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Abstract—As the number of antennas in the modern radio–
telescopes increases, the computational complexity of the cali-
bration algorithms becomes more and more important. In this
paper we use the Khatri–Rao structure of the covariance data
model used for such calibrations and combine it with Krylov
subspace based methods to achieve accurate calibration results
with low complexity, very small memory usage and fast conver-
gence properties. We also demonstrate the proposed method on
experimental data measured by the LOFAR radio–telescope.

Index Terms—Krylov subspace, calibration, radio astronomy,
minresQLP, optimization

I. INTRODUCTION

One of the challenges with current and future radio–

telescopes, like LOFAR (LOw Frequency ARray) [1] and SKA

(Square Kilometer Array), is the accurate calibration of the

instrument with reasonable computational complexity. These

modern radio–telescopes consist of an array of antennas which

measures the signals coming from radio–sources in the sky

[2]. Some of these sources are well known from other studies

and can serve as calibration sources. However because the

array might have direction dependent behavior [3] we will

only assume that the spatial coordinates of these sources are

known. We are interested in estimating the complex gain of

each antenna element along with the source and noise powers.

Further we assume that the position of each antenna is known

but we do not require any particular geometry for the array.

The model, as will be presented in the next section, is non–

linear and the number of unknowns grows with the number

of elements in the array and calibration sources. This means

that for very large arrays we are dealing with a complex

optimization problem. The authors in [2] and [3] overcome

this problem by splitting the unknowns into groups for which

a closed formed solution could be found. Then by applying

alternating optimization algorithms such as alternating least

squares (ALS) or alternating weighted least squares (WALS), a

monotonic convergence to the solution could be achieved. Also

in a more general case where the polarization is also taken into

account, like the case studied by [4], in order to reduce the

computation costs the unknowns are split into smaller sub–sets

and each set is updated in an alternating fashion.

In this paper we will show that the matrices used during

the estimation process possess a strong Khatri–Rao structure

which, combined with Krylov subspace based methods, like

minresQLP [5], can be exploited to reduce the computational
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costs and achieve accurate results with low complexity and

fast convergence rate, without using an alternating approach.

Another advantage of the proposed method is a tremendous

reduction in the memory usage which could be desired in some

applications.

II. DATA MODEL AND PROBLEM DEFINITION

An array of p elements with known locations, zm,m =
1, . . . , p, is exposed to q calibration sources with known spatial

coordinates kn, n = 1, . . . , q. The elements of the steering

matrix, A consist of the geometric phase delays,

am,n =
1√
p
ej

2π

λ
zT

m
kn , (1)

where λ is the wavelength, T is the transpose operator and we

have assumed that narrowband assumption holds such that the

delays translate into phase changes. Now we will stack the

received signal from each antenna into a vector called x(t)
and obtain the following the data model

x(t) = GAs(t) + n(t), (2)

where G = diag(g) is a diagonal matrix modeling the gain

of each element, s is a q × 1 vector representing the signal

from calibration sources and n is a p× 1 vector representing

the noise in the system. This is a commonly used model for

array calibration [3].

We assume that the noise and the sources are independent

Gaussian processes which allows us to write the model for the

covariance matrix of the array vector as

R = E{xxH} = GARsA
HGH +Rn, (3)

where H is the Hermitian transpose, Rs = diag(σ) is the

covariance matrix of the sources, σ is a q × 1 vector which

represent the power of each calibration source and Rn is the

covariance matrix of the system and the sky noise.

Using the above model, we will now define the calibration

problem. We want to estimate g, σ and the unknown parame-

ters in Rn, when we have available to us a sample covariance

matrix measured from N samples that is defined as

R̂ =
1

N

∑

k

xkx
H
k . (4)

This formulation of the problem leads to covariance match-

ing techniques like the one described in [6]. The results of

these studies are used in the next section.
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III. ALGORITHM

It is desirable to find statistically efficient estimates for the

calibration problem. The Maximum Likelihood methods (ML)

are in this case very popular. For ML the log–likelihood cost

function, after taking N samples, could be given by

fML(θ) = N
[

− log |πp|+ log |R−1(θ)| − tr(R−1(θ)R̂)
]

.

(5)

where θ is a vector containing all the unknowns which we

will define shortly.

However when a large number of samples is available and

a suitable weightings is applied optimal results could also be

found using WLS [6]. In the case of WLS we have

fWLS(θ) = ‖W1/2(R̂−R(θ))W1/2‖2F . (6)

The WLS reduces to LS if W = Ip. To have a solution

that approaches ML asymptotically we choose, W = R̂−1

[6]. One method for finding a θ that minimizes/maximizes

these functions is the descent algorithm where the solution is

updated as

θ
(i+1) = θ

(i) + µ∆(i), (7)

where ∆ is the direction of descend and µ is the step size. At

each iteration we need to find the direction of descend using

the Jacobian of our cost functions. This means finding ∆ by

solving the following system at each iteration

JH (W∗ ⊗W)J∆ = JH (W∗ ⊗W) vect
[

R̂−R(θ)
]

,

(8)

where ∗ is the complex conjugate, ⊗ is the Kronecker–product,

J = ∂vect(R)

∂θT is the Jacobian and vect(X) stacks the columns

of X into a single vector. For WLS this approach is equivalent

to Gauss–Newton and in the case of ML where the weighting

matrix, W(i) = R−1(θ(i)), this approach is equivalent to the

scoring method where

F = JH
(

R−T ⊗R−1
)

J, (9)

is the Fisher information matrix [7].

In our application we can define θ as

θ =
[

gT gH
σ

T
σ

T
n

]T
, (10)

where σn = SHvect(Rn) and S is a selection matrix. If Rn

is assumed to be a diagonal matrix, then S = (Ip ◦ Ip) and

σn = vectdiag(Rn) where ◦ defines the Khatri–Rao product

and vectdiag(X) stacks the diagonal elements of X into a

vector.

When we partition θ in this way we can also partition the

Jacobian as

J = [Jg,Jg∗ ,Jσ,Jσn
] , (11)

where

Jg =
∂vect(R)

∂gT
=

(

G∗A∗RsA
T ⊗ Ip

)

(Ip ◦ Ip)

= G∗A∗RsA
T ◦ Ip, (12)

Jg∗ =
∂vect(R)

∂gH
=

(

Ip ⊗GARsA
H
)

(Ip ◦ Ip)

= Ip ◦GARsA
H , (13)

Jσ =
∂vect(R)

∂σT
= (G∗A∗ ⊗GA) (Ip ◦ Ip)

= G∗A∗ ◦GA, (14)

Jσn
=

∂vect(R)

∂σT
n

= S. (15)

In order to solve (8) we define the matrix

H = JH (W∗ ⊗W)J, (16)

and the gradient vector

b = JH (W∗ ⊗W) vect
[

R̂−R(θ)
]

, (17)

such that at each iteration we need to solve H∆ = b. The

dimensions of H depend on the number of unknowns

n = 2p+ q + ‖vect(S)‖1 (18)

and for a large array it could become a problem to store it

in the memory. Also because we cannot assume any sparse,

circular or Toeplitz structure in H, except that it is Hermitian,

solving this problem with a direct method has a cubic com-

plexity which must be repeated at each iteration. However if

we use a solver based on the Krylov subspace method we

can use the Khatri–Rao structure of the Jacobian matrices.

This will reduce the complexity and memory usage which is

important for very large arrays like SKA.

Krylov Subspace Based Methods

The Krylov subspace based methods solve H∆ = b by

using matrix–vector products of the form Hv repeatedly. If

this operation can be performed in an efficient way, then

application of these methods are preferred to other methods.

Especially because we can define a procedure that performs

the matrix–vector product, the matrix H does not need to be

stored in memory. This makes Krylov subspace based methods

very suitable for situations where H is very large. We will

now show how this matrix vector product can be performed

in an efficient way. We have chosen minresQLP because it is

capable of handling singular matrices which adds robustness

during the iterations [5].

We will split the operation of Hv into three steps. First we

will calculate two intermediate results

c = Jv, (19)

and cW = (W∗ ⊗W)c. Using these intermediate results we

then calculate the final result

Hv = JHcW. (20)
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Now we will show how each of these steps use the Khatri–

Rao structure and can be done efficiently. In order to calculate

c we partition v, in the same way we have partitioned θ, as

v =
[

vT
g vT

g∗ vT
σ vT

σn

]T
, (21)

then we have

c = Jv = Jgvg + Jg∗vg∗ + Jσvσ + Jσn
vσn

. (22)

If we unvectorize both sides and substitute the definition of

each Jacobian we find

C = unvect(c)

= diag(vg)ARsA
HGH +GARsA

Hdiag(vg∗)

+GAVσA
HGH +Vσn

=
(

vgg
H + gvT

g∗

)

⊙R0 +GAVσA
HGH +Vσn

,

(23)

where ⊙ is the Hadamard or element–wise multiplication,

R0 = ARsA
H , Vσ = diag(vσ) and Vσn

= unvect(Svσn
).

If Rn is a diagonal matrix then Vσn
= diag(vσn

).

Because G and all of the V matrices are diagonal, the

computational complexity for calculating C is very low. Also

because C has the same dimensions as a covariance matrix

calculating CW = unvect(cW) becomes simply

CW = WCWH . (24)

Finally we need to calculate

Hv = JHcW =









[(RT
0 G)⊙CW]1

[CT
W ⊙ (R0G

H)]1
[(CWGA)T ⊙ (AHGH)]1

SHuW









.

(25)

The first three operations consist of an element–wise multipli-

cation and summation of the columns of each row, which are

computationally cheap operations. Only R0 and GA need to

be calculated and saved. The third term can also be calculated

efficiently if it is viewed as a beamforming operation done on

CW with columns of GA as the beamformer vectors. The last

operation is just a selection operation and if Rn is diagonal

it is equal to vectdiag(CW). If we replace C by R̂ − R in

(24), the same procedure can be used to calculate b.

In conclusion, to calculate Hv we perform (23), (24) and

(25). The procedure that does these operations is given to

the minresQLP along with the gradient b to produce ∆.

Computationally this means that per iteration we have a

O(p2q) complexity while the WALS has a complexity of

O(p3+p2q) [3] (for both cases we assume W to be available

beforehand). For ML, R needs to be inverted at each iteration

which increases the complexity, however if Rn is diagonal

the inversion can be reduced from O(p3) to O(q3) using the

Woodbury matrix identity [8].

IV. EXPERIMENTAL DATA

We have used a measurement set from the LOFAR radio–

telescope1 to test our method. The sample covariance matrix

of p = 273 dipoles is available to us from a single channel

with a central frequency of 58.98 MHz and a bandwidth of

195 KHz which is sampled at the Nyquist rate. The integration

time for this covariance matrix is 1 second.

The proposed method is used to calibrated this array for

three different cases. In each case we assume to know the

position of one, two and three sources such that q = 1, 2 and

3. For each case we look at the norm for the residual E defined

as

||E||F = ||R̂−R(θ̂))||F ,

and the norm of the gradient defined by (17). These results

are illustrated in Figure 1a and 1b. From norm of the gradient

we know that in all three cases the algorithm converges after

a few iterations. However, for q = 1 the final residual is

much higher than the other two and it takes the algorithm

much longer to converge. In order to explain this we use the

calibration results to make a full sky image (Figure 1c). In

this image we observe that two strong point sources , Cygnus

A and Cassiopeia A, are visible to the array and also there is

a strong background radiation from the Milky–Way (going

from top to the bottom of the image). In order to obtain

better calibration results we use the fact that the extended

sources like the Milky–Way mostly affect the shorter baselines

[9]. Based on this knowledge we have chosen the selection

matrix S to include the baselines smaller than 25 times the

wavelength into Rn as noise. In this case the total number of

unknowns, n, is 23393. The proposed method has a complexity

of O(p2q) while a naive and direct approach to the Gauss–

Newton algorithm would have had a complexity of O(n3)
which would be extremely expensive.

By adding Cassiopeia A and the Milky–Way to the model

we have achieved a much better result for q = 2. In order to

verify this we also made Figure 1d by imaging the residual, E,

which shows how smaller sources (three orders of magnitude

lower than the strong sources) can now be detected from this

residual.

Finally, for the case q = 3 we have added the next brightest

source to the model, in this case we also converge and have

a smaller residual. However because the sources are much

weaker the difference is harder to visualize.

V. CONCLUSION

We have shown that the covariance data model for cali-

brating a radio–telescope has a strong Khatri–Rao structure.

We have shown that this structure could be used to perform

fast matrix–vector computations which is the building block of

the Krylov subspace based methods. Finally we have used the

proposed method to calibrate real measurement set from the

1This data is the courtesy of ASTRON (http://www.astron.nl) and is
provided to the authors as part of a collaboration within the NWO TOP
project. We also would like to acknowledge the help of Stefan Wijnholds
and Peeyush Prasad for obtaining this data.
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(b) Convergence of the gradient to zero
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(d) Full Sky Image after removal of Cas A and Cyg A

Fig. 1: Results from Calibrating LOFAR Data

LOFAR radio–telescope with low computational complexity.

A thorough comparison of proposed method with similar

algorithms is lacking and will be addressed in future work.
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