non-negative. This leads to a lower bound σ ≥ 0. Such
a non-negativity constraint has been studied, for example,
in (Briggs 1995), resulting in a non-negative LS (NNLS)
problem

min
σ

1

2K
‖r̂−Ψσ‖2

subject to 0 ≤ σ
. (35)

A second constraint follows if we also know an upper bound
γ such that σ ≤ γ, which will bound the pixel intensities
from above. We propose several choices for γ.

By closer inspection of the ith pixel of the MF dirty
image σ̂MF, we note that its expected value is given by

σMF,i =
1

K

∑
k

aHk,iRkak,i .

Using

ai = vect(Ai) =
[
aT1,i . . . aTi,K

]T
, (36)

and the normalization aHk,iak,i = 1, we obtain

σMF,i =
1

K
aHi Rai = σi +

1

K
aHi Rrai, (37)

where

Rr =
∑
j 6=i

σj(IK ◦Aj)(IK ◦Aj)H + Rn (38)

is the contribution of all other sources and the noise. We
note that Rr is positive-(semi)definite. Thus, (37) implies
σMF,i ≥ σi which means that the expected value of the MF
dirty image forms an upper bound for the desired image, or

σ ≤ σMF . (39)

Using the relation between the MF dirty image and beam-
formers as discussed in Sec. 3.2, we answer the following
question: What is the tightest upper bound for σi that we
can construct using linear beamforming?

This question can be translated into an optimization
problem and a closed form solution (Appendix B) exists:

σopt,i = min
k

(
1

aHk,iR
−1
k ak,i

)
. (40)
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Here σopt,i is the tightest upper bound, and the beamformer
that achieves this bound is called the adaptive selective
sidelobe canceller (ASSC) (Levanda & Leshem 2013).

One problem with using this result in practice is that
σopt,i depends on a single snapshot. Actual dirty images
are based on the sample covariance matrix R̂, so they are
random variables. If we use a sample covariance matrix R̂
instead of the true covariance matrix R in (40), the vari-
ance of the result can be unacceptably large. An analysis
of this problem and various solutions for it are discussed in
(Levanda & Leshem 2013).

To reduce the variance we tolerate an increase of the
bound with respect to the tightest upper bound, however,
we would like our result to be tighter than the MF dirty
image. It can be shown that the MVDR dirty image defined
as

σMVDR,i =
1

1
K

∑
k aHk,iR

−1
k ak,i

, (41)

satisfies σi ≤ σMVDR,i ≤ σMF,i and produces a very tight
bound (see Appendix B for the proof). This leads to the
following constraint
σ ≤ σMVDR . (42)
Interestingly, for K = 1 the MVDR dirty image is the same
image as we obtained earlier by applying a Jacobi precon-
ditioner to the WLS problem.

3.5. Estimation of the upper bound from noisy data

The upper bounds (39) and (42) assume that we know
the true covariance matrix R. However, in practice we
only measure R̂, which is subject to statistical fluctuations.
Choosing a confidence level of six times the standard devi-
ation of the dirty images ensures that the upper bound will
hold with a probability of 99.9%.

This leads to an increase in the upper bound by a factor
1 + α where α > 0 is chosen such that
σ ≤ (1 + α) σ̂MF. (43)
Similarly, for the MVDR dirty image, the constraint based
on R̂ is
σ ≤ (1 + α) σ̂MVDR, (44)
where

σ̂MVDR,i =
C

1
K

∑
k aHk,iR̂

−1
k ak,i

(45)

is an unbiased estimate of the MVDR dirty image, and

C =
N

N − P
(46)

is a bias correction constant. With some algebra the unbi-
ased estimate can be written in vector form as
σ̂MVDR = D−1ΨH(R̂−T ⊗ R̂−1)r̂, (47)
where

D =
1

KC
diag2

(
AHR̂−1A

)
, (48)

and
A =

[
AT

1 . . . AT
K

]T
= [a1 . . . aI ] . (49)

The exact choice of α and C are discussed in Appendix C.

3.6. Constrained least squares imaging

Now that we have lower and upper bounds on the image,
we can use these as constraints in the LS imaging problem
to provide a regularization. The resulting constrained LS
(CLS) imaging problem is

min
σ

1

2K
‖r̂−Ψσ‖2

s.t. 0 ≤ σ ≤ γ
, (50)

where γ can be chosen either as γ = σMF for the MF dirty
image or γ = σMVDR for the MVDR dirty image (or their
sample covariance based estimates given by (43) and (44)).

The improvements to the unconstrained LS problem
that were discussed in Sec. 3.2 are still applicable. The ex-
tension to WLS leads to the cost function

fWLS(σ) =
1

2
‖(R̂−T/2 ⊗ R̂−1/2) (r̂−Ψσ) ‖2 . (51)

The constrained WLS problem is then given by

min
σ
fWLS(σ)

s.t. 0 ≤ σ ≤ γ .
(52)

We also recommend including a preconditioner that, as
shown in Sec.3.3, relates the WLS to the MVDR dirty im-
age. However, because of the inequality constraints, (52)
does not have a closed form solution, and it is solved by
an iterative algorithm. To have the relation between WLS
and MVDR dirty image during the iterations, we introduce
a change of variable of the form σ̌ = Dσ, where σ̌ is the
new variable for the preconditioned problem and the diag-
onal matrix D is given in (48). The resulting constrained
preconditioned WLS (CPWLS) optimization problem is

σ̌ = arg min
σ̌

1

2
‖(R̂−T/2 ⊗ R̂−1/2)

(
r̂−ΨD−1σ̌

)
‖2

s.t. 0 ≤ σ̌ ≤ Dγ
,

(53)

and the final image is found by setting σ = D−1σ̌. (Here
we use D as a positive diagonal matrix so that the transfor-
mation to an upper bound for σ̌ is correct.) Interestingly,
the dirty image that follows from the (unconstrained) WLS
part of the problem is given by the MVDR image σ̂MVDR
in (47).

4. Constrained optimization using an active set
method

The constrained imaging formulated in the previous section
requires the numerical solution of the optimization prob-
lems (50) or (53). The problem is classified as a positive
definite quadratic program with simple bounds, this is a
special case of a convex optimization problem with linear in-
equality constraints, and we can follow standard approaches
to find a solution (Gill et al. 1981; Boyd & Vandenberghe
2004).

For an unconstrained optimization problem, the gradi-
ent of the cost function calculated at the solution must
vanish. If we are not yet at the optimum in an iterative pro-
cess, the gradient is used to update the current solution. For
constrained optimization, the constraints are usually added
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to the cost function using (unknown) Lagrange multipliers
that need to be estimated along with the solution. At the
solution, part of the gradient of the cost function is not
zero but related to the nonzero Lagrange multipliers. For
inequality constraints, the sign of the Lagrange multipliers
plays an important role.

As we show here, these characteristics of the solution
(based on the gradient and the Lagrange multipliers) can be
used to develop an algorithm called the active set method,
which is closely related to the sequential source removing
techniques such as CLEAN.

In this section, we use the active set method to solve
the constrained optimization problem.

4.1. Characterization of the optimum

Let σ̄ be the solution to the optimization problem (50) or
(53). An image is called feasible if it satisfies the bounds
σ ≥ 0 and −σ ≥ −γ. At the optimum, some pixels may
satisfy a bound with equality, and these are called the “ac-
tive” pixels.

We use the following notation. For any feasible image
σ, let

L(σ) = {i |σi = 0} (54)
U(σ) = {i |σi = γi} (55)
A(σ) = L(σ) ∪ U(σ) (56)
F(σ) = I \ A(σ) . (57)

Here, I = {1, · · · , I} is the set of all pixel indices; L(σ) is
the set where the lower bound is active, i.e., the pixel value
is 0; U(σ) is the set of pixels that attain the upper bound;
A(σ) is the set of all pixels where one of the constraints is
active. These are the active pixels. The free set F(σ) is the
set of pixels i, which have values strictly between 0 and γi.
Furthermore, for any vector v = [vi], let vF correspond to
the subvector with indices i ∈ F , and similarly define vL
and vU . We write v = vF ⊕ vL ⊕ vU .

Let σ̄ be the optimum, and let ḡ = g(σ̄) be the gradient
of the cost function at this point. Define the free sets and
active sets F ,L,U at σ̄. We can write ḡ = ḡF ⊕ ḡL ⊕ ḡU .
Associated with the active pixels of σ̄ is a vector λ̄ = λ̄L⊕
λ̄U of Lagrange multipliers. Optimization theory (Gill et al.
1981) tells us that the optimum σ̄ is characterized by the
following conditions:

gF (σ̄) = 0 (58)
λ̄L = ḡL ≥ 0 (59)

λ̄U = −ḡU ≥ 0 . (60)

Thus, the part of the gradient corresponding to the free set
is zero, but the part of the gradient corresponding to the
active pixels is not necessarily zero. Since we have simple
bounds, this part becomes equal to the Lagrange multipliers
λ̄L and −λ̄U (the negative sign is caused by the condition
−σU ≥ −γU ). The condition λ ≥ 0 is crucial: a negative
Lagrange multiplier would indicate that there is a feasi-
ble direction of descent p for which a small step in that
direction, σ̄ + µp, has a lower cost and still satisfies the
constraints, thus contradicting optimality of σ̄ (Gill et al.
1981).

“Active set” algorithms consider that if the true ac-
tive set at the solution is known, the optimization problem

with inequality constraints reduces to an optimization with
equality constraints,
z = arg min

σ
f(σ) (61)

s.t. σL = 0 , σU = γU .

Since we can substitute the values of the active pixels into
σ, the problem becomes a standard unconstrained LS prob-
lem with a reduced dimension: only σ̄F needs to be esti-
mated. Specifically, for CLS the unconstrained subproblem
is formulated as

f(σ) =
1

2K
‖bLS −ΨFσF‖2 (62)

where
bLS = r̂−ΨUσU . (63)
Similarly, for CPWLS we have

f(σ̌) =
1

2

∥∥∥bPWLS −
(
R̂−T/2 ⊗ R̂−1/2

)
(ΨD−1)F σ̌F

∥∥∥2

,

(64)
where

bPWLS =
(
R̂−T/2 ⊗ R̂−1/2

)
(r̂− (ΨD−1)U σ̌U ). (65)

In both cases, closed form solutions can be found, and we
discuss a suitable Krylov-based algorithm for this in Sec. 5.

As a result, the essence of the constrained optimization
problem is to find L, U , and F . In the literature, algorithms
for this are called "active set methods", and we propose a
suitable algorithm in Sec. 4.3.

4.2. Gradients

We first derive expressions for the gradients required for
each of the unconstrained subproblems (62) and (64).
Generically, a WLS cost function (as function of a real-
valued parameter vector θ) has the form

f(θ)WLS = β‖G1/2c(θ)‖2 = βc(θ)HGc(θ) (66)
where G is a Hermitian weighting matrix and β is a scalar.
The gradient of this function is

g(θ) = 2β

(
∂c

∂θT

)H
Gc . (67)

For LS we have θ = σ, c = r̂ −Ψσ, β = 1
2K , and G = I.

This leads to

gLS(σ) = − 1

K
ΨH(r̂−Ψσ)

= HLSσ − σ̂MF. (68)

For PWLS, θ = σ̌, c = r̂ − ΨD−1σ̌, β = 1
2 , and G =

R̂−T ⊗ R̂−1. Substituting these into (67), we obtain

gPWLS(σ̌) = −D−1ΨH(R̂−T ⊗ R̂−1)(r̂−ΨD−1σ̌)

= HPWLSσ̌ − σ̂MVDR (69)
where
HPWLS = D−1ΨH(R̂−T ⊗ R̂−1)ΨD−1, (70)
and we used (47).

An interesting observation is that the gradients can be
interpreted as residual images obtained by subtracting the
dirty image from a convolved model image. At a later point,
this will allow us to relate the active set method to sequen-
tial source removing techniques.
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4.3. Active set methods

In this section, we describe the steps needed to find the sets
L, U and, F , and the solution. We follow the template al-
gorithm proposed in (Gill et al. 1981). The algorithm is an
iterative technique where we gradually improve on an im-
age. Let the image at iteration j be denoted by σ(j) where
j = 1, 2, · · · , and we always ensure this is a feasible solu-
tion (satisfies 0 ≤ σ(j) ≤ γ). The corresponding gradient
is the vector g = g(σ(j)), and the current estimate of the
Lagrange multipliers λ is obtained from g using (59) and
(60). The sets L, U , and F are current estimates that are
not yet necessarily equal to the true sets.

If this image is not yet the true solution, it means that
one of the conditions in (58)–(60) is violated. If the gradient
corresponding to the free set is not yet zero (gF 6= 0), then
this is remedied by recomputing the image from the essen-
tially unconstrained subproblem (61). It may also happen
that some entries of λ are negative. This implies that we do
not yet have the correct sets L, U , and F . Suppose λi < 0.
The connection of λi to the gradient indicates that the cost
function can be reduced in that dimension without violating
any constraints (Gill et al. 1981), at the same time making
the pixel no longer active. Thus we remove the ith pixel
from the active set, add it to the free set, and recompute
the image with the new equality constraints using (61). As
discussed later, a threshold ε is needed in the test for the
negativity of λi, therefore this step is called the “detection
problem”.

Table 1 summarizes the resulting active set algorithm
and describes how the solution z to the subproblem is used
at each iteration. Some efficiency is obtained by not com-
puting the complete gradient g at every iteration, but only
the parts corresponding to L,U , when they are needed. For
the part corresponding to F , we use a flag that indicates
whether gF is zero or not.

The iterative process is initialized in line 1. This can
be done in many ways. As long as the initial image lies
within the feasible region (0 ≤ σ(0) ≤ γ), the algorithm will
converge to a constrained solution. We can simply initialize
by σ(0) = 0.

Line 3 is a test for convergence, corresponding to the
conditions (58)–(60). The loop is followed while any of the
constraints is violated.

If gF is not zero, then the unconstrained subproblem
(61) is solved in line 5. If this solution z satisfies the feasi-
bility constraints, then it is kept, the image is updated ac-
cordingly, and the gradient is estimated at the new solution
(only λmin = min(λ) is needed, along with the correspond-
ing pixel index).

If z is not feasible, then in lines 12-16 we try to move in
the direction of z as far as possible. The direction of descent
is p = z−σ

(j)
F , and the update will be σ

(j+1)
F = σ

(j)
F +µp,

where µ is a non-negative step size. The ith pixel will hit a
bound if either σ(j)

i + µpi = 0 or σ(j)
i + µpi = γi; i.e., if

µi = max

(
−σ

(j)
i

pi
,
γi − σ(j)

i

pi

)
(71)

(µi is non-negative). Then the maximal feasible step size
towards a constraint is given by µmax = min(µi) for i ∈
F . The corresponding pixel index is removed from F and
added to L or U .

Table 1: Constrained LS imaging using active sets

1: Initialize: set the initial image σ(0) = 0, j = 0, set the
free set F = ∅, and L,U accordingly

2: Set the flag Freegradient-isnotzero := True
3: while Freegradient-isnotzero or λmin < 0 do
4: if Freegradient-isnotzero then
5: Let z be the solution of the unconstrained subprob-

lem (61)
6: if z is feasible then
7: Update the image: σ(j+1)

F = z
8: Set Freegradient-isnotzero := False
9: Compute the “active” part of the gradient and

estimate the Lagrange multipliers
10: Let λmin be the smallest Lagrange multiplier and

imin the corresponding pixel index
11: else
12: Compute the direction of descent p = z− σ

(j)
F

13: Compute the maximum feasible nonnegative
step-size µmax and let i be the corresponding
pixel index that will attain a bound

14: Update the image: σ(j+1)
F = σ

(j)
F + µmaxp

15: Add a constraint: move i from the free set F to
L or U

16: Set Freegradient-isnotzero := True
17: end if
18: Increase the image index: j := j + 1
19: else
20: Delete a constraint: move imin from L or U to the

free set F
21: Set Freegradient-isnotzero := True
22: end if
23: end while

If in line 3 the gradient satisfied gF = 0 but a La-
grange multiplier is negative, we delete the corresponding
constraint and add this pixel index to the free set (line 20).
After this, the loop is entered again with the new constraint
sets.

If we initialize the algorithm with σ(0) = 0, then all
pixel indices will be in the set L, and the free set is empty.
During the first iteration, σF remains empty but the gradi-
ent is computed (line 9). Equations (68) and (69) show that
it will be equal to the negated dirty image. Thus the min-
imum of the Lagrange multipliers λmin will be the current
strongest source in the dirty image, and it will be added
to the free set when the loop is entered again. This shows
that the method as described above will lead to a sequential
source removal technique similar to CLEAN. In particular,
the PWLS cost function (69) relates to LS-MVI (Ben-David
& Leshem 2008), which applies CLEAN-like steps to the
MVDR dirty image.

In line 3, we try to detect whether a pixel should be
added to the free set (λmin < 0). We note that λ follows
from the gradient, (68) or (69), which is a random variable.
We should avoid the occurrence of a “false alarm”, because it
will lead to overfitting the noise. Therefore, the test should
be replaced by λmin < −ε, where ε > 0 is a suitable detec-
tion threshold. Because the gradients are estimated using
dirty images, they share the same statistics (the variance
of the other component in (68) and (69) is much smaller).
To reach a desired false alarm rate, we propose to choose ε
proportional to the standard deviation of the ith pixel on
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the corresponding dirty image for the given cost function.
(How to estimate the standard deviation of the dirty images
and the threshold is discussed in Appendix C.) Choosing ε
to be six times the standard deviation ensures a false alarm
of < 0.1% over the complete image.

The use of this statistic improves the detection and thus
the estimates greatly, however the correct detection also
depends on the quality of the estimates in the previous
iterations. If a strong source is off-grid, the source is usually
underestimated, and this leads to a biased estimation of the
gradient and the Lagrange multipliers, which in turn leads
to including pixels that are not real sources. In the next
section we describe one possible solution for this case.

4.4. Strong off-grid sources

In this section, we use a tilde to indicate “true” source pa-
rameters (as distinguished from the gridded source model);
for example, σ̃ indicates the vector with the true source
intensities, and Σ̃ the corresponding diagonal matrix, ãk,q
indicates their array response vectors and Ãk the corre-
sponding matrix. The versions without tilde refers to the I
gridded sources.

The mismatch between Ψ and the unknown Ψ̃ results
in underestimating source intensities, which means that the
remaining contribution of that source produces bias and
possible artifacts in the image. To achieve high dynamic
ranges, we suggest finding a grid correction for the pixels
in the free set F .

Let ak,i have the same model as ãk,q with βi pointing
toward the center of the ith pixel. When a source is within
a pixel but not exactly in the center, we can model this
mismatch as

ãk,q =
1√
P
e
j2π
λ ΞTQk(βi+δi)

= ak,i � e
j2π
λ ΞTQkδi

where δi = β̃q−βi and i ∈ F . Because both βi and β̃q are
3 × 1 unit vectors, each only has two degrees of freedom.
This means that we can parameterize the unknowns for the
grid-correcting problem using coefficients δ1,i and δi,2. We
assume that when a source is added to the free set, its actual
position is very close to the center of the pixel on which it
was detected. This means that δ1,i and δi,2 are within the
pixel’s width, denoted by W , and height, denoted by H.
In this case we can replace (61) by a nonlinear constrained
optimization,

min
δ,σ

1

2
‖b−Ψ(δ)FσF‖22

s.t.−W/2 < δ1,i < W/2

−H/2 < δi,2 < H/2 (72)

where Ψ(δ)F contains only the columns corresponding to
the set F , δj is a vector obtained by stacking δi,j for j =
1, 2, and

b = r̂−ΨUσU . (73)

This problem can also be seen as a direction of arrival
(DOA) estimation that is an active research area and be-
yond the scope of this paper. A good review of DOA mis-
match correction for MVDR beamformers can be found in

(Chen & Vaidyanathan 2007), and (Gu & Leshem 2012)
proposed a correction method that is specifically applica-
ble to the radio astronomical context.

Besides solving (72) instead of (61) in line 5 of the active
set method, we also need to update the upper bounds and
the standard deviations of the dirty images at the new pixel
positions that are used in the other steps (e.g., lines 3, 6,
and 13); the rest of the steps remain the same. Because
we have a good initial guess to where each source in the
free set is, we propose a Newton-based algorithm to do the
correction.

4.5. Boxed imaging

A common practice in image deconvolution techniques like
CLEAN is to use a priori knowledge and to narrow the
search area for the sources to a certain region of the im-
age, called CLEAN boxes. Because the contribution of the
sources (if any) outside these boxes is assumed to be known,
we can subtract them from the data such that we can as-
sume that the intensity outside the boxes is zero.

To include these boxes in the optimization process of
the active set algorithm, it is sufficient to make sure that
the value of the pixels not belonging to these boxes do not
change and remain zero. This is equivalent to replacing Ψ
with ΨB, where B is the set of indices belonging to the
boxes, before we start the optimization process. However, as
we explain in the next section, we avoid storing the matrix
Ψ in memory by exploiting its Khatri-Rao structure. We
address this implementation issue by replacing (57) with

F(σ) = (I \ A(σ)) ∩ B, (74)

which makes certain that the values of the elements outside
of the boxes do not change. This has the same effect as re-
moving the columns not belonging to B from Ψ. Of course
we have to make sure that these values are initialized to
zero. By choosing σ(0) = 0, this is automatically the case.
The only problem with this approach is that the values out-
side the box remain in the set L that is used for estimating
the Lagrange variables, resulting in expensive calculations
that are not needed. This problem is easily solved by calcu-
lating the gradient only for the pixels belonging to B. The
a priori non-zero values of the pixels (that were not in the
boxes and were removed from the data) are added to the
solution when the optimization process is finished.

5. Implementation using Krylov subspace-based
methods

From the active-set methods described in the previous sec-
tion, we know that we need to solve (62) or (64) at each
iteration. In this section we describe how to achieve this
efficiently without the need to store the whole convolution
matrix in memory.

During the active-set updates, we need to solve linear
equations of the form Mx = b. However, there are cases
where we do not have direct access to the elements of the
matrix M. This can happen, for example, when M is too
large to fit in memory. There are also cases where M (or
MH) are implemented as subroutines that produce the re-
sult of the matrix vector multiplication Mv for some input
vector v. For example, for M = Ψ the operation ΨHv gen-
erates a dirty image. An equivalent (and maybe optimized)
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implementation of such imaging subroutine might already
be available to the user. In these scenarios it is necessary or
beneficial to be able to solve the linear systems, using only
the available matrix vector multiplication or the equivalent
operator. A class of iterative solvers that can solve a linear
system by only having access to the result of the multipli-
cations with the matrix M are the Krylov subspace-based
methods.

To illustrate the idea behind Krylov subspace-based
methods, we assume that M is a square and non-singular
matrix. In this case there exists a unique solution for x that
is given by x = M−1b. Using the minimum polynomial of
a matrix we can write

M−1 =
1

γ0

m−1∑
j=0

γj+1M
j ,

where for a diagonalizable matrix M, m is the number of
distinct eigenvalues (Ipsen & Meyer 1998). Using this poly-
nomial expansion we have for our solution

x =
1

γ0

m−1∑
j=0

γj+1M
jb

=
[
b Mb . . . Mm−1b

]
γ

where

γ =
1

γ0
[γ1, . . . , γm]T ,

and Km(M,b) = [b,Mb, . . . ,Mm−1b] is called the Krylov
subspace of M and b. Krylov subspace-based methods com-
pute Kn(M,b) iteratively, for n = 1, 2, .. and find an ap-
proximate for x by means of a projection on this subspace.
Updating the subspace only involves a matrix-vector mul-
tiplication of the form Mv.

In cases where M is singular or where it is not a square
matrix, another class of Krylov-based algorithms can be
used that is related to bidiagonalization of the matrix
M. The rest of this section describes the idea behind the
Krylov-based technique LSQR and the way this helps more
efficient implementation of a linear solver for our imaging
algorithm.

5.1. Lanczos algorithm and LSQR

When we are solving CLS or PWLS, we need to solve a
problem of the form ‖b −Mx‖22 as the first step in the
active-set iterations; for example, in (62) M = ΨF . It
does not have to be a square matrix, and usually it is ill-
conditioned, especially if the number of pixels is large. In
general we can find a solution for this problem by first com-
puting the singular value decomposition (SVD) of M as

M = USVH , (75)

where U and V are unitary matrices, and S is a diagonal
matrix with positive singular values. Then the solution x
to min ‖b−Mx‖2 is found by solving for y in

Sy = UHb, (76)

followed by setting

x = Vy. (77)

Solving the LS problem with this method is expensive in
both number of operations and memory usage, especially
if the matrices U and V are not needed after finding the
solution. As we see below, looking at another matrix de-
composition helps us to reduce these costs. For the rest of
this section we use the notation given by (Paige & Saunders
1982).

The first step in this approach for solving LS problem
is to reduce M to a lower bidiagonal form as follows

M = UBVH , (78)

where B is a bidiagonal matrix of the form

B =


α1

β2 α2

. . . . . .
βr αr

0

 , (79)

where r = rank(M) = rank(B) and U,V are unitary ma-
trices (different than in (75)). This representation is not
unique, and without loss of generality we could choose U
to satisfy

UHb = β1e1 (80)

where β1 = ‖b‖2 and e1 is a unit norm vector with its first
element equal to one.

Using B, forward substitution gives the LS solution ef-
ficiently by solving y in

By = UHb = β1e1 (81)

followed by

x = Vy.

Using forward substitution we have

y1 =
β1

α1
(82)

x1 = v1y1, (83)

followed by the recursion,

yn+1 = −βn+1

αn+1
yn (84)

xn+1 = xn + vn+1yn+1 (85)

for n = 1, . . . ,M where M < r is the iteration at which
‖MH(Mxn − b)‖2 vanishes within the desired precision.
We can combine the bidiagonalization and solving for x
and avoid extra storage needed for saving B, U, and V.
One such algorithm is based on a Krylov subspace method
called the Lanczos algorithm (Golub & Kahan 1965). We
first initialize with

β1 = ‖b‖2 (86)

u1 =
b

β1
(87)

α1 = ‖MHu1‖2 (88)

v1 =
MHu1

α1
. (89)
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The iterations are then given by

βn+1 = ‖Mvn − αnun‖2
un+1 = 1

βn+1
(Mvn − αnun)

αn+1 = ‖MHun+1 − βn+1vn‖2
vn+1 = 1

αn+1
(MHun+1 − βn+1vn)

(90)

for n = 1, 2, . . . ,M , where uHn un = vHn vn = 1. This pro-
vides us with all the parameters needed to solve the prob-
lem.

However, because of finite precision errors, the columns
of U and V found in this way lose their orthogonality as
we proceed. To prevent this error propagation into the final
solution x, different algorithms, such as conjugate gradient
(CG), MINRES, and LSQR, have been proposed. The exact
updates for xn and stopping criteria to find M depend on
the choice of algorithm used and therefore are not included
in the iterations above.

An overview of Krylov subspace-based methods is given
by (Choi 2006, pp.91). This study shows that LSQR is a
good candidate for solving LS problems when we are deal-
ing with an ill-conditioned and non-square matrix. For this
reason we use LSQR to solve Eqs. (62) or (64). Because the
remaining steps during the LSQR updates are a few scalar
operations and do not have a large impact on the compu-
tational complexity of the algorithm, we do not go into the
details(see (Paige & Saunders 1982)).

In the next section we discuss how to use the structure
in M to avoid storing the entire matrix in memory and how
to parallelize the computations.

5.2. Implementation

During the active set iteration we need to solve Eqs. (62)
and (64) where the matrix M in LSQR is replaced by ΨF
and (R−T/2 ⊗ R−1/2)(ΨD−1)F , respectively. Because Ψ
has a Khatri-Rao structure and selecting and scaling a sub-
set of columns does not change this, ΨF and (ΨD−1)F
also have a Khatri-Rao structure. Here we show how to use
this structure to implement (90) in parallel and with less
memory usage.

The only time the matrix M enters the algorithm is via
the matrix-vector multiplications Mvn and MHun+1. As
an example we use M = ΨF for solving (62). Let kn =
ΨFvn. We partition kn as Ψ into

kn =
[
kT1,n . . . kTK,n

]T
. (91)

Using the definition of Ψ in (18) , the operation kn = ΨFvn
could also be performed using

Kk,n =
∑
i∈F

vi,nak,ia
H
k,i, (92)

and subsequently we set

kk,n = vect(Kk,n). (93)

This process can be highly parallelized because of the in-
dependence between the correlation matrices of each time
snapshot. The matrix Kk,n can then be used to find the
updates in (90).

The operation MHu in (90) is implemented in a simi-
lar way. Using the beamforming approach (similar to Sect.
3.4), this operation can also be done in parallel for each

pixel and each snapshot. In both cases the calculations can
be formulated as correlations and beamforming of parallel
data paths, which means that efficient hardware implemen-
tations are feasible. Also we can consider traditional LS or
WLS solutions as a special case when all the pixels belong
to the free set, which means that those algorithms can also
be implemented efficiently in hardware in the same way.
During the calculations we work with a single beamformer
at the time, and the matrix Ψ need not to be precalculated
and stored in memory. This makes it possible to apply im-
age formation algorithms for large images when there is a
memory shortage.

The computational complexity of the algorithm is dom-
inated by the transformation between the visibility do-
main and image domain (correlation and beamforming).
The dirty image formation and correlation have a complex-
ity of O(KP 2I). This means that the worst-case complex-
ity of the active set algorithm is O(TMKP 2I) where T is
the number of active set iterations and M the maximum
number of Krylov iterations. A direct implementation of
CLEAN for solving the imaging problem presented in Sect.
3 in a similar way would have a complexity of O(TKP 2I).
The proposed algorithm is therefore order M times more
complex, essentially because it recalculates the flux for all
the pixels in the free set, while CLEAN only estimates
the flux of a newly added pixel. Considering that (for a
well-posed problem) solving Mx = b using LSQR is al-
gebraically equivalent to solving MHMx = MHb using
CG (Fong 2011), we can use the convergence properties of
CG (Demmel 1997) to obtain an indication of the required
number of Krylov iterations M . It is found that M is on
the order O(

√
card(F)) where card(F) is the cardinality of

the free set, which is equal to the number of pixels in the
free set.

In practice, many implementations of CLEAN use the
FFT instead of a DFT (matched filter) for calculating the
dirty image. Extending the proposed method to use similar
techniques is possible and will be presented in future works.

6. Simulations

The performance of the proposed methods were evaluated
using simulations. Because the active-set algorithm adds a
single pixel to the free set at each step, it is important to
investigate the effect of this procedure on extended sources
and noise. For this purpose, in our first simulation set-up we
used a high dynamic range simulated image with a strong
point source and two weaker extended sources in the first
part of the simulations. In a second set up, we made a full
sky image using sources from the 3C catalog.

Following the discussion in Sec. 4.2, we defined the resid-
ual image for CLS and CLEAN as

σres = ΨH(r̂−Ψσ − rn),

and for CPWLS, we used

σres = D−1ΨH(R̂−T ⊗ R̂−1)(r̂−ΨD−1σ̌ − rn),

where we assumed we know the noise covariance matrix
Rn. We also defined the reconstruction S/N on the image
in dB scale as

S/Nr = 20 log10

(
‖σtrue‖
‖σture − σ̂‖

)
,

Article number, page 11 of 20page.20



A&A proofs: manuscript no. CLS_final

where σtrue is the true image and σ̂ is the reconstructed
image.

6.1. Extended sources

An array of 100 dipoles (P = 100) with random distribution
was used with the frequency range of 58-90 MHz from which
we simulated three equally spaced channels. Each channel
has a bandwidth of 195 kHz and was sampled at Nyquist
rate. These specifications are consistent with the LOFAR
telescope in LBA mode (van Haarlem et al. 2013). LOFAR
uses one-second snapshots, and we did the simulation using
only two snapshots, i.e., K = 2. We used spectrally white
sources for the simulated frequency channels, which allowed
us to extend the data model to one containing all frequency
data by simply stacking the individual r̂ for each frequency
into a single vector. Likewise, we stacked the individual Ψ
into a single matrix. Since the source intensity vector σ is
common for all frequencies, the augmented data model has
the same structure as before.

The simulated source is a combination of a strong point
source with intensity 40 dB and two extended structures
with intensities of 0 dB. The extended structures are com-
posed of from seven nearby Gaussian-shaped sources, one
in the middle and six on a hexagon around it. (This con-
figuration was selected to generate an easily reproducible
example.) Figure 1 shows the simulated image on dB scale.
The background noise level that was added is at −10 dB,
which is also 10 dB below the extended sources. This is
equivalent to a dynamic range of 40 dB and a minimum
S/N of 10dB.

Figures 2a and 2b show the matched filter and MVDR
dirty images, respectively. The first column of Figure 3
shows the final result of the CLEAN, CLS with the MF
dirty image as upper bound, CLS with the MVDR dirty
image as upper bound, and CPWLS with the MVDR dirty
image as upper bound without the residual images. For each
image, the extracted point sources were convolved with a
Gaussian beam to smoothen the image. We used a Gaus-
sian beam that has the same main beamwidth as the MF
dirty image. The second column of Figure 3 shows the cor-
responding residual images as defined before, and the last
column shows a cross section parallel to the β2 axis going
through the sources at the center of the image.

Remarks are:

– As expected the MVDR dirty image has a much better
dynamic range (≈ 40 dB) and lower side-lobes compared
to the MF dirty image (≈ 15 dB dynamic range).

– Due to a better initial dirty image and upper bound, the
CPWLS deconvolution gives a better reconstruction of
the image.

– The cross sections show the accuracy of the estimated
intensities. This shows that not only the shape but also
the magnitude of the sources are better estimated using
CPWLS.

– Using the MVDR upper bound for CLS improves the
estimate, illustrating the positive effect of using a proper
upper bound.

– All algorithms manage to recover the intensity of the
strong point source with high quality. The S/Nr for CLS
and CLS with MVDR is highest at 62.8 dB then CLEAN
and CPWLS with 62.6 and 58.4 dB, respectively. (Only
the pixel corresponding to the strong source is used to
calculate these S/Nr.)

– CPWLS has the best performance in recovering the ex-
tended sources with S/Nr of 16.5 dB compared to 11.9
and 11.7 dB for CLEAN and CLS respectively. (The
pixel corresponding to the strong source was removed
for calculating these S/Nr.)

– The residual image for CPWLS is almost two orders of
magnitude lower than the residual images for CLEAN
and CLS.

– While the residual image of the CLS algorithm appears
very similar to the CLEAN reconstruction, CLS can
guarantee that these values are inside the chosen confi-
dence interval of six standard deviations of each pixel,
while CLEAN does not provide this guarantee.

6.2. Full sky with 3C sources

In a second simuation set-up, we constructed an all-sky
image with sources from the 3C catalog. The array con-
figuration is the same as before with the same number of
channels and snapshots. A background noise level of 0 dB
(with respect to 1 Jansky) is added to the sky.

We first checked which sources from the 3C catalog are
visible at the simulated date and time. From these we chose
20 sources that represent the magnitude distribution on
the sky and produce the highest dynamic range available
in this catalog. Table 2 shows the simulated sources with
corresponding parameters. The coordinates are the (l,m)
coordinates at the first snapshot. Because the sources are
not necessarily on the grid points, we combined the active
set deconvolution with the grid corrections on the free set
as described in Sec. 4.4.

Figure 4a shows the true and estimated positions for
the detected sources. Because the detection mechanism was
able to detect the correct number of sources, we have in-
cluded the estimated fluxes in Table 2 for easier compari-
son. Figure 4b shows the full-sky MF dirty image. Figure
5a shows the final reconstructed image with the residual
added to it (with grid corrections applied), and Figure 5c
shows the same result for CLEAN.

Remarks:

– The active set algorithm with grid corrections automat-
ically stops after adding the correct number of sources
based on the detection mechanism we have incorporated
in the active set method.

– Because of the grid correction, no additional sources are
added to compensate for incorrect intensity estimates on
the grids.

– All 20 sources are visible in the final reconstructed im-
age, and no visible artifacts are added to the image.

– CLEAN also produces a reasonable image with all the
sources visible. However, a few hundred point sources
have been detected during the CLEAN iteration, most
of which are the result of the strong sources that are
not on the grid. Some clear artifacts are introduced (as
seen in the residual image) that are also the result of
the incorrect subtraction of off-grid sources.

– Figure 5b shows that the residual image using active set
and grid corrections contains a “halo” around the posi-
tion of the strong source—the residual image is not flat.
In fact, the detection mechanism in the active set algo-
rithm (with a threshold of 6 times the standard devia-
tion) has correctly not considered this halo as a source.
The halo is a statistical artifact due to finite samples
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Table 2: Simulated sources from 3C catalog

Names l m
Flux
(Jy)

Est. flux
(Jy)

3C 461 −0.30485 0.19131 11000 10997.61
3C 134 0.59704 −0.02604 66 65.92
3C 219 0.63907 0.6598 44 44.07
3C 83.1 0.28778 −0.13305 28 27.97
3C 75 0.30267 −0.684 23 23.02
3C 47 −0.042882 −0.51909 20 19.97
3C 399.2 −0.97535 0.20927 19 18.97
3C 6.1 −0.070388 0.47098 16 15.99
3C 105 0.57458 −0.60492 15 15.10
3C 158 0.9017 −0.12339 14 14.01
3C 231 0.28956 0.72005 13 13.02
3C 303 −0.1511 0.95402 12.5 12.51
3C 277.1 0.12621 0.93253 12 12.03
3C 320 −0.3597 0.93295 11.5 11.62
3C 280.1 0.15171 0.98709 11 10.95
3C 454.2 −0.29281 0.31322 10.5 10.48
3C 458 −0.61955 −0.56001 10 10.01
3C 223.1 0.67364 0.68376 9.5 9.63
3C 19 −0.23832 −0.30028 9 8.87
3C 437.1 −0.83232 −0.24924 5 4.99

and will be reduced in magnitude by longer observa-
tions with a rate proportional to 1/

√
NK2.

– The CLEAN algorithm requires more than 100 sources
to model the image. This is mainly because of the the
strong off–grid source (Cassiopeia A). This illustrates
that while CLEAN is less complex than the proposed
method when the number of detected sources are equal,
in practice CLEAN might need many more sources to
model the same image.

7. Conclusions

Based on a parametric model and constraints on the intensi-
ties, we have formulated image deconvolution as a weighted
least squares optimization problem with inequality con-
straints. We first showed that the classical (matched filter)
dirty image is an upper bound, but a much tighter upper
bound is provided by the “MVDR dirty image”. The condi-
tioning of the problem can be improved by a precondition-
ing step, which is also related to the MVDR dirty image.

Second, the constrained least squares problem was
solved using an active-set-based method. The relation be-
tween the resulting method and sequential source removing
techniques such as CLEAN was explained. The theoreti-
cal background of the active set methods can be used for
deeper insight into how the sequential techniques work. In
particular, the active set algorithm uses a detection thresh-
old with a known false alarm, which can be set such that
no false sources appear in the image, and we showed that
by introducing a grid correcting step into the active set it-
erations, we can improve both the detection of the sources
and the estimation of their intensities.

Third, the Khatri-Rao structure of the data model was
used in combination with Krylov based techniques to solve
the linear systems involved in the deconvolution process
with less storage and complexity. The complexity of the al-
gorithm is higher than that of classical sequential source re-
moving techniques (by a factor proportional to the square

root of the detected number of sources), because the de-
tected source intensities are re-estimated by the Krylov
subspace technique after each step of the active set iter-
ation. However, the proposed algorithm has a better detec-
tion mechanism compared to classical CLEAN, which leads
to a lower number of sources to model the image. As a re-
sult, the overall complexity is expected to be comparable.
We also expect that the performance of the algorithm can
be readily improved because the updates by the active set
iterations are one-dimensional (one source is added or re-
moved), and this can be exploited to update the Krylov
subspaces accordingly, rather than computing them each
time from scratch. This is left for future work.

The simulations show that the proposed CPWLS al-
gorithm provides improved spatial structure and improved
intensity estimates compared to CLEAN-based deconvolu-
tion of the classical dirty image. A particularly attractive
aspect is the demonstrated capability of the algorithm to
perform automated source detection, which will be of inter-
est for upcoming large surveys.

Appendix A: Relation between WLS, natural, and
robust weighting

Natural weighting is a technique to improve the detection
of weak sources by promoting the visibility values that have
a better signal-to-noise-ratio (Briggs 1995). This is done by
dividing each visibility sample by the variance of noise on
that sample (while assuming that the noise on each sample
is independent). Considering that the visibility samples are
the elements of the covariance matrix R̂k we can model the
sample visibilities as
r̂k = rk + ε, (A.1)
where ε is the complex noise on the samples. As discussed
in Appendix C, R̂ has a Wishart distribution and for a large
number of samples N we have r̂k ∼ N (rk, (R

T
k ⊗Rk)/N).

This means that ε = r̂k−rk has a complex Gaussian distri-
bution N (0, (RT

k ⊗Rk)/N). Because astronomical sources
are usually much weaker than the system noise, it is com-
mon to use the approximation Rk ≈ Rn,k. With this ap-
proximation and using the independence of system noise
on each receiving element (antenna or station), we can
assume that Rn,k is diagonal and that (RT

k ⊗ Rk)/N ≈
(RT

n,k ⊗ Rn,k)/N is also a diagonal approximation of the
noise covariance matrix on the visibility samples. With this
framework we can write the natural weighting as

r̂natural = N(R−Tn,k ⊗R−1
n,k)r̂k. (A.2)

This shows that natural weighting is a very reasonable ap-
proximation of the weighting used when solving (28) for
WLS (except for a factorN that drops out from both sides).

Next, we relate WLS to Robust Weighting (Briggs 1995)
by assuming slightly different simplifications. Let us assume
that Rn,k = σ2

nI and let us consider a single source with
intensity σ then we have for
R−1
k = (Rn,k + σãkã

H
k )−1

= R−1
n,k −

σR−1
n,kãkã

H
k R−1

n,k

1 + σãHk R−1
n,kãk

=
1

σ2
n

(
I− ãkã

H
k

1 +
σ2
n

σ

)
. (A.3)
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Compared to natural weighting, now not only the noise
power but also the available signal power is taken into
account for the weighting. The term 1/(1 + σ2

n/σ) is the
same as the parametric Wiener filter in the Fourier domain
as given by (Briggs 1995) which relates Robust Weight-
ing to standard signal processing concepts. However Robust
Weighting also takes the visibility sampling of the gridded
uv-plane into account when calculating the weights, which
is not explained in the derivation above. Hence the exact
relation between Robust Weighting and WLS is still miss-
ing. This relation is interesting and should be addressed in
future works.

Appendix B: Using beamformers to find upper
bounds

In this section we show how to use linear beamformers to
define an upper bound for the image. We also show that
ASSC gives the tightest bound if we use true covariance
matrix R. We also show that the MVDR dirty image is an
upper bound but tighter than MF dirty image.

Let us define a beamformer wMF,i = 1√
K

ai, then we
observe that each pixel in the MF dirty image is the output
of this beamformer:

σMF,i = wH
MF,iRwMF,i. (B.1)

As indicated in Sec. 3.2, we can extend this concept to
a more general beamformer wi. The output power of this
beamformer, in the direction of the ith pixel, becomes

σw,i = wH
i Rwi = σiw

H
i (IK ◦Ai)(IK ◦Ai)Hwi+wH

i Rrwi .

(B.2)

If we require that

wH
i (IK ◦Ai)(IK ◦Ai)Hwi = 1 (B.3)

we have

σw,i = σi + wH
i Rrwi . (B.4)

As before, the fact that Rr is positive definite implies that

σi ≤ σw,i . (B.5)

We can easily verify that wMF,i satisfies (B.3) and hence
σMF,i is a specific upper bound. We can translate the prob-
lem of finding the tightest upper bound to the following
optimization question:

σopt,i = min
wi

wH
i Rwi (B.6)

s.t. wH
i (IK ◦Ai)(IK ◦Ai)Hwi = 1

where σopt,i would be this tightest upper bound.
To solve this optimization problem we follow standard

optimization techniques and define the Lagrangian and take
derivatives with respect to w and the Lagrange multiplier
µ. This leads to the following system

w = µR−1(IK ◦Ai)(IK ◦Ai)
Hw (B.7)

1 = wH(IK ◦Ai)(IK ◦Ai)
Hw (B.8)

Because R is full–rank and (B.8) we can model w as

w = µR−1(IK ◦Ai)x. (B.9)

Filling back into (B.7) we have

µR−1(IK ◦Ai)x
= µ2R−1(IK ◦Ai)(IK ◦Ai)

HR−1(IK ◦Ai)x
(B.10)

and

(IK ◦Ai)x
= µ(IK ◦Ai)(IK ◦Ai)

HR−1(IK ◦Ai)x.
(B.11)

Multiplying both sides of this equation by (IK ◦Ai)
H we

get

x = µ(IK ◦Ai)
HR−1(IK ◦Ai)x. (B.12)

Doing the same for (B.8) we have

µ2xH(IK ◦Ai)
HR−1(IK ◦Ai)(IK ◦Ai)

HR−1(IK ◦Ai)x
= 1.

(B.13)

Now we use (B.12) and we find

xHx = 1, (B.14)

which makes finding x an eigenvalue problem. By taking a
closer look at the matrix (IK ◦Ai)

HR−1(IK ◦Ai) we find
that this matrix is diagonal

(IK ◦Ai)
HR−1(IK ◦Ai)

=


aH1,iR

−1
1 a1,i 0 . . . 0

0 aHi,2R
−1
2 ai,2

...
...

. . . 0
0 . . . 0 aHi,KR−1

K ai,K


(B.15)

and hence x = em is an elementary vector with all entries
equal to zero except for mth entry which equals unity. m
is the index corresponding to largest eigenvalue, λmax, and
from (B.12) we have µ = 1/λmax. Filling back for w we find

wi,opt =
1

ai,mR−1
m ai,m

R−1(em ⊗ ai,m) (B.16)

and the output of the beamformer

σopt = wH
i,optRwi,opt

=
aHi,mR−1

m ai,m

(aHi,mR−1
m ai,m)2

=
1

aHi,mR−1
m ai,m

= min
k

(
1

aHk,iR
−1
k ak,i

)
. (B.17)

In order to reduce the variance of this solution we sug-
gest to find a beamformer that instead of (B.3) satisfies the
slightly different normalization constraint

wH
i ai =

√
K . (B.18)

We show that the expected value of the resulting dirty im-
age constitutes a larger upper bound than the ASSC (40),
but because the output power of this beamformer depends
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on more than one snapshot it has a lower variance than
ASSC, so that it is more robust in practice.

With this constraint, the beamforming problem is

wi = arg min
wi

wH
i Rwi (B.19)

s.t. wH
i ai =

√
K

which is recognized as the classical minimum variance
distortionless response (MVDR) beamforming problem
(Capon 1969). Thus, the solution is given in closed form
as

wMVDR,i =

√
K

aHi R−1ai
R−1ai. (B.20)

To demonstrate that this image is still an upper bound
we show that

α := wH
i (IK ◦Ai)(IK ◦Ai)Hwi ≥ 1 . (B.21)

Indeed, inserting (B.20) into this inequality gives

K
aHi R−1(IK◦Ai)(IK◦Ai)HR−1ai

(aHi R−1ai)2

= K
∑
k(aHk,iR

−1
k ak,i)

2

(
∑
k aHk,iR

−1
k ak,i)

2

= K hTh
hT 1K1TKh

≥ K 1
λmax(1K1TK)

= 1,

(B.22)

where h = (IK ◦Ai)HR−1ai is a K × 1 vector with entries
hk = aHk,iR

−1
k ak,i and λmax(·) is the largest eigenvalue of of

the argument matrix. Hence, a similar reasoning as in (B.2)
gives

σMVDR,i = ασi + wH
MVDR,iRrwMVDR,i ≥ σi

which leads to (42).
Note that wMF,i also satisfies the constraint in (B.19),

i.e. wH
MF,iai =

√
K, but does not necessary minimize the

output power wH
i Rwi, therefore the MVDR dirty image is

smaller than the MF dirty image: σMVDR ≤ σMF. Thus it
is a tighter upper bound. This relation also holds if R is
replaced by the sample covariance R̂.

Appendix C: Variance of the dirty image

To find the confidence intervals for the dirty images we
need to find estimates for the variance of both matched
filter and MVDR dirty images. In our problem the sample
covariance matrix is obtained by squaring samples from a
Gaussian process. This means that NR̂ ∼ Wp(R, N) where
Wp(R, N) is the Wishart distribution function of order p
with expected value equal to R and N degrees of freedom.
For any deterministic vector ζ,

NζHR̂ζ ∼ ζHRζ χ2(N). (C.1)

where χ2(N) is the standard χ2 distribution withN degrees
of freedom. In radio astronomical applications N is usually
very large and we can approximate this χ2 distribution with
a Gaussian such that ζHR̂ζ ∼ N (ζHRζ, (ζHRζ)2/N).
The variance of the matched filter dirty image is given by

Var(σMF,i) =
1

NK2

∑
k

(aHk,iRak,i)
2.

Using this result we can find the x% confidence interval
which results in an increase of the upper bound such that

σ ≤ σ̂MF + α
√

Var(σ̂MF), (C.2)

where α is chosen depending on x. Requiring at most a
single false detection on the entire image translate into α ≈
6.

When we estimate the MVDR dirty image from sample
covariance matrices we need to be more careful, mainly be-
cause the result is biased and we need to correct for that
bias. For each pixel of the MVDR dirty image obtained
from sample covariance matrices we have

σ̂MVDR,i = Kg(Z) =
K∑

k aHk,iR̂
−1
k ak,i

(C.3)

where g(Z) = 1/Z and Z =
∑
k aHk,iR̂

−1
k ak,i. Using a per-

turbation model Z = Z0 +∆Z and a Taylor approximation
we find

g(Z) ≈ 1

Z0
− 1

Z2
0

∆Z

≈ 1

Z2
0

(Z0 −∆Z). (C.4)

Let Z0 = E{Z} then E{∆Z} = 0 and E{g(Z)} ≈ 1/Z0. We
would like this estimate to be unbiased which means that
we want

E{g(Z)} ≈ 1∑
k aHk,iR

−1
k ak,i

(C.5)

however we have,

Z0 =
∑
k

ak,iE{R̂−1
k }ak,i

=
∑
k

aHk,i
NR−1

k

N − p
ak,i

=
N

N − P
∑
k

aHk,iR
−1
k ak,i (C.6)

where we have used E{R̂−1} = N
N−P R−1 (Shaman 1980).

So in order to remove this bias we need to scale it by a
correction factor

C =
N

N − P
(C.7)

and

σ̂MVDR,i = CKg(Z). (C.8)

Now we need to find an estimate for the variance of the
MVDR dirty image. Using (C.4) we see that the first order
approximation of Var(g(Z)) ≈ Var(Z)/Z4

0 . We find Var(Z)
using the independence of each snapshot so we can write

Var(Z) =
∑
k

Var(aHk,iR̂
−1
k ak,i). (C.9)

In order to find Var(aHk,iR̂
−1
k ak,i) we need to use some prop-

erties of the complex inverse Wishart distribution. A matrix
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has complex inverse Wishart distribution if it’s inverse has
a complex Wishart distribution (Shaman 1980). Let us de-
fine an invertible matrix B as

B = [ak,i B1] , (C.10)

then X = (BR̂−1BH)/N has an inverse Wishart distribu-
tion because X−1 = N(B−HR̂B−1) has a Wishart distri-
bution. In this case X11 = (aHk,iR̂

−1ak,i)/N also has an
inverse Wishart distribution with less degrees of freedom.
The covariance of an inverse Wishart matrix is derived in
(Shaman 1980), however because we are dealing only with
one element, this results simplifies to

Var(NX11) =
N2

(N − P )2(N − P − 1)
(aHk,iR

−1ak,i)
2.

(C.11)

The variance of the unbiased MVDR dirty image is thus
given by

Var(σ̂MVDR,i) = Var(CKg(Z))

≈ K2

(N − P − 1)

∑
k(aHk,iR

−1
k ak,i)

2(∑
k ak,iR

−1
k ak,i

)4 .
Now that we have the variance we can use the same method
that we used for MF dirty image to find α and

σ ≤ σ̂MVDR + α
√

Var(σ̂MVDR). (C.12)
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Fig. 1: Contoured true source on dB scale
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(b) MVDR dirty image

Fig. 2: Contoured dirty images on dB scale
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(c) CLEAN cross-section
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(d) Solution of CLS + MF
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(g) Solution of CLS + MVDR
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(h) Residual image for CLS + MVDR
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Fig. 3: Extended source simulations. Units for the first and third columns are in dB. Linear scale is used for residual images
(second column).
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(b) Full sky MF dirty image in dB (with respect to 1 Jy)

Fig. 4: Point source simulations
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(a) Reconstructed image with grid correction plus residual image
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(b) Residual image using active set and grid correction
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(c) Reconstructed image with CLEAN plus residual image
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(d) Residual image using CLEAN

Fig. 5: Reconstructed images in dB (with respect to 1 Jy) scale and residual images on linear scale
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