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ABSTRACT

Many subspace estimation techniques assume either that the sys-

tem has a calibrated array or that the noise covariance matrix is

known. If the noise covariance matrix is unknown, training or

other calibration techniques are used to find it. In this paper

another approach to the problem of unknown noise covariance

is presented. The complex factor analysis (FA) and a new ex-

tended version of this model are used to model the covariance

matrix. The steep algorithm for finding the MLE of the model

parameters is presented. The Fisher information and an expres-

sion for the Cramér–Rao bound are derived. The practical use of

the model is illustrated using simulated and experimental data.

Index Terms— Factor analysis, complex factor analysis, sub-

space estimation, Cramér-Rao bound, maximum-likelihood.

1. INTRODUCTION

Many array processing techniques rely on estimating the signal sub-

space using eigenvalue decomposition (EVD) of the covariance ma-

trix. This method does not have an inherit model for the noise and

its usage for subspace estimation is limited to the case where the

noise covariance matrix could approximately be modeled as σ2I . In

this paper we are interested in estimating the signal subspace even

if the noise covariance does not have this special form and is un-

known. Also each receiving element of the array could have a dif-

ferent unknown gain. These complications requires a data–model

that includes unknown noise powers and is scale–invariant. The FA

model has both of these required properties and is used to find the

desired subspace.

After its first formulation by Spearman in 1904, the FA model

has been used in various fields such as psychology, social sciences,

natural science, etc [1, 2, 3]. Variations of the FA model have also

been explored for blind source separation and array calibration [4, 5].

Even though the work presented here could be used in various

fields, the focus is on its usage for radio–astronomy. Spatial fil-

tering of the strong sources or interference and removing the ex-

tended emissions are two possible applications of the FA model in

this field. This paper gives some new results needed for extending

the FA model to complex case and also extends the model to account

for a more general noise models. The MLE of the model parameters

is estimated using the steep method. The Fisher information and the

Fisher score are presented here could also be used for the scoring

algorithm as presented in [6].

2. DATA MODEL

For a system with p receiving elements that is exposed to m sources,

a commonly used narrow-band model has the form

x(t) = A0s0(t) + n(t). (1)

Where x is a p×1 vector of received signals, A0 is the p×m array-

response matrix, s0 is an m × 1 vector of source signals and n is a

p × 1 vector representing all the noise contributions in the system.

This data model suffers from some ambiguities that need to

be addressed before attempting to estimate the model parameters.

Given any invertable matrix Z and any unitary matrix Q, the model

could be rewritten as

x(t) = A0ZQQ
H

Z
−1

s0(t) + n(t). (2)

It is assumed that the sources and noise contributions are uncor-

related and have proper complex Gaussian distributions CN (0, Rs0
)

and CN (0, Rn) respectively. In this situation the covariance matrix

of received signal is given by

Rx = A0ZQQ
H

Z
−1

Rs0
Z

−H
QQ

H
Z

H
A

H
0 + Rn . (3)

The matrix Z could always be chosen in such a way that the

Z−1Rs0
Z−H = Im. By introducing A = A0ZQ the covariance

matrix of the received signal becomes

Rx = AA
H + Rn . (4)

The only ambiguity left is the choice of the unitary matrix Q. In

order to choose Q, first the case of known noise covariance is

considered. Let R0 = A0Rs0
AH

0 = AAH and assume that

Rn is known, then the EVD of the whitened covariance matrix

R
−

1

2
n RxR

−
1

2
n − Ip = R

−
1

2
n R0R

−
1

2
n could be used to estimate

A. Consider the following eigenvalue problem

R
−

1

2
n R0R

−
1

2
n U = UΓ, (5)

where Γ is a diagonal matrix. If we require U = R
−

1

2
n A then (5)

becomes

R
−

1

2
n R0R

−
1

2
n R

−
1

2
n A = R

−
1

2
n A(AH

R
−1
n A)

= R
−

1

2
n AΓ.

(6)

One way to make sure that (6) holds, is by setting

A
H

R
−1
n A = Γ. (7)

The matrix Q is now chosen in such a way that (7) holds. With the

choice of Q there are no ambiguities left.

Finally we assume that the noise contributions are uncorrelated

so that

Rx = AA
H + D. (8)

where D is a diagonal matrix.

For the remainder of this paper we refer to (8) as the (classical)

FA model.
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2.1. Extension to Non-diagonal Covariance Matrices

The classical FA model is an especial case of a more general model

where the noise covariance could be modeled as Rn = M ⊙ Rn

where M is a symmetric matrix containing only zeros and ones. The

FA model then becomes

Rx = AA
H + M ⊙ Rn . (9)

We assume that M = Ip + B where B is a symmetric matrix with

zeros on its diagonal. If B = 0 then the classical model is obtained.

The choice of this mask depends on the application.

In the follwoing sections we first extend the estimation of the

classical FA to complex case and give an algorithm to estimate the

model parameters as given by (9).

3. PARAMETER ESTIMATION TECHNIQUES FOR

COMPLEX-VALUED DATA

The FA model for real-valued data, is a mature subject and vari-

ous techniques for the estimation of the model parameters has been

suggested in literature[7, 8, 9]. Some of these algorithms extend to

complex case very naturally and some need closer look.

Before discussing the various algorithms, the problem defini-

tion for FA is examined in more detail. Given N samples from the

received signal x, we want to find Â and D̂ based on the sample

covariance matrix

R̂x =
1

N

N−1
X

i=0

x[i]x[i]H . (10)

This problem becomes more complicated if the the number of

sources m is not known in advance. In this situation an estimate,

m̂, must also be chosen or found. It is also of interest to know the

maximum number of sources for which the FA model has any solu-

tion at all. In order to find this, we see how many free parameters

this model leave us for a given number of p and m. For a complex

sample covariance matrix there are p2 number of parameters. The

FA model parameters, A and D have 2pm and p free parameters

respectively, from which m2 are fixed by (7). This gives the total of

free parameters

s = p
2 − 2pm + m

2 − p

= (p − m)2 − p.
(11)

Even though the number of free parameters, s, is different for real

and complex case, the interpretation is the same. In [10] the real

case is discussed. In both cases if s < 0 there is an infinite number

of exact solutions and the problem is ill-posed. If s = 0 there is

one unique solution; this is for example in the case of EVD where

m = p and D is known or neglected (s becomes (p − m)2 = 0).

The last case is when s > 0, in this case it is not necessary that the

solution is exact and the parameters are estimated in such a way to

optimize a cost function.

In this paper we are interested in the case where s > 0. This the

case where m < ⌊p−√
p⌋ and D is unknown. We also assume that

the problem up to the matrix Q is (locally) identifiable. Conditions

for this type of identifiability are studied by [11, 12]. In the following

sections the maximum likelihood (ML) estimation of FA model is

discussed.

3.1. Maximum Likelihood Estimator

The aim is to find A and D that maximize the complex log-

likelihood function

l(x; A, D) = N
h

−log|πp| + log|R−1| − tr(R−1
R̂)

i

. (12)

To achieve this we find the Fisher score and set it equal to zero. The

Fisher score for a proper Gaussian distributed signal is given by [13,

p.165]

tθj
=

∂

∂θ∗

j

l(x; θ)

= −N tr

"

R
−1

„

∂R

∂θj

«H
#

+ N tr

"

R
−1

„

∂R

∂θj

«H

R
−1

R̂

#

,

(13)

where the partial derivatives are Wirtinger derivatives; θj is the j–

th component of the vector θ = [aT
1 , . . . , aT

m, d]T where ak is the

k–th column of A and d = vectdiag(D) is a vector containing di-

agonal elements of D; θ∗ is the complex conjugate of θ. We have

either θj = aik or θj = di where i = 1, .., p and k = 1, .., m, so

we need to find the partial Wirtinger derivatives ∂R

∂aik
and ∂R

∂di
.

Here we give the final results of the derivations

∂R

∂aik

= eia
H
k . (14)

and
∂R

∂di

= eie
H
i . (15)

where ei is a unit vector with entry i equal to 1. The final results for

Fisher score in the matrix form become

T A = N
“

−R
−1

A + R
−1

R̂R
−1

A
”

. (16)

and

T D = Ndiag(−R
−1 + R

−1
R̂R

−1). (17)

Thus the Fisher score for the FA model is then

tθ = [vect(TA)T
, vectdiag(TD )T ]T . (18)

In [14] the same expression for the real-valued data is derived.

Even though no closed form solution for Â and D̂ could be

found using (16), (17) or (18), they could be used to derive some in-

teresting properties of the MLE for FA. For a discussion and deriva-

tion of these properties the reader is referred to [14, 10].

In the following section we will derive the necessary iterations

to approximate the MLE numerically.

3.1.1. Steep

For a function f(Z , Z∗) the direction of the maximum change with

respect to Z is give by

∇Z f(Z , Z
∗) =

∂

∂Z∗
f(Z , Z

∗)

(19)

where the notation is adapted from [15].

Using (19), (13), (16) and (17) we have

∇A l(x; A, D) = T A (20)

and

∇D l(x; A, D) = T D . (21)

The iteration steps for the steep become

Âk+1 = Âk + µkΦkÂk (22)
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and

D̂k+1 = D̂k + µk(Ip ⊙ Φk) (23)

where

Φk = −R
−1

k + R
−1

k R̂R
−1

k (24)

and Rk = ÂkÂ
H

k + D̂k.

The matrix Rk needs to be inverted at each iteration. This could

be done efficiently using Woodbury matrix identity

R
−1

k = D̂
−1

k − D̂
−1

k Âk(Im + Â
H

k D̂
−1

k Âk)−1
ÂkD̂

−1

k (25)

which requires the inversion of one diagonal matrix and one m×m
matrix. If the matrix Q is also calculated at each iteration then only

the inversion of two diagonal matrices is needed.

3.1.2. Steep for Extended FA

For the case of extended FA we need to compute the number of

free parameters again. In a system with p receiving elements and

m sources satisfying (7) we have

s = (p − m)2 − p − 2k, (26)

where k is the number of off-diagonal elements. It is worth noting

that the covariance matrix is Hermitian and we only need to estimate

the elements below (or above) the diagonal. The factor 2k should not

be confused with the number of off-diagonal elements of M , which

is also 2k, the factor 2 comes from having complex entries on the off-

diagonal elements of noise covariance matrix. Again we consider the

case where s > 0. This limits the number of off-diagonal elements

that could be estimated for a given number of sources and vice versa.

It is then straightforward to show that we only need to change (23)

to adapt the steep algorithm for extended FA.

Following the same procedure used to derive steep in previous

section we have

∂R

∂(rn)ij

= mjieje
H
i . (27)

We have mji = mij and so we have in the matrix form

∇Rn,R∗

n
l(x, A, Rn) = NM ⊙ (−R

−1 + R
−1

R̂R
−1). (28)

The iteration update for the extended FA model could now be written

as

R̂nk+1 = R̂nk + µk(M ⊙ Φk). (29)

where Φk is given by (24) and Rk = ÂkÂ
H

k + R̂nk.

This concludes the estimation techniques for both classical and

extended FA. In the following section the CRB for the classical case

is presented.

4. CRAMÉR–RAO BOUND

The Cramér–Rao Bound is the lower bound on the covariance matrix

of the estimated parameters. As explained in order to have a unique

solution for the FA model the matrix Q needs to be fixed. Choosing

this matrix puts constraints on the parameter A. As a result the con-

strained CRB for complex parameters is used here. Following [16]

we define

θ =

0

@

vect(A)
vect(A∗)

vectdiag(D)

1

A

(30)

as augmented θ.
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The augmented CRB for the estimated complex parameters with

the constraint k(θ) = 0 is

C(θ) ≥ U
“

U
H

F U
”

−1

U
H

, (31)

where F is the augmented unconstrained complex Fisher informa-

tion defined in [17] and U is a unitary basis for the null–space of K

given by

K =
∂kT

∂θ
. (32)

Vectorization of (7) gives m2 equations needed to construct k.

For the proper Gaussian distribution we can use Bang’s formula

to find the Fisher information

F = J
H(R−T ⊗ R

−1)J (33)

where

J =
∂vect(R)

∂θT

=

»

∂vect(R)

∂vectT (A)
,

∂vect(R)

∂vectT (A∗)
,

∂vect(R)

∂vectdiagT (D)

–

= [(A∗ ⊗ I), (I ⊗ A)K , (I ◦ I)], (34)

the matrix K is a permutation matrix such that Kvect(A) =
vect(AT ), ⊗, ◦ and ⊙ represent Kronecker, Khatri–Rao and

Hadamard product respectively. Using the tools developed here

it could be shown that the performance of the steep and scoring

method reaches CRB for the large number of samples.

5. SIMULATION RESULTS

We simulate a scenario in which the estimated subspace is used to

filter the incoming signals with the help of orthogonal projections.

The noise matrix is generated randomly in such a way that on each

receiving element the SNR is between 0 to −10 dB. We assume to

know the number of sources in advance. For this case there are two

sources, m = 2 and there are ten receiving elements, p = 10. We

use EVD without knowing the noise matrix, the FA (also without

knowing the noise) and EVD with the full knowledge of the noise

covariance matrix (whitening is used) and estimate the subspace for

different number of samples. The attenuation for each estimation is

found using

E =

‚

‚

‚P̂ AAHP̂

‚

‚

‚

F
‚

‚AAH
‚

‚

F

(35)

where P̂ = Â
“

Â
H

Â
”

−1

Â
H

.

Fig.1 is the average of 30 MC runs for the estimated attenua-

tions. As expected FA estimates the subspace without knowing the

noise covariance very close to EVD method with the full knowledge

of the noise. The FA has slightly less attenuation than whitened

EVD but that could be expected given the fact that more parameters

are estimated.
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Fig. 2. DFT Imaging withought FA

6. EXPERIMENTAL RESULTS

The results presented here illustrate one of the applications of the ex-

tended FA model in radio astronomy. We follow discussion in [18,

pp.35-40] very closely. In fact the data set used here is the same

data set used in [18] from the LOFAR project. The total sky im-

age is made using classical DFT method by combining data from

24 156kHz sub–bands distributed between 45.3 and 67.3 MHz and

10 seconds of integration per channel. Fig.2 shows the image with-

out being pre–processed with the extended FA. There are two strong

sources, Cas A and Cyg A, and there is also a cloud–like radiation

from the extended emission in the sky. The extended emission af-

fects the short–baselines that are smaller than 4 wavelengths. This

is exploited for modeling this extended emission as noise [18]. The

four wavelength criteria was used to create a mask matrix M 4λ and

the subspace of the two strong sources was estimated using extended

FA model. Fig.3 shows the image made using the DFT imaging on

R̂0 = ÂÂH . The estimated subspace gives an accurate estimation

for the sources.

7. CONCLUSIONS

It has been shown that the complex factor analysis model is the same

model which is commonly used in literature for narrow-band array

processing. The CRB and the Fisher score for the case of proper

complex Gaussian distribution are found using Wirtinger derivatives.

Some of the techniques used in factor analysis for real numbers are

extended to the case of the complex numbers. With the help of sim-

ulations and experimental data the potential use of FA as a generic

signal processing tool has been demonstrated.
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