
An Architecture for Task Execution in

Adverse Environments

Filip MILETIĆ

An Architecture for Task Execution in

Adverse Environments

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. J. T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 4 juni 2007 om 12.30 uur,

door Filip MILETIĆ

Electrical Engineer van de Universiteit van Belgrado, Servië
geboren te Kruševac, Servië.

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. P. M. Dewilde

Samenstelling promotiecommissie:
Rector Magnificus voorzitter
Prof. dr. ir. P. M. Dewilde Technische Universiteit Delft, promotor
Prof. dr. M. Prokin Universiteit van Belgrado
Prof. dr. ir. A. J. van der Veen Technische Universiteit Delft
Prof. dr. ir. F. C. A. Groen Universiteit van Amsterdam
Prof. dr. ir. I. G. M. M. Niemegeers Technische Universiteit Delft
dr. drs. L. J. M. Rothkrantz Technische Universiteit Delft
dr. K. Nieuwenhuis DECIS
Prof. dr. K. G. W. Goossens Technische Universiteit Delft, reservelid

Copyright c© 2007 by Filip Miletić

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage
and retrieval system, without the prior permission of the author.

ISBN: 978-90-9021920-2

To Milan

Contents

1 Introduction 1
1.1 Outline of This Chapter . 2
1.2 Background . 2
1.3 Properties . 8
1.4 Problem Statement . 11
1.5 Contributions . 12
1.6 Outline of The Thesis . 14

2 Toolkit 17
2.1 Introduction . 17
2.2 Description Quality Requirements 18
2.3 Representation with Object-Z and CPN 19
2.4 Object-Z Description . 20
2.5 The Petri Net (PN) and Coloured Petri Net (CPN) Descriptions . 24
2.6 CPN Simulation by a Blackboard 32
2.7 Blackboard Semantics . 34
2.8 CPN Simulation with a Blackboard 37
2.9 Summary . 48

3 Architecture Overview 49
3.1 Introduction . 49
3.2 Resources . 52
3.3 Layering . 53
3.4 Componentized Layer Structure . 55
3.5 Component Overview . 56
3.6 Summary . 61

4 Task Mapping 63
4.1 Introduction . 63
4.2 Requirements . 64
4.3 Enabler Mapping (EM) . 68
4.4 Mapping Tasks to Nodes . 72
4.5 Distributed Blackboard . 77

vii

viii CONTENTS

4.6 Related Work . 80
4.7 Summary . 82

5 The Environment and Storage Model 85
5.1 Introduction . 85
5.2 Connectivity Function . 90
5.3 The Storage Model . 96
5.4 System Model . 98
5.5 Summary . 106

6 Core Based Tree (CBT) 109
6.1 Introduction . 109
6.2 Problem Description . 115
6.3 Solution Outline . 118
6.4 Algorithm Description . 124
6.5 Performance . 138
6.6 Summary . 140

7 The Execution Model 145
7.1 Introduction . 145
7.2 Data Model . 146
7.3 Matching . 163
7.4 The Workflow Mechanics . 179
7.5 Summary . 195

8 Conclusion 197
8.1 Introduction . 197
8.2 Why Distributed Workflow Execution Now 198
8.3 Future Work . 199

Bibliography 201

Acknowledgments 209

Samenvatting 211

About the Author 213

Chapter 1

Introduction

This thesis describes an architecture for distributed computation in mobile envi-
ronments. Here, the workflow stands for the operational aspect of a work proce-
dure. This notion subsumes the structure of the tasks, who performs them, what
their operation structure is, how they are synchronized, how information flows to
support the tasks and how they are tracked. The designed architecture is tested
in a proof-of-concept implementation named Distributed Workflow Execution Ar-
chitecture for Mobile (DWEAM).

The interest in distributed workflow [90] execution architectures is long stand-
ing (some examples thereof are given further in the text). However, there has not
yet been an adequate treatment of workflow execution in mobile systems. The
benefits of such a system would be collected by users who perform a coordinated
task in a complex environment and must establish own coordination infrastructure
to do so. Typical users are the members of emergency rescue teams, i.e. police,
fire brigade or medical personnel, when handling an incident, where the cooper-
ation between the team members is hindered by mobility and adverse communi-
cation conditions. The communication via the Global System for Mobile (GSM)
networks, that are used in small scale operations in urban areas cannot offer ap-
propriate quality of service in face of escalation or infrastructure damage. The
now-aged broadcast radio (i.e. walkie-talkie) typically does not support the cou-
pling with information systems, as it is intended for the communication between
humans. We therefore consider a system architecture that addresses the commu-
nication issues, while being infrastructure-independent and supporting both the
work procedures for human operators, as well as that of the information systems.

In Europe, the market penetration percentage for GSM devices has long sur-
passed 80%, and tending to 100% [6], and the market drive thus created motivates
the producers to equip their products with ever more computing power. This re-
sulted in the advent of Personal Digital Assistants (PDA) and the convergence
of the two technologies in the near future seems imminent. Assuming that in
the near future mobile computing devices with communication facilities would be

1

2 CHAPTER 1. INTRODUCTION

routinely used, we recognize the potential for improving cooperative work that
these devices offer. We consider this enough motivation to investigate and design
a system that takes advantage of such devices. The example use case involving
assistance to emergency services is just one of many possible future uses.

1.1 Outline of This Chapter

This introductory chapter begins the thesis by introducing the background of the
problem in Section 1.2. The Section 1.4 states the research problem. Following a
brief discussion of the preliminaries, we formulate the research question, and give
its decomposition to three sub-problems. The suggested solutions to the research
sub-problems are stated thereafter, as well as the improvements to the state of
the art as given by this thesis. Finally, the Section 1.6 describes in brief the other
chapters in this thesis.

1.2 Background

Distributed computing subsumes the topic of concurrent execution of algorithms
on a collection of computing resources (processors, computers, nodes). We will be
considering distributed computer systems in detail, so abbreviations “computer
system” and “system” will always stand for such distributed systems.

Distributed computing was initially intended for large computation tasks as-
sociated with research in natural sciences, mathematics and like areas. Since the
advent of the world-wide Internet, forms of distributed computing have become
parts of daily lives. Trade, commerce, banking, mailing, along with a line of
other ages old activities, were adorned with the prefix “e-” to reflect their new al-
liance with the information technology. The Internet has thus brought distributed
computing to the desktop. The wide spread use of computers and the global in-
terconnection such as the Internet gave a natural motivation to harness the large
collective computing power. Example projects are Distributed Net (brute force
code breaking, see [2]), Seti@Home (a search for artificial signals coming from
deep space [74]), and Folding@Home (protein folding [31]). The University of
California at Berkeley maintains BOINC [13], a framework to support this kind
of “bona-fide collective” distributed computing. These examples show how com-
puters worldwide can be joined together to perform a large task.

A promising new field for distributed computing is formed with the advent
of mobile computers. GSM phones and PDAs have entered the scene during the
nineties, likely to be followed by other smart wearable devices. They populated
the earth in even greater numbers than personal computers, and it is expected
that the growth would continue in the upcoming years. Apart from their ini-
tial applications, these devices are usually fully capable machines, every more
often able to communicate with like machines in their vicinity. It can be inferred
that these machines, when properly joined together, could perform significant

1.2. BACKGROUND 3

computational tasks for the collective of their owners and offer a range of new
applications. For this vision to become a reality, a host of issues must be resolved
so that effective computation becomes possible.

An informal notion of an effective computation is that which takes on a suit-
ably posed question and produces an answer obtained by a sequence of well-defined
primitive steps (i.e. an algorithm) to yield an answer with some predefined qual-
ity properties; additionally, presentation qualities may be involved, as specified by
the Human-Computer Interface (HCI) guidelines. The quality properties define
the manner in which the computer system produces an answer: how much time
it takes whether it is of a good enough quality etc. As Gärtner [33] reported, in
1977 Lamport [48] observed that the system properties can be be put into two
distinct classes: safety properties and liveness properties. The safety properties
state that “something bad never happens”, i.e. that under no condition the sys-
tem is to enter an unwanted state. The liveness properties state that “eventually
something good happens”, i.e. that the system eventually reaches some state
with favorable properties (e.g. a state in which the computational outcome is pre-
sented). Effectiveness is therefore restated in terms of both liveness and safety, as
well as subjective measurement of the usefulness of the system, as perceived by
the users. By liveness, an effective system must present the user with an answer
(if the result can be computed given the system’s capabilities). By safety, the
result must be correct, supplied within a given time frame, incurring a limited
resource cost, possibly others. By HCI requirements the system must facilitate
HCI by timely presentation, detail abstraction and ease of use.

A computer system’s effectiveness fundamentally depends on its architecture.
It is thus important to have at hand a categorization of distributed architectures.
Being able to classify our system informs us of its possibilities. A choice of the ar-
chitecture will determine the set of computational tasks that the computer system
can and can not perform. Allowing the possibility of faults in the computation
further segregates the possible from the impossible. According to Lynch ([51],
Chapter 1), the distributed algorithms can differ by a number of attributes ulti-
mately determined by the architectural choices:

1. The communication method. This concerns distributed algorithms run-
ning on a collection of processors that must communicate somehow. Com-
mon methods of communication include addressing shared memory, sending
point-to-point or broadcast messages and executing remote procedure calls.
The ordering of messages can be important too.

2. The timing model. This concerns the manner in which different processors
execute their separate tasks. At one extreme, the processors run in lock-
step, progressing in perfect synchrony. At the other extreme, they can each
run at various relative speeds and can take arbitrary execution turns. In
between the extremes are various partially synchronous systems, in which
the processors have partial information about timing.

4 CHAPTER 1. INTRODUCTION

3. The failure model. This concerns the way that the hardware may fail to
perform its tasks. It can be assumed to be completely reliable, yielding a
fault-free assumption. Or it may be required to tolerate some fraction of
failures.

4. The addressed problems. This concerns the problems that one attempts to
solve by a distributed system. Typical problems of this sort are resource
allocation, concurrency control, deadlock detection, global snapshots, syn-
chronization and implementation of various types of objects.

The properties are implied by the adopted use case. The communication
method employed in our approach (and the DWEAM system) is localized point-
to-point as the nodes are assumed to communicate only with other geographically
close nodes. The timing model is virtually synchronous as the nodes run inde-
pendently except for few points where message exchange takes place. The failure
model we consider is communication and node fail-stop, as the nodes and their in-
terconnections can fail (and recover) at runtime. Finally the addressed problems
concern the efficiency of the computation in such an environment.

A World of (Im)possibilities

The effects of system attributes with respect to the classification given by Lynch
were succinctly commented in a paper by Turek and Shasha [43], by analyzing a
fictitious storyline named “The Parable of La Tryste”. They comment the solution
of the prototypical consensus problem that arises in distributed computing. They
explain when consensus problem is solvable, when it is not, and when unsolvable,
how the problem can be relaxed so that a solution can be found.

“Bob and Alice have discovered that they have a lot in common. For
example, they both prefer e-mail to telephone. On a cold winter day,
Alice sends Bob electronic mail at 10a.m. saying ‘Let’s meet at noon
in front of La Tryste.’ ”

“The e-mail connection between our two protagonists is known to lose
messages, but today they are lucky and Alice’s message arrives at
Bob’s workstation at 10:20a.m. Bob looks at his calendar and sees he
is free for lunch. So he sends an acknowledgment.”

“Alice receives the acknowledgment at 10:45a.m. and prepares to go
out, when a thought occurs to her: ‘If Bob doesn’t know that I received
his acknowledgment, he might think I won’t wait for him. I’d better
acknowledge his acknowledgment.’ ”

“And so it goes. We can show that, ultimately, neither Bob nor Alice
will make it to La Tryste unless at least one of them is willing to risk
waiting in the cold without meeting the other.”

1.2. BACKGROUND 5

The “La Tryste” scenario demonstrates the difficulty of reaching a consensus in
systems with asynchronous operation, unbounded message delays, and possible
message loss. The problem is that as sending the message can fail, neither Bob
nor Alice can know whether their decision is communicated to the other. In fact,
under these conditions, Lynch et al. have proved that consensus is impossible [52].

This result brings us to an apparent conflict with what we perceive in daily life.
Despite the impossibility of communication, people and computers do manage to
cooperate and things do get done. The apparent conflict comes from the way
the problem is analyzed. Given that no errors in communication are allowed,
and the fact that no matter how many times the message exchange is repeated,
we are never able to rule out the worst case (as all communication eventually
ends in an error), regardless of how improbable it might be. A conclusion follows
that the problem as posed has no solution. Thus the requirement on reliable
communication must be relaxed for the result to be applicable in the real world.
The outline of this approach is given in the following Section.

The Information Theoretic Approach

Now turn to the area of information theory, where a similar problem has long been
solved by Shannon [75] (numerous others followed) who formulated the commu-
nication problem and gave a set of initial solutions. A Message chosen from a
predetermined fixed alphabet is transferred from an Information Source to a Des-
tination (see Figure 1.1). Before sending, the Message is encoded for transmission

S
M // T

S //�
RS // R

M // D

N

OO

Figure 1.1: The communication system setup, as given by Shannon [75]. S: Source.
T: Transmitter. R: Receiver, N: Noise, D: Destination. M: Message , S: Signal,
RS: Received Signal.

by a Transmitter where it becomes a Signal. The Signal is sent through a com-
munication channel, where it is inevitably affected by noise (its effect modeled
by a Noise Source). The Receiver obtains a likely distorted Received Signal, and
decodes it so as to obtain a Message which is finally forwarded to the destination.

The difference with the “La Tryste” is that the probabilities of communication
failure are taken into account. Shannon’s conclusion from here is that provided
the communication channel is used the right way, the communication could be

6 CHAPTER 1. INTRODUCTION

made as reliable as needed. However, the price one pays for this is that in principle
more information needs to be sent over the channel than is minimally required to
describe the message.

Example 1 (Binary Symmetric Channel) Let us temporarily diverge from
the original “La Tryste” and consider the example of a binary symmetric channel,
as given in Figure 1.2. In this example, the communication channel is binary, i.e.

•0
1−p //

p

��?
??

??
??

??
??

?? • 0

•1
1−p

//
p

??������������� • 1

Figure 1.2: The binary symmetric channel model, with error probability p per
channel use.

two distinct messages can be sent, and only one of the two can be sent at a time.
Call these “1” and “0”, or in the case of “La Tryste”, call them “yes, let’s meet”,
and “sorry, I’m busy”. When the Information Source can produce more than two
distinct messages, they can be sent by using the binary channel several times, so
that different sequences consisting of zeros and ones denote different messages.
The total of ⌈log2 M ⌉ channel uses are needed so that there are at least M dis-
tinct binary sequences. This is a familiar scenario frequently occurring in digital
communications, including that between computer systems.

Due to noise, each channel use can be distorted, so that a “1” that has been
sent becomes a “0” or vice-versa. This happens with some probability p. Thus
the probability is 1 − p that one channel use ends with no errors. This paral-
lels the possibility that a “yes” might be flipped to “no” in transit, or other way
around. Shannon determined that there is a fundamental limit for the rate (in
bits per channel use) at which one can transmit information through this (or for
that matter, any other) channel, which he called the capacity. For the binary
symmetric channel it is given by [21]:

C = H (p) = −p log2 p − (1− p) log2(1 − p).

In this expression, H (p) is the entropy of a binary source. Moreover, it was
determined that transmitting through such a channel cannot be done at a rate
higher than C . The capacity of a binary channel with respect to the probability p
is given in Figure 1.3.

What use is this for Alice and Bob? First one sees that in most of the cases
(except at the endpoints of the graph in Figure 1.3 corresponding to p = 0 and
p = 1), they cannot expect to transfer a whole message (i.e. “fully” agree whether

1.2. BACKGROUND 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of error per channel use

C
h
a
n
n
el

ca
p
a
ci

ty

Capacity of the Binary Symmetric Channel

Figure 1.3: The capacity of the binary symmetric channel in bits per channel use,
versus the probability p of error per channel use.

a meeting goes through or not) by just a single channel use. By multiple channel
use they could repeat the agreement over and over and then take a majority vote.
But then, their information rate (i.e. say the price they pay for the communication
per unit transferred messages) will increase with the number of repetitions, which
is also not good.

However, if Alice and Bob agree to set not one, but several meetings at once,
it would be possible to agree on C ·m independent meetings by exchanging only
m messages (and therefore paying the amount proportional to m for the con-
versation), and do this with as small probability of error as desired. In reality,
driving the error probability close to zero would also mean having to agree on an
impossibly long sequence of meetings at once, but this realistic complication is
not considered important in the model.

Example 2 (Binary Erasure Channel) Consider now a setup that is some-
what different and closer to “La Tryste”. The new channel is shown in Figure 1.4.

8 CHAPTER 1. INTRODUCTION

For each sent binary symbol, there is a probability p that it gets lost in the chan-

•0
1−p //

p

��?
??

??
??

?? • 0

• ε

•0
1−p

//

p

??��������� • 1

Figure 1.4: The binary erasure channel [75].

nel. The loss is denoted at the Receiver by a third symbol ε. Otherwise, with the
probability 1− p the symbol is received unchanged.

This channel model is better for computer networks than the binary symmetric
channel. The computer networks are commonly packet-switched, with messages of
various origins being multiplexed and sent through the same channel, only for this
process to be reversed at the other end. The packet-switches operate by stacking
all the transmissions pending delivery in an outbound queue, which is emptied as
packets are being sent. As queues have limited capacity, it is possible that a packet
arriving at a switch with a full transmit queue will get dropped. Such omissions
are be perceived as erasures at the receiver. In this case, the channel capacity is
given by a simpler expression:

C = 1− p,

which is at the same time the expected fraction of lossless transmissions.

The contrast of “La Tryste” and the communication examples 1 and 2 shows
important differences in approach. The impossibility result illustrated in the for-
mer employs a pessimistic analysis, whereby only the worst case is considered.
On the other hand, the communication example takes into account a more re-
alistic scenario and an advanced approach yielding provably better performance,
at the cost of an (arbitrarily small) probability of error. One can note the use
of the statistical properties of the communication channel to yield the desired
performance.

The statistical properties of the environment will come back at several points
in the analyses given in the upcoming chapters.

1.3 Properties

The Resources

Building a computation platform out of mobile devices connected by wireless
network somewhat from the design of conventional (fixed) computer networks.

1.3. PROPERTIES 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Capacity of the Binary Erasure Channel

Probability of error per channel use

C
h
a
n
n
e
l
c
a
p
a
c
it
y

Figure 1.5: The capacity of the binary erasure channel in bits per channel use,
versus the probability p of error per channel use.

The mobile computers are more “immersed” into the real world and are more
susceptible to environment influences than their fixed counterparts. Taking into
account the interaction with the environment forms therefore an important part
of the mobile platform design.

A mobile computational platform consists of two types of resources:

1. Computation resources (computers, nodes). These resources apply a generic
function on data. A function that a node can apply is said to be implemented
by that node. A single node can implement several distinct functions at a
given time.

2. Communication resources (network). The network connects computing re-
sources, enabling them to send data objects to each other. Due to the prop-
erties of radio communication (the interference and path-loss) each node is
only able to contact the immediate neighbours directly. Contacting a node
that is further away is only achievable via intermediate nodes.

10 CHAPTER 1. INTRODUCTION

The special properties of the mobile computing platform, constituting the
design constraints, are:

1. Node volatility. Mobile nodes are power-constrained. Thus they can run
out of power and forcibly become unreachable. The nodes can also be
destroyed. This constitutes a involuntary leave. Nodes can also be shut
down, constituting a voluntary leave.

2. Network volatility. Due to path-loss and interference in the radio-based net-
work, and the fact that the nodes change position over time, each individual
link between pairs of nodes is subject to variation.

The Tasks

The mobile platform is assembled so that some predefined computational task
can be performed. Interesting tasks for distributed execution are such that can
be decomposed into loosely coupled subtasks. Thus, the patterns of cooperation
between nodes are not random. Rather, they follow a specific pattern, as deter-
mined by the task dependency. Furthermore, an allocation schema must exist
whereby tasks are allocated for execution (i.e. mapped) to nodes.

Thus the task execution is characterized by the following properties:

1. Static structure. This concerns the way the tasks relate to each other, i.e.
how they are subordinated what their mutual dependencies are, and which
operations on the data they perform.

2. Dynamic structure. This concerns the rules by which the tasks are executed,
and the management of the data flow between dependent tasks.

3. Mapping to nodes. This concerns allocating tasks to nodes and handling
the volatility.

These properties taken together constitute a workflow.

The Users

An important design goal for DWEAM is the easy integration of the users input
in the overall system works. The user experience is not treated, as it is considered
an HCI issue out of scope of this thesis. However, providing an uniform interface
for the coupling of the machine generated and user-supplied result is important.
To distinguish between these two classes of system participants we use the term
agent, when a machine participant in the system is meant and actor for a human
participant in the system. Together they are all named workers.

1.4. PROBLEM STATEMENT 11

1.4 Problem Statement

We consider, in essence, a distributed computing system intended to execute a
specified abstract computing task, under resource volatility. We represent the
computing task by a workflow. The workers are capable of executing a subset of
tasks in a workflow.

1. Execution speed. Multiple tasks are executed in parallel. This can not only
be faster when compared to sequential processing for well-structured tasks,
but can also scale with the number of available workers.

2. Separation of concern. It is possible to map special processes to workers
with special capabilities. A failed agent can be replaced with one having
comparable capabilities. A task intended for an absent actor can be re-
assigned.

3. Mixed initiative system support. It is possible to mix the active participation
of the agents and actors in task execution.

Research Question

The thesis is the answer to a single research question: How is computation struc-
tured and controlled in this environment?

The research question decomposes into interwoven sub-problems:

1. The Environment Model. An environment model is needed to express the
environment influence to DWEAM performance.

What is an appropriate model for the environment of this distributed system?
What are its properties and what design patterns can be derived from it?

2. The Storage Model. The storage resources accessible to the entire system
vary over time. Thus in addition to conventional data storage mechanisms,
special care must be taken to ensure storage availability despite the time
variations.

What does this mechanism look like? What is its performance?

3. The Execution Model. The computational resources offered to the entire
system vary over time. Thus in addition to conventional execution mech-
anisms, special care must be taken to ensure the computational resource
availability despite time variations.

What does this mechanism look like? What is its performance?

12 CHAPTER 1. INTRODUCTION

1.5 Contributions

The solution components answer in turn each of the three research sub-problems.
They form the core contributions of this thesis.

1. The Erasure Graph answers the Environment Model question. It captures
the properties of the environment the system nodes are embedded in. The
analysis of the Erasure Graph yields performance bounds for both the Stor-
age and Execution model.

2. The Distributed Coding answers the Storage Model question. In view of the
Erasure Graph model, a technique is devised for resource-efficient and fault-
tolerant data distribution. In this technique, we consider the serialization
of data into binary streams, and the distribution of parts of these streams
to independent nodes. We give the estimate of the storage capacity for the
model thus obtained.

3. The Event Notification answers the Execution Model question. In view of
the Erasure Graph model, a technique is devised for dynamic workflow as-
sembly, maintenance and execution. The event notification is based on the
Core Based Tree (CBT), a tree-like structure that ensures all the required
connections can be established. The performance of the CBT is estimated
The connections are established using content-based addressing whereby for
communication, the contents of the messages are used to route them to all
the intended recipients. Finally, the execution model is formulated that
guarantees the execution of the CPN implemented by the nodes participat-
ing in the event notification structure.

The solution components are being implemented into DWEAM, the proof-of-
concept system.

Advances with Respect to the State of the Art

The contributions to the state of the art, made in this thesis, are as follows.

1. The formulation of distributed computation in volatile environments as a
distributed execution of a CPN, and its description in terms of the Object-
Z language (see Chapter 2). This contribution enabled us to identify that
token preservation and object delivery were needed to ensure the distributed
workflow execution.

2. The formalism casting the informally described tasks with the foremost aim
to enable the formalization of tasks performed by the emergency rescue
teams from the context of Chaotic Open-World Multi-Agent Based Intelli-
gent Networked Decision Support System (Combined) Systems into the CPN
form (see Chapter 4). This contribution enabled us to leave the details of the
application domain behind and concentrate to distributed CPN execution.

1.5. CONTRIBUTIONS 13

3. The environment and storage models, which enabled the discussion about
the token preservation schema (see Chapter 5). We introduced the concept
of erasure graph and computed the capacity

4. The CBT construction algorithm, which builds the basic interconnection
structure for the solution of the distributed Service Discovery Problem (see
Chapter 6).

5. The execution model, stemming from the solution of the distributed Service
Discovery Problem (SDP). Within it, the content-based matching algorithm
is used to establish the object delivery rules in a wireless network (see Chap-
ter 7).

All the contributions have found their way in the implementation of DWEAM.
The implementation amounted to somewhat more than 60 thousand lines of code
and documentation, written in Java, Scheme, XML and Javadoc. According to
the sloccount utility [88], the development effort estimate of the implementation
according to the Basic COCOMO1 model [12] amounted to 7.4 person-years,
and would cost about 1 million USD to develop in 1.15 years by an average of
6.46 developers2. The author’s contributions to the Combined code base had
been excluded from this estimation. This was done as the contributions there
are mixed with those of other developers of the Combined code base. They are
therefore difficult to tell apart, as versions of the same packages were written and
updated by multiple authors.

Publications

The work on DWEAM has produced the following publications:

1. Filip Miletic and Patrick Dewilde. A distributed structure for service de-
scription forwarding in mobile multi-agent systems. Intl. Tran. Systems
Science and Applications, 2(3):227–244, 2006

2. Filip Miletic and Patrick Dewilde. Design considerations for an infrastructure-
less mobile middleware platform. In Katja Verbeeck, Karl Tuyls, Ann Nowé,
Bernard Manderick, and Bart Kuijpers, editors, BNAIC, pages 174–179.
Koninklijke Vlaamse Academie van Belgie voor Wetenschappen en Kun-
sten, 2005

3. Filip Miletic and Patrick Dewilde. Data storage in unreliable multi-agent
networks. In Frank Dignum, Virginia Dignum, Sven Koenig, Sarit Kraus,
Munindar P. Singh, and Michael Wooldridge, editors, AAMAS, pages 1339–
1340. ACM, 2005

1Constructive Cost Model, an estimation method for person-months needed for completing
a software project.

2This figure is obtained as the quotient of the effort and the schedule, as obviously the
number of developers in reality can only be an integer.

14 CHAPTER 1. INTRODUCTION

4. Filip Miletić and Patrick Dewilde. Coding approach to fault tolerance in
multi-agent systems. In IEEE Conference on Knowledge Intensive Multia-
gent Systems. IEEE, April 2005

5. Filip Miletić and Patrick Dewilde. Distributed coding in multiagent systems.
In IEEE Conference on Systems, Man and Cybernetics. IEEE, October 2004

1.6 Outline of The Thesis

In the thesis body, we first present the toolkit to be used later in the exposition.
We then take on in sequence the components of the research sub-problem and
treat them in depth.

Chapter 2

This Chapter contains the thesis preliminaries. First, the DWEAM problem is
put into a broader context of mixed-initiative multi-actor, multi-agent systems.
It is seen that DWEAM is but a single component of a larger system, called
Combined. The unifying description of Combined is given, and the requirements
for the integrated Combined system are given. Following this description, we give
an overview and commentary of the related work. We describe the toolkit that
is used in the subsequent chapters, which relies on the usage of the Object-Z
language, and the process model of the CPNs. We then formalize the task of
DWEAM, and complete the description of the used framework by specifying the
distributed blackboard.

Chapter 3

This Chapter contains the overview of the architecture of DWEAM. In this
Chapter, the basic notions used in the remainder of the thesis are introduced and
explained in a nutshell. Here we also present the layered structure of DWEAM.

Chapter 4

This Chapter contains the method used to cast the informal descriptions of inter-
related tasks into a CPN. The CPN description is then converted into an imple-
mentation using a distributed blackboard.

Chapter 5

This Chapter contains the description of the operating environment and the stor-
age model. We investigate the connectivity function for a set of nodes in two
dimensions. Having done that, we turn our attention to the storage model, where
we estimate the performance of the data partitioning to achieve the token preser-
vation.

1.6. OUTLINE OF THE THESIS 15

Chapter 6

This Chapter contains the detailed description of the CBT construction algo-
rithm. The notions of producers and consumers are introduced, and the SDP is
defined. The CBT is afterwards used to provide a solution to the SDP, by finding
the producers and consumers which are compatible, i.e. those that communicate
through the delivery of data objects. A detailed analysis of the CBT construction
algorithm is given, with the CPN descriptions of its phases and the discussion
about its performance.

Chapter 7

This Chapter describes the Dataspace model to which all the data distributed
in DWEAM must conform. Thereafter, the matching algorithm is given. In it,
the CBT structure from Chapter 6 is used to compute the matching between the
compatible producers and consumers. The proof of the matching algorithm is
given, followed by the CPN description of the implementation.

Chapter 8

This Chapter lists the contributions of the thesis, explains the outlook of dis-
tributed workflow execution in the contemporary context, and gives pointers to
future work.

Chapter 2

Toolkit

In this Chapter we present the mathematical toolkit used for formal specification
throughout the thesis. The toolkit contains two inter-related tools. These are:
Object-Z, a formal specification and documentation language which is used to
describe system states and transitions; and CPN, a graphical formal language
which is used to describe the concurrency which arises in DWEAM.

We dedicate a separate Chapter to the toolkit description in order to lay the
foundation for the used notation, as well as to explain the toolkit’s relations to
other equivalent ways of modeling software components. Additionally, we moti-
vate the reasons for the choice of the two used tools.

2.1 Introduction

Early in the development cycle we experienced the need for having a formal lan-
guage to describe DWEAM. There are several levels at which the description
needs to be available, each of those coupled with the intended use of the particu-
lar description, and the intended target audience. The descriptions differ among
themselves in the form and the level of detail that they encompass, while at all
times they are required to correspond to each other in those description compo-
nents which are shared.

A number of intended uses can be identified for the system descriptions. These
intended uses are very similar to those found elsewhere in software products.

1. Execution. This use subsumes the descriptions needed for the system to be
represented inside in a way that can be directly executed by a computer.
The description is given in the form of binary files, not intended to be read
by humans. The executable form encodes full detail about system operation.
It is therefore difficult and time consuming to recover other representation
forms from this one.

17

18 CHAPTER 2. TOOLKIT

2. Development. This use subsumes the descriptions used to expand the func-
tionality of the system. The description is given in the form of source code
files, which use a high level language to describe program functionality.
With some exceptions, these files are written by programmers, but they are
intended to be easily compilable into the executable form. These files can
be readable for a human, although the pace at which the description can be
understood depends greatly on the way the files are organized.

3. Maintenance. This use subsumes the descriptions needed so that the sys-
tem can be repaired and upgraded. In order to clarify critical points in the
development description, the maintenance notes are given in form of com-
ments to the source code representation. The comments are used to clarify
portions of program code, and in an increasing number of cases, also for the
automatic documentation generation.

4. Design. This use subsumes the descriptions used to invent new functionality
and reason about the properties of the system with the new functionality
included. The form of the design can vary in format, level of detail and for-
mality, and is the origin from which all the other descriptions are generated.

5. Presentation. This use subsumes the descriptions used to present in a con-
densed manner either the system composition, or the results of the system
activities. The presentation is intended for human audience, and uses text,
diagrams and formulas to emphasize the key design, or evaluation points.
The level of detail is often adjusted to present only the relevant data for the
presentation context.

Inspecting this list we can conclude that the descriptions pertaining to system
design are the first documents that are produced about a system. They are the
documents from which all other representations are produced, regardless of the
level of detail employed and the intended use. It is therefore important that the
design decisions be documented in an unambiguous way, lending themselves both
to understanding and implementation. Formal specifications fulfill this goal well.

2.2 Description Quality Requirements

The formal methods invented for describing software systems vary in the intended
purpose, the target audience and expressive power. The choice of the right formal
representation is constrained by the need of it being able to fulfill the imposed
requirements on the description quality. In the case of the DWEAM design, the
description quality requirements are identified as follows:

1. Expression economy. The description must have a developed vocabulary
supporting programmatic structures that often occur in software system
design. This is to prevent having to define these familiar structures to

2.3. REPRESENTATION WITH OBJECT-Z AND CPN 19

complete the specification. For further economy, the description needs to
provide ways to reuse the description components, to ease the description
understanding and the maintainability.

2. Implementation neutrality. The description must be detached from the im-
plementation form of the description. This requirement is in line with the
previous one, as it stipulates that the adopted description may use famil-
iar idiomatic constructions regardless of whether they are idiomatic in the
implementation representation.

3. State representation. The description must represent system states in a
manageable way. It must allow partial state descriptions.

4. Concurrency representation. The description must allow explicit description
of concurrency. The DWEAM is a system that critically depends on con-
current execution. This dependence must therefore be explicitly described.

5. Executability. There must be a straightforward way to transform the system
description into an executable form. This must either be automatic, or
manual, provided that the right procedure is followed.

6. Openness to analysis. The description must admit formal analyses and proof
methods.

2.3 Representation with Object-Z and CPN

The representation that we adopted for specifying DWEAM in this thesis is a
combination of two formal specification languages. The languages are Object-Z
and Coloured Petri Net (CPN) were chosen for their merits with respect to the
description quality requirements given in Section 2.2. According to [14] (Section
1.2.1), “Z is a typed language based on set theory and first order predicate logic”,
with Object-Z being an extension thereof incorporating language facilities lend-
ing themselves to the specification in the object-oriented style. The CPN [69] is
a graphical representation language which is especially suitable for the descrip-
tion of concurrent execution of distributed algorithms. These two representations
complement each other well for the description of concurrent systems.

Strictly speaking, in this thesis we use Object-Z as the basis for the formal
specification, while the CPN is used as syntactic sugar to represent concurrency.
This approach is due to Z’s (hence also Object-Z’s) lack of methods for explicit
concurrency representation. The concurrency is hence handled by the constructs
readily available within CPN, and the connection between the two representations
is established by specifying the CPN semantics in Object-Z itself.

The account of the combined Object-Z and CPN description with respect to
the representation quality requirements from Section 2.2 is given below.

20 CHAPTER 2. TOOLKIT

1. Familiarity. Both Object-Z and CPN use notation that is well known.
Object-Z uses the notation drawing from basic set theory that is common
and well understood. Similarly, the CPN notation uses annotated graphs,
another familiar device.

2. Expression economy. Although Object-Z’s set-theoretic notation is basic, it
also has a standard toolkit which supports structures more elaborate than
those of the basic sets. To name a few: relations, functions, sequences and
bags. Further, its object orientation allows the descriptions to be reused
efficiently.

3. Implementation neutrality. Object-Z and CPN representations are not cou-
pled to a particular implementation language. This is in contrast to model-
ing languages such as Unified Modeling Language (UML), in which descrip-
tions of program semantics must be given in the implementation language
(e.g. Java) as the modeling language itself cannot express it.

4. State representation. In Object-Z, the schema notation can be used to
specify partial sets of system state variables, as well as state transitions.
Facilities exist to denote the schema composition.

5. Concurrency Representation. The representation of concurrency is handled
by CPN through explicit representation of the control flow by places and
transitions.

6. Executability. The CPN specifications give precise instructions on the con-
trol flow of a distributed program, and the Object-Z description supplies
the description of the data transformation at each of the CPN’s transitions.
The full specification can be implemented in a straightforward manner on a
blackboard-based computer system using a set of simple compilation rules.

There exist similar and more complete takes on the specification of distributed
systems, as given in [77], for instance, where the concurrency and process con-
trol has been handled by extending Z by Communicating Sequential Processes
(CSP) [40], the process-oriented language invented by C. A. R. Hoare. As the
integration of the state-oriented and process-oriented languages is an elaborate
topic out of scope of this thesis, we provided the support for concurrency only to
the extent required for the description of DWEAM.

The choice of the Object-Z and CPN combination that we opted for as the
language of choice for the formal description of DWEAM is by no means unique.
Equivalent and related approaches are numerous as is shown here.

2.4 Object-Z Description

The notation is based on the Z language (see [78]) and its object-oriented extension
Object-Z. Z is a “typed formal specification language based on first order predicate

2.4. OBJECT-Z DESCRIPTION 21

logic and Zermelo-Frankel (ZF) set theory” (from [14]) extended with a useful
mathematical toolkit for expressing frequent constructs in computer science.

The Z notation includes the familiar symbols for predicate logic (=, 6=, true,
false, ¬ , ∧, ∨, ⇒, ∀, ∃, etc.) with widely understood meaning. Same goes
for the sets and expressions (∈, 6∈,∪,∩,⊆, etc.). The set of natural numbers is
commonly denoted as N, and the set of whole numbers is Z. Set comprehension
is denoted as: { x | P(x) }, and reads as “set of elements x with the property
P(x)”. Element comprehension is denoted as: µ x • P(x) and reads as: “The
unique element x that solves the equation x = P(x)”. Substitution is supported
by the Lambda-notation. A function object that increases a given number by
one reads: λ x : Z • x + 1. Distinct identifiers are denoted by different strings.
Examples of legal identifier names are: a, b, c,A,B , a1, b1, α, β,word ,Car1,

Every variable in Z has a type, i.e. a set from which it is drawn, and which
must match when associated with other variables. For a variable a of some type
M , one writes: a : M . An opaque type can be introduced, i.e. such that its
properties are abstracted at introduction point. This is written [M] and allows
the use of M as a type identifier in subsequent text. We reserve the initial-capital
words for the type names, e.g. Task .

When a variable is a set itself, its type is the set of sets. For S a type, the set
of subsets of S is written as P S .

A relation R between two sets P and Q is a subset of P × Q . This can take
an infix form pRq, for (p, q) ∈R, provided R is a relation between the elements
of P and Q . It is defined by an axiomatic schema:

R : P ↔ Q

W

with W a predicate on R. The domain of a relation R: T ↔ U (written: dom R)
is the set of elements of T that are related to at least one element in U . The
range of a relation R (written: ran R) is the set of elements of U that are related
to at least one element of R . The underscores ()in the above specification are
argument placeholders: given R , when pRq is used to claim that p and q are in
the relation R, the types of p and q are implicitly taken to be the types appearing
in the type definition of the relation R. Hence the type of p must be P and the
type of q must be Q . The inverse of a relation is denoted as R∼ and it is obtained
by reversing all the tuples from R. A transitive closure of the relation R (i.e.

R ∪ R2 ∪ . . .) is denoted by R+. For a set A from dom R, A⊳ R is the domain
restriction, i.e. the subset of elements of R whose first components are elements of
A. Similarly for B from ran R, the expression R ⊲B gives the range restriction,
with analogous meaning. Domain and range anti-restriction are denoted by −⊳
and −⊲ respectively. R (| A |) is the relational image of R with respect to the
set A.

A function is a special form of a relation in which each element in the domain
has at most one element associated with it. A function F from a set T to U is

22 CHAPTER 2. TOOLKIT

defined by a modified axiomatic schema:

F : T → U

Partial functions F , where some domT do not have an image in U are given as
F : T 7→ U . A pair (t : T , u : U) from F can be expressed in a more graphical
way as t 7→ u, the maplet notation.

A shorthand is introduced by using the == connective. Thus V == {u, v}
makes V a shorthand for a two element set {u, v}. A theorem is denoted as:

Γ ⊢ P

where Γ is the context (or none, if the context is global), and P a property that
is proven. It is read: “in Γ, P is valid.”

The forward composition of two functions F and G is denoted as F o
9
G.

⊢ ranF = domG ⇒ F o
9
G = {y | ∀ x ∈ domF • y = GFx}

A bijection G is denoted as:

G : T → U

The schema notation is used to structure specifications. The example below
gives the schema Book (from [14], Section 3.6) . The opaque types People and
CHAR must be defined for completeness, as they are used in the schema.

[People,CHAR]

Book
author : People
title : seqCHAR
readership : PPeople
rating : People 7→ 0 . . 10

readership = dom rating

A schema can also be written in line, so the following is the same as above:

Book =̂ [author : People; title : seqCHAR; readership : PPeople;
rating : People 7→ 0 . . 10 | readership = dom rating]

There are two distinct sections of the schema, divided by the horizontal line
(read as “where”). The first section of the schema above the “where” defines
its components and their types. The second section below the “where” defines

2.4. OBJECT-Z DESCRIPTION 23

invariants that hold for the schema components. The schema type for the above
schema Book is given as:

〈| author : People; title : seqCHAR; readership : PPeople;
rating : People 7→ 0 . . 10 |〉

and its values are bindings of the form:

〈author ⇛ au1; title ⇛ ti1; readership ⇛ re1; rating ⇛ ra1〉

where au1, ti1, re1 and ra1 are constants of appropriate types.
Schemas can be unnamed, in which case they appear without the heading

label. A schema can extend another, by including its name in the description. As
a convention, a schema which is only meant to be included in another (otherwise
also known as the partial schema) has a name that begins with the letter Φ. If the
schema does not modify the state of the included one, by a convention the included
schema name is prefixed with Ξ. If a schema changes the state of the included one,
the included schema name is prefixed by ∆. For convenience, renaming can be
used to change the appearance of a schema. Thus Book [People/Borg] is a schema
Book with all the occurrences of People changed to Borg. Operations on a named
schema Book that change its state denote this by using it in the declaration, with
a prefix ∆ (delta). The elements of a schema after the change are primed (“′”).
As a convention, when a schema describes a change of state, a question mark
(“?”) is appended to the names of variables providing external input. Likewise,
an exclamation mark (“!”) is appended to the names of the variables used as
output.

AddReaders
∆Book
reader? : People
reader rating? : N

readership′ = readership ∪ {reader?}
rating ′ = rating ∪ {reader 7→ reader rating?}

Generic constructs allow families of concepts to be captured in a single defini-
tion. An example of a generic concept is the function first , from the Z toolkit ([78],
page 93), selecting the first element from an ordered pair in which the elements
can have arbitrary types X and Y :

[X ,Y]
first : X ×Y → X

∀ x : X ; y : Y •
first(x , y) = x

24 CHAPTER 2. TOOLKIT

Recursive type constructions are made through free types (from [78], page 82).
A free type definition:

T ::= c1 | . . . | cm | d1〈〈E1[T]〉〉 | . . . | dn 〈〈En [T]〉〉

introduces a new basic type T , and m +n new variables c1, . . . , cm and d1, . . . , dn

declared as if by:

[T]

c1, . . . , cm : T

d1 : E1[T] T

...

dn : En [T] T

where is x denoting an injective function. The “lambda” notation is used
to represent an unnamed function as a first-class object. Thus (λ a • a + 1) is
an “incrementor” function object. A function object can be applied to obtain a
transformation as follows:

(λ a • a + 1)10 = a + 1[a/10] = 10 + 1 = 11.

The expression f (x)[x/a] is called the substitution, read as: “in f (x), substitute
all appearances of x by a.”

Sequences of elements of a given type arise often. They are similar to ordered
n-tuples in that the order of the elements is important. They differ from the
n-tuples in that the length of a sequence is not fixed. For a type T , seqT is
the sequence type. A nonempty sequence type is seq1 T . Thus if l , k : seq N,
then an example legal l sequence is: l = 〈1, 2, 3, 4〉. Another example is k =
〈10, 13, 25, 44, 62〉.

Schema elements can be referred to in Z. If x ∈ Book , then x .author refers
to the value of author in x . When the object x is clear from the context, the
reference to it may be omitted. Likewise, a function is allowed to return a schema
object. Thus a partial function definition:

library : N 7→ Book

is legal. It denotes a library indexing function library whose domain is the set of
natural numbers and whose range is the set of Book schemas. Now it makes sense
to talk about library(1).author , library(1).title etc.

2.5 The PN and CPN Descriptions

Petri Nets (PNs) are often represented graphically. In Figure 2.1, a producer-
consumer model is given in the PN form as an illustration, following closely [69].

2.5. THE PN AND Coloured Petri Net (CPN) DESCRIPTIONS 25

ready to send

buffer full

ready to receiveready to produce buffer empty

produce

sending

received

consume

receive

Figure 2.1: A PN representation of a producer-consumer system. The squares are
transitions, the ovals are places, and the arrows are arcs. All places have labels,
and the places with the labels ready to produce, empty and receive have a token
each.

In its graphical representation, a PN model is an oriented bipartite graph, drawn
between nodes denoted as ovals and rectangles. Ovals are named places, and
rectangles are named transitions. The edges of the graph are named arcs. Arcs
are only permitted to either connect a place to a transition, or vice-versa. No
place is connected by an arc to another place, nor is a transition connected to
another transition. On each place, a dot can be drawn. The dot is called a token.
Places and transitions can be marked with a label.

The set of all places is denoted as P . The set of all transitions is denoted
as T . The set of all arcs is denoted as F and is often called the flow relation.
The placement of tokens is called the state, and a PN is usually given in terms of
the token marking for the initial state. The set of transitions that have the arcs
pointing to a particular place p of P is denoted as ◦p, and the set of transitions
pointed to the arcs emanating from p is denoted as p◦. The converse rule holds for
a transition t from T . The set of places that have arcs pointing to t is denoted
as ◦t , and the set of places that are pointed to by arcs emanating from t are
denoted as t◦. A transition t is enabled if there is a token on all the places from
◦t . It fires by removing the tokens from ◦t and placing a token on t◦. Firing a
single transition is called a step. A (possibly infinite) sequence of steps is called
an interleaved run. In general, more than a single transition can be enabled in a
given state, so different interleaved runs can occur.

In Figure 2.1, the producer-consumer system is represented by three circular
token flows. These are not specially marked on the figure itself, but by design
it is known that the token flow on the left side represents the producer. The
token flow in the middle represents the buffer, and the token flow on the right
represents the consumer. Initially, the only enabled transition is produce, as it is

26 CHAPTER 2. TOOLKIT

the only transition t that has a token on all the places ◦t . After produce fires,
a token is placed on send and a token is removed from ready to produce. Now,
the only enabled transition is sending, that upon firing removes tokens from send
and empty, and places a token on full.

After this transition has fired, there are now two enabled transitions in the
entire net. These transitions are produce and receive, so the next transition to fire
can be either of the two. Following the token game according to the rules infor-
mally outlined here, one is able to construct an interleaved run of the producer-
consumer system. To further explain the mechanics of PNs, a formal framework
needs to be introduced. The detailed exposition of the framework is given in the
book of Reisig [69], and here the most important points of that exposition are
highlighted.

Definition 1 (Petri Net) A Petri Net is a triple Σ = (P ,T ,F), where:

1. P is a set of all places;

2. T is a set of all transitions;

3. F is a set of arcs, or a flow relation for which F ⊆ (P × T) ∪ (T × P).

This definition of a PN highlights that a PN is a bipartite graph with oriented
edges, as expected from the producer-consumer example. A particular PN is
denoted as Σ. When needed, the denotation is indexed by an index of a figure
that the referred PN appears on. Thus the net of Figure 2.1 is denoted as: Σ2.1.

It is likewise easy to define ◦x for x ∈ P , or x ∈ T as follows.

Definition 2 (Pre- and post- elements) Let Σ = (P ,T ,F) be a net as in
Definition 1, and let x ∈ P ∪T. Define the following sets:

1. ◦x = {u : ∃(u, x) ∈ F}, and

2. x◦ = {v : ∃(x , v) ∈ F}.
In the light of definition 1 and the flow relation F , for t ∈ T , ◦t ⊆ P , and

t◦ ⊆ P . The converse holds for p ∈ P : ◦p ⊆ T , and p◦ ⊆ T .
The state of a PN is defined by the assignment of tokens to places.

Definition 3 (State of a PN) The state of a PN Σ = (P ,T ,F) is a set a ⊆ P.
The function: a : P → {0, 1} gives the number of tokens assigned to each place p.

For p ∈ P , a(p) = 0 means that on the place p there is no token for a given
state. Conversely, a(p) = 1 means that there is a single token on a place p. A PN
Σ can have at most one token at a place p ∈ P in the PN variety from Definition 3.
The extensions to this state notation are considered later.

The labeling can be formally defined using the labeling functions as follows.

Definition 4 (Labeling of the PN) The labeling of a PN Σ = (P ,T ,F) is
given by:

2.5. THE PN AND CPN DESCRIPTIONS 27

ready to send

buffer full

ready to receiveready to produce buffer empty

A

b

F

d

E

Figure 2.2: A re-labeled net Σ2.1.

1. Function l1 : P → A∗, and

2. Function l2 : T → A∗,

where A∗ is the language over an alphabet A. The entire labeling is given by l1∪l2.

If the state of a PN Σ is given as a, a transition t ∈ T is enabled in a if ◦t ⊆ a.
An additional condition is that t◦ 6⊆ a.

Definition 5 Let a be a state of a PN Σ = (P ,T ,F).

1. A transition t is enabled in a if it holds ◦t ⊆ a, and (t ◦ \ ◦ t) ∩ a = ∅.

2. Let t ∈ T be enabled in a. The effect of firing the transition t from a,
denoted as eff(a, t) is a state: b = eff(a, t) = (a\ ◦ t) ∪ t◦.

3. Let t ∈ T be enabled in a, and let b = eff(a, t) be the effect of firing t in a.
The tuple: (a, t , b) is called a step. a step is denoted also as: a →t b.

4. For a set of states a, a1, . . . , ak , and a set of transitions t1, . . . , tk such that
for each i ∈ {1, . . . , k} the transition ti is enabled in ai , the sequence of
steps a1 →t1 a2 →t2 a3 · · · →tk−1

ak is an interleaved run.

As an example, consider the re-labeled net Σ2.2. In Figure 2.2 it is given with
the initial state s = {A,C ,E}. As ◦a ∈ s , a is enabled in s . The effect of firing
a is q = eff(s , t) = {B ,C ,E}, and the corresponding step is s →a q.

A state formula for a state s of a given PN Σ, is a predicate P that is true in a
given state s . It is denoted as: s ⊢ P . If a predicate P is true for any state s of Σ,
it is called a place invariant and denoted as: Σ ⊢ P . A predicate is expressed in
terms of the state properties of Σ. In the net Σ2.2, the property of the initial state
s is: s ⊢ A ∧ C ∧ E , which denotes that in state s , there exist tokens on places

28 CHAPTER 2. TOOLKIT

A, C , and E . An example place invariant for Σ2.2 is that there always is either a
token on A or a token on B . This observation is expressed by the formula:

Σ2.2 ⊢ (A ∧ ¬B) ∨ (¬A ∧ B), (2.1)

but in a shorthand notation this is written as:

Σ2.2 ⊢ A + B = 1, (2.2)

where A and B are shorthands for the values of functions a(A) and a(B) as per
definition 3. Three place invariants can be extracted from Σ2.2, as follows:

Σ2.2 ⊢A + B = 1

C + D = 1

E + F = 1,

(2.3)

which can be recognized to be, in order, the equations governing the behaviour
of the producer, the buffer, and the consumer. This is one of the ways that the
functionality expressed by the PN can be mapped to physical entities.

Coloured Petri Net (CPN)

The PN model outlined in the previous sections treats only the so-called Elemen-
tary System Nets (ES-nets), in which the execution is determined only by the flow
of control (i.e. tokens), and not by the data types. An extension to this model
allows tokens that have different types, and allows conditional enabling of the
transitions. This model is called the CPN. Just as in the previous sections, only
the outline of the model is given here; for complete details the reader is referred
again to [69].

A CPN is obtained from a PN Σ, by introducing an universe that, for each
place p ∈ PΣ, prescribes the set of allowable values of tokens on p, the universe
of Σ.

Definition 6 (Universe) The universe A is a mapping from each place p ∈ PΣ

to a set Ap of allowable values of tokens in p, a domain of Σ.

Now, for p ∈ PΣ, and t ∈ TΣ, each arc f1 = (p, t), f2 = (t , p) ∈ FΣ is adorned
with an inscription m(t , p) or m(p, t). For each action it holds m(p, t) ⊆ Ap , and
m(t , p) ⊆ Ap . The definitions of concession (enabledness) of a transition t ∈ TΣ

is defined analogously to definition 5.

Definition 7 Let Σ be a CPN, and let a be its state.

1. A transition t has concession (is enabled) in a state a if, for each p ∈ ◦t it
holds m(p, t) ⊆ a(p).

2.5. THE PN AND CPN DESCRIPTIONS 29

produce b

ready to send b

receive b

received b

consume b

produce a

ready to send a received a

ready to receive

consume a

ready to produce buffer empty

sending a

sending b buffer full with b

buffer full with a receive a

aa

aa

aa

bb

bb

bb

b

Figure 2.3: An example CPN. This is the advanced version of the producer-
consumer net Σ2.1. A producer can produce either a token a or a token b.

2. Let t ∈ TΣ be enabled in a. The effect of firing t in a is the state, for
each place p ∈ PΣ: b(p) = eff(a, t)(p) = (a(p)\m(p, t)) ∪ m(t , p), where
actions attributed to pairs of p and t without appropriate f ∈ FΣ are set to:
m(p, t) = ∅ and m(t , p) = ∅.

3. A step is defined analogously to that of definition 5.

4. The interleaved run is defined analogously to that of definition 5.

As an example for the added functionality, consider the PN in Figure 2.3. In
this figure, a producer-consumer pair is again displayed. Now the producer can
produce two token types: a and b.

In the ES-net model, the only way to represent this situation is to treat each
token production separately. For this reason, separate parts of the net have been
constructed for the circulation of a-related tokens (lower part), and the circulation
of b-related tokens (upper part). The shared places (ready, empty, and ready

30 CHAPTER 2. TOOLKIT

ready to send

buffer full

ready to receiveready to produce buffer empty

replacemen

produce

sending

receive

received

consume

xx

xx

xx

x : {a, b}
Figure 2.4: A CPN representation of the PN Σ2.3. The token x inscribed into the
arcs can take values from the set {a, b}.

recv.) now have each a non-deterministic choice of actions to take. The producer
determines which action is taken at the beginning of the interleaved run. It can
be seen that analogous places exist in the two parts, so that pairs of analogous
places exist, with one place intended to track the a token, and the other intended
to track the b token. The ES-net models are used in cases where only the token
flow, and the firing sequence of the transitions is important. The cases in which
also the meaning of each particular token on a place and not only the presence
or absence of tokens is important for the activation sequence, gives rise to the
so-called Coloured Petri Net (CPN).

The CPN are obtained by identifying analogous places (the places that have
similar functionality to some extent). These analogous places can be joined into a
single place, with separate markings for the tokens residing there. This operation
is called folding and can be used to contract the PN model into an equivalent CPN.
The ES-net underlying a given CPN model is called an inscribed net. For Σ2.3,
the corresponding CPN is shown in Figure 2.4. The folded net shown registers
the flow of the token x that can take values from the set {a, b}. It thus subsumes
Σ2.3. When one refers to a token x at some place A, it is denoted as A.x . If there
exists a sequence of transitions that, given the presence of tokens A.x and B .y
(on places A and B , respectively) fire so that token C .z is produced, one writes:

A.x ∧ B .y →֒ C .z

and reads: A.x and B .y causes C .z . Proof techniques for CPN that take into
account the state of the coloured net are analogous to that of the PN as given
before. Multiple linked causes relations can be expressed in terms of proof graphs,
which show both the causal relationship and concurrent executions.

2.5. THE PN AND CPN DESCRIPTIONS 31

76540123
p

τ //
t

(a)

t
τ //76540123

p

(b)

76540123
p

oo τ //
t

(c)

76540123
p

•
τ //

t

(d)

Figure 2.5: The access modes. (a) Removal. (b) Addition. (c) Lookup. (d)
Inhibition.

Access Modes

Originally the flow relation of the CPN forms a directed graph over the union of
the places and the transitions. The firing of a transitions t means the removal of
the corresponding tokens from the incident places ◦t , and the production of the
corresponding tokens to t◦ (see Figure 2.5). These correspond to two different
place access modes :

1. Removal. The removal access mode at place p ∈ Place for a token τ ∈
Dataspace deletes τ from the place p (see Figure 2.5a).

2. Addition. The addition access mode at a place p for a token τ adds τ to
the place p (see Figure 2.5b).

These access modes are denoted by orienting the arrow of each element of the
flow relation either away from a place (removal), or towards a place (addition).
For practical reasons this semantics of the flow relation is extended to include
new access modes. The new access modes are introduced for practical purposes
and it is here noted that they may be simulated by using the basic removal and
addition modes only. However, for brevity, they are used as follows:

1. Lookup. The lookup access mode allows a transition to examine the contents
of its incident place in search for a token of particular type. The lookup
access mode is denoted by a double-headed arrow between a place and a
transition (see Figure 2.5c).

2. Inhibition. The inhibition access mode prevents a transition from having
concession if the incident place in question contains a token matching a
given template. The inhibition access mode is denoted by a dot-tailed arrow
connecting the incident place and the transition (see Figure 2.5d).

par

32 CHAPTER 2. TOOLKIT

2.6 CPN Simulation by a Blackboard

We turn to the specification of a system given by its CPN description in the
Z-with-CPN notation. For this purpose, the CPN description is expanded to
include a “universal” data type, called Dataspace.

[Dataspace]

The Dataspace type is the union of all the elements that can be obtained by using
the basic types and a finite number of iterated aggregations.

The basic types of the CPN are Place, and Transition. The precise contents of
the types will be specified later. Here they are parachuted into the specification.

[Place,Transition]

Flow == (Place ∪ Transition)↔ (Place ∪Transition)

The PN itself is defined by defining the triple (P : Place,T : Transition,F : Flow).

PN
P : P Place; T : PTransition; F : Flow

∀ x , y : Place ∪ Transition •
(x , y) ∈ F ⇒ (x ∈ P ∧ y ∈ T)
∨ (x ∈ T ∧ y ∈ P)

The set of transitions that have the arcs pointing to a particular place p of P
is denoted as ◦p, and the set of transitions pointed to the arcs emanating from
p is denoted as p◦. A similar rule holds for a transition t from T . The set of
places that have arcs pointing to t is denoted as ◦t , and the set of places that are
pointed to by arcs emanating from t are denoted as t◦. A transition t is enabled if
there is a token on all the places from ◦t . It fires by removing the tokens from ◦t
and placing a token on t◦. Firing a single transition is called a step. A (possibly
infinite) sequence of steps is called an interleaved run. In general, more than a
single transition can be enabled in a given state, so different interleaved runs can
occur.

ΞPN
◦ ; ◦ : PPlace ∪ P Transition

∀ p : Place ∈ P •
p◦ = {t : Transition | t ∈ T ∧ (p, t) ∈ F}
◦p = {t : Transition | t ∈ T ∧ (t , p) ∈ F}

∀ t : Transition ∈ T •
t◦ = {p : Place | p ∈ P ∧ (t , p) ∈ F}
◦t = {p : Place | p ∈ P ∧ (p, t) ∈ F}

2.6. CPN SIMULATION BY A BLACKBOARD 33

A CPN is obtained from a Σ : PN , by introducing coloring consisting of an
universe A and an action m. The universe A, for each place p ∈ PΣ, prescribes
the set of allowable values for tokens on p, the domain A(p). On each place, an
annotation called a token can be drawn. The placement of tokens is called the
state, and a PN is usually given in terms of the token marking for the initial state.
Placeand transitions can be marked with a label.

CPN
PN
A : Place → P Dataspace
m : (Place ∪ Transition)2 → P Dataspace

domA = P
∀ x , y : Place ∪ Transition •

(x , y) ∈ domm ⇒ (x ∈ P ∧ y ∈ T) ∨ (x ∈ T ∧ y ∈ P)

The state of a Σ : PN is a set a(p), for each p ∈ P , such that a(p) belongs to
A(p). For p ∈ P , a(p) = ∅ means that on the place p there is no token for a
given state. If the state of a PN Σ is given as a, a transition t ∈ T is enabled in
a if ◦t ⊆ a. An additional condition is that t◦ 6⊆ a.

a : Place → PDataspace

∀Σ : CPN • p ∈ P ⇒ a(p) ⊆ A(p)

Now revert to the definition of Place. Each p ∈ Place can contain a subset of
tokens from its universe A(p), depending on the CPN marking given by the state.

Place
t : PDataspace

t = a(self) [self is the instance of Place]

The Transition operates on a sequence of objects that pass the guard condition
corresponding to the concession given to each place of the CPN. This convention
binds the two specification languages in Z-with-CPN allowing the precise defini-
tion of a concession for each of the places. Every t : Transition specifies a function
τ that maps a sequence of acceptable input tokens into a set of the acceptable
output tokens.

Transition
guard : seqDataspace 7→ {true, false}
τ : seqDataspace 7→ seq(Dataspace × Place)

dom guard ⊆ m(◦self , self)

∀(x : seqDataspace, y : seq(Dataspace × Place)) ∈ ran τ •
x ⊆ m(self , self ◦) ∧ guard(x) = 1 ∧ y ∈ self ◦

34 CHAPTER 2. TOOLKIT

2.7 Blackboard Semantics

The structure handling the modified requirements is the Distributed Blackboard
(DB) (see [20]). In this structure, all partial result exchange between the mapped
tasks is modeled as communication in terms of data objects, which are fetched
from a data space, an (abstract) collection of all constructable data objects. The
DB as implemented by us is based on top of the Cognitive Agent Architecture
(COUGAAR) framework, and then extended to handle the issues outlined here.
The DB properties are as follows:

1. Structure. The DB is a collection of identical Local Blackboards (LBs), that
can hold an unbounded-size collection of distinct objects. Each node (PDA)
has access to one local LB.

2. Modification. The local LB is modified by either adding new objects to it,
or removing or modifying them.

The addition of new objects to the DB readily implements the addition ac-
cess mode of the CPN (Figure 2.5b). The removal of an existing object
from the DB readily implements the removal access mode of the CPN (Fig-
ure 2.5a). The modification of the objects can be implemented twofold. It
is either a removal followed by immediate addition, or it is a lookup (Fig-
ure 2.5c), depending on whether the removal mechanism must be triggered,
or not, respectively.

3. Production. A node can select a subset of objects in LB for export. These
objects are called products and the incident node is called the producer.

4. Consumption. A node can select a subset of the product data space to
import. The incident node is called the consumer.

5. Distribution. Whenever an object o is added to a local LB such that it is
a member of the local production data space, the object o is delivered to all
consumers whose consumption data space contains o.

6. Annotation. An object can be annotated by meta-data, which are always
communicated when an object is transferred between nodes. To emphasize
some property P that holds for an object o, we write o 〈P〉. To annotate
the object o with a version label “ver = 2”, one writes: o 〈ver = 2〉.

The Static Structure of the Local Blackboard

A LB consists of an object container, the Blackboard (BB), and a number of
functional units, the Knowledge Sources (KSs). A KS is activated if an appro-
priate subset of the data space is contained by the LB. Each activated KS may
modify the contents of the LB. The KS activation is asynchronous, so a monitor

2.7. Blackboard SEMANTICS 35

must synchronize concurrent LB access. A single LB is a container, holding an
arbitrary number of objects from a predefined universe:

Blackboard =̂ [blackboard : PDataspace]

Each KS is a piece of business logic. A KS contains a functional unit, accepting
objects as input and producing objects as output:

FunctionalUnit =̂ [f : seqDataspace 7→ seq1 Dataspace]

The objects for dom f and ran f are supplied from the LB. dom f ≡ seqDataspace
since a self-activated functional unit need not have input parameters. But ran f is
never empty. The parameters for f are obtained from LB, where they are selected
by applying a predicate:

Predicate =̂ [execute : Dataspace → {true, false}]

The predicate can filter objects from LB to only those interesting for a KS. Three
object classes are distinguished: the added objects, the removed objects and the
changed objects. The added and removed objects are remembered in a similar
schema:

AddOrRemoveItem =̂ [x : Dataspace | x ∈ Blackboard]

AddItem == AddOrRemoveItem

RemoveItem == AddOrRemoveItem

whereas the change schema describes the object change on the blackboard, so
that:

ChangeItem == { (x : Dataspace, y : Dataspace) |
x ∈ Blackboard , y 6∈ Blackboard }

All change items are grouped in a change set:

AddSet == { x : AddItem }
RemoveSet == { x : RemoveItem }
ChangeSet == { x : ChangeItem }

A Subscription collects all the change sets, and uses a Predicate to limit its scope
only to a subset of LB content for which a Predicate evaluates to true.

Subscription == [p : Predicate, a : AddSet , r : RemoveSet , c : ChangeSet]

A KS is completely specified by the accompanying FunctionalUnit, the VoidFunc-
tion invoked when a KS is activated, and the set of its Subscriptions.

[VoidFunction]

36 CHAPTER 2. TOOLKIT

KnowledgeSource
fu : FunctionalUnit
execute : VoidFunction
subs : seqSubscription

In some implementations, such as Cougaar [10], a KS is called a Plugin after the
name of the software component implementing the KS, so the short alias for a
KS is:

Plugin == KnowledgeSource

The LB system is then assembled from the Plugins and the LB.

BlackboardSystem =̂ [bb : Blackboard ; plugins : PPlugin]

The Dynamic Structure of the Local Blackboard

Changes to the blackboard are applied in atomic transactions. The objects of the
AddSet are added to the LB, with the replacements for the items from the domain
of ChangeSet. The objects removed from the LB are those marked to be removed
(i.e. members of the RemoveSet and the members of the domain of ChangeSet).

Transaction =̂ [a : AddSet ; r : RemoveSet ; c : ChangeSet]

inducing the change in the of the LB contents.

ApplyTransaction
∆BlackboardSystem
t? : Transaction
to remove, to add : P Dataspace

to remove = r? ∪ dom c?
to add = a? ∪ ran c?

bb′ = (bb\to remove) ∪ to add

∀ x : Plugin • x ∈ plugins
∀ y : Subscription • y ∈ x .subs

local add = { x : Dataspace | x ∈ a?; y.predicate(x) = 1 }
local remove = { x : Dataspace | x ∈ r?; y.predicate(x) = 1 }
local change = { x : ChangeSet | x ∈ c?;

y.predicate(second(x)) = 1 }
y.a′ = local add ; y.r ′ = local remove; y.c′ = local change

Each Subscription is updated by updating its change sets. After these have
been formed, each Plugin is invoked with the appropriate change set by executing
the VoidFunction.

2.8. CPN SIMULATION WITH A BLACKBOARD 37

InvokePlugin
∆Plugin

execute

2.8 CPN Simulation with a Blackboard

In this section, the CPN and the BB concepts, described in the Sections 2.6 and 2.7
respectively, are brought together to form a fully-fledged toolkit for specifying,
describing and implementing distributed systems. The approach presented here
is of course but one of many that can be adopted in distributed systems design.
The aims of the described toolkit are as follows:

1. Structuring. The way that a distributed system component is specified
must be expressed in an approved normal form which clearly expresses the
business logic and the concurrency of the distributed task.

2. Compilation. The structured specification must be convertible into an exe-
cutable system description by an automated process and (possibly) an au-
tomated compiler.

3. Verification. The structured specification must be amenable to manual or
automatic verification.

The toolkit can be viewed as a way of enforcing an engineering discipline into
distributed systems design. The discipline we give here is naturally not the only
one you could adopt for building own distributed systems, and is certainly not
the only one that yields a functional system. However, a disciplined approach
to engineering the distributed systems yields understandable designs, which can
then be checked against a number of quality-of-service requirements. Such calls
for programming discipline have been many, of which we give here some of the
most prominent to our finding:

1. Structured programming [26] is based upon the notion that programs can
be composed of the fragments, which include statements and several well-
defined flow-control structures. Each such fragment can have a single entry
point and a single exit point1.

2. Object-oriented programming is based upon the notion that computer pro-
grams are composed of objects that send messages to each other.

3. Design patterns [35] are based upon the notion that certain object instanti-
ations and their connection recur in object-oriented program designs. The

1This strict view, due to Dijkstra [26] got an extension which allows the code to have
multiple exit points. Despite this disagreement about the exact formulation of the structured
programming approach, the general principle is nowadays almost exclusively used in practice.

38 CHAPTER 2. TOOLKIT

recurrent structures (patterns) are promoted as building blocks for well de-
signed programs.

All can be used to structure the system design presentation, at the expense of
limiting the number of alternative ways to express a particular set of programming
actions. The advice given here is comparable in nature to those of structured
programming, the object-oriented programming, or the design patterns approach.
It is an answer to the question: What have we learned about building reliable and
verifiable distributed systems?

For the structured distributed system description, the following components
are adopted:

1. Concurrent Events. The distributed state and the event concurrency are
described using the CPN formalism.

2. State Transitions. The concurrency description is augmented by the state
transitions, described in the Z notation.

3. Target Architecture. The target system architecture is a BB system, with
the BB semantics as given in the Section 2.7.

The conversion from the CPN description is illustrated with a classical “Dining
Philosophers” puzzle, due to Dijkstra[27].

“Five philosophers, numbered from 0 to 4 are living in a house
where the table is laid for them, each philosopher having its own place
in the table. Their only problem—besides those of philosophy—is that
the dish served is a very difficult kind of spaghetti, that has to be
eaten with two forks. There are two forks next to each plate, so that
presents no difficulty, as a consequence, however, no two neighbors
may be eating simultaneously.”

The conversion is presented from the CPN description of the Dining Philosophers
problem to an implementation that uses the BB as the target architecture. How-
ever, no special handling is provided to guarantee any of the classical constraints2.
The presented implementation can be extended to incorporate an arbitrary strat-
egy that does coordinate the philosophers’ activities and conforms to the classical
constraints.

Concurrent Events

The first step in the specification is to determine the set of local states, and the
allowed transitions between them. This amounts to the determination of the P ,

2The classical constraints [19] are: fairness, symmetry, economy, concurrency and bounded-
ness.

2.8. CPN SIMULATION WITH A BLACKBOARD 39

T and F components of the PN scheme. In the Dining Philosophers dataspace
there are only two types:

[Philosopher ,Fork]

so that:

Philosopher = { pi | i ∈ {0, 1, 2, 3, 4} }
Fork = { fj | j ∈ {0, 1, 2, 3, 4} }

Therefore, the Dataspace is in this case:

Dataspace == Philosopher ∪ Fork

As the forks are set between the philosophers so that there is a single fork between
each pair of the neighbours at the table, one can define the functions giving the
fork being laid left of, or right of, each given philosopher.

l , r : Philosopher → Fork

l = {p0 7→ f0, p1 7→ f1, p2 7→ f2, p3 7→ f3, p4 7→ f4}
r = {p0 7→ f4, p1 7→ f0, p2 7→ f1, p3 7→ f2, p4 7→ f3}

Each philosopher can either be thinking or eating. These states alternate
for each given philosopher, although the interleaving of the states across all the
philosophers can vary. We can make the philosopher states explicit by adopting
places Thinking and Eating.

Thinking,Eating : Place

Similarly, a fork can be either available or busy, and the alternation and in-
terleaving are similar as in the case of the philosophers. The states of the forks
and the philosophers are not independent, however. If a token p ∈ Philosopher is
in the state Eating, the forks l(p) and r(p) must not be in Available.

⊢ ∀ p : Philosopher • p ∈ a(Eating)⇒ l(p) 6∈ Available ∧ r(p) 6∈ Available

The converse does not hold, in the sense that the absence of a fork from Available
does not uniquely define the philosopher:

⊢ ∀ f : Fork • #l∼(f) = 2, #r∼(f) = 2

Therefore a local state representation with three places is in order for fully en-
coding both the states of the forks and the philosophers. The additional place for
the forks is Available.

Available : Place

40 CHAPTER 2. TOOLKIT

Each philosopher starts by thinking. He is then taking the forks if available
and starting to eat. After a while, he leaves the forks and re-enters the thinking
state. Hence two transitions are needed: Take and Leave.

Take,Leave : Transition

When defining the flow relation, it is natural to consider that any Take tran-
sition must involve a previously thinking philosopher and his two adjacent forks.
Hence the Take must have both the Thinking place and the Available place as
preconditions. The Take places the philosopher to the Eating state.

A converse process happens once a philosopher stops eating. The ensuing
transition is called Leave. Thus it must have the Eating as its precondition. Leave
returns the philosopher and the forks back to their original states (Thinking and
Available, respectively). The resulting PN is given below.

INIT
PN

P = {Thinking,Eating,Available}
T = {Take,Leave}
F = {〈Thinking,Take〉, 〈Available,Take〉,
〈Take,Eating〉, 〈Eating,Leave〉, 〈Leave,Available〉, 〈Leave,Thinking〉}

76540123
Thinking

��
Leave //

//

76540123
Available

// Take

oo76540123
Eating

OO

Figure 2.6: The PN fragment that is obtained from considering the places and
the transitions only.

The PN given in Figure 2.6 is now coloured to obtain the complete CPN
model. According to the exposition of Section 2.6, for this one needs to define the
universe set A and the marking.

2.8. CPN SIMULATION WITH A BLACKBOARD 41

CPN Init
ΞCPN

A = {Thinking 7→ Philosopher ,Available 7→ Fork ,Eating 7→ Philosopher}

In the initial state all the forks are available, and all the philosophers are
thinking.

a = {Thinking 7→ {p0, p1, p2, p3, p4},Available 7→ {f0, f1, f2, f3, f4},Eating 7→ ∅}
m = {〈Thinking,Take〉 7→ {x : Philosopher},
〈Available,Take〉 7→ {l(x), r(x)},
〈Take,Eating〉 7→ {x : Philosopher},
〈Eating,Leave〉 7→ {x : Philosopher},
〈Leave,Available〉 7→ {l(x), r(x)},
〈Leave,Thinking〉 7→ {x : Philosopher}}

We obtain the CPN as shown in Figure 2.7.

_^]\XYZ[p0p1p2

p3p4

Thinking x

��

Leave

l(x)

r(x)
//

x

44

_^]\XYZ[f0f1f2
f3f4

Available

l(x)

r(x)
//

Take

x

pp76540123
Eating

x

PP

Figure 2.7: The obtained CPN and the initial marking.

State Transitions

The transformations described by each transition can only be triggered if a tran-
sition has a concession (i.e. is enabled). This occurs for a transition t : Transition
when a subset of tokens on ◦t satisfies the guard condition of t (see Figure 2.8).
For the guard condition of t , the following triggering condition must hold. The

42 CHAPTER 2. TOOLKIT

76540123 A

x ,,

76540123 B

f (x)

��

76540123 C

g(x)rr

t
h[x ,f (x),g(x)]

��76540123 D

Figure 2.8: Activating a transition t : Transition, by the token x from A, and the
derived tokens f (x) from B and g(x) from C .

functions f and g are arbitrary functions of the elements of the support set of A.t .

t ⊢ ∀ x : Dataspace • t .guard [x , f (x), g(x)] = true

In the last rule introduces a restriction on the possible sequences of input tokens
to a transition. Each token sequence for a transition must be uniquely determined
by a token coming from a single place. This token acts as a key based on which
tokens are selected from the other places as well. This restriction is introduced
to enable incremental construction of the guard sequence and is in fact the case
which occurs the most in practice. For the illustration purposes, an allowed and
a disallowed way to construct the input token sequence is given in Figure 2.9.
Firing some transition t causes the change in the local states of ◦t and t◦. For

76540123 A

x ,,

76540123 B

f (x)

��

76540123 C

q(x ,f (x))rr

t
h[x ,f (x),q(x ,f (x))]

��76540123 D

76540123 A

x ,,

76540123 B

y

��

76540123 C

w(x ,y)rr

t
h[x ,y,w(x ,y)]

��76540123 D

Figure 2.9: The chained determination of the input tokens. (a) Allowed token
sequence construction. The token x is obtained from A. Based upon x , f (x)
is obtained from B . Finally, the token from C is obtained based on the values
obtained from A and B . (b) A disallowed token sequence construction for guard
condition testing. Taking arbitrary tokens x and y from A and B respectively is
not allowed. The token y must be computable from x directly.

the example of Figure 2.9, the firing of t is given below.

2.8. CPN SIMULATION WITH A BLACKBOARD 43

Fire t
∆A,B ,C ,D

x? : Dataspace

A.t ′ = A.t\{x?}
B .t ′ = B .t\{f (x?)}
C .t ′ = C .t\{g(x?)}
D .t ′ = D .t ∪ {h[x?, f (x?), g(x?)]}

Returning to Figure 2.7, the definition of the CPN for the dining philosophers
problem is given as follows. For the firing of the Take transition:

Take
∆Thinking,Available,Eating

x? : Philosopher

Thinking .t ′ = Thinking .t\{x?}
Available .t ′ = Available .t\{l(x?), r(x?)}
Eating .t ′ = Eating .t ∪ {x?}

For the firing of the Leave transition:

Leave
∆Thinking,Available,Eating

x? : Philosopher

Eating .t ′ = Eating .t\{x?}
Available .t ′ = Available .t\{l(x?), r(x?)}
Thinking .t ′ = Thinking .t ∪ {x?}

Arbiter Transform for Non-Deterministic Transition Firing

In this section we treat the explicit arbiter insertion for the non-deterministic
transition firing. In a CPN specification of a distributed process, the issue of
non-deterministic choice remains open. The non-deterministic choice arises when
multiple transitions are competing for the same token (see Figure 2.10). As far
as the CPN semantics is concerned, an arbitrary resolution of the conflict yields
a valid run fragment. This property naturally follows the way the CPNs are de-
fined. However it is not immediately useful for the programming as it implies the
strong coupling between t1 and t2 and cannot be performed in a system based
on transactions without external arbitration. Hence in the implementation the
arbiter must be explicit. However, the implementations will necessarily differ de-
pending on whether the arbitration is fully contained in a single node, or whether

44 CHAPTER 2. TOOLKIT

76540123• p

����
��

��
��

��?
??

??
??

?

t1 t2

(a)

76540123
p

//
t1

(b)

76540123
p

//
t2

(c)

Figure 2.10: The non-deterministic choice on a colourless PN and the respective
interleaved runs. The domain of the only place p is just A(p) = {•}. (a) The
CPN fragment with non-deterministic choice involved. (b) A run with t1 firing.
(c) A run with t2 firing.

it is distributed. In case of the contained arbitration, usually not more than a
selection is enough to direct the tokens to at most one of the enabled transitions.
In case of distributed arbitration, provisions must be made so that the arbitra-
tion remains manageable, and is not dominated by any participating party. This
concern is addressed when a distributed arbiter is made in Chapter 6, as a part
of the Meet protocol design.

Another example of the non-deterministic decision is the mutual exclusion
(mutex) primitive. In the most basic mutex setting (see the PN Σ2.11 in Fig-
ure 2.11), there exist two processes i ∈ {1, 2}, each of which alternates between a
pending state (Pi) and a critical state (Ci), performing the enter (ei) and leave
li . The mutex requirement states that the processes must not simultaneously be
in the critical state. The mutex requirement of Σ2.11 translates to:

e1

��

e2

��76540123• P1

22

76540123 C1

rr

76540123 C2

,,

76540123• P2

ll

l1

RR

l2

LL

Figure 2.11: The setup for the mutex problem (Σ2.11).

Σ2.11 ⊢ C1 + C2 ≤ 1

Disregarding the non-determinism, the given mutex problem is solved by intro-
ducing a shared place M as shown in Σ2.12. Inserting the place M to the network

2.8. CPN SIMULATION WITH A BLACKBOARD 45

Σ2.11 introduces the invariant:

Σ2.11 ⊢ C1 + C2 + M = 1

from which the required mutex condition is derived:

Σ2.11 ⊢ C1 + C2 + M = 1 ∧ M ≤ 1⇒ C1 + C2 ≤ 1

The way the contention between e1 and e2 is resolved is left unspecified and

e1

��

e2

��76540123• P1

22

76540123 C1

rr

76540123• M

oo //

76540123 C2

,,

76540123• P2

ll

l1

RR BB

l2

LL\\

Figure 2.12: The non-deterministic mutex solution to Σ2.11.

in the PN definition, these ties are broken arbitrarily. Hence no guarantees can
be made upon the properties of the tie resolution. This is a hindrance to the
implementation where it is oft required that the ties are broken according to
some desirable pattern to ensure fairness, for instance. Breaking the ties is left to
a device that we here call the arbiter. The arbiter decides which of the possible
runs is brought about and must be represented explicitly. In the case of Σ2.12,
the arbiter is supposed to be intrinsic to both e1 and e2, implying that the two
transitions must be coupled. This contradicts the requirement that the transitions
e1 and e2 must be the parts of independent processes. Hence a first take on the
arbiter is to factor the decision out of the transitions ei (for i = 1 and i = 2) to
yield Σ2.13.

Target Architecture

Here the conversion of the Z-with-CPN-based description of a distributed system
into an executable component is described, such that the description is readily
pluggable into an existing distributed system framework. The framework of in-
terest in this writing is COUGAAR. In COUGAAR the complete application is
distributed across multiple hosts, where each is capable to execute a number of
relatively independent entities of control. These entities are called agents in the
COUGAAR glossary and we adopt the naming here too.

A COUGAAR agent consists of a number of hierarchically ordered compo-
nents. The components that make up a COUGAAR agent are listed in the speci-
fication (called the society file), containing a recipe for the assembly of the agent.

46 CHAPTER 2. TOOLKIT

e1

��

76540123
A1

oo π

a1

oo π̄

a2

//76540123
A2

//
e2

��76540123• P1

22

76540123 C1

rr

76540123• M

ll 22

76540123 C2

,,

76540123• P2

ll

l1

RR ;;

l2

LLcc

Figure 2.13: Introducing a simple arbiter into Σ2.12. The arbiter is shown by
dotted line. The predicate π and its complement π̄ are used to decide which
process will be granted to the critical section.

The components are bound together by exporting services, thereby effectively
realizing the Inversion of Control (IoC) pattern (see [10] for the schematic view
of the COUGAAR agent components). The most important component for the
application writer is the plugin. The plugins are able to access the internal agent
blackboard and are meant to encompass the agent’s main business logic.

When implementing a given Z-with-CPN description of a distributed system,
the designer must decide how to allocate and map the portions of the CPN de-
scription to plugins. We feel it reasonable to leave the decision to the application
author, as there is much freedom of choice in this matter. Our finding is that the
functionality typically given in the form of several loosely coupled CPNs should
be implemented so that the tightly coupled parts reside in the same plugin.

As the plugins are the containers of the basic business logic of a COUGAAR
agent, the plugin structure does not necessarily reflect the logical grouping of
the functionality as intended by the application author. In order to allow the
functionality grouping on a sub-plugin level, we implemented the container object.
The more detailed look at the main ingredients in the implementation of the CPN
for COUGAAR can be found in the Figure 2.14.

We now examine the implementation in somewhat more detail. The top level
COUGAAR component is the TransitionContainerPlugin. This component at-
taches directly to the COUGAAR infrastructure and, provided that it is correctly
initialized with sub-components, performs all the housekeeping needed for the
correct initialization of the CPN transitions.

A place in the CPN description must be represented in the implementation
by an instance of a class Place. A transition must be represented in the imple-
mentation by an instance of a class Transition. A Transition is connected to the
container using the following steps:

1. Activation or connecting the transition to other transitions by using the
Trigger objects.

2.8. CPN SIMULATION WITH A BLACKBOARD 47

Transition+Transition():Transition+setTransitionSupport(support:TransitionSupport)+addTrigger(t:Trigger):Transition#execute(arguments:Map)#init()+getTriggerIterator():Iterator#getTransitionSupport():TransitionSupport+getName():String+setName(name:String)+toString():String
TransitionContainer#containerID:UID#transitions:List+TransitionContainer(containerID:UID):TransitionContainer+getTransitions():List+addTransition(t:Transition)+addTransitions(c:Collection)+getUID():UID+setUID(uid:UID)

TransitionContainerPlugin#transitionListSubsMap:Map#subscriptionTriggerMap:Map#triggerSubscriptionMap:Map#transitionList():List#execute()#onExecute()+load()#initTransitions()#initMarking()#setupSubscriptions()#connectSubToTrigger(subscriptions:List,trigger:Trigger,sub:IncrementalSubscription)+addTransitionContainer(tc:TransitionContainer)#addTransition(t:Transition)#Support():class+getBlackboard():BlackboardService+getUIDService():UIDService+getIdentificationService():AgentIdentificationService

Trigger+Trigger(place:Place,guard:Guard,predicate:UnaryPredicate,m:AccessMethod):Trigger+toString():String Guard#processed:Set+Guard(name:String):Guard#getName():String+execute(blackboard:BlackboardService,subscription:IncrementalSubscription,argumentMapList:List):boolean#initProcessed()#addProcessed(o:Object)#isProcessed(o:Object):boolean#getArgMap():Map

TransitionToken#name:String+TransitionToken(name:String):TransitionToken+getContent():Object#setContent(content:Object)+toString():String+getName():String

Figure 2.14: The main classes in the implementation of the Z-with-CPN specifi-
cation on a blackboard-based architecture.

48 CHAPTER 2. TOOLKIT

2. Registration or inserting into the TransitionContainer of choice.

The transition activation, and all the subsequent operations are performed on the
transitions and places by symbolic name. Hence, a unique symbolic name must be
provided for all the places and transitions upon their initialization. This approach
has been adopted to allow forward referencing of the places and transitions during
the CPN construction. The activation is performed by supplying the Transition
with a number of Trigger objects. A trigger is always bound to some place and
requires the following specifications to be present:

1. Guard which validates an argument list (i.e. the set of tokens) and, if
validated, allows the transition to be invoked;

2. Predicate which filters the tokens that come from a particular place; and

3. Access method which specifies what change to the token set will be rele-
vant for triggering the transition (the access methods were explained in the
Section 2.5). The access method can be one of add, remove, change.

A Guard is executed each time a Trigger detects an access method to a black-
board subset which has been registered with the corresponding Transition. Its
task is to build the argument list up. It iterates over the interesting places, in
sequence, and incrementally builds up a sequence of key-value tuples which will
be submitted to the transition when it fires. As the preconditions of the tran-
sition are required to be derived from a common key, it is possible to build up
the argument list by incrementally invoking the registered Guard objects for the
given Transition. Each Guard object is then forwarded the partial tuple sequence
to which elements are added according to the firing rules. The Guard can then
either expand the tuple, or it can remove it from the argument list.

Hence, the order of the Guard invocation is significant, and the application
author must take care to register the guards in the sequence that retains the
intended semantics from the Z-with-CPN description.

2.9 Summary

In this Chapter we equipped ourselves with the toolkit required to represent,
specify and finally implement the DWEAM system. The presented toolkit will be
used extensively in the following Chapters without further elaboration.

Chapter 3

Architecture Overview

This chapter gives the overview of the DWEAM system. The purpose of the
exposition is to present in an integrated fashion the important aspects of the
DWEAM system and its components. The components themselves will be detailed
in future Chapters.

3.1 Introduction

Mobile computers are distinguished from their timely counterparts in that in
most applications the outcome of the execution is affected by the influence of the
environment. A mobile computer is carried by a user that makes intermittent
processing requests. Fulfilling the processing request requires the use of external
resources. The simplest use cases are placing a call from a cellular phone, or using
General Packet Radio System (GPRS) to access an Internet web-site.

With respect to the computing resource mobility and the type of the network-
ing interconnection, one can identify the following use cases (see Table 3.1):

1. With respect to the computing resource mobility:

a) Stationary, where the computing nodes generally remain at designated
confined space, such as the home or office desktop;

b) Mobile, where the computing nodes change position in time.

2. With respect to the type of the communication infrastructure:

a) Fixed, where the computing resources use a structurally fixed commu-
nication network; and

b) Ad-hoc, where the communication structures are built and maintained
at runtime.

49

50 CHAPTER 3. ARCHITECTURE OVERVIEW

Table 3.1: The use cases for the networked computing resources, with respect to
the mobility of the computing nodes and the type of the networking infrastructure.

Nodes Networking

Fixed Mobile Fixed Ad-Hoc Example

X X Home or Office Internet: Web Appli-
cations, Multi-Agent Platforms, Dis-
tributed Computing, Desktop Group-
ware

X X Wireless Home or Office Internet: Web
Applications, Desktop Groupware

X X Cellular Mobile: Telephone calls,
GPRS Internet

X X WiFi (Ad-hoc access mode)

With reference to Table 3.1, it is noted that most of the usage modes are well-
covered by existing applications. However, the support for mobile computing
resources using ad-hoc infrastructure has so far been incomplete.

The ad-hoc access mode of the WiFi1 protocol allows point-to-point links
between wireless nodes to be established. This in effect emulates the medium
access policy of the Ethernet. In the Ethernet, arbitrary pairwise connections can
be established.

For wireless networks, the pairwise connectivity is achievable in only a limited
number of use cases. It stems from the way these networks are constructed. The
existence of a wireless connection between two nodes depends on the following
factors:

1. Proximity. The wireless connection is effected through repeated radio trans-
missions by the sending end of the connection. The reception of a radio
transmission requires that the signal power at the receiving end can be dis-
tinguished from any other interfering signal that is received simultaneously.
As the signal power decreases, it becomes more difficult to isolate the wanted
signal from the interference with the increase in the distance of the commu-
nicating end points. Thus, the further away from each other the endpoints
are, the more difficult it is for the communication to be established. As a
consequence, a given node of a wireless network is likely to be connected
only to the nodes in the close proximity.

2. Interference. The radio is a shared medium admitting multiple concurrent
users. Thus, a given transmission can coexist with several other unrelated
but concurrent transmissions. Upon the reception of a given transmission,

1WiFi is the common name for the IEEE 802.11 standard

3.1. INTRODUCTION 51

it must be separated from all the concurrent transmissions which are not
of interest. Although the success of the separation schemes varies with
the employed separation approach, the overall tendency is that the more
powerful the signals from the unrelated transmissions are, the more difficult
it is to separate the useful signal.

The mobility of the nodes in the wireless network causes the proximity and
the interference to vary. Consequently, it also varies the structure of the wireless
network. The number of achievable links varies with time for the Mobile Ad-hoc
use case. The variations in the network structure cause disturbances that bubble
up to the application level. An application that relies on the known network
structure can cease to operate properly.

For practically all the use cases that include stationary nodes and fixed net-
working, the changes in the network structure happen so infrequently that they
are approximated out of the network model. Thus, also a clean separation of
concern between the networking and the application layers is achieved. As long
as this approximation is valid, the performance of the application built on top of
the fixed networking models is satisfactory.

The wireless networks unfortunately break this assumption. Therefore the
applications intended for the fixed networking do not carry over into the domain
of ad-hoc networks with success. This phenomenon is characterized in [89] where
the first point in the analysis of the open problems in the wireless network realm
is:

“Architectures have been primarily driven by a ‘point-to-point’ phi-
losophy; we need to better understand a network viewpoint wherein
nodes can cooperate intelligently taking advantage of the special prop-
erties inherent in wireless communication.”

The following approaches to resolve the issue are in order:

1. Emulation. In this approach, the algorithms of the ad-hoc networking layer
are designed so as to emulate the behavior of a fixed networking layer. The
advantage of this approach is that for as long as the emulation is successful,
the system components at the upper layers can remain unmodified. The
disadvantage is that the emulation may impose severe constraints on the
use-case for the emulated network. A typical example of this is the GSM
network. While it is based on radio communication, the only allowed use-
case is that where all the users are separated by only a single hop from the
base-station that provides fixed infrastructure access.

2. Re-engineering. In this approach, novel primitives are designed to accommo-
date the novel use-case. The advantage of this approach is that it potentially
opens doors to a range of new applications, which were previously not con-
sidered due to the limitations of the respective use-cases. The disadvantage

52 CHAPTER 3. ARCHITECTURE OVERVIEW

is that the new approach may introduce incompatibilities with the existing
set of system components and design techniques.

In this work we take the second approach, assuming that the benefits of the new
use-cases outweigh the disadvantages. Bearing in mind that this new approach
requires new system components and design techniques to be formulated, in this
chapter we give an integrated account of the designed architecture. The presen-
tation is intended to familiarize the reader with the features of the architecture.

3.2 Resources

Two resource types are considered: the computation resources (also: computers,
nodes) and the communication resources (also: network).

Computation resources

The computation resources (nodes) considered here are general purpose comput-
ers.

Each node can be distinguished from others nodes by an unique message ad-
dress.

[MessageAddress]

ΦNode

address : MessageAddress

∀n : Node • n 6= this ⇒ n.address 6= address [Unique address]

Communication resources (network)

The communication resources are used to exchange message objects between re-
sources. The communication have a limited physical range, which depends on
the position of the nodes in physical space. Each node can communicate directly
only with a comparatively small number of neighbours. The notion of neighbour-
hood here coincides to some extent with the nodes which are physically close to
each other. More accurately, it depends on the properties of the communication
medium (radio) which depends on mutual distance, but also varies in time.

Although the nodes are equipped with unique message addresses, the addresses
can only be used to send message objects between nodes that can communicate
directly. Hence it is only useful to distinguish between neighbours. This may not
be always possible as the connection environment varies in time.

[Time]

3.3. LAYERING 53

We use the symbol now to denote the “present time”. The details of the treatment
of time are given in Section 4.4, on page 72.

now : Time

We assume that the reachability is always symmetric.

direct link : Node ×Node × Time

messages cannot be sent between n : Node and m : Node at now
⇒ (n,m,now) 6∈ direct link

∀n : Node,m : Node •
(n,m,now) ∈ direct link ⇒ (m,n,now) ∈ direct link

Most of the time we are interested only in the direct reachability at current
time (now).

direct linknow : Node ↔ Node

direct linknow= { (n : Node,m : Node) | (n,m,now) ∈ direct link }

3.3 Layering

The system architecture is organized into four basic layers. Each of the layers
in its own right consists of a number of components that define its functionality.
For a diagram of the component inter-dependencies please refer to the Table 3.2.
The layers are arranged from top to bottom. They bridge the gap from the user,
and the need that the user wants the system to fulfill, to the technology used to
fulfill these needs. Hence the topmost layers are problem domain specific, and the
bottom layers are technology specific. Only the adjacent layers interact, as usual.
The layer components are almost perfectly neatly stacked, and their relations are
similar to the relations of the adjacent layers: only the adjacent components can
interact.

1. Application Layer (APL). The APL is the top-level system layer. Here we
specify which computational tasks we require the system to perform.

After the task has been specified, we define a sequence of systematic trans-
forms that convert a task specification first into a workflow structure that
shows explicitly the decompositions of a task into subtasks, and the pairwise
precedence relation between the subtasks.

Then the workflow is cast into an executable schema that is based on the
CPN framework which describes the process concurrency, supplemented
with the language based on Z2 [78] to express the transformation of the
local process state. The executable schema is then mapped to a collection
of computing resources that can execute it.

2Both CPN and Z are explained where appropriate.

54 CHAPTER 3. ARCHITECTURE OVERVIEW

2. Blackboard Logic Layer (BLL). The BLL layer contains the components
that resulted from the allocation of the executable schema to the collection
of computing resources.

3. Connectivity Layer (COL). The COL layer contains the components that
enable the DWEAM system to fulfill its main functionality. This layer
provides an infrastructure for the synchronization of distributed computing
resources, as well as the token persistence needed for the extended preser-
vation of the system soft state.

4. Infrastructure Layer (INL). The INL layer contains the components which
provide the basic connectivity structure to the DWEAM system.

It starts from the maintenance of the elementary connectivity, in which each
host has knowledge only of a small number of immediate neighbours. It then
builds a minimal communication structure allowing multi-hop connectivity
between the hosts.

On top of this structure, a matching is performed. The matching provides
the service discovery, which is used to determine the required interconnec-
tions between the hosts.

Table 3.2: The layering and component structure of the DWEAM system. The
layering is presented from the topmost (APL), to the bottommost (INL). Towards
the top, the layers are problem-domain oriented, and towards the bottom the lay-
ers are technology-domain oriented. The layer components are stacked according
to their orientation within the layers. The ENS and PE components both provide
a foothold for ENS and both use the SP component.

Layer Components

Application Layer (APL) Static Task Structure (STS)
Workflow Structure (WS)
Petri Net Mapping (PNM)
Host Mapping (HM)

Blackboard Logic Layer (BLL) Logic Component (LOC)
Blackboard (BB)

Connectivity Layer (COL) Event Notification System (ENS)
Persistency Component (PE)
Matching (MAT)

Infrastructure Layer (INL) Specification (SP)
Connectivity (CONN)
Neighbourhood (NG)

3.4. COMPONENTIZED LAYER STRUCTURE 55

3.4 Componentized Layer Structure

Application Layer (APL)

1. Static Task Structure (STS). The STS describes the problem that needs
to be solved for the user. The STS description must define the expansion,
describing whether a task can be sub-divided, and if so what the precedence
between the subtasks can be.

2. Workflow Structure (WS). The WS describes the dynamics of the task
execution, detailing the partial results that are passed between the inter-
dependent tasks, and the actions executed on the individual hosts upon
detecting the presence suitable sets of partial results.

3. Petri Net Mapping (PNM). The PNM describes the steps to be performed
in order to transform the WS into a schema (based on CPN and Z) that
shows the explicit relations between the concurrent activities and defines
the precise semantics that govern their execution.

4. Host Mapping (HM). Finally, the HM describes the assignment of the con-
current activities to computing resources that execute them.

Blackboard Logic Layer (BLL)

1. Logic Component (LOC). The LOC component is made up from individual
parts that encompass the application logic of a single host for the computing
resources obtained from the APL. These parts are called plugins, as they are
typically self-contained which “plug into” the Blackboard Logic Layer (BLL)
framework.

2. Blackboard (BB). The BB is used to bind the parts of the LOC component
together in a consistent whole. It mandates the cooperation through an
event-based mechanism of subscriptions and callback functions.

Connectivity Layer (COL)

1. Event Notification System (ENS). The ENS describes the mechanism by
which the distributed computing resources can achieve partial synchroniza-
tion at runtime. The ENS allows the computing resources to exchange mes-
sage objects (interchangeably: events) in order to define their interaction
in detail. The ENS discriminates between events by the event description
supplied in the event object itself.

2. Persistency Component (PE). The PE provides the facilities that allow the
distributed computing resources to store their internal state as fragments
sprinkled throughout the distributed society. This state can be recovered
upon request whenever possible.

56 CHAPTER 3. ARCHITECTURE OVERVIEW

3. Matching (MAT). The MAT is used to infer the resources which need to
communicate the partial results of their tasks to each other. In order to do
this, the resources register a specification of the portion of the dataspace
interesting for a particular resource, and the matching is performed through
determining which specifications have nonempty intersections.

Infrastructure Layer (INL)

1. Specification (SP). The MAT component depends on the SP mechanism
to operate. The SP provides a language admitting a simple description of
dataspace subsets. By providing suitable set operations on dataspace sub-
sets described by the use of SP, the MAT component is able to determine
which computing resources need to establish a communication infrastruc-
ture.

2. Connectivity (CONN). The CONN component assembles the basic NG-
based connectivity and builds an elemental communication structure that
guarantees the minimum connectivity between any computing resources for
which a connection can be found by following a sequence of NG connections.

3. Neighbourhood (NG). The NG component maintains a local list of all the
computing resources which are directly reachable from some resource in
particular. Resources which do not see each other directly must to use the
CONN for cooperation.

3.5 Component Overview

Here we give the specification of the DWEAM architecture components. The
presentation of the components is bottom-up.

Neighbourhood (NG)

The NG component is installed at each node. The NG component maintains a
set of neighbouring nodes as follows.

Φ2Node

ΦNode

neighbours : Time→ P Node

∀ t : Time,n : Node • (this ,n, t) ∈ direct link ⇒ n ∈ neighbours(t)

3.5. COMPONENT OVERVIEW 57

Connectivity (CONN)

The CONN component builds a minimal connectivity structure across all the
nodes. The connectivity structure is a collection of mutually synchronized lo-
cal states at all the nodes, such that the Connectivity property is satisfied (see
Property 1 below).

The CONN first component that makes claims about the state of all the nodes.
A pair of nodes that are not linked directly can still be reachable, if one can make
a sequence of connected direct links between nodes.

reachable : Node ↔ Node

∀m : Node,n : Node • (m,n) ∈reachable⇒ (m,n) ∈direct link
+
now

The connectivity structure maintains the following invariant property.

Property 1 (Connectivity) Let m and n be nodes. Let m reachable n hold.
The connectivity structure must provide that a message object sent from m, and
having n as the destination, can reach n within finite time from the moment it is
sent.

In order to simplify the management of the CONN component, we require that
the connectivity structure also be minimal.

Property 2 (Minimal Connectivity) The connectivity structure must be min-
imal. No subset of the connectivity structure satisfies the Connectivity property.

The structure that satisfies Property 2 is called the Core Based Tree (CBT).
The CBT is a compound structure distributed over the nodes, and the components
of the structure are called uplinks.

Uplink
address : MessageAddress

The cardinalities of the sets of uplinks and downlinks are upper bounded by
the set of current neighbours. At most one uplink per node may exist.

ΦNodeLinks

uplinks : P Uplink

#uplinks ≤ 1

∀ u : Uplink • ∃n : Node •
n ∈ neighbours ∧ u ∈ uplinks ∧ u.address = n.address

The uplink sets are synchronized between the neighbours. If a node has an uplink
with an address of the neighbour, the corresponding neighbour must not have an
uplink pointing the opposite way.

58 CHAPTER 3. ARCHITECTURE OVERVIEW

Property 3 (CBT) The CBT is either a:

1. Minimal weakly-connected directed graph on a set of all nodes and the set
of all uplinks; or a minimal weakly-connected directed unicycle3 on a set of
all nodes and the set of all uplinks.

2. If the CBT is a tree, there is an unique node without an uplink, the core.
If the CBT is a unicycle, there is no core, the cycle subset of the CBT is
strongly connected.

As mandated by the Property 3 and suggested by its name, the CBT resembles
either an oriented tree, or an oriented unicycle.

When two CBTs come into contact, they must be joined into a single CBT.
The Property 3 holds for the resulting CBT. Since it takes time for the join oper-
ation to complete, it is allowed that the CBT Property be temporarily violated.
The frame in which this is allowed is called the Join transaction. For the join
transaction the following invariant holds.

Property 4 (CBT Join Transaction) For the join transaction for two CBTs:

1. During the transaction, Property 3 is satisfied in both CBTs;

2. After the join, Property 3 is satisfied for the resulting CBT.

Specification (SP)

The SP component defines the data modelthe DWEAM system. The SP consists
of sub-components:

1. Dataspace (DS). The DS is the space spanned by the constructable data
types.

2. Specification (SP). The SP is a compact representation of the DS subsets.

Dataspace (DS)

The DS is informally described the set of all constructable types. A brief ac-
count of the construction is given here, while Chapter 7 contains the detailed
explanation. Atoms are the common machine-dependent types.

Atoms ::= Naturals〈〈Z〉〉 | Reals〈〈R〉〉 | Strings〈〈seqCHAR〉〉

Constructors are used first to compose aggregate objects from the basic ones.
The SchemaDefs represents the aggregate schema types and the Compounds are

3A unicycle with a unique closed path (i.e. cycle).

3.5. COMPONENT OVERVIEW 59

combinations of elements defined previously.

[SchemaDefs]

Compounds ::= Sets〈〈PCompounds ∪ Atoms〉〉
| Sequences〈〈seqCompounds ∪Atoms〉〉
| Schemes〈〈SchemaDefs〉〉

Next the schema definitions are given with SchemaDefs .

SchemaDefs ::= SingleSchema〈〈 〈| id : Dataspace |〉[id]〉〉
| MultiSchema〈〈〈| id : Dataspace |〉[id]× SchemaDefs〉〉

Finally, the above components can be combined, completing the specification
of the Dataspace.

Dataspace ::= Atoms | Compounds | SchemaDefs .

Specification (SP)

The SP is used to represent portions of the DS. The SP summary is used to
pin down the DS context to which thereafter an operation can be applied. A
number of operations on SP descriptions are defined, which admit the formation
of compound summaries.

The summaries are used in the matching algorithm for finding the compatible
producers and consumers.

[Type]

[CHAR]

Name == seq1 CHAR

The point in a DS is determined by specifying coordinates. Following the over-
loading concepts from object-oriented languages, we allow multiple coordinates
with the same label. However, in order to distinguish between identically labeled
coordinates, a second attribute, the type is introduced.

[Type]

Textual representations of the types are all of the type Name.

Name == seq1 CHAR

A coordinate is then defined by its label and its type.

Coordinate =̂ [name : Name; type : Type]

60 CHAPTER 3. ARCHITECTURE OVERVIEW

Each Coordinate can take on any value from its support type. If we want to
consider only parts of the entire support set (denoted as X), a constraint can be
specified.

Constraint [X] == P X

Specifying a constraint for some coordinate yields a surface. Multiple surfaces on
the components of the same type X taken together, comprise a cube.

Surface == Coordinate × Constraint

Cube == PSurface

CompoundCube == PCube

The cube membership of a Dataspace point is defined through the use of the
reflection operators.

∈ : Dataspace ↔ Cube

∈ : Dataspace ↔ CompoundCube

The required set operations are defined on cubes, and cube sets. Their defini-
tion overloads the generic operations:

+ == ∪
· == ∩
· : Cube × Cube → Cube

· : Cube × CubeSet → CubeSet

· : CubeSet × CubeSet → CubeSet

The sharp operators [15] are defined in order to support the set operations on
cubes.

[X ,Y]
: Cube[X]× Cube[Y]→ CubeSet

©# : Cube[X]× Cube[Y]→ CubeSet

Analogous operations are valid for cube sets too.

©# : CubeSet2 → CubeSet

The availability of sharp operations enables the definition of the final, union op-
erator for cube sets.

+ : CubeSet2 → CubeSet

All these operations are subsequently used in the (approximate) matching algo-
rithm. At this point we omit the algorithm details, as its presentation contains
several fine-grained details. The entire algorithm can be found in Chapter 7, on
page 145.

3.6. SUMMARY 61

3.6 Summary

In this Chapter we presented the DWEAM architecture in a nutshell. That is,
we described the relevant properties of the used computation and communication
resources. Thereafter we moved on to the exposition of the system layers, and
within each layer their specific components. All the layer components are then
exposed in brief, as the details of all of them are given in the Chapters that follow.

Chapter 4

Task Mapping

In this chapter, we describe the task mapping for DWEAM. Task mapping is
the name for a process that transforms the application requirements represented
by a set of informally specified tasks into a specification that is executable in a
distributed, dynamic computing environment. The steps required to perform the
task mapping are collectively referred to as Application Layer (APL).

The APL we describe is designed specifically (but not limited to) the appli-
cations in emergency rescue operations, where the merits of the approach can be
fully appreciated. It can be thought of as an enabler for a crisis management
groupware. The applications involve teams of individuals that need to act in
coordination towards a common goal, and who use portable computers for ex-
changing relevant information. While this is commonplace in command centers,
the support for on-site communication leaves much to be desired. The presented
design offers a tool-chest that addresses this issue.

4.1 Introduction

What follows is a description of the APL design for a particular kind of a dis-
tributed computing system. This APL addresses the issues arising when a dis-
tributed computing system is deployed in an adverse environment. An adverse
environment is such that it can have influence the course of the task execution,
by shutting down the computational resources and changing the properties of the
network that connects the computers together.

A distributed computer system is a collection of connected computing resources.
These resources execute coupled tasks and exchange intermediate results through
a pre-installed network. Nowadays they come in a variety of packages—ranging
from mainframe systems, through the familiar desktop computers, to the currently
under-represented but ever more penetrating portable devices as PDAs.

DWEAM is designed for the applications in emergency rescue operations. It is
assumed throughout this article that a set of computational tasks suitable for this

63

64 CHAPTER 4. TASK MAPPING

purpose has been pre-defined and is executing concurrently as an aid to the main
task allocated to the emergency teams. The helper tasks can, for instance, be used
to report continuously of the progress of the main task, to request assistance or
supplies and report findings. Through the influence of the operating environment,
the execution of these tasks can be affected. A task allotted to a single computer
can fail if the computer is destroyed or detached from the network so that it is
unable to communicate its data to the other computers in the network. This is in
contrast to decision support information systems as deployed in command centers,
where better guarantees on the reliability of the system and communication can
be assumed.

The task mapping we present prepares the tasks for the execution on a com-
puter system that can cope with the influence of the environment and can execute
the allotted tasks in a favourable manner (this informal description will formal-
ized later in the text). Ideally, one wants to find a computational structure that
ensures reliable and efficient computation regardless of the possible intermittent
system faults. However, the achievability of this ideal goal is coupled to fun-
damental impossibility results in distributed computing studies: in distributed
computer systems that do not execute tasks in lock step, it is impossible to dis-
tinguish a failed task from the one that is executing very slowly ([43]). Likewise,
in face of communication failures ([51], Theorem 5.1). This result has far reach-
ing implications for the system architecture, as it constrains the assistance to the
response team that it can offer. Consequently, we are forced to relax the idealized
requirement to meet realistic goals.

4.2 Requirements

The goal of the task mapping is to transform the desired system behaviour (ex-
pressed by the set of tasks that we want it to perform) into business logic compo-
nents1 executable by the available resources. The tasks of particular interest are
those supplemental to crisis management operations. It is assumed that the crisis
management task is executed by a number of (personnel) units, that may be cou-
pled by some kind of command chain. The structure of the command chain is not
relevant for this exposition. However, the support offered by the described sys-
tem must be generic enough to accommodate the existing command and control
methods.

In the following sections, we derive the distribution structure for the compu-
tational tasks, starting from informal descriptions of prototypical tasks in crisis
management. This is to motivate input from the crisis management research
community to supply other appropriate applications. Thereafter we zoom into
computational tasks within the crisis management domain and describe the STS.
The dynamic task structure follows, and converted to CPN to structure it fully.

1That is, the executable program code which is structured so to be insertable as a component
into a pre-defined software framework.

4.2. REQUIREMENTS 65

The section on task mapping gives the method to assign tasks to computers
while preserving the task structure. The section on design constraints explains
what threats prevent the maintenance of correct task structure, with our solution
and performance trade-offs. The section on distributed blackboard describes the
structure that supports the given requirements. A survey of related work follows,
explaining the origins of the ideas we used in our exposition, and thereafter the
conclusion is given.

Task Structure

We envision a near-future search-and-rescue operation, in which members of the
participating emergency service units (police, fire brigade, ambulance, etc.) are
equipped with PDA devices (nodes), each capable of short range radio communi-
cation. These devices are used to exchange messages: findings, request backup,
distribute orders etc. Only the devices within radio range can directly contact
each other. Devices which are connected indirectly, through successive connec-
tions, rely on their neighbours to forward the messages. The network of nodes
is constructed based on the connections created by a short range radio network:
two nodes are connected if they are closer to each other than a pre-determined
range. This assumption is shared by papers on wireless network properties, such
as [39].

We adopted a number of example operational tasks, to illustrate the type of
work that is expected of the system to perform.

1. The distribution of orders down the command chain. In this example task,
the system must support the distribution of orders. We assume a hierarchi-
cal ordering of the available units, whereby the hierarchy is established in
terms of the command chain. The order is a data item (or: data object),
generated at a single unit in the hierarchy, that must be distributed to all
the units that are its offsprings in the hierarchy tree.

2. The convergence of the order results up the command chain. In this example
task, the system consists of a number of sensors emitting readings about
the environment. The convergence is the feedback of these readings to a
single node where the readings can be processed. The assumptions about
the hierarchy is the same as that of the previous task.

3. Cooperative map building. In this example task, the system must support
the cooperative building of a site map. The entire team starts off with an
empty, unannotated terrain map. Each team member can annotate the ter-
rain map, taking note of newly discovered features. In a rescue operation,
the annotations can signify sites where casualties are found, where the ter-
rain conditions have changed from their default (due to debris for instance),
or where logistic support (supplies) should be delivered. The annotations
made by each team member are shared with others.

66 CHAPTER 4. TASK MAPPING

Static Task Structure (STS)

The tasks are twofold: the operational tasks are performed by actors (humans),
and computational tasks that are performed by agents (computers). For the rest
of this exposition, only the computational tasks will be specially considered; we
assume that a clean cut can be made to separate the task types, and that they
are easily conjoined when the system is deployed.

All the tasks require a coordinated set of actions to be performed by the team
members. By each action, a part of the task (i.e. a subtask) is executed. The
execution of an action brings about the subtask, and produces a partial result,
which can be shared with the other team members. The coordination is achieved
through synchronization, whereby different team members agree to execute their
actions in a certain order, and through cooperation, whereby the results of the
outcome of a single action are used to enable a subsequent action. We model
coordination by messages exchanged by the team members, where each message
contains a data object. A team member pends the action until an activation
message is received (e.g. an order arrives to execute an action). When a message
is received, its contents are used in the action contents to execute the subtask.

The overall task is achieved by delegating subtasks to team members, and
specifying the way in which the subtasks interact with each other. For handling
a variety of tasks such as those of the example, we define the STS, with the
description thereof relegated to a separate subsection.

Task Description

Tasks are described at mixed levels: informal descriptions given in English are
used as needed to motivate formalization; formal symbolic descriptions are used
once the task is described well enough to admit symbolic manipulation. The type
of the tasks is the opaque type Tasks. The computational tasks are application
defined. The messages are treated as coming from an abstract Dataspace.

[Tasks ,Dataspace]

Emphasize a single, top level task which contains the overall description of what
service the system offers. This task is denoted as T where appropriate.

T : Task

Task Properties

1. Decomposition. A given task may be decomposed into a set of subtasks. It is
assumed that many useful tasks in crisis management can be decomposed in
this way. Subtasks may be further decomposed until an elementary (atomic)
subtask is reached.

TaskExpansionType == Tasks ↔ Tasks

4.2. REQUIREMENTS 67

→ : TaskExpansionType

An atomic subtask transforms objects by applying a transfer function from
TTF .

TasksToDataspaceFunction == Tasks → P(Dataspace → Dataspace)

TTF : TasksToDataspaceFunction

2. Activation. A task is started if a set of activation messages have been
received. Additionally, the set of received activation messages must satisfy
all the guard conditions, which is a predicate on a set of objects. Upon
completion, a task produces partial results, i.e. messages that can activate
other tasks. The set of activation messages ACT , partial results PART
and guard conditions GUARDS are given by:

TasksToDataspaceSet == Tasks → P Dataspace

GuardType == Tasks → P(P Dataspace → {true, false})

ACT , PART : TasksToDataspaceSet
GUARDS : GuardType

A task which is not a subtask of any other is the top level task, and its
partial result is, at the same time, the (overall) result of the task execution.
The top level task is executed if all of its subtasks have been executed. An
elementary task is executed if it has changed the system state according to
its specifications.

3. Precedence. A precedence relation “≺” (read as: precedes) is established for
tasks. For two tasks T and U , we denote T ≺U if and only if U is allowed
to be executed only after T has been completed.

≺ : Tasks ↔ Tasks

∀(x , y) : Tasks2 • x ≺ y ⇔ x must be completed before y starts.

4. Coupling. Tasks T and U , where T ≺U are also coupled, if the partial
result of T is used as the activation message to U .

TaskRelation == Tasks ↔ Tasks

≺1 : TaskRelation

∀(x , y) : Tasks2 • x ≺1 y ⇔ (x ≺ y) ∧ [6 ∃ z : Tasks • (x ≺ z) ∧ (z ≺ y)]

68 CHAPTER 4. TASK MAPPING

These coupled tasks are denoted as: T ≺1 U , and for them PARTT ∩
ACTU 6= ∅. When the tasks T and U , are coupled, then by definition
there exists no task V such that T ≺V ≺U . If, for two tasks T and U
neither T ≺U nor U ≺T , the tasks are decoupled, or concurrent. For the
coupled tasks, the activation property holds.

Property 5 (Activation)

⊢ ∀ x : Tasks , y : Tasks • x ≺1 y ⇔ PARTx ∩ACTy 6= ∅

The activation property expresses the coupling relation of T and U through
the fact that the set of the partial results of T intersect the activation set
of U .

The STS consists of the top level task T all the task property elements:

StaticTaskStructure
T : PTasks ; → : TaskExpansionType, ≺1 : TaskRelation;
TTF : TasksToDataspaceFunction; ACT , PART : TasksToDataspaceSet ;
GUARDS : GuardType

STS : StaticTaskStructure

Dynamic Task Structure

The dynamic task structure is described in terms of a Petri Net (PN). The PNs
give a compact way to model and reason about the concurrent task execution. We
first present the PN and the derived Coloured Petri Net (CPN) model, and then
define the EM, expressing the task structure in terms of an equivalent executable
CPN.

4.3 Enabler Mapping (EM)

To transform a set of tasks into an executable structure, the EM is used. The EM
converts the STS to an equivalent CPN model, thus turning a static description
into an executable schema.

EM : StaticTaskStructure → CPN

The function is total as any StaticTaskStructure must be convertible to a CPN.
We specify EM constructively, in a sequence of steps that builds CPN components
from a STS. For convenience, a renamed schema CPN [T/U] is produced instead
of CPN as symbols T coincide in StaticTaskStructure and CPN . The renaming

4.3. Enabler Mapping (EM) 69

allows to drop the indices and consider only STS : StaticTaskStructure, and
Σ : CPN [T/U], for which the maplet STS 7→ Σ is within EM .

The maplet is built in a sequence of steps that together construct the compo-
nents of the CPN Σ.

1. Retrieve atomic tasks. We need only consider atomic tasks. Non-atomic
tasks are complete automatically once all the tasks from their decomposition
are complete.

atomic : PTasks

2. Define transitions. Make a transition for each atomic task. Additionally,
attribute the transfer function to each transition.

trans : Tasks 7→ Transition
trfun : Transition 7→ P(Dataspace → Dataspace)

dom trans = atomic

3. Define places. Define a place in P for any two coupled tasks from ≺1 .

places : Tasks × Tasks 7→ Place

dom places = ≺1

4. Define the flow. Define two components of the flow relation. First, the pre-
condition component, connecting “inbound” Place to Transition. Second,
the postcondition component, connecting Transition to “outbound” Place.

prec : (Tasks × Tasks)× Tasks 7→ Flow
postc : Tasks × (Tasks × Tasks) 7→ Flow

dom prec = {x : Tasks × Tasks , y : Tasks | x ∈ ≺1 ∧ y ∈ dom x}
dom postc = {x : Tasks , y : Tasks × Tasks | x ∈ ran y ∧ y ∈ ≺1 }

The flow relation is the union of these two components.

5. Define the universe. The universe is borrowed from the activation property
for coupled tasks.

6. Define the inscription. The inscription determines which transitions are
enabled. The inscription on an arc connecting a place and a transition is a
set of subsets of points in the data space for which all the guard predicates
are valid. The inscription on an arc connecting a transition and a place is
a set of subsets of points from the data space.

70 CHAPTER 4. TASK MAPPING

Theorem 1 (Mapping) Let there be given a STS describing the static task
structure, and let Σ be a CPN. STS 7→ Σ is a mapping if the property set
(following the steps given above) is fulfilled.

Σ,STS ⊢ atomic = ran(→)\ dom(→)
[1. Retrieve atomic tasks]

Σ,STS ⊢ U = ran trans ; trans = TTF o
9
trfun∼

[2. Define transitions]

Σ,STS ⊢ P = ran places [3. Define places]

Σ,STS ⊢ F = ran prec ∪ ran postc [4. Define the flow]

Σ,STS ⊢ (x : Place, y : P Dataspace) ∈ A ⇔ ∃ z , t : Tasks ∈ T •
[5. Define the universe]

z ≺1 t ∧ x = places(z , t) ∧ y = PARTz ∩ACTt

Σ,STS ⊢ ∀ p : Place, t : Transition •
(p, t) ∈ F ⇔ m(p, t) = {x : Dataspace | x ⊆ Ap

[6. Define the inscription]
∧ ∃ s : P Dataspace • ∀ g : P Dataspace → {true, false} •

g ∈ GUARDStrans∼t ∧ x ∈ s ∧ g(s)};
(t , p) ∈ F ⇔ m(t , p) = {x : Dataspace | x ⊆ Ap}

Proof. The proofs of the properties are given in the order they are presented.

1. The case in which an atomic task is a top level task at the same time is
uninteresting, as that task is not distributable. Atomic tasks cannot be
decomposed, so they cannot appear in dom → . However, they must all
appear in ran → as each must have been produced by a decomposed
task.

2. The following diagram gives the relationships of the functions, their domains
and ranges. Note that only the atomic tasks form the transitions in the
construction of U .

atomic
trans //

TTF

��

U

trfunvvlllllllllllllll

P(Dataspace → Dataspace)

3. Immediate from the definition.

4. Immediate from the definition.

5. By Property 3, if x ≺1 y, there is a place places(x , y) in P and places is a
bijection. By Property 5, the activation set is nonempty. Hence universe A
maps places(x , y) to PARTx ∩ACTy.

6. Immediate from the definition.

4.3. Enabler Mapping (EM) 71

�

The properties 1 to 6 define Σ that corresponds to the given STS. The re-
naming is reversed so that the maplet is type-compatible with EM .

Property 6 (Mapping rule) Let there be given an Enabler Mapping (EM), and
let there be given a Static Task Structure (STS), mapping the static task structures
into the corresponding CPNs. Let Σ[U /T] be a CPN obtained by applying the
steps from Theorem 1. Then

⊢ (STS 7→ Σ[U /T]) ∈ EM

That is, STS 7→ Σ[U /T] is a valid EM component.

Example 3 A form of this mapping can be found in the usual networked appli-
cations. A web browser executes the task:

T == “display a web page”

for which

ACTT = {Uniform Resource Locator (URL) input by the user}
and

PARTT = {present the web page contents}.
Further, T decomposes as: → = { (T ,T1), (T ,T2), (T ,T3), (T ,T4) }, where:

T1 == “request page from the server given an URL”

T2 == “accept request for page”

T3 == “deliver page”

T4 == “accept page delivery”.

In this case T1≺1 T2≺1 T3≺1 T4. The coupling between T1 and T2 is achieved
by setting PARTT1 = ACTT2 = {o}, where o =={URL}. Other couplings
are given by PARTT2 = ACTT3 = {request o}, and PARTT3 = ACTT4 =
{page for o}. The transfer functions are given as: TTF = { T1 7→ τ1,T2 7→
τ2,T3 7→ τ3,T4 7→ τ4 }. The function GUARDS is empty.

Assume that there is a STS : StaticTaskStructrure with properties as given
above. Now we find the elements of a corresponding Σ : CPN [T/U]. The
Properties referred to here come from the theorem 1.

Σ,STS ⊢ (Property 1)⇒ atomic = { T1,T2,T3,T4 }
By Property 2, there should be a transition per transfer function. These are given
by:

Σ,STS ⊢
(Property 2)⇒

U = ran trans = ran TTF ∼ o
9
trans =

= { t : Transition | ∃ τ ∈ ranTTF • t = TTF ∼ o
9
trans(τ)} =

= {t1, t2, t3, t4}

72 CHAPTER 4. TASK MAPPING

with:

Σ,STS ⊢ trans = {T1 7→ t1,T2 7→ t2,T3 7→ t3,T4 7→ t4}

Also:

Σ,STS ⊢ (Property 3)
⇒ P = {places(T1 ≺1 T2), places(T2 ≺1 T3),
places(T3 ≺1 T4)} = {p1, p2, p3}

The flow relation is established using Property 4.

Σ,STS ⊢ (Property 4)⇒
prec = {((T1,T2),T1) 7→ f1, ((T2,T3),T2) 7→ f2, ((T3,T4),T4) 7→ f3}
postc = {(T2, (T1,T2)) 7→ f4, (T3, (T2,T3)) 7→ f5, (T4, (T3,T4)) 7→ f6}
F = { fi : Flow | i ∈ 1 . . 6 }

The universe is determined from the activation message set:

Σ,STS ⊢ (Property 5)⇒ A = {p1 7→ {o}, p2 7→ {“request o”},
p3 7→ {“page for o”}}

and the inscriptions are analogously:

Σ,STS ⊢ (Property 6)⇒
m = {(t1, p1) 7→ {o}, (p1, t2) 7→ {o},
(t2, p2) 7→ {“request o”}, (p2, t3) 7→ {“request o”},
(t3, p3) 7→ {“page for o”}, (p3, t4) 7→ {“page for o”}}

The resulting CPN is shown in Figure 4.1.

t1

o //76540123
p1

o //

t2

request
o //76540123

p2

request
o //

t3

page
for o //76540123

p3

page
for o //

t4

Figure 4.1: The resulting Task Mapping, represented by a CPN.

4.4 Mapping Tasks to Nodes

The main purpose of the task distribution structure is the task to resources map-
ping. The tasks are mapped via the CPN obtained from the Static Task Structure.
Two resource types are considered. First, the computational resources (hereafter:
nodes) which are able to execute the computational tasks. Nodes are hereafter
denoted by lower-case Greek letters.

[Node]

4.4. MAPPING TASKS TO NODES 73

Second, the communication resources (hereafter: network), pairwise connecting
some of the nodes. The network is denoted as a collection of links between nodes.
The interconnection changes as the nodes move, join or leave the network, so it can
be time-variable in general. When nodes leave the network, it can happen either
voluntarily or involuntarily; the latter can occur because of network partitions or
nodes being damaged, out of power, or destroyed.

To handle this variability a notion of time is introduced. Only the events
that change the global view are relevant. Thus the considered timing is discrete.
We are often interested in a specific event for which claims are made, and call it
now . When considering graph changes, it is useful to consider the “immediate
interesting past”, so then is also reserved. We understand these two symbols as
referring to the present moment in time, and some previous event of interest,
respectively.

Time == N

now : Time

then : Time

A point t ∈ Time is a point at which some event of interest occurred . The real
time that separates t from the following event t +1 may vary for different choices
of t .

real time == R

RealTime : Time→ real time

∀ t , u : Time • RealTime(t) < RealTime(u)⇒ t < u

Following the influence of the environment, the number of active nodes can vary
over time. The same is true for the active links between the nodes.

active nodes : Time→ P Node
active links : Time→ P Node ×Node
G : Time→ P Node × PNode2

∀ t : Time •
α ∈ active nodes(t)⇒

node α is available at
real time interval (RealTime(t),RealTime(t + 1)]

(α, β) ∈ active links(t)⇒
link from α to β is available
at real time interval (RealTime(t),RealTime(t + 1)]

G(t) = (active nodes(t), active links(t))

74 CHAPTER 4. TASK MAPPING

The nodes and links available at t : Time naturally induce a graph that is denoted
as Gt . For G(now), and appropriate other denotations, indices can be dropped2.

Gt == G(t)
active nodest == active nodes(t)
active linkst == active links(t)
G == Gnow

active nodes == active nodesnow ; active links == active linksnow

The transition mapping TRANS determines which nodes are allocated to
which transition. Multiple nodes may implement the same transition.

TRANS : Transition → P Node

A transition t : Transition mapped to some α : Node, is written as mappedto tα.
Thus, mappedto tα and mappedto tβ are instances of the same transition, mapped
respectively to nodes α, and β.

The following requirements are imposed on the transition mapping for any
Σ : CPN :

1. The transition mapping must preserve the CPN structure. Consider transi-
tions t , and u coupled by a place p:

Σ ⊢ p = µ q • q ∈ P ∧ t ∈ ◦q ∧ u ∈ q◦

Then, a necessary condition for u to be executed is that the tokens from
p are deposited from t to p and then to u. When these transitions are
mapped to nodes, such that mappedto tα and mappedto uβ, this means that
communication must be ensured between α and β so that the activation of
mappedto uβ is possible.

Σ ⊢ ∃ p ⇒ (TRANSt , TRANSu) ∈ active links

2. The mapping set for each transition must be non-empty. Every transition
t ∈ TΣ must map to at least one node in the set of active nodes.

Σ ⊢ TRANSt ∩ active nodes 6= ∅

Ensuring that these two necessary conditions hold is sufficient for the CPN exe-
cution3.

2As a salient side effect to the arbitrary choice of the event corresponding to now , the
properties where items appear with indices dropped must hold for all possible choices of now .

3However, it is not sufficient to also validate the CPN with respect to safety and liveness
properties. Liveness and safety hold only if the CPN has been designed with these properties
in mind.

4.4. MAPPING TASKS TO NODES 75

Example 4 We pick up Example 3 where we left off. A mapping to two nodes
is given: active nodes = {γ, δ}, with active links = {(γ, δ)}, where γ == client
and δ == server.

TRANS = {t1 7→ {γ}, t2 7→ {δ}, t3 7→ {δ}, t4 7→ {γ}}.

It is easy to inspect TRANS to verify that both properties hold.

Design Constraints

Fulfilling the task mapping requirements is complicated by the dynamic nature of
the network formed by the nodes. As the owners of the PDAs move, the structure
of the network changes, thus affecting the first transition mapping requirement.
Furthermore, as PDAs are subjects to faults and destruction, the second transition
mapping requirement can be violated for a task T if all nodes in TRANST are
affected.

The loosely-coupled collection of PDAs, as outlined here, matches the asyn-
chronous model of a distributed system being “separate components [taking] steps
in an arbitrary order, at arbitrary relative speeds” ([51], page 5). Two important
constraints apply for such asynchronous systems:

1. Coordination is impossible under communication failures. This is the sim-
ilar to the “coordinated attack problem” ([51], Theorem 5.1), establishing
that in a distributed system, with at least two communicating nodes, it is
not possible for the two nodes to agree over a value of a variable4 if com-
munication can fail.

2. Slow and stopped nodes are indistinguishable. This observation ([43]) estab-
lishes that nodes in an asynchronous system cannot determine if a particular
other node has crashed, or is running slowly.

The given constraints affect the adherence to the transition mapping requirements.
We call this influence a threat5.

The first constraint is a threat to the first transition mapping requirement.

Example 5 Consider transitions t, and u, and assume that p exists as given in
the first mapping requirement. The activation of some u : Transition depends on
the reception of all data objects from the inscription m(t , p) from t. When these
objects are miscommunicated, the nodes α = TRANSt and β = TRANSu cannot
agree whether the activation condition is fulfilled: α has sent m(t , p) so in α’s
view u can be executed. But β has not received m(p, u), so in β’s view, u cannot
be executed.

4This is known as the “Consensus Problem” (see e.g.[30]). In the consensus problem, two
or more computers begin with an initial value of some type, and must eventually output a value
of that same type. The outputs of all the computers must be the same.

5The term “threat” is taken from AI planning domain ([72], Chapter 11), where it denotes
an action that prevents the execution of a formulated partial plan.

76 CHAPTER 4. TASK MAPPING

Furthermore, as the nodes in G move, join and leave the network, a transient
mapping threat can occur.

Example 6 (Transient mapping threat) Let there be two active nodes:

active nodes = {α, β},

with transitions t and u, and a place p as given in the first requirement. Let the
transition mapping be constant TRANS = {t 7→ {α}}.

Let active links be variable, as follows. Assume that there are only three
events: −∞, then, and now. These three events divide the real time into three
parts. Assume active links−∞ = {(α, β)}. At then, the only link is broken so that
active linksthen = ∅, and subsequently restored: active linksnow = {(α, β)}. By
inspection one finds that the first requirement is violated in the interval (0, 1].

The second constraint is a threat to the second transition mapping require-
ment.

Example 7 It follows that a transition t cannot check whether TRANSt = ∅, as
a probe message sent to a node in TRANSt may receive a reply with unbounded
delay.

In the light of the design constraints, a system that adheres strictly to the
task mapping requirements is not achievable. We therefore consider a relaxed,
probabilistic formulation of the transition mapping requirements, so that they
hold with high probability (whp)6. We adopt two simple structuring principles
that achieve this.

1. Token Persistence. Instead of limiting the token communication to a certain
time frame, thus giving rise to transient mapping threats, the tokens are
present indefinitely once generated. In [57] it is shown how this can be
achieved whp.

2. Mapping Redundancy. The TRANS must map a transition to multiple
nodes in G. The mapping set is shown to be nonempty whp in [29].

The structuring principles remove the threats, but introduce side effects, with
per-application significance:

1. Excess Storage. The indefinite lifetime of the persistent tokens is not achiev-
able in practical systems where the memory is always bounded. This obvious
issue is handled in the standard systems by garbage collection.

6The term whp means that the probability that a requirement holds is a function of a positive
parameter n of the form 1 − 1

nk for some k > 1.

4.5. DISTRIBUTED BLACKBOARD 77

2. Duplication. Due to the mapping redundancy, it is possible that multiple,
functionally equivalent tokens are produced at runtime. Given a transi-
tion t and the mapping TRANSt = {α, β}, transitions mappedto tα and
mappedto tβ produce equivalent partial results. This issue is handled by
visioning the partial results, so that they can be compared.

3. Redundant token deliveries. As a joint effect of token persistence, and the
temporal variation of active links , multiple deliveries of the same token,
originating from the same node can occur. This amounts to the at-least-
once message delivery semantics.

4.5 Distributed Blackboard

The Distribution Mechanisms (DMs)

The extension to the Local Blackboard (LB) is the Export Mechanism (EMX)
allowing the copies of data space objects to be shared across multiple LBs, and
thus be locally accessible to the active nodes.

The EMX is a new take on the familiar ideas of distributed shared memory and
tuple spaces (see [3]). The distributed shared memory emulates a unique memory
space to which several nodes can have concurrent access. Thus the nodes see the
possibly fragmented memory as an unique memory space. In the tuple spaces
implementation, the tuple space is a domain in which objects exist. An object
is instantiated by inserting it into the tuple space. After that it becomes visible
for all the nodes attached to the said tuple space. Subsequent operations can
modify and delete such an object. The tuple spaces are associated with a notion
of authority whereby only the resource that has inserted an object can modify it.

In the EMX, a modified approach is considered. Each node maintains an
independent local view of the data space. This is achieved by the LB and the
local views can be freely modified according to the LB semantics. Cooperation
begins once a node marks a subset of its local LB Exported View (XV). The XV
is what the node is willing to share with the environment.

In line with the structuring principles introduced earlier, several consequences
result.

1. The implied required storage for all the XVs is unbounded, (in line with the
excess storage effect);

2. Once exported, an object cannot be deleted or modified (in line with the
duplication effect);

3. As each node reports on its XV whenever asked, it is possible that it answers
to the same inquiring node multiple times (in line with the redundant token
deliveries effect).

78 CHAPTER 4. TASK MAPPING

Consider all nodes a client to the DB structure. Each client can express an
interest in a subset of the dataspace.

ClientInterest == P Dataspace

Although the client interest is defined as a subset of a possibly large dataspace, it
is worth noting that encoding the interest can be much more efficient if only the
boundaries of the interest are encoded.

Producer
ΞBlackboardSystem

exported : ClientInterest

exported ⊆ blackboardbb

The node becomes a producer for the subset of the data space covered by exported .
Any other node is free to ask for a subset of the exported view, making it a
consumer.

Consumer
imported : ClientInterest

A node may produce some objects, and consume others (in line of the transi-
tion mapping). The node name in this dual role is Client.

Client == Producer ∧ Consumer

The client is free to modify the exports and import interests at will.

ModifyProducer
∆Producer

exported? : ClientInterest

exported ′ = exported?

Likewise for the consumer.

ModifyConsumer
∆Consumer

imported? : ClientInterest

imported ′ = imported?

In the example we compare the conventional view to that of the DB.

4.5. DISTRIBUTED BLACKBOARD 79

Example 8 (Blackboard Bank Account) Consider a classical example of the
concurrent access7 to a project bank account8. Project participants can use the
money from the account to get equipment for the experiments. Alice (A) and Bob
(B) each request 1e. The requests are forwarded to the Bank (X).

X : N

A,B : Z→ Z

X = 2,X ≥ 0 [Account balance]

A = B = λ x : Z • x − 1 [Requests]

The Bank enforces that the account X is unique at all times and enforces the strict
access semantics. Hence processing concurrent withdrawal transactions from X
requires that a valid sequentialization exists. That is, an ordering of sequential
transaction applications for which commonly understood semantics exist. Pro-
vided enough funds are present, the bank applies the two transactions to the bank
account, so that only the final balance is left. In this case there are two different
ways to sequentialize, and these are equivalent from the Bank’s point of view.

(A o
9
B)X = (B o

9
A)X = 0

In the modified case, X = 1, only one of the requests can be fulfilled, as far
as the Bank is concerned. This would annoy either Alice, or Bob, but not both
as only one of the requests can be performed while keeping the account balance
non-negative.

Now turn to the Distributed Blackboard (DB) case. Regardless of the state
of the bank account, both requests can be executed on the account object, yield-
ing a new state. All objects are simultaneously exported by the EMX of all the
participants.

Question arises which of the produced objects is the “real” state of the project
account after concurrent accesses have been performed. Only all the objects con-
sidered at once encode the full state. But, what is “real” depends on the viewpoint.
Likely, from Alice’s point of view, AX being the real state is just enough. For what
we know, the converse holds for Bob. And both would agree that it would be great
for the original balance X to remain. What prevents these dreams from becoming
true is the authority of the Bank. The authority is drawn from real finance that
the Bank controls. A Bank signing some of the objects (denoted as: X) it means:
“the Bank claims that this is the ‘real’ state”.

7The concurrent access to a shared variable is considered a classical example and is described
in many books. The blackboard bank account example is invented here, however.

8Such an account can have several researchers who independently and concurrently draw
funds from it.

80 CHAPTER 4. TASK MAPPING

Either9: AX 〈X〉

X 〈X〉

A

::uuuuuuuuu

B

%%JJJJJJJJJ

BX

or: AX

X 〈X〉

A

;;wwwwwwww

B

##GGGGGGGG

BX
or: AX

A∼o
9
(Ao

9
B)

&&MMMMMMMMMMM

X 〈ver = 1, X〉

A

88qqqqqqqqqqq

B

&&MMMMMMMMMMM
//________ X 〈ver = 2, X〉

BX

B∼o
9
(Ao

9
B)

88qqqqqqqqqqq

This prevents neither Alice nor Bob to still privately hope otherwise: no-one
prevents you to consider yourself rich when you are likely not10. But it does not
do any good to either of them (as the vendors are likely to believe the Bank) and
they might just as well accept the truth. As far as the storage for the objects is
concerned, in this context there is no incentive for anyone to remember the old
account state11 X given that the authority has updated.

This illustrates the important difference in the approaches that use DB to
those of the conventional transaction-based systems. On a DB, an object, once
posted is never removed or modified. When it becomes necessary to represent a
change to the object on the DB, it is done by producing a similar object with
a different annotation and maintaining a relation between objects which denotes
how the new object relates to the old. In the example, a version stamp (ver) and
the bank signature (X) are used. It is a matter of external convention to ensure
that the objects on the DB fulfill the constraints placed on them. The DB clients
are free to choose these conventions and even have several of them concurrently
in effect.

4.6 Related Work

The motivation for the presented design is the introduction of automated deci-
sion support systems for the crisis management domain all the way through the

9The blackboard arrow diagrams show possible blackboard contents at a given time. The
arrows show the production dependence, and the arrow inscription shows the transform that
has been applied to the source object to obtain the destination object.

10The meaning of “being rich” is relative and depends on what one sees as relevant for being
rich. We stay on the pragmatic track and not mandate that meaning. Instead we allow multiple
meanings to exist concurrently, and it is up to each participant to choose the one which is
relevant for the given context.

11The Bank may keep the records for own bookkeeping but these need not be exported.

4.6. RELATED WORK 81

management hierarchy to the individual operational units. There exists the need
to support crisis management at the operational level, and the needed support
is clearly identified in [81]: the presented system “[. . . is] usable by people who
will have an understanding of their roles [and] will allow the individual users
a high level of tailoring, filtering [and] will allow the operation of the response
function without the need for a single operational physical center [and will be
a] structured communication process independent of the nature of a particular
crisis.” However, the topic has involved comparatively little research given that
service guarantees are difficult to make. This has been known since the consensus
impossibility results ([52] and [51], Theorem 5.1).

The need to formalize computational tasks for crisis management led us to
explore clean formal ways of task denotation. The decomposition STS item (i.e.
unpacking tasks with hierarchical structure) is the inverse of composition (i.e.
packing tasks into higher level tasks) of the NELSIS design methodology (see [83]),
where it has been used for the (seemingly unrelated) VLSI12 design. The derived
task structure is naturally described by CPNs (see [69]), whereas the specifications
for the task itself as well as the blackboard operation can be described effectively
using the Z language (see [14], [28]). The task structuring led to regular and
straightforward implementation in the COUGAAR framework (see[10]).

According to [81], several authors pointed out that “the critical general propert
of computer-based [group] communications [is that] the content of the information
being communicated [is] also the ‘address’ for delivery.” This idea took various
forms in the literature. Probably the earliest appearance is in Bloom filtering (see
[11]), where hash-based discrimination is used. It appears as a generalization of
the IP-numbering based addresses in [18]. The typical data space based approach
is Linda and its various implementations. A complementary is the event notifi-
cation (or publish-subscribe) approach, in which events are communicated and
filtered, and are then removed from the system.

The system outlined in the introduction naturally compares itself to simi-
lar peer-to-peer (P2P) systems. The early P2P systems such as Napster [64],
Gnutella [36], FreeNet [32] and MojoNation [62] were the first to introduce the
promise of ever-present file storage, and were a motivation for this work. Subse-
quent P2P systems, such as Tapestry [92], Chord [63], Pastry [71], Kademlia [53],
Content Addressable Network [68] discuss efficient key-based routing in various
settings. These methods support deterministic message routing in an overlay
network. These P2P overlays establish well-behaved distributed structures. How-
ever, they support only the Distributed Hash Table (DHT) interface, thus can
only store key-value pairs of the form 〈key 7→ value〉, where the key is distributed
uniformly over a (large) key space. This key-based addressing is unfortunately not
powerful enough for content-based addressing. This is not a problem as it takes
DHTs out of their context. They do however set the path that task distribution
structures as given here should follow.

12Very Large Scale Integration.

82 CHAPTER 4. TASK MAPPING

Practical distributed systems often use indirection of system services to achieve
the flexibility of the task mapping. In Section 2.3 of [79], two mechanisms for
indirection are mentioned. First, “the agent requesting or providing a service
communicates with appropriate yellow pages server”. This line of design yields
systems that are vulnerable to yellow pages server failures, an unwanted side
effect. The second approach where “the agent requesting or providing a service
broadcasts this fact to all appropriate agents”, admits the event notification and
data space approaches. The usefulness of event notification in dynamic networks
has been recognized (in [8]), and tree event distribution structures investigated (in
[42]). A tuple-space implementation, albeit with disregard for efficient distribution
is Lime (in [3]). We revisited the efficient distribution structures, and efficient
activation in [59] to show a set of approximate matching techniques (employed in
an unrelated context in digital logic design in [23]) that simplify the distribution.

4.7 Summary

In this chapter we addressed the task mapping for DWEAM, a process that trans-
forms the application requirements for a distributed system into a specification
that can be implemented and subsequently executed by the DWEAM system.
The specification is not a direct part of the DWEAM computer architecture, but
defines the DWEAM development environment. Given its fairly unconventional
nature when compared to mainstream object-oriented systems, it is important to
give its detailed description.

We start from the task descriptions that we expect to be useful in emer-
gency rescue operations. From there the generic task descriptions are extracted
and refined, recognizing the Static Task Structure with task description and task
properties. We then formalized the task structure. We described, proved and
demonstrated how the formalization fits into the executable CPN model, as a
flexible executable structure admitting the task description. Thereafter, we de-
scribe the mapping of tasks to nodes, via the CPN.

Then we present the design constraints, an important by-product of the im-
mersion of a computer system into the real world. We point out the impossibil-
ity results and give examples thereof, leading to probabilistic restatement of the
problem at hand. We then present the Distributed Blackboard used for the task
distribution, and introduce the DB semantics by which the only allowed operation
on the content is the addition. A consequence of such an access semantics is that
the objects on the DB must be allowed to exist in multiple versions, and that
insisting on object uniqueness in the traditional sense does not apply. Rather, we
conclude that it must be allowed that multiple, possibly even conflicting views
exist. We compare this approach by example to traditional distributed systems,
where an unique fixed semantics is enforced.

A number of issues are deliberately left open in the exposition. We give a
short account of these issues here and explain how they are further dealt with.

4.7. SUMMARY 83

First, we give no argument that the task-level descriptions are adequate to
capture the crisis management tasks in full. Unfortunately, this is due to the fact
that we have found the crisis management procedure descriptions to be rather
informal, subject to positive regulations, and hence so far exclusively intended
for human use. At the time of this writing, there is no formalized procedure that
compiles these procedures into the structured task form that APL expects as in-
put. The likely reason for the lacking description is that the use of information
systems in crisis management is at its infancy and is still regarded as somewhat
of an art rather than a codified discipline. This means that an adequate repre-
sentation can be produced on demand, but that automated representation is still
not feasible. The automated representation asks for independent research unre-
lated to our main topic, and would require prohibitive resources. Thus, instead
of presenting the formalization we do the next best thing. We assume that such
a description can in principle be formulated, and offer a minimal interface from
that description to the task structure we presented. This design decision allowed
us to proceed with the design of the DWEAM system.

Second, the properties of the DM as introduced in Section 4.5 are temporarily
left open. It is easily seen that the publish semantics that does not allow ob-
ject removal must eventually exhaust the available memory at some nodes. This
important issue is resolved in subsequent chapters. We will show that, although
the nodes are not able to control the memory they use for the object storage
explicitly, a form of garbage collection will guarantee timely reclaim of the un-
used objects. In fact, we will show how the knowledge of the process structure,
obtained through the data provided by the clients taking part in the DM helps
the garbage collection. While the unbounded memory requirement is a valid crit-
icism, there exist practical applications that work disregarding the unbounded
memory requirements. Example applications are the garbage collection mecha-
nisms for the Java language (which allows the allocated memory to grow without
bounds), and the version control systems such as CVS or Subversion (where the
records corresponding to versioned resources do not expire event if the resources
themselves are removed). The authors of practical applications thus have some
freedom to violate the rules of good conduct, when such violation can be justified.
We too have used this freedom judiciously in our design of DWEAM.

Chapter 5

The Environment and Storage
Model

The following Chapter describes the environment model assumed throughout the
design of the DWEAM architecture. The environment model accounts for the
node and network volatility effects. Due to these effects, the availability of com-
puting resources (i.e. the nodes and the network) changes over the system lifetime.
Knowledge about the environment which is distilled in the appropriate model is
used to understand how the adverse influence of the environment causing volatil-
ity effects can be prevented. To this effect, in this Chapter, the basic properties
of the environment model are presented.

5.1 Introduction

The DWEAM system consists of two distinct resource types: the nodes and the
network. The nodes abstract a collection of computers (PDAs, laptops and such),
typically carried by their users, while the computing facilities are being exploited.
This usage pattern is termed mobile user, to signify that the user changes physical
location while using a service provided by own local computer. It is important to
make a distinction between the mobile and the nomadic user model. In the latter,
the user only accesses the network infrastructure from various physical locations,
but the mobility while the network is being used is negligible. This other usage
scenario corresponds for instance with using the same laptop to access an Internet-
based service both from home, and from work. The user carries the laptop from
home to work and back, and uses it at both sites. However, the laptop is not
being used in transit.

In the mobile user scenario each node has an attributed physical location. This
location may change over time, as the user changes its position. The network
resources at disposal in the mobile user scenario are typically radio-based. The
prevalent use case for the radio-based communication nowadays is that based on

85

86 CHAPTER 5. THE ENVIRONMENT AND STORAGE MODEL

GPRS, for which the existing communication infrastructure is used, such as that
of the mobile phone (e.g. GSM) networks. The GPRS usage scenario assumes
that a fixed communication infrastructure exists, and is terminated by the base
stations. Each base station is used as a portal to the infrastructure for the users
that are geographically close to that base station. Each user communicates only
via a base station to any other user on the communication network. This holds
even for users that are at a given time using the same base station for access (and
are likely geographically close by).

In the DWEAM architecture, we consider an extended communication sce-
nario, that drops the requirement for the existence of base stations, and a fixed
communication infrastructure. Instead, the users need to cooperate in message
delivery. Each user originally has a very limited view of the entire network, and
can directly contact only the nodes which are relatively geographically close. This
is because of the path loss properties of the radio network. The network formed
in this way is called a Mobile Ad-Hoc Network (MANET).

The MANET Properties

The MANET is induced by the time-variable graph of nodes and links, Gt . The
set of active nodes (active nodes(t)) at a given event time t depends on the
node availability that is induced by the environment. There typically exists an
interval of event times I == [t1 : Time, t2 : Time) during which a given node
x ∈ Nodes appears in active nodes(t), for some t ∈ I . thus any such node x
comes into existence at t1, and then lives on until it is permanently removed from
active nodes at t2. Further, the existence of the connection in active links(t)
depends in part of the position of the nodes through time. For each node in
active nodes(t), its position in a d -dimensional space is given as a function of real
time.

position : Nodes × real time 7→ R
d

∀(x : Nodes , τ : real time) •
(x , τ) ∈ dom position ⇒ ∃ e ∈ Events •

RealTime(e) < τ ∧ x ∈ active nodes(e)

The goal of the MANET building is the establishment of a structure for com-
munication between the network members. A lot of research is directed at under-
standing the fundamental MANET properties. An account of MANET research
has been given in [4]:

“Architectures have been primarily driven by a ‘point-to-point’ phi-
losophy. We need to better understand a network viewpoint wherein
nodes can cooperate intelligently taking advantage of the special prop-
erties inherent in wireless communication.”

5.1. INTRODUCTION 87

“Architectures have been primarily centralized. We need to develop
highly distributed architectures and algorithms that are still robust
and energy-efficient on a system basis.”

[. . .]

“Research efforts have been primarily compartmentalized. We need
highly inter-disciplinary research across signal processing, communi-
cations, game theory, and networking.”

To enable an integrated treatment of the MANET design issues, its relevant
properties are given in the list below.

1. Point-to-Point Connectivity. This property regards the density of the direct
connections between the nodes in the network.

2. Connectedness and Structure. This property regards whether the MANET
provides connectivity so that any pair of nodes can connect either directly,
or via multiple hops.

3. Capacity and Throughput. The capacity regards the maximum information
exchange rate that can be achieved in a given MANET under the ideal
transmission schedule policy. The throughput regards the information ex-
change rate that can be achieved under the adopted (likely suboptimal)
transmission schedule policy.

4. Service Discovery. This property concerns the manner by which it is deter-
mined which nodes need to communicate with each other, and communica-
tion channels are established between them.

We now examine the MANET properties in more detail.

Point-to-Point Connectivity

The radio communication is based on the broadcasting of radio waves, at a certain
power level. With the increase in the physical distance, the power level of the
signal when it is received typically decays inversely proportionally to some power
of the distance. For a given transmission power level ρ, and a geographical distance
r between the receiver and the transmitter, the received power level p is:

p =
ρ

rα
, (5.1)

where α is a path loss exponent. Typically, α = 2, although α can take on
other values depending on the propagation model. We are interested in the large
scale effect here, so will not elaborate on the possible values of α. The Signal-to-
Noise-and-Interference Ratio (SINR) has two principal components: the ambient
noise, whose instantaneous power is assumed constant and denoted as N ; and

88 CHAPTER 5. THE ENVIRONMENT AND STORAGE MODEL

interference comprising of the signal powers of all the transmissions that are
active at a particular time instant. Given T , the set of all interfering nodes, Xt

for t ∈ T their positions, Xs the position of the sender and X the position of the
receiver, the SINR is given by:

SINR =
ρ‖Xs −X ‖−α

N + ρ
∑

t∈T

‖Xt −X ‖−α
. (5.2)

The condition for the successful reception of a sent transmission from some node
s is that the resulting SINR is greater than some threshold β. The exact value of
β depends on the adopted coding and modulation schemes, but regardless of the
actual value of β, the general condition for successful reception of the form:

Esuccess ≡ SINR > β

is valid for many communication scenarios. The probability of an error a transmis-
sion, the outage probability is the probability of the event E c

success, a complement
of Esuccess from the equation above. It is usually required that for successful
communication it be bounded by prescribed level ǫ:

Pr (E c
success) ≤ ǫ. (5.3)

Connectedness and Structure

Point-to-Point connectivity defines the conditions under which there can exist a
direct connection between a sending and a receiving node. With the Point-to-
Point as a basic element for connectivity, it is a logical followup to ask what is
then the resulting connection structure in Gt . In particular, it is important to
know under which conditions all nodes in Gt are connected, either by a direct link,
or indirectly via a sequence of Point-to-Point links. The issue of connectedness
has been studied extensively in the continuum percolation theory (see Meester
and Roy [54]), from which our model for the connectivity is adopted. Here the
percolation model for the connectivity concerns the structure of position(x , τ) for
any node x and a given real time stamp τ .

We model the node positions by a stationary point process (see Meester and
Roy, [54], page 9). That is, we assume that each node has a randomly chosen
position in the space R

d . The dimension d can be an arbitrary positive integer.
Being application driven, we only consider the case d = 2, yielding a node config-
uration on a two-dimensional surface (e.g. plane). To make the notion of a point
process more precise, one considers the set R

d , and the σ-algebra of Borel sets
in R

d as Bd . Denote by N the set of all counting measures on Bd for which the
measure of a point is at most 1. Equip N with a σ-algebra N generated by the
sets of the form:

{n ∈ N • n(A) = k}

5.1. INTRODUCTION 89

where A ∈ Bd , and k an integer.

A point process X is a measurable mapping from a probability space (Ω,F ,P)
into (N ,N).

The definition of N allows one to count the number of points in a set A ∈ Bd .
In words, X (A) represents a random number of points inside A. A point process
X is stationary, if its distribution P is invariant under an arbitrary translation.

The point process X is said to be a Poisson process with density ξ > 0 if the
following are satisfied:

1. For mutually disjoint sets A1, A2, . . . , Ak the random variables X (A1) . . .X (Ak)
are mutually independent.

2. For any bounded set A ∈ Bd , we have for each k ≥ 0:

Pr (X (A) = k) = e−ξ‖A‖ [−ξ‖A‖]k
k !

, (5.4)

where ‖A‖ is the measure of the area A. The parameter ξ is the density of the
corresponding Poisson process.

For the node connectivity, the description of a Poisson point process is am-
mended. Following Meester and Roy, a Poisson Random Connection Model
(RCM) is set up. The RCM describes the connection structure in a d -dimensional
space induced by a non-homogeneous Poisson process. Again d = 2 is assumed.
For Ai ⊆ R

d (d ∈ N), a random process X is a non-homogeneous Poisson process
with density ξ > 0 if the following properties are satisfied:

1. For mutually disjoint sets A1, A2, . . . , Ak are mutually independent.

2. For any bounded set A ∈ Bd , we have for each k ≥ 0:

Pr (X (A) = k) = e
−ξ
∫

Rd
g(x)dx

[
−ξ
∫

Rd g(x)dx
]k

k !
. (5.5)

The function g : R
d → [0, 1] is the intensity function. For our purposes, g is

the distance-based connectivity between the nodes. We assume a static model in
which the following holds, with r and q vectors in R

d :

• g(r) = g(q) whenever ‖r‖ = ‖q‖,

• g(r) ≤ g(q) whenever ‖r‖ ≥ ‖q‖.

The derivation for g(r) for the MANET is given further in the text.

90 CHAPTER 5. THE ENVIRONMENT AND STORAGE MODEL

Capacity and Throughput

MANETs are formed by mobile computing devices equipped with radio antennas
that are used to communicate. Usually the range for the successful communica-
tion is limited, so communication between distant nodes is only possible if nodes
cooperate by relaying messages to each other. In [39], Kumar and Gupta assumed
an optimal routing scheme to discover the throughput capacity of an arbitrary
MANET of n devices, with an available radio channel of capacity W bits per
second, in an unit area is of the form Θ(W /

√
n log n). Their analysis is based on

the following assumptions:

1. The traffic patterns in the MANET are random. Pairs of devices, one trans-
mitter and one receiver, are chosen independently at random and packets
are sent between them.

2. The packet routing is optimal. The packets are delivered along the shortest
path between the transmitter and the receiver.

Under the transmission models given in [39], these two assumptions lead to the
achievable throughput of an arbitrary MANET. The achievable throughput as
derived in the said paper is, in fact, the raw throughput. It is unreasonable to
assume that it reflects the useful throughput too. This is because the analysis
is conditioned on the assumed known traffic pattern. The sender and receiver
pair groups are assumed pre-determined by an unspecified device that has been
abstracted away of the analysis for simplicity reasons. In real-life applications it
is necessary to determine the traffic pattern before any of the wireless connections
can be used. This is named service discovery.

5.2 Connectivity Function

In this section, we derive the analytical form of g(r), the connectivity function
of the RCM in the MANET case. Consider a receiver placed on a planar sur-
face. Assume that its position determines the coordinate origin of an appropriate
coordinate system. To derive g(r) one needs to find the probability that, under
the transmission model of the equation (5.3), a transmission from a transmitter
at distance r from the origin is successfully received. The interference is due to
the ambient noise, assumed to be time-invariant and with mean power equal to
N , and the signals produced by the transmitters that operate independently but
concurrently to the considered transmitter.

Exact Analysis

For successful transmission, for all the nodes transmitting simultaneously, equa-
tion (5.2) must hold. Consider a circle C with the radius R on the planar surface.

5.2. CONNECTIVITY FUNCTION 91

According to the RCM, the probability of an event:

{X (C) = k nodes are present in C }

is given by:

Pr (X = k) = e−ξ‖C‖ [ξ‖C‖]k
k !

, (5.6)

with ‖C‖ = R2π, the area of C . A transmission from a node at a distance d from
the origin succeeds with the following probability:

g(d) = E

[
Pr

(
ρd−α

N + ρ
∑K

j=1 ‖Xj‖−α
≥ β|K

)]
. (5.7)

For the circle C , assuming independent uniform distribution of transmitters, the
Probability Density Function (PDF) of D , the random variable denoting the dis-
tances from the receiver at the origin is given by:

fD (r) =

{
2r
R2 for r ∈ [0,R]

0 otherwise.
(5.8)

Rearranging the non-interference condition, one obtains:

K∑

j=1

‖Xj ‖−α ≤ d−α

β
− N

ρ
. (5.9)

From the equation (5.9) and non-negativity of ‖Xj‖ for all j , it is verified that
g(d) = 0 for d fulfilling:

d ≥
(

ρ

βN

)1/α

. (5.10)

From equation (5.8), by the inverse theorem the PDF for the random variable
D−α is:

fD1/α(x) =

{
2

αR2x2/α+1 for x ∈
[

1
Rα ,∞

)

0 otherwise,
(5.11)

and the corresponding generating function is given as:

G(s) =

∫

R

fD1/α(x)e−sxdx , (5.12)

which yields:

G(s) =
2Γ(−2/α, s/Rα)

αR2s2/α
, (5.13)

where Γ(a, x) is the upper incomplete Gamma function:

Γ(a, x) =

∫ ∞

a

µ
x−1

e−µd µ . (5.14)

92 CHAPTER 5. THE ENVIRONMENT AND STORAGE MODEL

A sum of K random variables as in equation (5.9) has the generating function
GK (s). The corresponding PDF is then given by:

f (x) =
1

2πi

∮

M

GK (s)esxds . (5.15)

The equation (5.15) is, however, unlikely to yield a useful result, as G(s) cannot
be further simplified. We leave the Equation (5.15) at that, and resort to finding
an approximate solution to the problem.

Approximate Solution

Resorting to an approximate solution, assume that K is large with high proba-
bility. For large K , the equation (5.7) yields itself to Gaussian approximation.
However, we will not approximate all the transmitters with a Gaussian distribu-
tion. Looking at Equation (5.1), it is seen that the interference from the far-away
nodes must be low, as it decays fast with the distance. Also, the expected num-
ber of such nodes is high, as the expectation of Equation (5.4) is proportional to
the size of the considered area. Hence for this area the Gaussian approximation
is justified. The transmitters are therefore split into two groups: the near and
the far group (Figure 5.1). The near group consists of the transmitters between

r2
Near group

Far group

r1

Figure 5.1: The near-far group approximation for computing the connectivity
function g(d).

0 and r1. The far group consists of the transmitters between r1 and r2, where
0 < r1 ≤ r2 →∞.

The first limit, r1 is the critical radius (also denoted further on as rc), desig-
nating an area within which any single interfering transmitter completely prevents

5.2. CONNECTIVITY FUNCTION 93

the message communication with the receiver at the origin. The second limit, r2
in principle can be set arbitrarily far away, and further in the text we assume
r2 →∞.

Theorem 2 (Critical radius) Consider the planar arrangement of nodes, with
a receiver placed at the coordinate origin. Also consider a transmitter, at distance
d, with the path loss exponent α > 2. The critical radius rc is given as:

rc =
d−α

β
− N

ρ
(5.16)

Proof. Consider the non-interference model, as given in the Equation (5.2).
Assume that there is only one interfering node, i.e. #T = 1 at distance r from
the receiver. Assume the receiver and the transmitter are at a distance d . Then:

SINR =
ρd−α

N + ρr−α . (5.17)

From the receive condition SINR ≥ β, substituting the expression for SINR from
Equation 5.17, and introducing renaming [rc/r], one obtains the claim. �

Considering that the critical radius rc is non-negative, one can again obtain the
limiting condition for d for any connectivity to exist. Observing that rc ≥ 0 and
using Equation 5.16, one obtains the same condition as was given in Equation 5.10.

Function g(d) is in effect the probability of the connection existence given the
distance between the receiver and the transmitter. The following proposition is
naturally derived from this assumption.

Proposition 1 (Disk Connectivity) Let g(d) be the probability of the connec-
tion existence. Then the connectivity in the sense of Equation (5.3) is:

Pr (Esuccess) = [g(d) > ǫ] (5.18)

where [·] is the Iverson (indicator) function [37].

From the proposition 1 it is seen that the area (with respect to d) has the shape of
a disk, provided that g(0) > ǫ, as g is monotonic and non-decreasing, as required
by the model given in the Section 5.1. We will now give an expression for g(d).

For this purpose, we divide the planar area outside of C into concentric,
infinitely thin annuli. As in the Section 5.2 it can be seen that trying to account
the exact contribution of all of the interferers leads to expressions which are
impractical to evaluate (the connectivity expressed through the upper incomplete
Gamma function), the only resort is to try a suitable approximation.

We attack this problem using the common balls-and-bins approach, as follows.
Consider the annuli into which the R

2\C is divided as “bins”, each carrying some
number of “balls”, each “ball” being an interferer node, which happens to be
located at this particular bin. Let X (r) be the interference contribution for the

94 CHAPTER 5. THE ENVIRONMENT AND STORAGE MODEL

annulus (“bin”) dC at the distance r from the origin, and dr thick, with dr → 0.
The probability dPr (n(dC) = k) that there are k interferers in this area is:

d Pr (n(dC) = k) =
∂

∂r

[
e−ξr2π (ξr2π)k

k !

]
dr . (5.19)

for k ∈ N0, and the contribution of each bin is then:

dX (r)r−α (5.20)

where dX (r) is a random variable with the distribution given in Equation (5.19).
The total interference is then given as:

Y =

∫ ∞

rc

r−αdX (r). (5.21)

While it is still involved to compute the distribution of the cumulative interference
Y exactly, given that it is the sum of independent random variables, the Gaussian
approximation may be invoked. For this, E [Y] and Var [Y] must be computed.
The variable Z = (Y − E [Y])/

√
Var [Y] is then the Gaussian-distributed unit

variance, zero mean random variable. An elementary lemma helps to obtain E [Y]
and Var [Y]:

Lemma 1 For a random variable V =
∑

i Vi , of independent random variables
Vi , the following holds:

E [V] =
∑

i

E [Vi]

Var [V] =
∑

i

Var [Vi] .
(5.22)

Using Lemma 1, the moments for Y are obtained.

Proposition 2 Let Y be a random variable, defined as in Equation 5.21. Then,
E [Y] and Var [Y] are given as:

E [Y] =
2ξπ

α− 2
r2−α
c

Var [Y] =
4ξ2π2

2α− 3
r3−2α
c − (E [Y])2.

(5.23)

where α > 2.

Proof. By Equation 5.21, we have:

E [Y] =

∫ ∞

rc

2ξrπr−αdr =
2ξπ

α− 2
r2−α
c , (5.24)

5.2. CONNECTIVITY FUNCTION 95

conditioned on α > 2. Similarly, for E
[
Y 2
]
, one obtains:

E
[
Y 2
]

=

∫ ∞

rc

4ξ2r2π2r−2αdr =
4ξ2π2

2α− 3
r3−2α
c (5.25)

conditioned α > 3/2. Together with the condition of Equation 5.24, it amounts
to α > 2. �

By central limit theorem:

Proposition 3 The random variable Z = Y−E[Y]√
Var[Y]

has Gaussian PDF with zero

mean and unit variance, where E [Y] and Var [Y] are found in Proposition 2.

The successful reception condition in Equation 5.7 (i.e. the conditional thereof)
is rewritten in terms of Z to be:

g(d | n(C) = 0) = Pr

(
Z ≥ d−α/β − ρ/P − E [Y]√

Var [Y]

)
, (5.26)

which is then given in terms of the function Φ(z) = (2π)−1/2
∫ z

−∞ exp(−z 2/2)dz)
to be:

g(d | n(C) = 0) = 1− Φ(
d−α/β − ρ/P − E [Y]√

Var [Y]
), (5.27)

for d constrained in the sense of the Equation (5.10).
We have therefore proven the following:

Theorem 3 The connectivity function g(d) is given by:

g(d) =

[
1− Φ(

d−α/β − ρ/P − E [Y]√
Var [Y]

)

]
e−ξr2

c π, (5.28)

with all the quantities appearing in Equation 5.28 as defined previously in the text.

Thus, starting from the basic assumption about the distribution of the nodes,
stemming from the RCM model, we derived the approximate condition for the
function g(d), denoting the probability of successful reception (hence: the exis-
tence of a connection) between a transmitter and a receiver at a distance d , in the
presence of an unbounded number of interferers, distributed uniformly at random
in R

2.
The range function depends on g(d) as: [g(d) > ǫ], where ǫ is a parameter

depending on the techniques used to modulate the transmitted signal. As g(d) is
monotonically non-increasing, the shape of the successful reception area is always
a disk. However, independent of the modulation technique, there is a critical
radius rc , for which all transmission necessarily stops. This critical radius is due
to the existence of the “background” noise that slowly but surely drowns the
signal, as the distance between the transmitter and the receiver increases. In this

96 CHAPTER 5. THE ENVIRONMENT AND STORAGE MODEL

Chapter, both the upper bound ĝ(d) and the Gaussian approximate for g(d) are
computed in terms of the system parameters.

The implication for the connectivity structure is strong. The connectivity
g(d) imposes a limit to the number of nodes that can be contacted by any given
node. Moreover, the nodes are within a limited radius. This implies that a data
structure that requires “far reaching” connections can not be implemented with
constant resources per node. This because for a node to reach a distant receiver
it must use a number of intermediate nodes proportional to the distance between
it and the destination, divided by at least the maximum range. A node must
consider the soft state recorded by all the intermediate nodes, and this cannot
ever be made to be significantly less than the stretch of the graph.

5.3 The Storage Model

In this section, we turn the attention to the reliability of storing data to nodes
in a volatile network. We present an analysis of using the fragmentation of data
into tags, and depositing the tags onto various nodes in a multi-agent network,
to achieve resilience against node volatility. We emphasize Multi-Agent Systems
(MASs) as example platforms in which there is system-wide interest in preserving
data. Agent programs in a MAS often use an agent platform as middleware [50].
The platform controls the messaging and the agent life-cycle. The reliability of
the agent platform has received little attention in practice, though it is recognized
as a MAS issue [80].

Notable MASs, such as JADE [85] or COUGAAR [10], assume a reliable plat-
form. Sometimes the platforms provide persistence to non-volatile media, pro-
tecting the agents from transient failures. For both platforms, replication services
exist; these services have been implemented with simplicity in mind, rather than
efficiency. We use information-theoretic arguments to show how efficient reliabil-
ity in a MAS can be derived from cooperation with a slight trade-off for increased
complexity. The resulting platform is called Combined [1]; this platform is based
on the COUGAAR agent architecture, with additions that make it suitable for
deployment in chaotic, rapidly changing environments.

Application

The main motivation for looking at increasing the reliability of multi-agent plat-
forms is because it is desirable in applications. We will mention two applications
which benefit from the Combined approach.

Emergency search-and-rescue operations benefit from timely information de-
livery. This deployment setting was also adopted as the prototype application for
Combined. We envision a near-future application in which members of emergency
service units (police, fire brigade, ambulance etc.) are equipped with short range
communication devices. Due to the nature of the deployment, it cannot assume

5.3. THE STORAGE MODEL 97

that communication infrastructure exists; the reliability of the communication
devices can also not be taken for granted. The devices work around these imped-
iments by cooperating in message delivery and keeping each other’s observations;
the body of the Chapter explains the theory on which this possibility is based.

Large scale distributed scientific applications, such as Seti@Home [74], or Fold-
ing@Home [31] succeeded in harnessing worldwide processing power for highly de-
manding computational tasks. The focus of their system architectures has shifted
from traditional parallel and distributed computing efficiency issues [51] to or-
ganizing and managing redundant work done by worldwide computers. Some
indication of the system architecture can be found at [13]. The Combined ap-
proach might aid this effort by offering a way to preserve computation results
despite computers leaving the network.

Related Work

The system outlined in the introduction naturally compares itself to similar peer-
to-peer (P2P) systems. The early P2P systems such as Napster [64], Gnutella [36],
FreeNet [32] and MojoNation [62] were the first to introduce the promise of ever-
present file storage, and were a motivation for this work. Subsequent P2P systems,
such as Tapestry [92], Chord [63], Pastry [71], Kademlia [53], Content Addressable
Network [68] discuss efficient key-based routing in various settings. These meth-
ods support deterministic message routing in an overlay network. OceanStore [46]
is an architecture for establishing global persistent storage; similarly, the Coop-
erative Filesystem (CFS) is an application that uses Chord to make a P2P-based
read only storage system. Unlike Combined, all these systems work with an over-
lay on top of an existing Internet Protocol (IP). The underlying IP network layer
allows cheap contact between any pair of the participants. The interconnect mesh
corresponds to a complete graph. However, Combined is established on a spatial
proximity based network mesh, with connections induced by the distance between
nodes. Due to this external constraint, the interconnect mesh is much sparser
than that of the mentioned systems. The contact between far away nodes can be
costly. Typically, the transitive closure of the Combined interconnect mesh would
correspond to the IP-based interconnect used by the mentioned P2P systems. An-
other important distinctions is that in Combined, cooperation is needed for even
the simplest operations such as contacting a far away node. In the mentioned
P2P systems, this operation is handled by a lower level network protocol. The
layering simplifies the design, but limits the applicability of the overlay to net-
works in which IP is efficient. The ideas of Combined are most thoroughly shared
with OceanStore. This architecture uses erasure coding to achieve high data reli-
ability. The improvement from using erasure coding over replication was clearly
shown in another paper [87] from the co-authors of OceanStore. OceanStore con-
siders erasure coding only for deep archival; but also goes to considerable length
to handle data security. Combined intends to use data archival to provide process
persistence; but it does not consider data security explicitly. This difference is

98 CHAPTER 5. THE ENVIRONMENT AND STORAGE MODEL

easily understood in the light of the Combined prototype application. In such a
setting, it is reasonable to assume that cooperative behaviour by far outweighs
competitive or malevolent behaviour.

Result

We present a graph-theoretic model using erasure graph to describe the system
interconnect and evolution, and partition encoding for allocating data pieces (tags)
to different agents in Section 5.4. We then use this model to derive the storage
capacity of the resulting society, and prove that the capacity cannot be larger
than the availability figure of the most reliable agent in the network (Section 5.4).
Assuming the availabilities are known, we describe the strategy that an agent
can use to determine which code and data partition to choose to make best use
of the available capacity (Section 5.4). We first give a calculation for a general
interconnection case, and random agent position within the network. We then
simplify the analysis by layering the neighbours in tiers and allowing agents to
delegate pieces of work to each other.

5.4 System Model

We now give an overview of the system setup and notation. For detailed def-
initions and more flexible models, the reader is referred to [56]. The network
of nodes is constructed based on the interconnections created by a short range
radio network: two nodes are connected if they are closer to each other than a
pre-determined range. This is a reasonable assumption, shared by papers closely
dealing with wireless network properties, such as [39]. Denote as V the set of
nodes {v1, . . . , vm}. If a connection between two different nodes vi and vj exists,
we insert the pair {vi , vj } into the set E . The graph G (V ,E) is interpreted in the
usual sense: V is a set of vertices, and E is a set of corresponding edges. When
we need to emphasize that V or E belong to a graph G, we write VG and EG ,
respectively. The interconnection mesh of G changes as the nodes move, join or
leave the network. When nodes leave the network, it can happen either voluntarily
or involuntarily; the latter can occur because of network partitions or nodes being
damaged, out of power, or destroyed. The involuntary leave is called an erasure.
Due to nodes leaving the network, the interconnection graph degrades. If a node
v leaves, it is removed from V , along with the corresponding edges from E . Here
we assume that each node can leave independently with identical probability ε.
We call the graph G the erasure graph.

Consider a source node v from V that has during its lifetime produced valuable
data (a tag) that should be preserved in case that v gets erased. Node v can choose
to deposit copies of the tag with its neighbours. Depositing copies is commonly
called replication. This approach, although effective, uses too much excess storage.
Moving tags also spends bandwidth and a smart source node would want to
minimize the spending. In [87], an alternative approach was discussed, whereby

5.4. SYSTEM MODEL 99

the node uses an erasure code to transform the tag and deposits only fragments of
the resulting coded messages to neighbours. Thanks to the coding, only a fraction
of the fragments is required for successful decoding. There exist efficient methods
(for instance, the iterative decoding method from [70]) to recover original tags.
OceanStore and CFS [22] use these methods, but assume that the missing tags
were erased independently, and those that remain are accessible independently. In
the locally-connected network mesh, these assumptions do not necessarily hold.
When trying to deposit a tag, v will have a choice of contracting several neighbours
and request them to be tag keepers. Typically, v will want to pre-code the tag as
said before copying to the keepers. v would then make a partition of the entire
message. The partition is described by a set Π = {π1, . . . , πm}. Each element
of the partition is in itself a set denoting which bit of the encoded message is
allocated to which node. For example, if the message was 5 bits long, and 2 nodes
were available, one possible partition would be: Π = {π1, π2}, where π1 = {1, 2}
and π2 = {3, 4, 5}. This means that bits 1 and 2 are allocated to the node with
index 1, and bits 3, 4 and 5 are allocated to the node with index 2.

To store the fragments, the source node v chooses the code and the parti-
tion. It then contacts the nodes, as defined by the partition, and deposits the
message fragments. This is called a write. To retrieve the stored information, v
contacts all the available keepers and retrieves the fragments. The fragments are
then re-assembled and decoded to produce the original tag. This is called a read.
Between the writes and corresponding reads, the keepers may be erased, or may
be unavailable at the time of the read. Although each keeper has a probability ε
to disappear, its availability also depends on its connection to other nodes. We
will denote the availability of the node vi from V as wi . The writer will typically
want to know in advance the availability of the potential keepers to decide which
partition is the “best”. Due to erasures, the graph G could be partitioned into
connected components. We denote as QG the set of all maximal connected com-
ponents for a given graph G. These maximal connected components are called
chains. Two simple writer decisions are given in the following examples. The de-
cisions are named according to the cooperation policy: the Lone Ranger prefers
to keep all the message to itself; the Cloner prefers to make multiple identical
copies of the message.

Example 9 (The Lone Ranger) The source decides to keep the entire message
on a single node. The probability that the message is readable is: Pr (readable) =
Pr (keeper alive) · Pr (path to keeper exists) ≤ Pr (keeper alive) = ε.

While the total storage is minimized, any transition that erases this single
keeper destroys the tag.

Example 10 (The Cloner) The source node decides to duplicate the tag with
k keepers. This ensures that if at least one keeper is present, the entire tag can be
retrieved. However, the case in which such storage space investment is justified
is very improbable. The probability that all but one keeper are absent is: k(1 −
ε)εk−1 ≤ kεk−1, and tends exponentially fast to zero with k.

100 CHAPTER 5. THE ENVIRONMENT AND STORAGE MODEL

While the data cannot be protected better, the frequency of the catastrophic
event is too low for the storage spending to be justified.

The Capacity of the Erasure Graph

Let there be given a connected graph G. For the given graph G, a writer would
like to know the storage capacity that G can offer. This section provides tools to
do just that. Let us denote as X the message that a writer needs to distribute
across the network formed by nodes V . For convenience, we consider that X
is a string of n binary digits (bits). As in practice all data objects used in a
computer system can be represented in this way1, we only need to consider the
binary strings further in the text.

Each bit of the message X should be stored to some node in G. As the nodes
in G are volatile, it is to be expected that not all the bits from X can be recovered
once they are handed out to nodes in G. From that perspective, G behaves as a
lossy erasure channel: the writer stores data expressed as bit-strings into it and
the reader retrieves a damaged bit string, with some bits irreversibly lost due to
the volatility of the nodes that stored them. The reader will be able to retrieve
only some fragments of the original message (call the fragments Y), due to the
degradation of the network. We will consider each bit of X as a channel use

The mutual information2 on X and Y is given as: I (X ,Y) = H (X) −
H (X |Y), where H (X) and H (X |Y) are, in order, the entropy of a random
variable X and the conditional entropy of a random variable X given Y [21].

Since when X is known, then any Y is known, it holds that: I (X ,Y) =
H (Y) − H (Y |X) = H (Y), i.e., knowing X gives all the information over Y .
The writer has some freedom to choose the partition Π, if it knows the availabilities
(written as: wi) for the nodes vi from V .

This way, H (X |Y) becomes a function of Π. Knowing all wi , writer can choose
the Π that maximizes H (X |Y). The capacity of G is then C = maxΠ I (X ,Y).
We now express C in terms of wi in Theorem 4, and find C explicitly in Theorem 5.

Theorem 4 (The Capacity of G given Π) Let G be an erasure graph. The
capacity of the channel defined on the graph G, under a given partition encoding
Π and assuming uniform connection probability, is obtained by solving a linear
program:

C = maxΠ

∑

1≤i≤#V

wi#πi ;
∑

1≤i≤#V

#πi = n, (5.29)

1Encoding objects for transfer into binary strings explicitly is common practice. Facilities
to achieve this are present in many programming languages, and libraries where the feature is
not provided by the language.

2The meaning of mutual information in this case is simply the number of bits shared by X
and Y . Likewise, the entropy H (X) is the number of bits in X , and the conditional entropy
H (X |Y) is the number of bits that are left unknown in X if we know all the bits of Y .

5.4. SYSTEM MODEL 101

where coefficients wi for 1 ≤ i ≤ #V depend on the connectivity of the graph G:

wi =

#V−1∑

e=0

εe(1− ε)#V−e

#V − e
·

∑

Ep∈Pe

∑

H∈QEp◦G

#VH [vi ∈ VH] .
(5.30)

In Equation (5.30), Ep is the erasure pattern, a function mapping each vertex of
G into the set {0, 1} and associated with a particular transition. It maps v ∈ V
to 1 if v is erased by the transition, or to 0 if v is not erased by the transition.
Ep can be applied to QG , to obtain a new connected components set: each vertex
that Ep maps to 1 is removed from G along with corresponding edges. QEp◦G are
the connected components that G is split into, after applying the erasure pattern
Ep . Pe is the set of all erasure patterns on G, having exactly e erasures. A
consequence of Theorem 4 is the maximum capacity obtainable for a given graph
G.

Proof. The probability of e erasures on a single transition is given by:

Pr (e erasures) =

(
#V

e

)
εe(1− ε)#V−e .

Generate the set of all possible erasure patterns for a given e and name it Pe .
Every Ep ∈ Pe induces a set of connected components QEp◦G , and each of the
sets is composed by connected graphs GEi ∈ QEp◦G . The mutual information
I (X ,Y) is the mean of the number of bits retrieved from all the possible erasure
patterns. The set of all possible erasure patterns P is given by the union of
all individual erasure patterns: P =

⋃
0≤e≤#V Pe . The average number of bits

retrievable from the channel depends on the particular transition, and ultimately
of the erasure pattern within. Considering e known and looking at a particular
erasure pattern Ep , the average number of bits is obtained by averaging over all
possible connection points, since by assumption of the theorem, a reader can be
with uniform probability connected to either of the remaining nodes of G.

I
(
X ,Y |QEp◦G

)
=

∑
G∈QEp◦G

#VGI (X ,VG)
∑

G∈QEp◦G
#VG

. (5.31)

From here it is easy to obtain that:

I (X ,Y) = E
[
I
(
X ,Y |QEp◦G

)]
(5.32)

will yield the expression for mutual information for X and Y . These expres-
sions depend upon elements of Π. The expression in Equation (5.32) includes
multi-dimensional sums, which ultimately depend on the (beforehand unknown)

102 CHAPTER 5. THE ENVIRONMENT AND STORAGE MODEL

connectivity of graph G. Let e remain fixed, and let us focus on Equation (5.31).
For a given v ∈ V , define 〈v〉 to be the index of v . Substituting I (X ,VG) by:

∑

v∈VG

#π〈v〉,

it is seen that #π〈v〉 enters the sum on a number of occasions.
It is possible to determine how many times and with what weight coefficient

does #π〈v〉 appear in the appropriate equation, and the answer depends on e and
on the size and number of the connected components that v can belong to. Let
the connected components be named chains, for convenience. The shortest chain
that v can be part of has size 1, when v is its only element. The longest chain
has size #V , when no degradation takes place. If v belongs to a chain of size l ,
when e errors are present, its contribution to expression (5.32) depends on the
position of v in the string.

There are different ways in which v can be a member of a chain of size l .
Expanding the expectation in Equation (5.32), one obtains

I (X ,Y) =E
[
I
(
X ,Y |QEp◦G

)]

=
∑

Ep∈P

∑
G∈QEp◦G

#VGI (X ,VG)
∑

G∈QEp◦G
#VG

Pr
(
QEp◦G

)
,

(5.33)

and averaging the number of bits retrieved from each element of P will give
I (X ,Y). Since the degradation model is i.i.d., the probability of each Ep ∈ Pe

is equal to εe(1 − ε)#V−e . By introducing an indicator function it is possible to
restate I (X ,VG) as:

I (X ,VG) =
∑

v∈VG

I (X , v)

=

#V∑

i=1

I (X , vi) [vi ∈ VG]

=

#V∑

i=1

#πi [vi ∈ VG] , (5.34)

permitting the separation of the sum in Equation (5.31) as:

I (X ,Y) =
∑

Ep∈P

Pr
(
QEp◦G

)
∑

G∈QEp◦G
#VG

·

·
∑

G∈QEp◦G

#VG

#V∑

i=1

#πi [vi ∈ VG] .

(5.35)

5.4. SYSTEM MODEL 103

Substituting P , Equation (5.35) becomes:

I (X ,Y) =
∑

Ep∈
⋃

0≤e≤#V
Pe

εe(1− ε)#V−e

∑
G∈QEp◦G

#VG

·

·
∑

G∈QEp◦G

#VG

#V∑

i=1

#πi [vi ∈ VG] .

(5.36)

When Ep is an element of Pe , then the following expression holds:

∑

G∈QEp◦G

#VG = #V − e, (5.37)

which is easily seen to be true, as
∑

G∈QEp◦G
#VG is the total number of nodes

present in the connected component QEp◦G .
By changing the order of summation in Equation (5.33) such that the first sum

goes over all πi , and noting that for e = #V the sum component is equal to zero,
one is able to find: I (X ,Y) =

∑#V

i=1 wi#πi , where wi is given by Equation (5.30).
�

Theorem 5 (The Capacity of G) Let the channel be defined on the graph G,
and let all availabilities wi be known for all nodes vi from V . Let:

w∗ = max 1≤i≤#V wi .

Then: C = nw∗.

This is to say that, regardless of the choice of the partition Π, it is not possible to
obtain the rate (ratio C/n) greater than the maximal availability of all the nodes
in G.
Proof. Let wi and πi be permuted, without loss of generality, so that w∗ =
w1 ≥ w2 ≥ · · · ≥ w#V .

C = maxΠ

∑

1≤i≤#V

wi#πi ≤ w1

∑

1≤i≤#V

#πi = w1n, (5.38)

since for each i , wi#πi ≤ w1#π1. �

The Choice of the Partition

We have seen how the node availabilities affect the storage capacity achievable by
a given graph G. We will now describe the strategy the writer uses to find the
“best” partition. In [56], the subset of acceptable partitions is captured by the
notion of distortion in the following definition.

104 CHAPTER 5. THE ENVIRONMENT AND STORAGE MODEL

Definition 8 (Distortion) Consider some erasure graph G. Let QG be the set
of connected components of G, and let the partition Π be known for distributing
a message X over nodes in V of G. The distortion of some QG (written as:
d(QG)) equals to the expected tally of irretrievable message bits of X , over all
possible erasure patterns.

Thus, the distortion tells us for the connected components QG of some graph
G, how many bits are expected to be be lost, when the graph undergoes an
arbitrary erasure pattern.

Proposition 4 (Distortion Properties) Consider the distortion as given in
the Definition 8. Consider some transition between the components QG and
QEp◦G . Denote as Dc be the set of all possible connected component configu-
rations obtainable by applying an erasure pattern Ep to QG, and let V (QEp◦G)
be the set of all vertices thereof.

1. Let R = (1− εT)n −∑i∈V (QEp◦G) #πi . Then the distortion. Then:

d(QG) =
∑

QEp◦G∈Dc

Pr (Ep) · R · [R > 0] . (5.39)

2. Let πi be the partitions for nodes vi . d(QG) is a non-negative piecewise
linear function of #πi .

Proof. The property 1 is immediate. For property 2, note that every term
of Equation 5.39 is non-negative. All #πi are non-negative. Setting all πi to be
empty sets (corresponding to maximum distortion), the maximum of d(QG) is
given by:

d(QG) = (1− εT)
∑

QEp◦G∈Dc

Pr (Ep) · [(1− εT)n > 0] = (1− εT)n. (5.40)

By re-expressing d(QG) in terms of #πi , we get:

d(QG) = a0,C −
∑

i

ai,C#πi , (5.41)

where a0,C = (1 − εT)n, and ai,C 6= 0 in general. �

Given a maximum distortion dmax and the area

v(dmax) = {QEp◦G | d(QEp◦G) ≤ dmax},
the best configuration Q∗

G is given by

Q∗
G = arg minQ∈v(dmax) f (Q), (5.42)

where f is a disambiguation function that helps in the choice of the unique solu-
tion. The parameter εT is the decoding threshold [70] of the employed decoder,
the fraction of n that can be erased, without entailing decoding error. f is a goal
function picked according to design criteria:

5.4. SYSTEM MODEL 105

1. Given a threshold εT , decoding must succeed if erasure fraction is less;

2. Given two partitions from v(dmax), the encoder chooses a “more distributed”
one;

3. The encoder must handle a variable number of hosts (#V), and variable
message lengths n.

The requirement 1 is implicitly satisfied by choosing a threshold-εT code.
Further requirements can be satisfied in different ways. We choose the partition
Π such that the sum-squared of all fragment lengths (ni = #πi) is minimal. The
choice amounts to using:

f (C) =

(
∑

i

(#πi)
2

)1/2

, (5.43)

effectively choosing as the configuration to be at the the point closest to the
all-zero configuration, i.e. the one where all bits on all nodes were lost.

This choice is akin to mean-square energy minimization in multi-channel signal
detection: we assume that each fragment length contributes independently to
the entire tag. The expected number of retrieved bits must be equal to (1−εT)n.
This expression is precisely equal to the sum of ni weighed by wi for each node.
Finally, the fragments should form a partition of the message, thus the sum of ni

must be equal to n. For the same reason, for all i , the condition ni ≥ 0 must hold.
The distortion corresponds to the distance (in the number of lost bits) between

v0

v1 v2

v3

Figure 5.2: Subdividing V into subsets headed by nearest neighbours. v0 is the
writer. It delegates 3 fragments of a single tag to its nearest neighbours, v1, v2,
and v3. v0 also delivers ζ1 and ζ2 to each of the neighbours so that they would be
able to further sub-divide their fragment.

the complete message X and any received message Y . An example contour plot
of d(QG) for a two-node configuration (labeled as 1 and 2) distortion is given in
the Figure 5.3.

106 CHAPTER 5. THE ENVIRONMENT AND STORAGE MODEL

10

10

20
20

20

2
0

20

20

30

30

30

30

30

4040

40

40
40

40

50

50

50

50

50

60

60

60

70

70

80

80

90

90

100

100

n

n
1

2

Distortion d(QG)

Figure 5.3: The level lines of a two-node configuration distortion, d(QG). The
nodes are labeled 1 and 2, and number of bits stored in each are n1 and n2

respectively. The availabilities are w1 = 0.7 and w2 = 0.3. The message is 100
bits long.

5.5 Summary

This Chapter presented an information-theoretic approach to improving multia-
gent platform reliability. We show how, by using coding and partitioning, it is
possible to achieve reliable data storage even when the platform itself is unreli-
able. We define a criterion for a feasible code that is used to choose the coding
and partitioning. We show how the writers can then make first partitions, and
then delegate their neighbours with sub-partitions. These information-theoretic
arguments come from the vast information and coding theory literature but have
so far received comparatively little attention in multiagent platforms despite po-
tential gains. Multi-agent platforms that employ this (or similar) coding types
can be made reliable enough to use in adverse, chaotic environments.

The exposition in this text assumes that the availability estimates are known

5.5. SUMMARY 107

for all the nodes. In practice the estimates may be costly to obtain. It may be
acceptable that a lower bound on the availability estimates is substituted. These
can be obtained at comparatively little cost, by sub-dividing the nodes based
upon the proximity to the writer, and then considering only a subset of possi-
ble ways that a node can be accessible to the writer. Apart from yielding the
availability estimates, the sub-division can give rise to a distributed control algo-
rithm, whereby once determined, the partition is allowed to dynamically change
to compensate for changes in the network connectivity. This algorithm and its
properties are recommended for further work.

Chapter 6

Core Based Tree (CBT)

6.1 Introduction

A method for a fully distributed solution to the SDP for a MASs under localized
radio-based communication is described here. Informally, the SDP is the task
of finding, between a set of producers and consumers of services those which
are compatible, i.e. have an overlapping set of product (for the producers) and
consumption (for the consumers) summaries.

The MASs considered here are established by connecting computational re-
sources with a commercial, off-the-shelf wireless network. It is assumed for sim-
plicity that each such resource (hereafter a node) hosts only a single software
module (an agent), that computes a partial result1 of a computational task. The
partial result can be communicated to agents at other nodes. The agents must
exchange the partial results in order to complete the entire task. The network
used to connect the nodes is established by radio-based network devices (e.g. con-
forming to IEEE 802.11). Due to the interference and the path loss2 of radio
networks, any given node is only able to communicate with the few nodes that
are geographically close to it. The only way to contact the nodes which are not
reachable directly is by hopping through a sequence of intermediate nodes, where
each adjacent pair of nodes are directly reachable. Each path taken between a
pair of such nodes is called a hop. For a given node in the network, the number of
the close by nodes (neighbours) is typically far less than the number of all nodes
reachable through multiple hops. If the nodes can change their positions over
time, a mobile network is obtained. Such a network is usually called a MANET.

1A partial result is an object constituting a part of a distributed computation. A distributed
computation is an interleaving of the productions of partial results by nodes and the appropriate
delivery of the partial results between nodes.

2The property of radio signals that their intensity decreases with the distance to the source.
As the signal intensity decreases, the Signal-to-Noise Ratio (SNR) worsens, thus making suc-
cessful signal detection more difficult with the increase in the distance from the source. The
result is that radio-based connections exibit strong locality.

109

110 CHAPTER 6. Core Based Tree (CBT)

The MANETs have little initial structure. Typically, the only information a
node has from the MANET itself is the set of its neighbours. It is assumed here
that a node in the MANET maintains a current view of the neighbour set by some
sensing method. Knowing the neighbours is of course not enough to guarantee
the meaningful communication of partial results between agents. This is because:

1. The agents that need to communicate can be at a distance greater than one
network hop so they cannot directly confer. This is due to the MANET
properties and the decaying power of the radio transmission with distance.

2. The agents that need to communicate must determine which partial re-
sults should be communicated to which agent, knowing only the summaries,
i.e. rough descriptions of the partial results that are being communicated
through the network. This is because the network addresses, which en-
code the node’s position within a network, have a short life-span due to the
changes in the MANET connectivity.

The latter issue, called the Service Discovery Problem (SDP), is in the focus
of this Chapter. Further in the Chapter the special properties of the SDP in the
MANET environment are described.

Service Discovery

Service discovery is the name for a collection of techniques by which it is deter-
mined at runtime which nodes of a distributed system need to communicate. The
service discovery precedes any actual data exchange. There usually exist sets of
nodes that produce data objects (producers) and another node that consumes
the same data object (consumers). The goal of service discovery is to convert
the specification of the data object (i.e. a service description) provided by the
consumer into a handle (i.e. identifier) by which the producer of the data can be
contacted. Service discovery is one of the resolution mechanisms in routine used
in the Transport Control Protocol (TCP)-based networks. The Domain Name
Service (DNS) is an example of such a mechanism.

Example 11 (DNS) The DNS, i.e. the naming service used on the Internet is
a rudimentary service discovery mechanism. It converts the information need, in
form of an URL of an object into an Internet Protocol (IP) address that can be
used to contact the object provider.

Every time before a consumer accesses an URL (such as: www.google.com), it
must address a DNS instance with an inquiry for an IP address. In this particular
case (see Figure 6.1), a set of equivalent IPs is returned, with auxiliary data some
consumers may find useful. After having obtained the IP number, the consumer
can use it to address the producer directly by its network address.

Thus, before actual communication occurs, an additional round of inquiries
must take place, in which a consumer determines which producer can tend to its

6.1. INTRODUCTION 111

; <<>> DiG 9.3.1 <<>> www.google.com

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30373

;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 6, ADDITIONAL: 6

;; QUESTION SECTION:

;www.google.com. IN A

;; ANSWER SECTION:

www.google.com. 620 IN CNAME www.l.google.com.

www.l.google.com. 156 IN A 66.102.9.99

www.l.google.com. 156 IN A 66.102.9.104

www.l.google.com. 156 IN A 66.102.9.147

;; AUTHORITY SECTION:

l.google.com. 63598 IN NS g.l.google.com.

l.google.com. 63598 IN NS a.l.google.com.

l.google.com. 63598 IN NS b.l.google.com.

l.google.com. 63598 IN NS c.l.google.com.

l.google.com. 63598 IN NS d.l.google.com.

l.google.com. 63598 IN NS e.l.google.com.

;; ADDITIONAL SECTION:

a.l.google.com. 63875 IN A 216.239.53.9

b.l.google.com. 63875 IN A 64.233.179.9

c.l.google.com. 63875 IN A 64.233.161.9

d.l.google.com. 63875 IN A 64.233.183.9

e.l.google.com. 63875 IN A 66.102.11.9

g.l.google.com. 63875 IN A 64.233.167.9

;; Query time: 5 msec

;; SERVER: 130.161.180.1#53(130.161.180.1)

;; WHEN: Thu Feb 2 15:58:32 2006

;; MSG SIZE rcvd: 292

Figure 6.1: The standard response of a DNS server, when queried for a server
named www.google.com.

112 CHAPTER 6. Core Based Tree (CBT)

information need. The service that generalizes service discovery is named Yellow
Page Service (YPS). The YPS translates service descriptions (infomation needs)
into Unique Identifiers (UIDs) of the receivers that offer the service matching this
need.

We describe in brief two typical methods for building the YPSs, the Centralized
YPS and Broadcast YPS. We then describe in brief an improved schema that we
call the Minimally Distributed YPS, which relies on the environment model as
built in this text.

Centralized YPS

A fixed subset of nodes is chosen to keep and update the service descriptions. The
centralized YPS is the solution with the simplest structure of all. As the YPS
delivers UIDs, representing the network-layer address of the receiver, stale UID
often means that by the time YPS is finished resolving, it is impossible to refer to
the receiver as its position in the network is changed. This problem is pronounced
in MANETs, where nodes can move about freely. Even when YPS is possible, it
is still required for each client to have a network address of the YPS to be able
to ask it for service.

Thus, introducing an indirection via YPS solves the information need based
matching, but does not solve the tight coupling for the YPSs themselves. More-
over, the YPS node becomes a single point of failure. The outage of the YPS
server means that its data must be rebuilt again elsewhere.

Broadcast YPS

Each node advertises its services to a subset of nodes that are closest with respect
to some distance measure (such as network distance). A network-wide policy on
further dissemination of service advertisements is adopted, by which is determined
how the service descriptions are propagated.

The simplest distribution policy is that where all the service descriptions are
propagated to all the nodes in the network. While this policy removes the single
point of failure, it introduces the problem of the communication overhead and
housekeeping of all the service descriptions across the entire network.

Minimally Distributed YPS

The minimally distributed YPS uses the smallest possible number of links for the
service advertisements. This requires that a spanning tree structure is constructed
and maintained throughout the network lifetime. For this purpose, the construc-
tion and maintenance of a spanning-tree strucure named CBT is presented.

6.1. INTRODUCTION 113

Use Cases

The MANET scenario arises often, in practice and in the scientific studies alike.
Diverse examples are given, that either use MANET or a network with similar
properties for the communication. In these examples no fixed communication
infrastructure is assumed to exist.

Sensor Networks. The sensor networks are formed by small measurement
devices. These devices are equipped with sensors that measure various physical
quantities (e.g. temperature, pressure, humidity), and a radio transceiver that can
communicate and receive the measurements. The devices are “liberally sprinkled”
in a target area. The MANET is used for communication between the nodes. The
SDP in sensor network is trivial, and consists of forwarding the data from all the
sensors to a single collection point.

Systems-on-Chip (SoC). The SoC are complex integrated circuits that com-
bine a possibly large number of diverse circuits on a single silicon die. In such
a system, it has been determined that simple bus-type connections yield perfor-
mance bottlenecks and the networking approach is suggested. There is consid-
erable interest in the research community for building a local interconnect for
SoCs. The interconnect has MANET locality properties, although the physical
data transfer uses metal layers rather than radio. The SDP for SoC consists of
finding data paths.

Rescue Operations. The use of information technology in rescue operations
has received increased interest in recent years. The participants in the near fu-
ture rescue operations may be equipped with portable computers (e.g. PDAs)
that will be used for critical data exchange, and to coordinate action. Such de-
vices will expand the role of radio stations (e.g. walkie-talkie) from exchanging
voice messages to full integration with the supporting information systems. It is
reasonable to expect that such PDAs will be able to exchange data through radio
links between themselves. These devices need not rely on the existing communi-
cation infrastructure. Rather, the devices need to be able to set up a MANET
and cooperate in message delivery. The SDP for rescue operations consists of
finding clusters of PDAs that need to communicate.

Contribution

The core contribution of this Chapter is in the new use of the structure known
as the Core Based Tree (CBT) for providing the dynamic service discovery struc-
ture. Further, the detailed account of the CBT construction and maintenance
algorithms, in the relaxed requirements context (i.e. allowing the appearance of
unicycles) is novel to the best of our knowledge. Finally, using the Z and CPN
frameworks to describe particular aspects of the algorithms (Z for describing the
state changes, and CPN for handling concurrency) is novel to a limited extent.
Since the state evolution of systems and concurrentcy handling is a recurring
topic in the analysis of algorithms, there exist equivalent formalisms, which have

114 CHAPTER 6. Core Based Tree (CBT)

been used in various contexts: for instance, CSP in [40], CPN in [69], and CSP
and Object-Z in [76].

The choice for CPN and Z stems from the straightforward way the presented
algorithms are implemented in the used development platform, the COUGAAR
framework [10].

Related Work

Papers describing related work can be roughly divided into three classes:

1. Papers that discuss service discovery in MANETs;

2. Papers about event notification (i.e. delivery of “event” objects to interested
parties in a distributed setup); and

3. Papers about CBT in the context of Internet multicasting.

As reported in [65], the service discovery in MANET is organized as being
either service coordinator based where designated nodes collect the service sum-
maries (e.g. Jini [55], or virtual backbone approach of Kozat and Tassiulas [45]);
or distributed query based, where service discovery requests are flooded through
the MANET with respect to some flooding scope parameter (e.g. the electrostatic
field based approach of [49], or efficient flooding of [67]); or hybrid (e.g. [73]),
combining the former two approaches.

Our approach to SDP differs sharply from those given above as it avoids service
coordinators as well as query flooding, reasons following.

First, the existence of service coordinators does not really solve the SDP for
MANET, since the real issue is finding an efficient way to distribute the service
descriptions, rather than the coordinator election. Even when coordinators are
present, the problem of connecting them remains and is of the same type as the
original SDP, although fewer nodes participate.

Second, query flooding as a way to compensate for not knowing the target
position has scalability problems. However, it is the only way out as in MANET
it is not known where the service queries need to go. Instead of flooding, a minimal
structure is maintained that guarantees the participation of all the MANET nodes,
and define a policy for forwarding the service descriptions over it. To achieve this,
it is required that nodes in the CBT provide the descriptions of both the offered,
and the required services.

The event notification has been extensively studied in the context of publish-
subscribe middleware. Examples thereof are Gryphon [38] and Siena [17]. Con-
trary to our approach, these event notification systems are intended for use in a
fixed network and hence do not need to construct a structure for service descrip-
tion propagation. However, they contain useful ideas which served as starting
points in our work. These are the notions of service summaries and approximate
service matching, introduced in [17], and analyzed independently in [91]. Applica-
tions of the efficient summaries under reconfiguration of the distribution structure

6.2. PROBLEM DESCRIPTION 115

(analogous to topology changes in a MANET that is studied) was treated in [66]
which are also considered feasible for MANETs.

The CBT structure is described in [9]. In that paper it is used as a way
of space-efficient internet multicasting. Instead of building a multicast tree for
each multicast session, the seminal CBT paper proposes using a single tree for all
the sessions, thus simplifying the build up of the multicast infrastructure, at the
expense of some extra incurred traffic.

The CBT idea is used in the modified context (i.e. MANETs) to make a
distributed structure akin to a spanning tree, that is then used to guarantee
successful service discovery. Making and maintaining the CBT turns out to be
simple enough to be performed efficiently in a MANET. It represents a distributed
spanning tree construction with the requirements somewhat relaxed compared to
the original spanning tree problem formulation (Gallager et al. [34]).

6.2 Problem Description

Preliminaries

The basic type considered is called Node. It represents any system node. It is
introduced as an opaque type as its internal structure does not play a role in the
specification.

[Node]

The resource and network setup are described in terms of a family of graphs
Γ, each member consisting of nodes and the connections:

Γ : R→ P Node × (Node ↔ Node)

Each member of the family Γ is a graph represented by a pair (V : PNode,E :
Node ↔ Node). Each element of V stands for a node and (with a tolerable abuse
of notation) the co-located agent. E is a symmetric binary relation on V , and
represents the nodes that can directly communicate between each other (hence
the connections are always bi-directional). The family members of Γ are indexed
by time. For a real t , Γ(t) is the graph corresponding to the available nodes and
connections at time t . Hence, Γ describes the temporal evolution of the network.
Note that only a part of Γ can be retrieved at a given time t . This part consists
of all Γ(t ′) such that t ′ ≤ t . It is assumed that each node can detect other nodes
that it can directly communicate to. Call this the neighbours set.

N : Node → (R→ P Node)

Given a node v : Node, and some time point t : R, then Nv (t) is the set of
neighbours of v at time t . An obvious connection exists between N and Γ, such
that n : Node is only allowed to be a neighbour of v at time t if for Γ(t) = (V ,E)
it holds that (n, v) ∈ E .

116 CHAPTER 6. Core Based Tree (CBT)

Each agent specifies the type of partial results that it accepts from other
agents. Likewise it specifies the type of partial results that it produces for the
other agents. The partial results considered here are drawn from a set of all
constructible types, the dataspace:

[Dataspace]

Hence all partial results are of the form x ∈ Dataspace. A node gives a
description of all the partial results through predicates. Two predicate classes are
used per agent. One detailing the acceptable elements of the dataspace, the other
detailing the producible elements of the dataspace.

φc , φp : Node 7→ P Dataspace

Call the former the consumer summary, and call the latter the producer sum-
mary. For an agent v they are denoted as φc

v and φp
v respectively. For simplicity

it is assumed that they do not change. The element sets of the intersection and
union of two summaries φ1 and φ2, denoted as φ1 · φ2, and φ1 + φ2 respectively
define the sets:

φ1 · φ2 = φ1 ∩ φ2

φ1 + φ2 = φ1 ∪ φ2

A producer summary φp
v of a node v and a consumer summary φc

w of a node
w are compatible if φv · φw is a nonempty set.

Problem Formulation

Now the SDP can be defined:

Definition 9 (Service Discovery Problem) Let t ∈ R be a point in time. Let
there be given a set of nodes and a family Γ as described. Let the families φp and
φc be given. For each pair of nodes v and w such that φp

v and φc
w are compatible,

find a path in Γ(t) connecting v and w. Also notify v that w has been found, and
vice-versa.

By Definition 9, the SDP is a task continuously solved during the MANET
runtime. The solution of the SDP allows any agent v to query whether there
exists an agent w with a compatible service description. Once it is found, v can
address w to render the advertised service. In a MAS an agent typically needs
the rendition of the service rather than the contact with a particular agent by
name, hence the need for this lookup by service.

Relevance

Lookup by service is typically [85, 10] realized in MAS as some form of a database,
centralized for simplicity. This is a drawback in the MANET settings as reported

6.3. SOLUTION OUTLINE 117

in [49]: “Service discovery in [MANET] is challenging because of the absence
of any central intelligence in the network. Traditional solutions as used in the
Internet are hence not well suited for [MANET].”

The SDP is an important component in the functioning of any MAS platform.
It is a link between the distributed application running on a MAS, where agents
connect based on the compatibility of their service summaries, and the network
layer which is typically able to communicate messages between nodes identified
by name. In a MAS that relies on a fixed node and network infrastructure, SDP
can be solved to an acceptable level by database lookups [10]. In MANETs where
the fixed node and network infrastructure assumption must be removed, the way
to solve SDP becomes less obvious, although still crucial for the MAS operation.
This importance of having an efficient solution to SDP for the MAS deployed
on MANETs, without central coordination, is the main motivation for the work
described in this Chapter, and it is viewed as an enabler for a wide range of
MANET-based distributed applications.

The SDP as given in the Definition 9 is a compact formulation of a problem
that arises frequently in MASs. A typical MAS consists of agents that both
export services to the community and require services from other agents to work.
In this context, a service consists of delivering some objects from Dataspace from
the producer agent to the consumer agent. A consumer agent x that requires a
service s can contract any produced agent y which can provide s . The consumer
x does not care about which y is allocated to service s , as long as the service is
rendered. It is said that x performs a lookup by service. The need for the lookup
by service implies that a mapping must exist between service descriptions and the
agents that offer this service. By analogy with telephone directories, such mapping
is called the YPS (and is itself offered as a service). One approach of making the
YPS is providing a registry that contains all the services and has an up to date
mapping to the agents that implement them. The simplest form of the YPS
registry uses a centralized database to store the service descriptions. For a large
MAS a centralized database is a performance bottleneck and implementations
consider distributed YPS that ameliorate the issue. Depending on the way the
distribution is performed, the YPS servers may require some network traffic to
synchronize their local registries. It is also required that the registry locations are
known in advance. The database approach has a weakness when the underlying
network is a dynamic MANET. In a dynamic environment it is not obvious where
the YPS is to be hosted. The YPS locations are also out of reach for external
configuration.

6.3 Solution Outline

The solution is proposed of the SDP by using a fully distributed data structure
based on the Core Based Tree (CBT), and a detailed account is given how the
structure is made and maintained. Before the solution analysis, its informal out-

118 CHAPTER 6. Core Based Tree (CBT)

line is given to explain what is achieved in the detailed algorithm description.
The approach is in view of several requirements and assumptions as follows. Re-
quirements for the data structure:

1. Scalability. Must operate efficiently with respect to the number of nodes;

2. Simplicity. Must be able to include new nodes in the structure by consid-
ering locally available information only; and

3. Repairability: Must be easily repairable in face of changes in network con-
nectivity.

Assumptions:

1. Slowly changing environment. The CBT maintenance never terminates in
the classical sense, constantly adapting as the connectivity changes, with the
CBT property only partially fulfilled during adaptation. Frequent changes
increase the probability that the CBT algorithm needs to adapt the CBT.
Hence dynamics must be limited for the CBT properties to be fulfilled; and

2. Infrequent change in service summaries. Hence the change due to service
description forwarding is localized only to parts of the CBT. This facilitates
the CBT repair.

The CBT is used to provide a minimal communication structure offering full
connectivity. The CBT is built implicitly: the nodes that form the CBT keep only
a small amount of soft state that is used for local decision making. The CBT does
not need to be stored entirely at any one node. The minimality stems from the
scalability requirement, as the resulting structure must be easy to bookkeep, and
require low bandwidth to manage. A tree-like structure follows naturally from
these requirements.

The CBT is considered only as a structure for solving the SDP. The method is
unsuitable for communicating the content as the traffic volume over the structure
is not balanced. Thus using the CBT is proposed to solve the SDP, thereafter
using any routing method appropriate for ad-hoc networks for content communi-
cation.

Core Based Tree (CBT)

For the rest of the exposition, Γ is assumed to be a family of connected graphs.
Otherwise, assuming that for some t the Γ(t) is disconnected, the given solution
can be simply applied to all the connected components in turn. The solution is
then valid within these components only.

The CBT is a weakly-connected3 directed spanning tree over the set of nodes V
that induce the graph Γ(t) = (V ,E) for some t (see the Figure 6.2 for illustration;

3A graph is weakly-connected if it is directed and there exists a pair of nodes u and v for
which an oriented path exists either from u to v or v to u but not both.

6.3. SOLUTION OUTLINE 119

the formal definition of a CBT and its invariants is relegated until further in the
Chapter). A CBT is maximal in V if it includes all the nodes in V . It is also
possible to have a forest of non-maximal CBTs that exaust V but as will be shown
later, provided that Γ(t) is connected, they can be joined to form a maximal CBT.

76540123 a

��
??

??
??

76540123 b

xxrrrrrrrrr

76540123'&%$!"# c

76540123 d

77oooooooooo 76540123 e

ffLLLLLLLLL

76540123 f

OO

76540123 g

ffLLLLLLLLL

76540123 a

��
??

??
??

76540123 b

xxrrrrrrrrr

76540123'&%$!"# c

��

76540123 d

77oooooooooo 76540123'&%$!"# e

ffLLLLLLLLL

76540123'&%$!"# f

&&LLLLLLLLL

76540123'&%$!"# g

OO

Figure 6.2: A CBT (left) and an unicycle (right).

Moreover, each node from V has at most one outgoing edge (henceforth: an
uplink). The maximum outdegree of the CBT is one. It will be shown (see
Lemma 3) that if these conditions hold there always exists an unique node whose
outdegree is zero. This node is called the core. Such a CBT has always #E =
#V −1 edges, and checking that this condition holds verifies whether a structure
is a CBT or not. Call this the edge count condition. It is also straightforward
to prove that, when the MANET is connected, the edge count condition ensures
that the underlying bidirectional graph is a tree.

The edge count condition entails much bookkeeping to discover and maintain
at runtime, as the only way to check whether it holds is to execute a distributed
edge count. But this is difficult to do when the connections are time-variable,
as concurrent change in the connectivity invalidates an ongoing edge count. To
simplify matters, the edge count condition is relaxed. Instead of requiring that
the CBT has #V − 1 edges at all times, it is required that it is connected and
that each node in V has at most one uplink. It is easy to show that the class
of admissible graphs increases only slightly and that it now includes, beside all
CBTs, also the graphs that contain exactly one cycle. Call these unicycle graphs.
It turns out that admitting unicycles to CBT simplifies the CBT formation, that
it does not prevent the solution to SDP and that it is easy to repair. Figure 6.2
illustrates the CBT and the unicycle. Nodes are represented as circles, and the
uplinks are arrows extending between pairs of nodes. On the CBT, the node
emphasized with double frame is the unique core node c. On the unicycle, the
emphasized nodes form the unique cycle (c, f , g, e).

120 CHAPTER 6. Core Based Tree (CBT)

CBT Construction and Maintenance

There are two main classes of events at runtime, where the CBT structure needs
to be adjusted.

1. On initialization. Initially, the nodes of V are partitioned into V non-
maximal CBTs, with only a single node each. A sequence of join operations
is performed on the non-maximal CBTs until a maximal CBT is obtained.

2. On change. Whenever the connectivity of Γ(t) changes and as a consequence
the CBT conditions are violated, the resulting structure must be repaired.
This happens when the connectivity structure in Γ(t ′) changes with respect
to Γ(t) for some t ′ > t .

The CBT instantiation boils down to adopting an uplink for all the nodes in
V , such that the CBT obtained at the end is maximal. This process exibits good
structure, in the sense that the maximal CBT can be obtained by repeatedly
joining smaller CBT. Hence our approach is to find and join in a distributed
manner pairs of non-maximal CBTs. The join operation thus needs to perform
the following:

1. Find two CBTs (say G and H) such that there exist edges in Γ(t) that start
at a vertex of G and end at a vertex of H (or vice-versa).

2. Denote the set of such edges as EGH . From EGH adopt exactly one edge
(say eGH) to connect G and H .

3. Adjust the edges in the union of G and H with eGH added, and the position
of the core nodes such that the obtained graph is a CBT again.

The join is divided into four distinct phases. Each phase represents a transac-
tion that partially adjusts the CBT. As usual, the operations within a transaction
are applied atomically to the CBT when a transaction is committed. Conversely,
the operations within a transaction are not applied at all if the transaction is
aborted. Within the bounds of a single transaction, the participating nodes are
allowed to temporarily break the CBT invariants where appropriate. However,
upon transaction commit, the resulting structure must fulfill the CBT invariants.
The join unfolds in several phases. In Figure 6.3, the phases are named Meet,
Vote, Switch and Yield and are described below. The dotted line on each il-
lustration represents the CBT boundary. At Meet (top), two nodes belonging to
different CBTs come into contact and exchange identity information. At Vote the
same two nodes conduct a vote to determine which of the two CBT cores must
yield its function. If the core of the yielding CBT is away from the node, a series
of Switches are applied until the core node appears at the join. At Yield, the core
node yields its function by adopting an uplink that leads to another component.

1. Meet. This phase is initiated between every pair of nodes that come to
contact. It is used to set the communication up, and determine which node

6.3. SOLUTION OUTLINE 121

is the leader for the join. The meet phase is used to prevent crosstalk
(cf. [69], page 45), i.e. a situation in which both nodes either accept, or
refuse to be the leader ad infinitum.

2. Vote. In this phase, the nodes take a vote to determine which of the cores
of the two CBT has to yield. It is also used to determine whether a join is
feasible. If yes, the control is passed on to the next phase. If no (such as
when the nodes belong to the same CBT), the join is cancelled.

3. Switch. The node that executes a yield must be the core node. In case that,
after a vote, the yielding node is not also the core, a sequence of Switch
operations is initiated. The goal of each switch is to move the core node
from its position to a node. A sequence of such switches is used to move
the core of the yielding component to the join site.

4. Yield. Now that the core node is at the join site, it is enough that it adopts
an uplink towards the far end of the join site. This implicitly removes the
role of the core from that node. It can be shown that the resulting graph
is a CBT, as required.

Cycle Removal

Several concurrent join transactions may unfold at any given time. As a conse-
quence, parallel joins can occur. In Figure 6.4, the cores of the two components
have each decided to yield (left). The yield directions are given by the dotted
arrows. As a result, the obtained structure after the join (right) is an unicycle
instead of a CBT. While parallel joins do affect the CBT structure (in fact, they
destroy it), the resulting graph still provides full connectivity (hence supporting
the solution to SDP), and is easily repaired, by removing a single extra link. For
efficiency reasons the link removal is relegated to the point where the presence
of a core node in a component is essential, i.e. to immediately before the Switch
phase. This means that a graph remains an unicycle until it is required to join
with another.

For the cycle detection to work, it is enough that the cycle is detected at
any single node which forms a part of the unique cycle. How this is done will
become obvious in the detailed discussion of the cycle removal. Once a node
(say v) obtains a proof that a cycle exists it can take action to remove the cycle.
For instance it may remove the cycle by dropping its current uplink. The node
thus becomes the new core and may resume the usual operations. However, this
approach has problems when concurrency comes into play. Multiple nodes may
discover that they are a part of the cycle. If all of them are allowed to assume
the role of the core, the graph would become unnecessarily fragmented, as more
links would be removed than the minimum of one. This is not the best possibility
although it is not catastrophic, as each of the fragments would itself form a CBT.

122 CHAPTER 6. Core Based Tree (CBT)

�� �� �� ��
//76540123'&%$!"# 76540123oo o/ o/ o/ Meet 76540123 ///o/o/o 76540123'&%$!"# oo
OO OO OO OO

�� �� �� ��
//76540123'&%$!"# 76540123oo o/ o/ o/ ks Vote +376540123 ///o/o/o 76540123'&%$!"# oo
OO OO OO OO

�� �� �� ��
//76540123'&%$!"# 76540123oo o/ o/ o/ ksSwitch +376540123'&%$!"# 76540123oo o/ o/ o/ oo
OO OO OO OO

�� �� �� ��
//76540123'&%$!"# 76540123oo o/ o/ o/ 76540123

Yield
oo 76540123oo o/ o/ o/ oo

OO OO OO OO

Figure 6.3: The phases of the Join operation.

76540123'&%$!"#

��

76540123oo

76540123 //76540123'&%$!"#

OO
76540123

��

76540123oo

76540123 //76540123

OO

Figure 6.4: A parallel join.

An improved approach is to run a leader election algorithm in a ring. Leader
election in a ring has a known solution ([51], page 475 gives several solutions). It
is known from v that the ring (i.e. the cycle) is implicitly available by following a
sequence of uplinks from the node that detected it. The node v can then initiate
a leader election algorithm which is known to terminate eventually either with a
success (whereby the elected leader removes its uplink and becomes the core), or
with a failure (whereby the leader election is prevented by the cycle destruction;

6.4. ALGORITHM DESCRIPTION 123

but the cycle destruction is precisely what is wanted in the first place, so this
outcome also wins).

SDP Strategy Computation

In this section it is assumed that at any given t , the CBT has been constructed
on top of Γ(t). Hence, for each node, the uplink is known if it exists.

upl : Node × R 7→ Node

coreof : Node × R 7→ Node

∀ t : R ∃1 v : Node • (v , t) 6∈ dom(upl)

∀ t : R • u = coreof (n, t)⇒ ∃n : N • u ∈ upl(, t)
n ∧ u 6∈ dom upl(, t)

Conversely, for a given node the set of downlinks is also defined. That is the
set of the nodes that have it as an uplink.

dnl : Node × R 7→ PNode

∀ t : R, v : Node,W : P Node •
(v , t) 7→W ∈ upl ⇒ ∀w ∈W • dnl(w , t) = v

For simplicity the changes in the CBT due to changes in Γ(t) are not con-
sidered. Thus the time indices in upl and dnl are dropped for some fixed time
point t . Assume that the nodes have the families φp and φc well defined. As a
shorthand φx will be used, where x ∈ {p, c} ranges over both summary types. As
the CBT is hierarchical it is possible to aggregate the summaries as follows. The
summary distribution unfolds in two interleaved phases. The first phase is the
convergence, consisting of messages which get sent towards the CBT core. The
second phase is the divergence, consisting of messages flowing from the core to
the leaf nodes.

In the convergence phase, the leaf nodes forward the two summaries to the
corresponding uplink. The non-leaf nodes collect summaries from their downlinks
and make an aggregate with their own respective summaries by first computing
an union and thereafter simplifying the resulting summaries where appropriate.
The result of these operations are forwarded on to the CBT core.

In the divergence phase, a node examines the received summaries for compat-
ibility. Compatible summaries have a non-empty intersection. Consider a node v
for which two different nodes are downlinks as follows: w , u ∈ dnl(v),w 6= u. If
φp
wφc

u 6= ∅, then v produces φp
wφc

u and forward each to w and u. Similar matching
occurs for v and w to handle the case when v and w are compatible.

6.4 Algorithm Description

In this section, the CBT formation and the summary matching algorithms are
described in detail.

124 CHAPTER 6. Core Based Tree (CBT)

Preliminaries

Here it is assumed that the graph G = (V ,E) is a member of the family Γ, i.e.
there exists some t : R such that G = Γ(t). The label T is used when it is impor-
tant that the graph has a special property (i.e. be a tree, or CBT, or unicycle).
The standard terms for graphs are used throughout (see for instance [25]). First
it is specified what is meant by CBT and Unicycle. Thereafter a connection is
given between the two, also permitting the maintenance of a relatively weak set of
invariants for the CBT construction, provided that it is known how to remedy any
unwanted side effects when the CBT degenerates into an unicycle. The following
Proposition specifies the invariants of a CBT.

Proposition 5 (Core Based Tree Invariant) Let there be given a digraph4

T = (U ,H), with U the set of nodes, and H the set of edges on U . T is a
Core Based Tree (CBT) if the following hold in T:

1. The underlying5 graph is a tree.

2. Any node u ∈ U has at most one uplink in T.

Definition 10 (Unicycle) A unicycle is a weakly-connected digraph that has
exactly one cycle.

Lemma 2 (Directed Acyclic Graph (DAG) Endpoints) Any DAG has at
least one source node and at least one sink node.

Proof. Without loss of generality, consider only the sink nodes. Let the number
of nodes in the DAG be n and suppose the contrary, that no node is a sink. Then
for each node, there is at least one outgoing edge. Follow an outgoing edge to a
new node. Repeat the procedure n + 1-times to obtain a path of length n + 1.
As there are n nodes, by Dirichlet principle there is a node that has been visited
twice. Thus a loop exists, and the graph is not a DAG, a contradiction. Use the
same argument to prove at least one source node exists. �

Lemma 3 A connected CBT has an unique core node.

Proof. Let the CBT consist of n nodes. The core node of an CBT must be a
sink. By Lemma 2, an CBT has at least one sink. As the CBT is connected, there
exist n − 1 uplinks. Map each uplink to the node it emanates from. Neither of
these n−1 nodes is a sink as it has an emanating uplink. Then the only remaining
node must be a sink and is therefore the unique core. �

Proposition 6 (Similarity between CBT and Unicycle) Let T = (U ,H)
be a weakly-connected digraph. Let for each u ∈ U be #upl(u) ≤ 1. Then U is
either a CBT or a unicycle.

4A directed graph. In a digraph the edges have a beginning and an ending node.
5For a directed graph, the underlying graph is its undirected version, i.e. the same graph

with the edge directions dropped.

6.4. ALGORITHM DESCRIPTION 125

From the Proposition 6 it is seen that the properties of T that the CBT
algorithm must take care of are:

1. Ensure T is weakly-connected;

2. Ensure that for each u ∈ U , #upl(u) ≤ 1; and

3. Ensure that there exists at least one u ∈ U that can locally decide whether
T is a CBT or a unicycle.

The Meet Protocol

The meet protocol is first executed when node neighbourhood changes. Before any
message exchange can occur between a pair of new neighbours, the conversation
initiator must be established. This prevents the occurrence of a synchronization
problem known as crosstalk, whereby both nodes either take the initiative or
both nodes wait for the other to start. In Figure 6.5, the PN that realizes the
Meet with crosstalk detection is shown6. The place and transition abbreviations
are as follows: U : Undetermined (The state of the agent is undetermined: it
is not yet known whether the node must assume the role of the Client or the
Server); sr : Send Request; PA: Pending Answer; RR: Received Request; arc:
Accept Role Client; rc: Role Conflict; CR: Conflicted roles mean that there is a
(temporary) conflict between roles of A and B); vc: vote for client – this agent
has decided to become a client; vs : vote for server – this agent has decided to
become a server; PAC : Peer Accepted Client – this agent has been notified that
its peer has accepted to become a client. Thus becoming the server is safe. apc:
Acknowledge Peer as Client – acknowledge that the peer agent assumed the role
of a Client in the interaction; RC : Role Client – the agent has accepted the role
of a client; RS : Role Server – the agent has accepted the role of a server.

As the Figure 6.5 shows the interaction of two agents, the places and transi-
tions in this diagram and onwards are annotated with a lower index A or B , to
emphasize the agent to which they belong. The indices will be dropped in the
later CPN figures if the distinction is not relevant or is handled in another way7.
Further, throughout the diagrams, the same labels are used for one and the same
place. Hence, the given CPN fragments can be attached together to form the
complete CPN by overlapping all the places bearing identical names.

Theorem 6 (Crosstalk Detection) Let Agents A and B execute the Meet pro-
tocol as given in the network Σ6.5 in Figure 6.5. The following holds:

Σ6.5 ⊢ UA UB →֒ (RCA ¬ RSA ¬ RCB RSB) ∨ (¬ RCA RSA RCB ¬ RSB). (6.1)

6Refer to Chapter 2 for the details of the CPN notation.
7This distinction can also be handled by means of folding.

126 CHAPTER 6. Core Based Tree (CBT)

76540123• UA

��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

76540123• UB

��

��
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

srA

��
++WW srB

��
ssgg

76540123
PAA

��

��
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

76540123
RRA

•

__????????????

wwoooooooooooooooooooo

����
��

��
��

��
��

76540123
RRB

•

??������������

��
??

??
??

??
??

??

''OOOOOOOOOOOOOOOOOOOO 76540123
PAB

��

��
arcA

��
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

++WW rcA

��

rcB

��

arcB

ssgg

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

76540123CRA

��
??

??
??

??
??

??

��

76540123PACA

��

76540123PACB

��

76540123CRB

������
��

��
��

��
��

vcA

��

vsA

��

apcA

����
��

��
��

��
��

apcB

��
??

??
??

??
??

??
vsB

��

vcB

��76540123RCA
76540123RSA

76540123RSB
76540123RCB

Figure 6.5: The Petri Net diagram of the Meet protocol between two agents, A
and B .

Proof. The protocol unfolds until a decision about the role assignment has been
reached. We first inspect the proof graph of finite length, given in Figure 6.6.
The proof graph shows the causes relations that hold between the states of the
CPN from the Figure 6.6. As the given CPN is symmetrical with respect to the
permutation of agents A and B , we need to consider only one of the possible two
first transitions. That is, in the Figure, only the firing of the transition srB is
considered, as the case in which srA occurs gives the same proof graph, but with
the agent names A and B interchanged.

Knowing this, the following reasoning leads to the proof of Equation (6.1).
The derivation steps use the basic CPN triggering rules, which follow immediately
from Σ6.5. The symmetry of Σ6.5 is used throughout.

6.4. ALGORITHM DESCRIPTION 127

UA UB
� � // UA RRA PAB� w

))TTTTTTTTTTTTT
� � // RRB PAB RRA PAA

� � // CRA CRB� _

��

� t

''OOOOOOOOOO

RCA PACB PAB� v

))SSSSSSSSSSSS RCA CRB� _

��

CRA RCB� _

��

RCA RSB RSA RCB

Figure 6.6: The crosstalk detection proof graph in the Meet protocol, for the
network Σ6.5.

First note that due to the CPN activation rules and the sequence of transitions
leading from UA to RCA and RSA, the following holds:

Σ6.5 ⊢ UA + PAA + CRA + RCA + RSA = 1⇒ RCA + RSA ≤ 1. (6.2)

The right-hand side of the rule states the mutual exclusion of the client and server
states of A. By symmetry, the analogous claim holds for the B -part of Σ6.5:

Σ6.5 ⊢ RCB + RSB ≤ 1. (6.3)

Consider now the state in which Σ6.5 ⊢ RCA holds. There are two ways this might
have happened, either via arcA, or via vcA. Therefore the following holds:

Σ6.5 ⊢ RCA ⇒ (PACB + RSB = 1) ∨ (UB + PAB + CRB + RSB = 1).

The second part of the right hand side due to the assumed consensus between
vcA and vsB , which is externally ensured through voting. Assuming progress on
all transitions, eventually either PACB = 0, or UB + PAB + CRB = 0, yielding in
both cases:

Σ6.5 ⊢ RCA ⇒ RSB = 1⇔ 0 ≤ RCA ≤ RSB ≤ 1. (6.4)

Substituting from here RCA instead of RSB into Equation (6.3), we obtain:

Σ6.5 ⊢ RCA + RCB ≤ 1, (6.5)

proving mutual exclusion of the decisions in which both agents decide to be clients.
Further, from adding Equation (6.2) and Equation (6.3), and taking into account
Equation (6.5), one obtains

Σ6.5 ⊢ RCA + RCB + RSA + RSB ≤ 1 + RSA + RSB ≤ 2, (6.6)

from where we get:

Σ6.5 ⊢ RSA + RSB ≤ 1, (6.7)

128 CHAPTER 6. Core Based Tree (CBT)

representing the mutex condition for the server decision for both agents. Finally
we have:

Σ6.5 ⊢ RSA+RSB ≤ 1 ∧ RCA + RCB ≤ 1

⇒(RCA ¬ RSA ¬ RCB RSB) ∨ (¬ RCA RSA RCB ¬ RSB),
(6.8)

thus proving the claim of Theorem 6. �

The Vote Protocol

The Vote protocol determines for a pair of nodes which one will be required to
yield. The node that loses the vote is required to notify the core of its correspond-
ing component that it must be disbanded i.e. that it must yield its functions to
another (Figure 6.7). The vote requires both nodes in the pair to agree on a value

76540123• RS

��

76540123• RC

��
//

��

76540123
C

//

������
��

��
��

76540123 A

������
��

��
��

76540123 B

����
��

��
��

76540123 D

�� ��
??

??
??

??

q̄ q

��

q̄

��

q

76540123YRA
76540123YRB

Figure 6.7: The Vote protocol.

of some predicate, shown as q in the Σ6.7. As the outcome of a vote, only one of
the nodes may start the yield request. Hence, only one of the two yield requests
(shown in Figure 6.7 as YRA and YRB) may be activated.

Theorem 7 (Vote) Let there be given a PN as in Σ6.7. Then the following
holds:

Σ6.7 ⊢ YRA + YRB ≤ 1.

Proof. From Σ6.7, the following hold:

Σ6.7 ⊢ q ⇒ YRB = 0 ∧ RS + A + YRA = 1

Σ6.7 ⊢ q̄ ⇒ YRA = 0 ∧ RC + D + YRB = 1,

6.4. ALGORITHM DESCRIPTION 129

since q = true implies that the transition leading to YRB never executes, and that
the transition sequence leading to YRA must occur eventually (and vice-versa, for
q = false). Hence, first:

Σ6.7 ⊢ q ⇒ YRB = 0 ∧ RS + A + YRA = 1
[RS ≤ 1 ∧ A ≤ 1]

Σ6.7 ⊢ q ⇒ YRB = 0 ∧ YRA ≤ 1

Σ6.7 ⊢ q ⇒ YRA + YRB ≤ 1.

Thereafter, similarly:

Σ6.7 ⊢ q̄ ⇒ YRA = 0 ∧ RS + C + D + YRB = 1

[RC ≤ 1 ∧ C ≤ 1 ∧ D ≤ 1]Σ6.7 ⊢ q̄ ⇒ YRB = 0 ∧ YRA ≤ 1

Σ6.7 ⊢ q̄ ⇒ YRA + YRB ≤ 1.

Finally, collecting the two conclusions:

Σ6.7 ⊢ q ⇒ YRA + YRB ≤ 1

Σ6.7 ⊢ q̄ ⇒ YRA + YRB ≤ 1

[(ϕ⇒ µ ∧ ϕ̄⇒ µ)⇒ µ]Σ6.7 ⊢ YRA + YRB ≤ 1.

Also note that Σ6.7 ⊢ YRA+YRB = 1 →֒ RC = 0 ∧ RS = 0 assumes progress,
i.e. it is assumed the said transition eventually occurs. �

The Switch Protocol

In this section, claims are made about the environment in which the nodes (and
the co-located agents) operate, as well as the internal soft states of the nodes. To
achieve this, all the nodes must be considered at once. This is achieved by folding
(see [69]) all the local CPNs into one diagram, rather than considering the local
CPNs, as follows. If for some node n its internal place Q has a token t (denoted
as Q .t at n), that token can be folded to a pair (n, t) so that Q .(n, t) can be
written to denote the same fact. The discussion of folding is left at that for the
purpose of this Chapter as more details can be obtained from [69].

In the switch protocol, two nodes that did not have connection to each other,
nor it is immediately possible to figure out whether they belong to the same
component, need to agree which node adopts a new uplink to the other one. This
is called a yield. Only a core can yield, as only to the core can a new uplink
be added. If a yield is requested from a non-core node, then the function of the
core must first be moved to it, before the yield becomes possible. The motion
is realized in a sequence of switches (see Figure 6.3 for a reminder). The switch
protocol is divided for simplicity into two parts, called the top and the bottom half
(see Figure 6.8 and Figure 6.9 respectively). The top half is used to propagate

130 CHAPTER 6. Core Based Tree (CBT)

(n,y)

��76540123
RQ

(n,y)

��76540123
B

•
(n,z)

//

88

(n,y)

��

(n,y)
oo

76540123
L

•
(n,y)

oo

(n,t)
//

(u,n)

rr

(u,n)
oo

76540123
A

(n,y)

wwoooooooooooooooooooo

(n,y)

��

(n,y)

''OOOOOOOOOOOOOOOOOOOO 76540123

(u,n)

OO

(n,y)

��

oo //76540123
D

•
(n,y)

//

(n,y)

��

76540123
U

•
(n,y)

oo oo
(n,u)

//
•

(n,u)

ff

(n,u)

��

(u,n)

OO

76540123 C 76540123 Y 76540123NC

Figure 6.8: Top half of the Switch protocol.

a yield request to the core, and to initiate switches in the appropriate sequence.
The bottom half is concerned with the concurrent execution of a single switch.

Before considering the protocol details, it is in order to explain the motivation
of the protocol. The switch protocol is used to connect two CBTs into a single
CBT. To preserve the CBT invariant of Proposition 5, one of the two core nodes
must yield its function to the other. This can only happen upon a join, and as the
yield function can only be performed by a core node, it follows that if a non-core
node is selected to yield, it first has to become core and only then can it yield.
The non-core node can issue a request to its uplink to move the core functionality
closer (in number of hops through the CBT). If its uplink is a non-core too, it
must propagate the query to its uplink until the core is eventually reached. When
the core is reached, it decides locally which of the requests is it going to honor,
and switches to its downlink that propagated the honored request. Thereby the
roles of the downlink and the uplink are exchanged and the core effectively moves.

It must be proven that in the switch protocol, any request for a yield is even-
tually followed by a yield. Three cases need to be considered:

1. A core is requested a switch from a non-downlink (i.e. a non-connected

6.4. ALGORITHM DESCRIPTION 131

node);

2. A core is requested a switch from its downlink; or

3. A switch was requested from a non-core node.

The first is the base case, whereby when a switch is requested to a node which
is already the core, it can proceed to yield immediately. The second case is when
a single switch occurs, whereby the core is moved from its old place to that of
the honoured request’s downlink. The third case is when a non-core node is
requested to switch, either by a downlink, or by a new node. In the third case,
the task of the non-core node is to propagate the request further to the uplink.
Before formulating the final theorem, a three-part lemma about the switching is
formulated as follows.

Lemma 4 (Top Half Switch Protocol) Let the labels a, b and u denote nodes
in the set V of Γ(t) = (V ,E). Where appropriate, assume that u = upl(a).

1. Let W1 == ∀ q • ¬U .(a, q) ∧ ¬D .(a, b), W2 == ¬L.(a, b) ∧ ¬B .(a, b) and
W == W1 ∧W2 be the context. Consider the CPN of Σ6.8. Then:

W ⊢ RQ .(a, b) →֒ Y .(a, b).

2. Let W3 == D .(a, b) ∧ U .(b, a) ∧ ∀ q • ¬U .(a, q) and W4 == D .(a, b) ∧
U .(b, a) ∧ ∀ q • ¬U .(a, q). Let W == W3 ∧W4 be the context. Then:

W ⊢ RQ .(a, b) ∧ D .(a, b) ∧ U .(b, a) →֒ C .(a, b).

3. Let the context be: W == U .(a, u) ∧ ¬D .(a, b) ∧ ¬D .(b, a) ∧ ¬B .(a, b).
Then:

W ⊢ RQ .(a, b) →֒ NC .(a, u) ∧ B .(a, b) ∧ C .(u, a).

Proof. The lemma components are proven in turn.

1. Let a be the core node and b be a non-downlink. Hence the following
assumptions hold.

W1 == ∀ q • ¬U .(a, q) ∧ ¬D .(a, b).

For simplicity, it is further considered that

W2 == ¬L.(a, b) ∧ ¬B .(a, b)

and

W == W1 ∧W2

132 CHAPTER 6. Core Based Tree (CBT)

as the assumption. Considering Σ6.8, it is proven:

W ⊢ RQ .(a, b)

RQ .(a, b) ∧W →֒ A.(a, b) ∧W

[¬D .(a, b) ∧ A.(a, b) ∧ ¬U .(a, b)]RQ .(a, b) ∧W →֒ Y .(a, b) ∧W

W ⊢ RQ .(a, b) →֒ Y .(a, b).

2. Consider the case where b is the downlink of a, and a is the core. Then
assume:

W3 == D .(a, b) ∧ U .(b, a) ∧ ∀ q • ¬U .(a, q).

Again for simplicity:

W4 == ∀ q • ¬B .(a, q) ∧ ¬L.(a, q),

so that now the context is:

W == W3 ∧W4.

This yields:

W ⊢ RQ .(a, b) →֒ A.(a, b)

W ⊢ RQ .(a, b) →֒ C .(a, b)

W ⊢ RQ .(a, b) ∧ D .(a, b) ∧ U .(b, a) →֒ C .(a, b),

as required.

3. Consider the case where a and b are not connected, i.e. there is no (a, b) ∈ E ,
and a has an uplink u. The context is now:

W == U .(a, u) ∧ ¬D .(a, b) ∧ ¬D .(b, a) ∧ ¬B .(a, b).

Then:

W ⊢ RQ .(a, b) →֒ A.(a, b) ∧ B .(a, b)

[U .(a, u)]W ⊢ RQ .(a, b) →֒ NC .(a, u) ∧W .(u, a) ∧ B .(a, b)

W ⊢ RQ .(a, b) →֒ NC .(a, u) ∧ L.(u, a) ∧ RQ .(u, a) ∧ B .(a, b)

W ⊢ RQ .(a, b) →֒ NC .(a, u) ∧ RQ .(u, a) ∧ B .(a, b).

6.4. ALGORITHM DESCRIPTION 133

Thus, it is seen that a request from a non-downlink b to the node a leaves the
node a busy with processing the request from b (token B .(a, b)), and places it in
the waiting queue for the switch for u (token NC .(a, u)). Applying Item 2 it is
obtained:

W ⊢ RQ .(a, b) →֒ NC .(a, u) ∧ RQ .(u, a) ∧ B .(a, b)
[Item 2]

W ⊢ RQ .(a, b) →֒ NC .(a, u) ∧ B .(a, b) ∧ C .(u, a),

which is the condition for the entry to the bottom half of the switch protocol. �

Lemma 5 (Bottom Half Switch Protocol) Let the labels a, b and u denote
nodes in the set V of Γ(t) = (V ,E). Where appropriate, it is assumed that
u = upl(a). Then:

NC .(a, u) ∧ C .(u, a) ∧ B .(a, b) ∧ D .(u, a) ∧ U .(a, u) →֒
D .(a, u) ∧ U .(u, a).

Proof.

NC .(a, u) ∧ C .(u, a) ∧ B .(a, b) ∧ D .(u, a) ∧ U .(a, u) →֒
M .(T, u, a) ∧ N . 〈rq, u, a, (p, T)〉
∧ NC .(a, u) ∧ C .(u, a) ∧ B .(a, b) ∧ B .(u, a) ∧ D .(u, a) ∧ U .(a, u)

NC .(a, u) ∧ C .(u, a) ∧ B .(a, b) ∧ D .(u, a) ∧ U .(a, u) →֒
M .(T, u, a) ∧ [(x ∧ O . 〈rf, a, u, T〉) ∨ (x̄ ∧ P . 〈ac, a, u, T〉 ∧ Q .(T, a, u))]
∧ B .(a, b) ∧ B .(u, a) ∧ D .(u, a) ∧ U .(a, u).

The latter inference can be split depending on the value of the predicate x .
The only interesting case is when x is false (denoted by x̄), when nodes proceed
with the switch. Within the context where x̄ holds, it can be derived:

x̄ ⊢ NC .(a, u) ∧ C .(u, a) ∧ B .(a, b) ∧ D .(u, a) ∧ U .(a, u) →֒
S .(T, u, a) ∧ R. 〈rq, u,n, c, T〉
∧ Q .(T, a, u) ∧ B .(a, b) ∧ B .(u, a) ∧ D .(u, a) ∧ U .(a, u)

x̄ ⊢ NC .(a, u) ∧ C .(u, a) ∧ B .(a, b) ∧ D .(u, a) ∧ U .(a, u) →֒
D .(a, u) ∧ U .(u, a).

Considering that the predicate x is external (i.e. unrelated to the decision
process), consider only the context x̄ is considered. Considering only that context
(i.e. assuming that the switch is not externally invalidated) yields the claim. �

Equipped with Lemmata 4 and 5 the main switch theorem can be stated.

Theorem 8 (Switch Theorem) Let a and b be nodes of V , in Γ(t) = (V ,E)
such that (a, b) 6∈ E. Let u = upl(a). Then the following holds:

RQ .(a, b) →֒ Y .(a, b) ∧ B .(a, b).

134 CHAPTER 6. Core Based Tree (CBT)

Theorem 8 notes that in any CBT, and any two nodes a and b that do not
obviously belong to the same CBT, a request for a join is eventually followed by
activating the yield protocol.

Proof. By induction. The base case is Item 1 of Lemma 4. Adopting an
inductive hypothesis from Lemma 4 (items 2 and 3) and Lemma 5, it is seen that
this happens when u is also the core.

Now consider (with W as in item 3 of Lemma 4):

W ⊢ RQ .(a, b) →֒ RQ .(a, b) ∧ NC .(a.u) ∧ RQ .(u, a) ∧ B .(a, b)

W ⊢ RQ .(a, b) →֒ RQ .(a, b) ∧ NC .(a, u) ∧ C .(u, a) ∧ B .(a, b)
[L. 5]

RQ .(a, b) ∧W →֒ RQ .(a, b) ∧ D .(a, u) ∧ U .(u, a) ∧ B .(a, b)
[L., 4it . 1]

RQ .(a, b) ∧W →֒ Y .(a, b) ∧ D .(a, u) ∧ U .(u, a) ∧ B .(a, b)

W ⊢ RQ .(a, b) →֒ Y .(a, b) ∧ B .(a, b)

which was to be shown. The remainder of the join is handled by the Yield pro-
tocol. �

The Yield Protocol

The role of the Yield protocol is to attach two CBTs together.

Theorem 9 (Yield Protocol) Let Γ(t) = (V ,E) be a connectivity graph at t.
Consider the protocol given in Σ6.10, and two nodes a, b ∈ V . Then the following
holds.

R.(b, a) ∧ B .(b, a) ∧ CID .(a, Ca) ∧ CID .(b, Cb) ∧ Y .(b, a)
→֒ (Ca = Cb) ∨ [(Ca 6= Cb) ∧ U .(b, a) ∧ D .(a, b) ∧ CID .(b, Ca)].

Proof. Throughout the proof assume that in Σ6.10 the theorem:

Q .y →֒ A.(y, C) ∧ CID .(coreof (y), C)

holds, i.e. that the node y in question can obtain the component identifier from the
core of its component. This is justified later by Theorem 10. Adopt a shorthand:

W == R.(b, a) ∧ B .(b, a) ∧ CID .(a, Ca) ∧ CID .(b, Cb) ∧ Y .(b, a).

6.4. ALGORITHM DESCRIPTION 135

Then, from Σ6.10, the following holds:

W →֒ R.(b, a) ∧ B .(b, a) ∧ CID .(a, Ca) ∧ F .(b, a, T)
∧ E . 〈rq, b, a, (p, T, Cb)〉

W →֒ R.(b, a) ∧ B .(b, a) ∧ CID .(a, Ca) ∧ F .(b, a, T)
∧ P .(b, a, (p, T, Cb)) ∧ Q .a

W →֒ R.(b, a) ∧ B .(b, a) ∧ CID .(a, Ca) ∧ F .(b, a, T)
∧ P .(b, a, (p, T, Cb)) ∧ A.(a, Ca)

W →֒ R.(b, a) ∧ B .(b, a) ∧ CID .(a, Ca) ∧ F .(b, a, T)
∧ G.(a, b, T, p, Cb , Ca)

The predicate ϕ locally compares two component identifiers, in this case Ca

and Cb . It is true whenever the component identifiers are equal. Hence:

W →֒ R.(b, a) ∧ B .(b, a) ∧ CID .(a, Ca) ∧ F .(b, a, T)
∧ [(H . 〈rf, b, a, (p, T)〉 ∧ Ca = Cb)
∨ (I . 〈ac, b, a, (p, T)〉 ∧ Ca 6= Cb ∧ K .(a, b, T))].

Two cases are considered now, depending on the value of ϕ. First consider
the case when Ca = Cb , and afterwards when Ca 6= Cb :

Ca = Cb ⊢W →֒ R.(b, a) ∧ B .(b, a)
∧ CID .(a, Ca) ∧ F .(b, a, T) ∧ H . 〈rf, b, a, (p, T)〉

Ca = Cb ⊢W →֒ CID .(a, Ca)

W →֒ CID .(a, Ca) ∧ Ca = Cb .

Also:

Ca 6= Cb ⊢W →֒ R.(b, a) ∧ B .(b, a) ∧ CID .(a, Ca)
∧ F .(b, a, T) ∧ I . 〈ac, b, a, (p, T)〉 ∧ K .(a, b, T)

Ca 6= Cb ⊢W →֒ R.(b, a) ∧ B .(b, a) ∧ CID .(a, Ca)
∧ J .(b, a, T) ∧ K .(a, b, T) ∧ L. 〈rq, b, a, (c, T)〉

Ca 6= Cb ⊢W →֒ R.(b, a) ∧ B .(b, a) ∧ CID .(a, Ca) ∧ J .(b, a, T)
∧ M . 〈ac, a, b, (c, T)〉 ∧ D .(a, b) ∧ CID .(b, Ca)

Ca 6= Cb ⊢W →֒ CID .(a, Ca) ∧ CID .(b, Ca) ∧ D .(a, b) ∧ U .(b, a)

Ca 6= Cb ⊢W →֒ CID .(b, Ca) ∧ D .(a, b) ∧ U .(b, a)

W →֒ CID .(b, Ca) ∧ D .(a, b) ∧ U .(b, a) ∧ Ca 6= Cb .

136 CHAPTER 6. Core Based Tree (CBT)

Joining the above two inferences, the claim of the theorem is obtained.

W →֒ CID .(b, Ca) ∧ D .(a, b)
∧ U .(b, a) ∧ Ca 6= Cb

W →֒ CID .(a, Ca) ∧ Ca = Cb

W →֒ (Ca = Cb) ∨ [(Ca 6= Cb) ∧ U .(b, a)
∧ D .(a, b) ∧ CID .(b, Ca)]

�

Obtaining Component Identifier

Obtaining the component identifiers is used to determine whether two joining
nodes should commit the join transaction. It serves two purposes. First, checks for
the attempts of joins within the same component. Second, it implicitly removes
the cycle in the case of unicycle underlying graph. The Figure 6.11 shows the
component identifier algorithm. In Figure 6.10, this protocol component has
been compactly represented by the sequence (Q , cq,A) .

Theorem 10 (Component Identifier) Let Γ(t) = (V ,E) be a connectivity
graph at t. Let T = (V ,U) be a CBT. Let n and u be arbitrary elements
from V , such that upl(n) = u. Then the following holds:

T ⊢ Q .n →֒ A.(n, C) ∧ (CID .(coreof (n), C) ∨ (n 6∈ dom upl ∧ CID .(n, C))).

Theorem 10 says that a component identifier query on the place Q at node n
causes the answer on A with the component identifier C. Then C is either that of
the core node corresponding to n, or is own identifier if n is the core.
Proof. By induction. It is required to establish that the following hold. After
proving each step, all are assembled into the final proof.

1. Base case. For the base case assume n is the unique core node, i.e. n 6∈
dom upl . Then:

T ,n 6∈ dom upl ⊢ Q .n →֒ A.(coreof (n), C) ∧ CID .(n, C).

2. Inductive Hypothesis. The query in the uplink causes an answer in the
uplink.

T ⊢ PQ .(u,P , r) →֒ AQ .(u,P , C) ∧ CID .(coreof (u), C).

3. Inductive Step. The inductive step consists of three sub-parts: the upward
propagation, the downward propagation and finally the answer.

T ,n ∈ dom upl ⊢ Q .n →֒ PQ .(u,P ∪ {n}, r) ∧ PQ .(n,Q ∪ {n}, q)

T ,n ∈ dom upl ⊢ AQ .(u,P ∪ {n}, C) ∧ PQ .(n,Q , q) →֒ AQ .(n,Q , C)

T ,n ∈ dom upl ⊢ AQ .(n,P ∪ {n}, C) →֒ A.(n, C).

6.4. ALGORITHM DESCRIPTION 137

Each of the above items is proven in turn. For the base case assume CID .(u, C).
From Σ6.11, it is immediate that:

Q .n →֒ R.(n,n) →֒
a︷ ︸︸ ︷

PQ(n, {n}, r) →֒ AQ .(n, {n}, C) →֒ A.(n, C)

[CID .(n, C)]Q .n →֒ A.(n, C) ∧ CID .(n, C).

Also:

T ,n 6∈ domupl ⊢ Q .n →֒ A.(n, C) →֒ AQ .(n, {n}, C) →֒ A.(n, C).

For the inductive hypothesis, note first that the element a from the above
derivation establishes a case in which the inductive hypothesis holds. Thus, the
hypothesis is valid.

For the upward propagation the following derivation holds:

Q .n →֒ PQ .(n,P ∪ {n}, r)

[u = upl(n)⇒ U .(n, u)]Q .n →֒ PQ .(n,P ∪ {n}, r) ∧ U .(n, u)

PQ .(n,P , r) ∧ PQ .(u,Q , q)
∧ U .(n, u)⇒ PQ .(u,Q ∪ {n}, q)

[PQ .(u,Q , q)]Q .n →֒ PQ .(n,P ∪ {n}, r)

[u = upl(n)⇒ U .(n, u)]Q .n →֒ PQ .(n,P ∪ {n}, r)
∧ PQ .(u,Q ∪ {n},min(q, r))
∧ U .(n, u)

[p ∧ q ⇒ q, t := min(q, r)]Q .n →֒ PQ .(n,P ∪ {n}, r) ∧ PQ .(u,Q ∪ {n}, t).

For the answer:

T ,n ∈ domupl ⊢ AQ .(n,P ∪ {n}, C) →֒ A.(n, C)

proceed by induction on #P :

1. Base case. If #P = 0, from Σ6.11 the following is available immediately:

AQ .(n, {n}, C)

[AQ .(n, {n}, C′′) →֒ A.(n, C′′)]AQ .(n, {n}, C) →֒ A.(n, C)

2. Inductive Hypothesis. Assume that for all #P = k − 1 the theorem holds.

138 CHAPTER 6. Core Based Tree (CBT)

3. Inductive Step.

AQ .(n,P ∪ {n}, C)
[upw. prop.]

AQ .(n,P ∪ {n}, C) →֒ ∃ y • AQ .(n,R ∪ {y,n}, C)
∧ PQ .(y,S , t)

[by trans. d]
AQ .(n,P ∪ {n}, C) →֒ AQ .(n,R ∪ {n}, C) ∧ AQ .(y,Q , C)

[p ∧ q ⇒ p]
AQ .(n,P ∪ {n}, C) →֒ AQ .(n,R ∪ {n}, C)

[ind. hyp.]
AQ .(n,P ∪ {n}, C) →֒ A.(n, C).

The proof components can now be assembled.

Q .n →֒ PQ(u,P ∪ {n}, r) ∧ PQ .(n,Q ∪ {n}, q)

Q .n →֒ AQ .(u,P ∪ {n}, C) ∧ CID .(coreof (u), C) ∧ PQ .(n,Q ∪ {n}, q)

Q .n →֒ AQ .(n,Q ∪ {n}, C) ∧ CID .(coreof (u), C)

Q .n →֒ A.(n, C) ∧ CID .(coreof (u), C)

Q .n →֒ A.(n, C) ∧ CID .(coreof (n), C).

From the base case and the inductive proof, as required:

T ⊢ Q .n →֒ A.(n, C) ∧ CID .(coreof (n), C) ∧ n ∈ domupl

T ⊢ Q .n →֒ A.(n, C) ∧ CID .(coreof (n), C) ∧ n 6∈ domupl

T ⊢ Q .n →֒ A.(n, C) ∧ (CID .(n, C) ∨ (n 6∈ dom upl ∧ CID .(n, C))).

�

6.5 Performance

Two figures of merit are of interest for the performance of the CBT construction
and maintenance algorithm. They are the stretch (the maximum path length
between the nodes) of the constructed graph and the message complexity of the
used protocol. The message complexity is expressed in terms of the number of
the expected number of core switches needed to make a CBT with n nodes, as the
number of messages per each core switch is constant. The stretch of a CBT is up-
per bounded by O(nc), and the message complexity by O(n), where c = log2 3−1.
In the analysis some simplifying assumptions are made. First, it is assumed that
at some point in time, the maximal CBT is constructed. In deployment, the CBT
construction never finishes as long as there are changes in the network. Instead,
it continuously repairs the CBT so that only a maximal one remains, provided
that this is allowed by the network dynamics. Second, the concurrent requests to
join two components, coming from different pairs of nodes, as well as the cycle

6.5. PERFORMANCE 139

breaking are all neglected. This is because the number of concurrent requests
does not change the order of the number of switches required, although it does
alter the constant. Furthermore, the number of concurrent requests depends on
the number of nodes in different components that come into contact, a parameter
outside of the scope of this analysis.

The following lemma is needed to prove complexity claims so it is stated first,
before the claims and proofs themselves.

Lemma 6 Let f and g be functions of a positive integer k, defined as:

1. f (k) = 1/2 + 3/2 f (⌈k/2⌉), with f (1) = 0;

2. g(k) = ⌈k/2⌉c + 2g(⌈k/2⌉), with g(1) = 0.

Then, f (k) = O(kc) and g(k) = O(k), where c = log2 3− 1.

Proof. For both items, consider only k = 2p for some integer p (otherwise
replace k by 2⌈log2 k⌉ and proceed).

For Item 1, expand f recursively to obtain:

f (k) = 1/2

p−1∑

l=0

(3/2)l = (3/2)log2 n − 1 = O(nc).

For Item 2, expand g recursively to obtain:

g(k) =

p−1∑

l=0

2l · 2(p−l−1)c = 2c(p−1) · [2(1−c)p − 1]/(21−c − 1) = O(2p) = O(k).

�

The expected stretch of a graph constructed by the CBT algorithm is now
computed. Let T be a CBT constructed by our CBT algorithm, and let #T
be the number of vertices in T . The CBT T was constructed by concurrent
applications of the CBT construction and maintenance algorithm, and T itself
was obtained by joining together two non-maximal CBTs, say U and W , by
adopting an uplink between two nodes x ′ ∈ U and y ′ ∈ W . For x and y two
nodes in T , denote as hT (x , y) the hop count of the only path between x and y
in T .

Theorem 11 The expected stretch of the CBT T, with #T nodes is O(#T c).

Proof. The mean hop count lT in T is lT = #T−2 ·∑x ,y∈T hT (x , y). Also let
L#T = E [lT] for a CBT T with #T nodes.

Separating over hopcounts in U and W :

lT = #T−2

∑

x ,y∈U

hU (x , y) +
∑

x ,y∈W

hW (x , y)

+ 2

∑

x∈U ,y∈W

hU (x , x ′) + 1 + hW (y, y ′)

 . (6.9)

140 CHAPTER 6. Core Based Tree (CBT)

Taking the expectation of the hop count (over all the possible graphs T , and
also all components U and W), and by linearity of expectation:

L#T = #T−2(#U 2L#U + #W 2L#W + 2#U #W

+ 2#U #WL#W + 2#U #WL#U). (6.10)

As #T = #U + #W , and #U , #W > 0, #U #W /#T 2 ≤ 1/4, hence
rewriting Eq. (6.10):

L#T ≤ 1/2 +
#UL#U + #WL#W

#T
+

1

4
(L#U + L#W)

≤ 1/2 + 3/2 max(L#U ,L#W), (6.11)

where Eq. (6.11) holds over any partition of T to U and W . Hence it must also
hold for max (L#U ,L#W) = L⌈#T/2⌉. Applying Item 1 of Lemma 6 to the right
hand side of Eq. (6.11) for #U = ⌈#T/2⌉ finishes the proof. �

Theorem 12 The expected number of core switches needed to construct a CBT
T with #T nodes is O(#T).

Proof. Let M#T be the expected number of switches to construct a CBT T by
connecting the smaller CBTs U and W . Total expected number of switches equals
the expected number of switches used to connect U and W plus the expected
number of switches to construct both U and W . Thus the recursive expression
holds:

M#T = 1/2(L#U + L#W) + M#U + M#W , (6.12)

where the first component is due to the uniform random choice of the component
whose core executes the yield. As M#T is nondecreasing, assume #U = ⌈#T/2⌉
to get:

M#T ≤ L⌈#T/2⌉ + 2M⌈#T/2⌉ = O(#T). (6.13)

The last equality, due to Item 2 of Lemma 6, completes the proof. �

6.6 Summary

In this Chapter, we presented a distributed data structure used for service de-
scription forwarding, useful in distributed systems operating in the MANET en-
vironment. One must bear in mind that the CBT has been designed for MANETs,
where each node has a relatively small number of neighbours and where it is typ-
ically difficult or not profitable to keep extensive records of the nodes far away in
the network. This use case is hence different from the peer-to-peer networks which
use the Internet. In peer-to-peer networks all pairs of neighbours can communi-
cate and the problem is to find and use only the efficient number of connections.
In MANET however, each node has only a few connections and the problem is to

6.6. SUMMARY 141

inform the further nodes well by forwarding the right amount of soft state. The
CBT is designed to achieve this.

We described the CBT structure, then gave detailed formal account how it
is constructed and maintained at runtime and discussed its complexity. We pre-
sented the algorithm that uses the CBT structure to propagate the service de-
scriptions. We addressed the concern of service description distribution strategy,
with a distributed structure which is flat, requiring no dedicated nodes to oper-
ate, and requiring no preconfiguration. This is in contrast to service distribution
schemes which use a backbone (as discussed in Section 6.1), where role divisions
among nodes are implicit for the backbone nodes. Instead, each node in the
CBT takes an equivalent role in the distribution, and due to the core mobility,
is equally likely to become the core node. We do not consider the existence of
the core node the departure from the flat distribution structure. This is because
the core performs no special functions, except that it is the node to which all the
uplinks point to.

The important property of the core’s existence is that it guarantees that all
compatible producer and consumer summaries are found. An interesting property
of the obtained CBT structure is that its stretch is sub-linear with respect to the
number of nodes involved in the structure. This means that the distance between
nodes in the CBT grows slowly with the size of the CBT itself, thus enabling
fast operation of the CBT and the appropriate matching algorithms. It is also
important to note the good scalability of the CBT in terms of the required number
of core motions. This because each core motion includes the transfer of the service
descriptions, which needs to be kept at a minimum. There are some drawbacks
to the CBT scheme which need consideration when the cost and benefits of CBT
deployment are estimated. First and foremost, the CBT requires an addressing
scheme which is different to what is usually used on the Internet. However, this
is necessary as the internet type addresses do not work in a MANET. Second, it
requires knowledge of, and manipulation with the service descriptions, restricting
the applicability of the CBT to use cases where service descriptions can be cast
into the appropriate dataspace form. While this is a concern in the general case,
for well defined tasks (e.g. those described by CPNs themselves) the service
descriptions are known well enough.

142 CHAPTER 6. Core Based Tree (CBT)

(u,n)

��

(n,u)

��76540123 C

(u,n)

��

76540123NC

(n,u)

��

(n,u)

��
**

**
**

**
**

**
**

**
**

**
**

(T,u,n)

��

〈rq,u,n,(p,T)〉

''PPPPPPPPPPPPPPP

76540123 M

(T,u,n)

		��
��
��
��
��
��
��
��
��
��
��

(T,u,n)

��

76540123
N

 @
@@

@@
@@

@

''PPPPPPPPPPPPPPP

x

〈rf,n,u,T〉
wwnnnnnnnnnnnnnnn x̄

〈ac,n,u,T〉
wwnnnnnnnnnnnnnnn

(T,n,u,f (n))

����
��
��
��
��
��
��
�

76540123
O

〈rf,u,n,T〉
wwnnnnnnnnnnnnnnn

76540123
P

〈ac,u,n,T〉
wwnnnnnnnnnnnnnnn

(T,u,n)

��

〈rq,u,n,(c,T)〉

''PPPPPPPPPPPPPPP 76540123 Q

��

76540123 S

��

76540123 R

@@

@@
@@

@@

〈ac,u,n,T〉
wwnnnnnnnnnnnnnnn

(u,n)

��		
		

		
		

		
		

		
		

		
		

		
		

	

76540123

~~~~
~~

~~
~~

(u,n)

��76540123 B

(u,n)
>>~~~~~~~~

(u,n)

OO

76540123 U

(u,n)

>>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 76540123 D

(u,n)

``@@@@@@@@

Figure 6.9: Bottom half of the Switch protocol.



6.6. SUMMARY 143

76540123 Y
(n,y)

��76540123
CID

(n,C′)
//
〈rq,n,y,(p,T,C′)〉

//

(n,y,T)

��

76540123
E

//

(y,n,(p,T,C′))
��

y

��
??

??
??

??

76540123 P

��

76540123 Q

y

��
cq

(y,C)

��76540123 A

����
��

��
��

(y,n,T,p,C,C′)
��76540123 F



��
��
��
��
��
��
��
��
��
��
�

��

76540123 G

�� ��
??

??
??

??

ϕ

〈rf,y,n,(p,T)〉

wwoooooooooooooo ϕ̄

ϕ ≡ C = C′

〈ac,y,n,(p,T)〉
wwoooooooooooooo

(y,n,T)

ww

76540123 H

wwoooooooooooooo
76540123 I

wwoooooooooooooo

(n,y,T)

��

〈rq,n,y,(c,T)〉

''OOOOOOOOOOOOOO 76540123 K

��76540123 J

��

76540123
L

//

〈ac,y,n,(c,T)〉
wwoooooooooooooo

(y,n)

��

(y,C′)
//76540123 CID

(y,C)
oo

76540123 M

����
��

��
��

(n,y)

��
??

??
??

??

76540123 R

(n,y)

OO

(n,y)

??�������� 76540123 B

(n,y)

SS''''''''''''''''''''''''''''

OO

76540123 U 76540123 D

Figure 6.10: The Yield protocol.



144 CHAPTER 6. Core Based Tree (CBT)

76540123 Q

n

��

(n,n)

��76540123 R

(n,n)

����
��

��
��

��
��

��
��

(n,n)

��
??

??
??

??
??

??
??

??

(n,{n},n)

��
??

??
??

??
??

??
??

??

(n,P∪{n},min P∪{n})

����
��

��
��

��
��

��
��

(u,Q∪{n},min P∪Q∪{n})
//

OO

(n,u)

��

76540123 PQ•

(n,P ,q)

__????????????????

(n,P ,q)

??����������������

(n,P ,q),(u,Q,r)
oo

(n,P ,q)

��
(y,Q,r):y∈P

��
//

//
//

//
//

//
//

//
//

//
//

//
//

/

76540123
U

•
(n,u)

//

(n,P ,C)

��76540123
CID

��

(n,C)

??����������������

C

��
??

??
??

??
??

??
??

??
76540123AQ

(n,P ,(n,C))
//

(n,{n},C′′)

��

(n,∅,C)

��
??

??
??

??
??

??
??

??
d

(n,P\{y},C),(y,Q,C)
oo

(n,C′′)

��

(n,C′′)

__????????????????
''

C

ggOOOOOOOOOOOOOOOOOOOOOOOOOOO

76540123 A

Figure 6.11: The Yield protocol component query.



Chapter 7

The Execution Model

In this Chapter, we lay out the model for executing distributed programs within
the Distributed Workflow Execution Architecture for Mobile (DWEAM) con-
text. The programs are described by workflows represented with CPNs. In the
DWEAM context, the execution of distributed programs reduces to ensuring that
the progress property holds in face of the node and network volatility. Provided
that the progress property holds, additional safety requirements must be fulfilled
so that the semantics of the program execution is equivalent to that given by its
workflow description, under arbitrary workflow element instantiation.

The workflow elements, i.e. the places and transitions are instantiated on
multiple nodes. There is no restriction on the instatiation cardinality for the
workflow elements. Any token on a given place can be instantiated multiple times
at disparate nodes. Transitions can be similarly instantiated on multiple nodes.

7.1 Introduction

The foundation of DWEAM’s execution model is in the distinction between the
description of a program (hence: a workflow) and its instantiation (hence: the
allocation of procedures to computing elements and the location of objects rep-
resenting tokens). This separation may appear a self-evident fact that buys us
nothing when we want to understand distributed systems. However, the distinc-
tion is in fact important. It is disregarded more often than not, and this becomes
obvious if we take a look at the contemporary distributed programs and how the
missing distinction hinders the distributed applications.

Looking at the client-server model for communication, which is ubiquitous
in todays Internet, we can observe that the above statement is indeed true. A
prime example is given by the common scenario where a user is requesting a web
page from a remote server, through the web browser client. We can consider the
contents of a web page as being some sort of a remote object. The fact that the
web page is usually delivered in a markup language such as Hypertext Markup

145



146 CHAPTER 7. THE EXECUTION MODEL

Language (HTML) is not relevant as it has to do only about the representation
of the object offered in response to a query. The representation itself can even
be the left to the client’s preference. Regardless, the method used to locate the
object is standardized. It is through the URL addressing scheme, which uniquely
identifies every object accessible from the Internet.

Example 12 Any user of the Internet can request the object whose content is
given by the URL http:// cobalt.et. tudelft.nl/ ~filip/index.html . In
response to the request, the user is delivered the contents of the author’s home
page.

An inherent part of the URL is the Fully Qualified Domain Name (FQDN)
of the computer cobalt.et.tudelft.nl, the computer at whose disks the home
page physically resides. If for some reason cobalt is inaccessible, so is the home
page, along with any other objects cobalt hosts. We can conclude that the
existence of the home page object depends on the instantiation at the particular
host, as far as the rest of the Internet is concerned.

If the data objects were decoupled from their instantiations, such an outage
would never have to occur. Unfortunately, since the host-object coupling was
disregarded in Example 12, the practice dictates we are forced to worry about
the well-being of a particular machine, so that the object remains accessible. Ide-
ally, the object exists in a data space which is detached from the embodiment
and the user’s query for the object should retrieve it regardless of the state the
embodiments of the object assume. In thinking about computer programs, we
should worry about the data and the procedures, and not about the machine
itself. This point was well conveyed by H. Abelson et al. [7], who teach this dis-
tinction in the course MIT CS 6.001, “Structure and Interpretation of Computer
Programs”. They state that computer science is a misnomer as it is neither a
science (for computer science is about procedural knowledge while science deals
with understanding nature through observation) nor it is about computers (in
the same sense as geometry is about declarative knowledge1 and not about rulers
and compasses). It follows that in a distributed system, we should ideally not
care where the actual objects we operate on are located. This is not always easy
to achieve, as distributed program components can sometimes follow conflicting
execution paths that contend for data. The practical goal of DWEAM is to ob-
tain a distributed environment for program execution that takes the decoupling
between programs and computers as far as reality permits.

7.2 Data Model

The goal of DWEAM is to provide a workflow execution engine that is inde-
pendent of the node network location. That includes processing that does not

1The declarative knowledge is the knowledge about what is true. As opposed to the proce-
dural, or how-to knowledge, which talks about the actions needed to bring some result about.

http://cobalt.et.tudelft.nl/~filip/index.html
cobalt.et.tudelft.nl
cobalt
cobalt


7.2. DATA MODEL 147

fundamentally depend on where the tokens are effectively stored. DWEAM can
be thought of as a workflow processing machine designed to operate over wide
area networks of Internet scale without regard of the physical node placement.
For such a machine we need to look into two mecnahisms:

1. Location-independent data object storage; and

2. Location-independent data object processing.

These mechanisms must be conceived in a way that fully and correctly im-
plements the workflow specification given by the system designer. The location-
independent mechanisms are in contrast to today’s practice on the Internet, where
location-dependent mechanisms such as the URL are almost exclusively used.

A Case for Location-Independent Mechanisms

A significant complication that surfaces in distributed systems is that apart from
solving computational problems, the distribution management becomes an issue.
In the absence of automated mechanisms to handle the distribution issues, this
concern comprises a significant portion of the program code. It is then natural to
reduce this complexity by factoring the distribution management out of the main
code body and promote it into a separate distribution-handling system compo-
nent. This step is as important as it is complicated, because it seems difficult
to do this factorization so that the connection between the distribution mecha-
nism and the application is broken completely. This observation relates to the
model uniformity problem as given by Homburg et al. in [41]. Talking about
the communication primitives that make basic distribution possible, they observe
that “[Remote Procedure Call (RPC) and other remote call mechanisms] do not
provide solutions to problems that are common to all wide-area systems, such
as replication, data migration and concurrency control. The effect is that each
application has to invent an ad-hoc solution.”

At this point it becomes apparent that the factorization cannot work uncondi-
tionally, without introducing assumptions about the method used for the program
distribution. One way to handle the distribution issues is location-independent
addressing. It allows one to address a particular resource, typically a data object,
through an uniquely assigned handle. The unique handle is typically sampled
from a large discrete space.

Workflow Design

In the Chapter 2 we presented a toolkit that is used to specify the tasks to be
performed. As far as the workflow designer is concerned, the distributed execution
of the worflow is further left entirely to the workflow management.

Specifically, the task of the workflow management is to instantiate enough
“worker” nodes to execute the workflow, and to manage the coordination between



148 CHAPTER 7. THE EXECUTION MODEL

the workers so that the result of the instantiated workflow execution corresponds
to that intended by the workflow specification. For a fully distributed system,
and especially such that aspires to not rely on pre-existing infrastructure, the
control of the task distribution must be distributed itself. It cannot be assumed
that the control process is a centralized entity which is somehow exempt from the
volatility of the entire platform. The control itself is implemented in the same
volatile platform as is the instantiated workflow.

We will now review the requisites for content-based addressing which is the
only addressing mode in DWEAM.

Content-based addressing is a way to refer to a data object by specifying a
set of conditions that its contents must fulfill. As objects keep internal state, the
conditions have to do with the internal object state. The object’s access control
(embodied in the access modifiers) can be used to control which parts of the object
state are accessible for content-based addressing.

Content-based object selection is common practice in various forms. One form
is database querying whereby database tables are searched for records with con-
tents fulfilling some particular constraint. Various languages exist for specifying
the data semantic models. Van der Wolf [84] used one of the available such lan-
guages, called Object Type Oriented Data (OTO-D) [5] for the data modeling.

Example 13 (Content Based Query in OTO-D) Selecting a design compo-
nent, from [84], page 77:

GET ToolRun ITS Used Opts, Designer, Start Date WHERE Tool
ITS ToolName = ’Dracula’ AND Start Date ≥ 921027

In the Example 13, in effect a content-based address is formed from the query,
and expressed in a semantic database specification language called OTO-D2. The
address consists of the composition of two operations: the selection, whereby
only the objects fulfilling a particular conditions are considered, and projection
whereby only the relevant fields are selected from all the available ones in the
multi-field objects. In the example, the address considers the objects of class
ToolRun, projecting them to their three attributes, Used Opts , Designer , and
Start Date, but only such that the Tool attribute equals to a character string
“Dracula” (where Dracula is the name of a toolchain component), and the start
date greater than “921027”.

One must note that the filed matching in the given examples is purely on
the syntactic level. The semantics of the object is defined externally by the data
model designer. It is the designer who specifies that the string “ToolName” must
contain the sequence of character corresponding to a particular executable file
name, of a program used to manipulate the object. To peruse the object in a

2The OTO-D would in the modern times probably be replaced by some Extensible Markup
Language (XML)-based suite of a document type definition and a XML parser, or by a graphical
language such as the UML.



7.2. DATA MODEL 149

consistent way across computer systems, the semantics of the object must be
known on a system-wide level. It is to say that a convention, or a standard is
available, which sets the meaning of all the used objects. While it is true that due
to the object-oriented approach parts of the object semantics can be captured in
the class methods, using the methods the right way is still an external task, thus
ensuring that the object (and hence its internal state) fits meaningfully into the
broader system context. System-wide standardization of object semantics seems
so far to be the only practical way to achieve such universal semantics adoption.
While work is ongoing to make similar semantic models mappable to one another,
the absence of widely acclaimed solutions for this problem in today’s Internet-at-
large, and the prevalence of single-standard solutions, e.g. those by the World
Wide Web Consortium (W3C), indicate that standardisation is at least a near,
to midterm, way to go. On the other hand, strict standardization and fixing the
object semantics is likely too restrictive for a distributed system. Mandating a
fixed set of contexts in which a particular object can be referenced goes against
the idea of a heterogeneous system, where supposedly different and non-foreseen
object uses may (and should) appear.

Further, allowing external-context dependent object manipulation restricts the
use of class methods. Given the context dependence they can only be expected
to change or export the objects context-invariant properties. Hence, we can allow
the objects only to be able to export their internal state (such methods are known
as getters), or import internal state (setters, analogously). By this convention we
effectively dropped all class methods, except for the getters and setters themselves.
No expressive power is lost however in comparison to designs that freely uses class
methods for object-specific tasks. This is because such a task could encode only
a single object semantics, which we already argued is not the appropriate way
to handle objects in a distributed system. The decision would not be justified
in the case where the object semantics was fixed on a system-wide level. In the
case of system-wide agreement, the object manipulation code could be embedded
within the object itself in line with the usual Object Oriented (OO) practices,
hence eliminating the need for context-sensitive handling. This gives rise to an
object models in which methods to manipulate objects exist separately from the
object state, and resembles the object models used in languages such as Scheme
or Lisp.

The getter and setter object methods give a way to examine object state and
form queries. The approach used to examine the components of the object state
(e.g. what variables are there) is called reflection, and is elaborated on in the
following section.

Reflection

In this section we will examine the techniques that are used to inspect the contents
of the objects used to transfer messages between the nodes in DWEAM. These
techniques are collectively known as reflection and as such appear for instance



150 CHAPTER 7. THE EXECUTION MODEL

in the mainstream programming languages such as Java and Python. The Java
programming language provides a facility named Reflect that provides reflection
services. Python makes a dictionary available for each object created, containing
the detail account of the object internals.

Reflection allows a program routine to inspect the contents of an object by
requesting the values stored within the fields of the object, or to obtain the in-
formation about the methods that the object class supports as well as their dec-
laration. This allows a program to reflect on its own structure, hence the facility
name. The accessible fields are defined in the appropriate object’s class defini-
tion, and are also accessible to the program at runtime. The access methods
exist that allow the program to inspect object contents. This account is valid
for dynamically typed languages like Java. It also means that, whenever a new
class is created, the reflection capabilities become available by default through
the reflection mechanism. For statically typed languages like C++, a similar ef-
fect is not achievable with the help of the runtime library alone. Special support
from toolkits is needed that does not form a part of the C++ standard library.
However, there are programmatic ways by which these features can be emulated
where appropriate. It is of course convenient if the language itself provides such
a facility. For this reason we confine our exposition to the environments that
support reflection natively, with an understanding that extending the reflection
to other environments can imply some extra considerations.

From here onwards we also assume reflection is available throughout the nodes
that participate in the DWEAM system. Reflection provides us with an important
operator on data objects. It is used to obtain the fields which some object consists
of. In terms of Object-Z, reflection maps an object into a schema by which
the class of that object is defined. Once obtained, the bindings from the class
definition can be extracted, allowing the object’s contents to be inspected.

Example 14 (Reflection) Consider a schema defining a class to contain a tem-
perature reading for some particular place:

Temperature
id : N

place : seqCHAR

value : R

unit : seqCHAR

and a variable of that class.

t : Temperature

The type of the schema Temperature is 〈| id : N; place : seqCHAR; value :
R; unit : seqCHAR |〉 ([78], page 26). The elements of the schema Temperature



7.2. DATA MODEL 151

are bindings of the form: 〈id ⇛ 1, place ⇛ ”kitchen”, value ⇛ 27, unit ⇛ ”C”〉,
hence the following assignment is valid:

t = 〈id ⇛ 1, place ⇛ ”kitchen”, value ⇛ 27, unit ⇛ ”C”〉

At the same time, the contents of the binding can be reflected as a sequence of
key-value pairs as follows:

{〈name ⇛ “id”, type ⇛ “N”〉,
〈name ⇛ “place”, type ⇛ “seqCHAR”〉,
〈name ⇛ “value”, type ⇛ “R”〉,
〈name ⇛ “unit”, type ⇛ “seqCHAR”〉}

Dataspace

In the previous chapters, the notion of Dataspace was introduced as an opaque
type. Operations on this opaque type were introduced too. At this point we
will unpack this opaque type and expose its internal structure. We equip it with
concrete content to represent in detail what it means. This is because we will be
needing operations and predicates talking about parts of the Dataspace. Infor-
mally, the Dataspace is a supertype that admits all the instances of all variables
having all possible constructible types. This is of course not a definition in the
strict sense because it gives no clue how “all possible” values of “all possible types”
can be obtained. It does not give a clue whether a type with these properties at
all exists. We will therefore give a constructive way to build the Dataspace from
the suitably chosen primitive types and set of chosen constructors that combine
these types into more complex constructs. Such an approach allows us to build
the Dataspace inductively.

The first step in constructing is the establishment of the basic types. Here,
the basic types are considered within the context of the computer system for
which the Dataspace is implemented. We adopt somewhat platform-dependent
but yet common types for this purpose. The argument in favor of the choice is
that all practical computer platforms have such basic types in one form or other.
These types draw their properties from the adopted machine architecture. For
our purpose the exact choice of the basic types is not essential. But we follow
the common practice and adopt the integers (Z), the reals (R, represented by a
floating point approximation) and the strings (seqCHAR).

Atoms ::= Naturals〈〈Z〉〉 | Reals〈〈R〉〉 | Strings〈〈seqCHAR〉〉

We further define constructors used first to compose aggregate objects from
the basic ones. The constructors can be used to aggregate the newly obtained
objects into more complex aggregates. Constructors we consider are sets (i.e. set



152 CHAPTER 7. THE EXECUTION MODEL

types), sequences and new schemes.

[ SchemaDefs ]

Compounds ::= Sets〈〈PCompounds ∪ Atoms〉〉
| Sequences〈〈seqCompounds ∪Atoms〉〉
| Schemes〈〈SchemaDefs〉〉

The SchemaDefs represents the aggregate schema types. These are either
schemas with a single element, or schemas obtained by attaching a single schema
element to a previously existing schema. The single schema has a generic type
identifier id , which can be specified at construction time, corresponding to the
free choice for the component name. As the only manner to do so we have, for
simplicity, chosen aggregation, i.e.. packing an arbitratry number of state vari-
ables into a single schema. Every schema with n > 1 elements can be recursively
decomposed into a schema containing n − 1 elements and a schema containing
precisely a single element. We don’t consider empty schemas specially.

SchemaDefs ::= SingleSchema〈〈 〈| id : Dataspace |〉[id ]〉〉
| MultiSchema〈〈〈| id : Dataspace |〉[id ]× SchemaDefs〉〉

Finally, the Dataspace is obtained from the three above components, complet-
ing the specification of the Dataspace.

Dataspace ::= Atoms | Compounds | SchemaDefs .

Cubes and Cube Sets

An important functionality based on Dataspace is the ability to focus on a partic-
ular subset. For this we consider the selection operator. It alows us to specify a
subset of the Dataspace for which we have a particular interest in, as it provides
the ground upon which the matching algorithm is built later in the text.

By analogy with physical space, each valid binding (i.e. variable instance)
for the type Dataspace we call a point. A point of the Dataspace is uniquely
determined by a binding that assigns an unique value to each component in the
corresponding type schema.

Example 15 (Compound Schema) With reference to the Temperature schema
of Example 14, we can define another schema that contains it.

Reading
t : Temperature

humidity : R

This schema is constructed from a single basic type, aggregated with a component
of a previously defined compound type.



7.2. DATA MODEL 153

A point in the Dataspace is then determined by a binding that assigns a unique
value to both the components of the schema. The bindings can also be nested, as
is used in this case:

〈t ⇛ 〈id ⇛ 1, place ⇛ ”kitchen”, value ⇛ 27, unit ⇛ ”C”〉, humidity ⇛ 0.6〉.

For the data distribution we need to address larger subsets of the Dataspace
than the individual points. These subsets are then used as objects for common
operations, such as the service discovery. The subsets are obtained by the selection
and projection operations which constrain the values that can be taken on by the
individual Dataspace schema components. For this purpose we consider each
schema component to be a coordinate. A coordinate is a reflection of a schema
component available in the code. We introduce the reflection type specifier Type.
This type specifier contains the necessary data to uniquely identify the type it
refers to. It is for instance enough that it contains a string representation of the
type name.

[ Type ]

On the other hand, a coordinate is determined by both the variable type and
the name used to identify the respective schema component. Such a designation is
needed because multiple schema components can be of the same type. Therefore,
type alone does not suffice to identify the component, whereas the pair of name
and type does.

Name == seq1 CHAR

Hence, a coordinate is given as:

Coordinate
name : Name

type : Type

At this point it is necessary to introduce the typeof and reflect pseudo-
operators. These pseudo-operators are difficult to express in the Z notation, as
it does not support self-referencing. Hence we use the name pseudo-operators,
so as to emphasize the divergence from the rules of Z. The two operators will
therefore be introduced through an example, and an informal explanation of their
operation. This oddity is not problematic in practice however, for as long as
the reflection is in the vocabulary of the used implementation language. As such
languages routinely exist (Java being one of them) we consider this an acceptable
deviation from the Z formalism.

Example 16 (Applying reflection) typeof is a pseudo-operator which, for
a given instance variable of a particular type, returns as a result the actual type



154 CHAPTER 7. THE EXECUTION MODEL

from which t takes its value. reflect is a pseudo-operator which, given a type
returns a set of bindings to Coordinate objects, with textual representations of the
given schema elements.

Consider the schema Temperature as given in the Example 14, and the variable
t defined to have this type. Then:

typeof t = Temperature

reflect (typeof t) =
{〈name ⇛ “id”, type ⇛ “N”〉,
〈name ⇛ “place”, type ⇛ “seqCHAR”〉,
〈name ⇛ “value”, type ⇛ “R”〉,
〈name ⇛ “unit”, type ⇛ “seqCHAR”〉}

Each Coordinate can take on any value from its support type. If we want to
consider only parts of the entire support set (denoted as X ), a constraint can be
specified. The constraint is generic with respect to the support set. Conceptually,
for a support set X , a constraint on it is a subset of X .

Constraint [X ] == P X

Encoding the constraint for a generic set X requires the description of all the
elements that form the constraint. However, for sets that have a known internal
structure, encoding the constraint can be more efficient and be significantly ac-
celerated. For totally ordered sets, for instance, specifying a continuous interval
amounts to the naming of the bounds, which can be encoded to yield a descrip-
tion of constant size, provided that the description of each single element from
the set is constant size itself. As this is often the case in computer systems, where
practically all elementary data types are either of constant size (e.g. integers
and floating point numbers), the constant size encoding assumption is reason-
able. Partially ordered sets exibit a similar structure, with the addition that the
description size depends on the ordering relation. In such cases, multiple elements
may have to be counted as comprising the bounds.

Example 17 (Constraints) Integer and floating-point intervals, as represented
in finite precision in a computer’s memory, can be encoded in constant space by
specifying the upper and lower bounds only with respect to the ordering relation
≤ , in interval notation as: [3, 4], or [2.71, 3.14].

String intervals (seqCHAR) can be encoded in a similar way, with the re-
spect of the lexicographic ordering. In interval notation, an example thereof is
[“aardvaark”, “zebra”].

Specifying a constraint for some coordinate yields a surface. Multiple surfaces
on the components of the same type X taken together, comprise a cube. The cube
is a part of the Dataspace where some coordinates are constrained to intervals.
These are the basic Dataspace subsets that can be operated on. Set operations on



7.2. DATA MODEL 155

cubes should be supported. These include testing whether a point is a member
of a given cube, as well as union, intersection and complementation of particular
cubes.

Surface == Coordinate × Constraint

Cube == PSurface

CompoundCube == PCube

The cube membership of a Dataspace point is defined through the use of the
reflection operators.

∈ : Dataspace ↔ Cube

∀ x : Coordinate ∈ first •
∀ y : Cube •

first(y) ∈ dom reflect typeof (x )
∧ valueof (x ,first(y)) = second(y)⇒ (x , y) ∈ ( ∈ )

A set of cubes that result from these operations are compound cubes that
should be also adequately supported with the set operators.

∈ : Dataspace ↔ CompoundCube

∀ x : Dataspace, c : CompoundCube •
∃ y : Cube •

y ∈ c ∧ x ∈ y ⇒ (x , c) ∈ ( ∈ )

With the overloaded definition of the relation ∈ , all the set operations for
the new types Dataspace, Cube and CompoundCube are defined. Their specifica-
tions are therefore omitted.

For each type X whose instances are points in the Dataspace, the empty and
full cubes are defined as cubes that, respectively, for each coordinate, have no
elements in the constraint (denoted as �[X ]); and extend over the entire domain
(denoted as �[X ]).

[X ]
�[X ] : Cube[X ]

�[X ] : Cube[X ]

∀ c : Surface •
first(c) ∈ reflect X
∧ c ∈ �[X ]⇒ second(c) = ∅

∀ c : Surface •
first(c) ∈ reflect X
∧ c ∈ �[X ]⇒ second(c) = X



156 CHAPTER 7. THE EXECUTION MODEL

Following the usual Z conventions, the generic type argument (X in the above
generic schema) can be omitted if the type X can be inferred from the context in
which it is used.

Example 18 (Type Inference) Let a variable t be defined as:

t : Temperature

where Temperature is the type introduced in the Example 14. Then, the expression:

t ∈ �

is equivalent to:

t ∈ �[Temperature]

because typeof (t) ≡ Temperature from the above definition.

Finally, for convenience, to denote the set union (usually ∪ ) and set inter-
section operators (usually ∩ ), we use + and · as they make for clearer
notation, especially where the operator symbol can be dropped, as is the case in
the expression a · b = ab.

+ == ∪
· == ∩

Operations on the Cubes and Cube Sets

Conceptually, once the element containment relation ( ∈ ) is overloaded for the
Dataspace and the cubes, all the usual set operations are well defined. However,
this does not take into account how practical these operations are from a compu-
tational point of view. Namely, depending on the order in which the operations
are performed, the size of the compound cubes describing a particular set can
differ, in terms of the number of elements that the respective set has. This trans-
lates directly into a varying amount of space used to represent the compound cube
in the program runtime environment. Further, more complex descriptions make
for more processing time spent for obtaining a result of a typical set operation.
It therefore seems evident that smaller size descriptions are preferred over larger
ones as compact descriptions save both the processing time and space.

Intersection

When specifying a method to compute the set operations on cubes and cube sets,
it is convenient to express these in terms of cubes that themselves do not overlap.
Non overlapping cubes allow for the simpler manipulation when determining the
size of the compound cube sets. In other situations, one may opt for the simplest



7.2. DATA MODEL 157

description of the cubes to reduce the required memory footprint3. The simplest
way to achieve this is with the intersection of individual Cube objects. The
intersection is defined as a binary operator, taking two arguments, both of the
type Cube.

Let these be x ∈ Cube and y ∈ Cube. The cube intersection computation can
be factored into intersection computation along each of the coordinates. Only
the coordinates with constraints that are shared between x and y are intersected.
The intersection of the two is placed into the resulting cube. The coordinates
which are not shared are copied from the respective schemas that contain it, into
the resulting schema. Non-shared coordinate constraints (i.e. a coordinate which
is constrained in one cube only and not in the other) are copied into the resulting
cube. This is because the coordinates that are not mentioned in the constraint
are assumed unconstrained, and the unconstrained coordinate is the identity for
the intersection operator.

· : Cube × Cube → Cube

∀ x , y, z : Cube •
(let onlyx == {c : Coordinate | c ∈ dom x ∧ c 6∈ dom y};

onlyy == {c : Coordinate | c 6∈ dom x ∧ c ∈ dom y};
common == {c : Coordinate | c ∈ dom x ∧ c ∈ dom y} •

z = (onlyx ⊳ x ) ∪ (onlyy ⊳ y)
∪{(k , c) : Surface | k ∈ common ∧ c = x (k) · y(k)})
⇔ ((x , y), z ) ∈ ( · )

The intersection of a cube c and a cube set cs is naturally defined by the set
containing the intersection of c with all the cubes in cs .

· : Cube × CubeSet → CubeSet

∀ c : Cube, cs , r : CubeSet •
r = {q : Cube | ∃ s : Cube • s ∈ r ∧ q = s · c}
⇔ (c, cs) 7→ r ∈ ( · )

Finally, two cube sets are intersected by computing element-wise intersections.
These are easily expressible in terms of the previously overloaded operators.

· : CubeSet × CubeSet → CubeSet

∀ x , y, z : CubeSet •
z = ∪

i∈x
x · y ⇔ (x , y) 7→ z ∈ ( · )

3A situation is analogous to that between the uncompressed data stream, which is easy to
process but potentially takes up a lot of storage, and the compressed data stream, which takes
little storage but cannot be readily operated on.



158 CHAPTER 7. THE EXECUTION MODEL

Union

Union computation is slightly more involved than the intersection computation,
as each union operation yields a cube set. Moreover, extra care needs to be taken
that the resulting cube set is disjoint. A union of two cubes x and y, contains
three sets, namely x\y, x · y and y\x . The intersection can be computed using
the definitions given before, whereas computing \ deserves extra care.

Efficient difference computation has been constructed following the definition
of the sharp operator described by de Micheli (Section 7.3 in [23]) and invented
by Brayton et al [15], and further in Watanabe et al [86]. De Micheli explains the
difference computation in terms of the sharp operator for positional cube notation
and strictly binary coordinates. We extend this definition to general types, i.e.
types that can be constructed as subtypes of the Dataspace, and that can be
reflected into a set of surfaces. We first present the sharp operators as given by
de Micheli, and then extend them to handle generalized types.

The cubes of de Micheli are represented in the positional cube notation. This
is a binary encoding of the constraint, whereby an k -element set is encoded by a
binary string literal of length k . A “1” at the position i of the k -element string
denotes that the element i is included in the constraint. Conversely, a “0” means
that the element number i is excluded from the constraint.

Example 19 (Positional cube notation) Let the elements of the support set
be 0, 1, and 2. The constraint, expressed in the positional cube notation will
therefore be a 3-digit binary string literal. The string 001 encodes a constraint
for which only the element 2 is included. The string 110 encodes a constraint for
which elements 0 and 1 are included.

Cubes are encoded as collections of positional cube denoted constraints. As
the number of coordinates in the de Micheli case is fixed, any cube can be encoded
by fixing the order in which the positional cube denoted literals appear, and fixing
the order in which the support set encodings appear.

Example 20 (Cube encoding) Let there be defined three coordinates, respec-
tivelly with the three support sets in the order as follows: {0, 1, 2}, {a, b, c, d} and
{α, β}.

A valid encoding of a cube with elements from the set {0, 1, 2}× {a, b, c, d} ×
{α, β}: is:

011 1101 11,

denoting a cube formed by:

{1, 2} × {a, b, d} × {α, β}.

In the positional cube encoding, each coordinate can be complemented easily,
by making a bitwise complement of the corresponding positional cube encoding.



7.2. DATA MODEL 159

For the positional cube encoding 1101 in the Example 20, the complement in the
positional cube notation is 0010. There are two ways to obtain the difference
between two cubes. The first is by using the sharp operator. Applying the sharp
operator to two cubes a and b, described by their coordinates: a1 a2 . . . an , and
b1 b2 . . . bn is given as:

a # b =






a1 · b′1 a2 . . . an

a1 a1 · b′2 . . . an

. . . . . . . . . . . .
a1 . . . an · b′n

(7.1)

where the dot-operator ( · ) denotes a bitwise and between the corresponding co-
ordinate bit-strings, and the prime operator ( ′) denotes bitwise complementation
of the corresponding coordinates. The result of the operation is a set of cubes,
with non-empty intersection. A slightly modified sharp operator, the disjoint
sharp yields the result in terms of the cubes with empty pairwise intersection:

a©# b =






a1 · b′1 a2 . . . an

a1 · b1 a1 · b′2 . . . an

. . . . . . . . . . . .
a1 · b1 a2 · b2 . . . an · b′n

(7.2)

All the cubes in a©# b are disjoint as all the cube pairs have at least one field with
an empty intersection. The field i (i.e. ai · b′i) has an empty intersection with the
field i of all the other cubes j > i (which is ai · bi).

Example 21 (Sharp operators, [23] page 292) Let us consider the 2D space
denoted by: U = 11 11. Consider the cube ab with a = 01 01. Let us compute the
complement of ab by subtracting it from the U with the sharp operation:

11 11 #01 01 =

{
10 11
11 11

(7.3)

The expression forms the complement a′ + b′. (The operator + is used in the
union sense). Using the disjoint sharp operator:

11 11©#01 01 =

{
10 11
01 10

(7.4)

and the result is now a′ + a · b′ which is a disjoint cover.

The operators we use here are derived directly from the # and ©# opera-
tors as shown in the Example 21. There exist differences in how the operators are
applied in the case of Dataspace cubes, when compared to the positional cubes.
Two issues to overcome to define the sharp operations on the Dataspace are:

1. The ordering of the coordinates is not predetermined; and



160 CHAPTER 7. THE EXECUTION MODEL

2. The universal full cube �[Dataspace] is not well-defined, hence expressions
like a′ where a ∈ Cube, and ′ is the complementation operator, is also not
well-defined.

Both issues can be dealt with efficiently, by modifying the usual sense in which
the set operations are performed on the points in Dataspace, and provided that
the resulting properties of the operations are sufficient.

As the coordinate ordering on the types from Dataspace is not predetermined,
stemming from no imposed ordering to Z schema components, the positional no-
tation is not adequate. Hence the coordinate names must be featured explicitly
when displaying the cubes and operations. The lexicographical coordinate or-
dering is introduced artificially (by the function lex to be defined) so that the
sharping-off schema becomes applicable. We do not go into the tradeoff of the
coordinate ordering choice, however.

lex : P Coordinate → seqCoordinate

∀ x : PCoordinate; y : seqCoordinate •
ran y = x ∧ dom y = 1..#x ⇔ x 7→ y ∈ lex

As the universal full cube �[Dataspace] is not well defined, the complemen-
tation of a cube is only valid within the type that the cube describes. Thus, a
complement c′ of a cube c representing a subset of the type Cube[Temperature]
(schema Temperature is defined in the Example 14) is also a subset of

Cube[Temperature],

such that:

〈c, c′〉partitions�[Temperature].

Hence the complement also has no intersection with any �[X ] when

X 6= Temperature.

This is in contrast to the case of Example 21, where a complement of a given cube
is with respect to some universal cube U . Here, the complement of a cube is only
defined with respect to the type the cube has been constructed for.

The definitions of the sharp and disjoint-sharp operators in our context is
given by the following generic schema:



7.2. DATA MODEL 161

[X ,Y ]
# : Cube[X ]× Cube[Y ]→ CubeSet

©# : Cube[X ]× Cube[Y ]→ CubeSet

X 6= Y •
∀ x : Cube[X ]; y : Cube[Y ] •

# = {(x , y) 7→ {x}}
©# = {(x , y) 7→ {x}}

X = Y •
∀ x , y : Cube[X ]; z : Cube[X ] •
∀m ∈ �[X ]⊕ y •
z = �[X ]⊕ (x ⊕ (first(m), x (first(m)) · (X \y(first(m)))))
⇔ (x , y) 7→ z ∈ #

(letc == lex(reflect X );
xc == �[X ]⊕ x ;
yc == �[X ]⊕ y •
∀ k ∈ dom c •

(x , y) 7→ ran〈xc(c(1)) · yc(c(1)), . . . ,
xc(c(k)) · yc(c(k))′, xc(c(k + 1), . . . ,
x (c(#c))〉 ∈ ©# )

With the sharp ( # ) and disjoint sharp ( ©# ) operators defined, the the
sharp operation for cube sets can be built, ultimately admitting the union com-
putation for cube sets as well.

©# : CubeSet2 → CubeSet

∀ c1 = {q1
1 , q1

2 , . . . q1
#c1
} : CubeSet ;

c2 = {q2
1 , q2

2 , . . . q2
#c2
} : CubeSet ;

r : CubeSet •
r = q1

1 ©# q2
1

∪(q1
1 ©# q2

2 )©#(q1
1 ©# q2

1 )
∪(q1

1 ©# q2
3 )©#(q1

1 ©# q2
2 )©#(q1

1 ©# q2
1 )

...
∪(q1

1 ©# q2
#c2

)©#[(q1
1 ©# q2

#c2−1)©# . . .©#(q1
1 ©# q2

1 )]

∪(q1
2 ©# q2

1 )©#[∪(q1
1 ©# q2

#c2
)©#(q1

1 ©# q2
#c2−1)©# . . .©#(q1

1 ©# q2
1 )]

...
⇔ (c1, c2) 7→ r ∈ ©#

Finally the union computation for the cube sets is concisely defined through
the use of the disjoint sharp ( ©# ) operator and the cube set intersection operator.



162 CHAPTER 7. THE EXECUTION MODEL

+ : CubeSet2 → CubeSet

∀ x , y, z : CubeSet •
z = x©# y + x · y + y©# x ⇔ (x , y) 7→ z ∈ +

As now the operational definition of the union and intersection operators are
available, we can investigate how these are used for content-based addressing and
object delivery.

Predicates and Summaries

In content-based addressing, the addresses used for the object delivery are speci-
fied in forms of predicates that select a point subset of the Dataspace of interest
to the communication participants. Typically, the predicates can be encoded
compactly, so that the resulting description is easy to store and manipulate. For
compact description though, this requires some knowledge of the structure of the
alphabet (i.e. objects used) involved in the communication.

In every communication there are two roles: that of a sender and that of
a receiver. In the communication based on the transfer of objects between the
sender and the receiver, it is customary to call the sender a producer (as it pro-
duces the communicated objects) and the receiver a consumer (as it consumes
the communicated objects). Further, a communication session can have multiple
participants fulfilling either of the roles. In contrast to the address based com-
munication that is the dominant way for message transport in electronic mail, for
example, where one-to-one communication mode is still dominant, the content-
based communication has in principle unlimited number of slots for either role.
This is of course conditioned on the ability of the producers and the consumers
to locate each other in the network.

A simple example of content-based addressing is reflected in two of the old-
est Internet-based services. These are the Internet Relay Chat (IRC) and the
Usenet services. Interestingly enough, these services with inherrent many-to-
many communication ability have lost in popularity with the wide acceptance
of the Internet, despite their potential, in favor of centralized services such as
the World-Wide Web (WWW) and Instant Messaging (IM). The content based
addressing present in these services are:

1. Data space partitioning. In this method of group communication, the topic
sets partition the entire data space. This method is employed by IRC.

2. Data space partitioning with hierarchical refinement. In this method, the
topic sets partition the entire data space, but can themselves be subdivided
and partitioned, thus creating a hierarchical topic ordering. This method is
employed by Usenet.

In both IRC and Usenet, the producers and the consumers gather around
common topics (reflected in the notions of IRC channels, and Usenet conferences).



7.3. MATCHING 163

All the participants can equivocally be both the producers and the consumers.
In the case of IRC, the topics are funneled in a flat channel-based topic registry.
In the case of the Usenet, the topics are organized in a hierarchical fashion. A
participant can therefore narrow down to the topic of own interest, by making a
series of subtopic filters that refine the interest until the participant decides the
granularity is appropriate.

Here we investigate a natural extension to the topic filtering methods. Rather
than imposing a data space partitioning like IRC or hierarchical selection rules
like Usenet, we require that the participants can choose an arbitrary Dataspace
subset. This is achieved through the use of summaries. The summaries allow a
compact description of the Dataspace of interest for the conversation participants.
Conceptually the summaries are no more than CubeSets and can be processed as
such.

Summary == CubeSet .

The reason we introduce this new concept atop the existing cube sets, is that
there are two classes of summaries needed, one for each of the two roles in the
communication. We therefore distinguish the producer and the consumer sum-
maries. The summaries are essential for the service discovery (refer to Chapter 6
). The producer and the consumer summaries that have a non-empty intersection
are considered compatible. That is, objects originating at the respective producer
must be delivered to the respective consumer. The process that solves the service
discovery problem is called matching.

7.3 Matching

Matching is a process used to solve the Service Discovery Problem (SDP) (Chap-
ter 6). Informally, it consists of looking at the descriptions of the products sup-
plied by the producers, the products demanded by the consumers, and finding
whether such descriptions have commonalities. By using matching on all the
nodes in the system, and giving guarantees that any producer-consumer pair is
catered to, allows one to verify the solution of the SDP. Matching usually involves
three parties. These are the aforementioned producers and consumers (henceforth
the clients), and an intermediate broker. The broker is a process that posesses
enough information to discern whether particular producers and consumers are
compatible. The broker process adds the necessary loose coupling between com-
patible clients. The broker can be implemented as a forwarding service (i.e. mul-
tiple nodes may delegate the broker role although the producers and consumers
are unaware of this). Matching consists of two sub-processes:

1. Match guarantee. A client must locate an appropriate broker to forward
the summaries to. The broker must guarantee that a complementing client4

4A producer is complementing for a consumer, and vice-versa.



164 CHAPTER 7. THE EXECUTION MODEL

will be found if it exists. We further postulate that the broker must find all
the complementing clients.

2. Match notification. When the match is found, the matching clients must be
notified that the match has been made.

Various strategies exist for handling the matching. There does not seem to
be a universal strategy that works well in all the circumstances. There are de-
pendencies upon the number of clients requesting assistance from the broker, the
network-wise distribution of the nodes, as well as the connectivity in the network
itself. We identify three classes of strategies, as follows.

1. Centralization. In this strategy, there is a single (physical) broker entity to
which all the producers and the consumers connect.

The upside of centralization is the simplicity. There is a single point of
contact for all the clients, and there is a single place where all the relevant
data is stored, and is available for any pre-processing.

The downside of centralization is that the broker is forcibly becoming a
bottleneck. Any dip in the quality of service rendered by the broker reflects
immediately on the system operation. The broker outage means that all
matching service is inaccessible.

2. Forwarding. In this strategy, there are multiple independent but cooperating
brokers. Every broker accepts clients, and tries to match the clients locally.
On success, the clients are notified. On failure, the clients are forwarded to
another broker that may be eligible to help further. The client must than
re-iterate the request with another broker.

The upside of forwarding is its distributed nature. Provided that a client
can obtain a reasonably current broker list, it becomes increasingly difficult
for the outage to occur, as opposed to the centralization strategy.

The downside of forwarding is that it requires clients to be able to connect
to any broker when needed. This condition may be difficult to fulfill if the
network does not exibit full connectivity (e.g. when it is proximity-based as
is the case in the MANETs), and the broker can forward the client to any
part of the network in principle. Further downside is that the distribution
requires up-to-date forwarding rules fulfilling the match guarantee.

3. Delegation. This is a more elaborate forwarding strategy. Multiple indepen-
dent and cooperating brokers exist as in the forwarding strategy. The broker
accepts the client, tries to match it, and the client is notified if the match
succeeds. If the match fails, the broker accepts itself to be a client’s dele-
gate, and re-issues the client’s query itself, while the client is still pending
the broker’s reply.

The upside of this approach is the independence of the full network connec-
tivity, provided that the up-to-date forwarding rules are maintained.



7.3. MATCHING 165

The downside of the approach is that the forwarding rules are involved, and
because of the limited connectivity, the number of brokers tends to be large.
Ideally, some brokering functionality is present in every node with the access
to the network.

In the wireless network scenario that we consider (see Chapter 5), the dele-
gation is a viable strategy, given the limitations on the direct connectivity range
imposed by the nature of the medium. Hence a forwarding match strategy must
be formulated that governs the broker operation when delegating the match re-
quests. In the next section we propose a strategy built upon the CBT distributed
forwarding structure [60], described in detail in the Chapter 6. The CBT-based
strategy we consider rests on the assumption that a CBT is established between
the nodes, and that it is being actively maintained as the connectivity between
the nodes changes.

Forwarding Strategy

The forwarding strategy we consider for the brokers is based on the distributed
CBT structure. Conformant to the notation given in Chapter 6, we use φp

a and
φc
a to denote producer and consumer summaries for some node a, respectively.

To simplify the notation of Algorithm 1, we use the familiar vector and matrix
notation to represent in compact form the operations on a sequence of summaries.
Thus Φp and Φc, both of dimension k × 1 for some integer k , are vectors into
which mutltiple producer, and consumer summaries are stacked, respectively. The
matching matrix, obtained as the vectorized intersection Φp · ΦcT of dimension
k × k , has a summary intersection in each its entry.

Further, the summary operator S appearing in the Algorithm 1 warrants ex-
planation. It takes some summary φ as a parameter, and produces another sum-
mary Sφ which contains at least the points that are elements of φ. Hence, the
summary operator may simply return φ, but as will be seen such a situation is not
as interesting as the one where S makes approximate summaries, which hopefully
have a simpler description than the original one.

The Dataspace in this and the sections to follow is an m-dimensional space,
where all the coordinates are integers, for simplicity. The support set for the
integers is denoted as M . Hence in this case, we are considering the set Mm ⊆
Dataspace, as the upper bound.

Algorithm

Consider an arbitrary CBT. Assume as usual that the dynamics of the CBT
change is slow, once formed.

Consider now some node n in the CBT. Denote its uplink node as u, and
the set of downlink nodes {v1, . . . , vk} such that n is an uplink for vi , for every
1 ≤ i ≤ k . The matching algorithm for the node n is given in the algorithm 1.



166 CHAPTER 7. THE EXECUTION MODEL

Require: Node n. Uplink node u. A set of k downlink nodes {vi : 1 ≤ i ≤ k}.
A vector of product summaries Φp =

[
φp

0 φp
1 · · · φp

k

]T
. A vector of consume

summaries Φc =
[
φc

0 φc
1 · · · φc

k

]T
. S, the summarizing operator.

Ensure: An up-to-date matching matrix M = Φp · ΦcT .
if any component of Φp or Φc changed then

Recompute M.
Compute φp ← SΦp and φc ← SΦc

Send φp and φc to u
Send Sφp

i · φc
j to i for all j

Send Sφp
j · φc

i to i for all j
else if received φp from u then

Compute Sφc
i · φp and send to i

Compute Sφp
i · φc and send to i

else {Initialization step}
M = [∅]k

end if

Algorithm 1: Matching.

The algorithm collects the summaries from all downlinks. These summaries
are indexed with numbers 1 to k , with summary i pertaining to the downlink
1 ≤ i ≤ k . The producer and the consumer summaries are kept apart in the
vectors Φp and Φc . Node n adds own summaries, φc

0 and φp
0 to Φp and Φc

respectively and computes the matching matrix M. An aggregate summary is
made for the uplink by applying the summary operator S. The uplink u also
performs matching and delivers the match to n. If n is the core node, no uplink
u exists and the corresponding actions are omitted.

Summaries

A producer p forms its summary φp
p and propagates it to its uplink, i.e. the node at

which its only outgoing link points to. Likewise a consumer c forms its summary
φc
c and propagates to its uplink. Uplinks are obliged to forward these summaries

further, until the core node of the CBT is reached. In CBT, a unique path exists
between any producer and consumer pair. Hence it is guaranteed that at least at
core node, φp

p and φc
c will be present at the same time in the steady state. The

path to the core on which the summaries are propagated is called the thread5.
As the core may be located at any node, the expected length of a thread equals
expected path length of a tree (E [L]). As the path between the producer (p)
and the consumer (c) consists of at most two threads, its mean length is 2 E [L].
Without further considerations, the nodes closer to the core are more burdened

5Thread is formally defined on page 171.



7.3. MATCHING 167

with summaries than edge nodes, since they must remember summaries published
by all nodes in their sub-tree.

This number can be reduced if it is observed that overlapping summaries can
be aggregated, i.e. reduced to a summary that covers given summaries [17].

A summary φ1 covers a summary φ2 if it holds φ1 ⊇ φ2. For a summary
sequence φ1, . . . φk , an exact summary is formed as φ =

⋃
k φk . It can be seen that

φ covers the given sequence. However, for exact matching, the computing cost for
the matching can be prohibitive and it may become the bottleneck in the matching
process. A matching heuristic performs approximate matching [91]. It trades off
the computational complexity of exact matching for additional communication
load for handling false positive traffic. Let there be given a summary φ1 ⊂ Mm .
A cover φ2 of φ1 is complete if for every point x ∈ Mm , x ∈ φ1 ⇒ x ∈ φ2. A
cover is correct if there exists no point x ∈ Mm such that x ∈ φ2 and x 6∈ φ1.
Approximate summaries are complete, but incorrect.

Supercube Approximation

As a simplest approximation, consider the supercube approximation. For the given
summaries, the supercube is the smallest cube covering all the summaries. Let k
summaries be given as 〈φ1, . . . φk 〉 and let lki and uki be the lower and the upper
bound of the coordinate 1 ≤ i ≤ m respectively. Define the summary operator S
to yield a supercube. I.e. such an operator S takes a sequence of summaries and
produces a new summary as: φ = S(φ1, . . . , φk ) = [mink l1k ,max k u1k ] × · · · ×
[mink lmk ,max k umk ].

A trade-off between false positive matches and description complexity exists.
Supercubing introduces #(φ−⋃k φk ) points that cause false positive matches. It
also simplifies the description of the k summaries to only one. Thus communicat-
ing the description of the summary induces k -fold less traffic per link, and k -fold
less processing time at nodes in the respective thread. Consider a node n of the
CBT, as in Algorithm 1, and either producer or consumer summary type without
loss of generality. To reduce the description that covers φ0 up to and including
φk , n can consider the supercube approximation. A partition of the summary sets
can be constructed, and each element of the partition approximated by a super-
cube. Choice of the partition depends on the amount of false positive traffic that
is allowable. The false positive traffic amount for the node n can be expressed in
terms of the probability distribution function over the elements of Dataspace.

In particular, let us consider the object traffic at n. Let us assume that the
relative frequency for the arrival of each object from Dataspace to n is known.
Denote this frequency as f :

f : Dataspace → 0..1
∫
Dataspace

f (x )dx = 1



168 CHAPTER 7. THE EXECUTION MODEL

The objects that get delivered to n are the members of the aggregate summary
produced by n from the exact summaries φ0 to φk for some k , whereas only the ex-
act

⋃
k φk are actually needed. Thus all extra delivered objects are false positives.

Assuming that all the false positive objects are equal size (as they are in our ex-
ample), the fraction of false positives is given by: ω =

∫
x∈S(φ0,...,φk)\

⋃
k

φk
f (x )dx .

The node n can only estimate f , using the traffic received up to some time instant.
As soon as a supercube approximation gives too high a fraction ω, n splits the
set of summaries from the offending supercube in two and constructs a supercube
for each, thus creating a new approximation.

Summary Operations

In this section we analyze the summary operator S in more detail. We have
seen that the matching is possible when S is complete. It can also be read-
ily checked that the sizes of the messages exchanged by the nodes in Algo-
rithm 1 depend on the efficiency with which the producer and consumer sum-
maries are represented. An incorrect, but complete operator S may incur false
positives in the matching algorithm, so to eliminate false positives, a correct
summary operator is needed. The problem arises with the size of the efficient
and exact description of many summaries. Any complete summary operator is
acceptable as long as the number of false positives is acceptable. For exam-
ple, adopting a summary operator where (∀A ⊆ Mm) S(A) = Mm yields a
flooding communication strategy, at the expense of large false positive traffic.

A

Mm

Figure 7.1: The hierarchical approx-
imation of a set A (shaded circle).

Here we suggest the hierarchical sum-
mary operator represented in Figure 7.1.
In the Figure, a set A (represented by a
shaded circle) is approximated by disjoint
subsets of Mm (solid rectangles), which
form Â = SA. The approximation is gov-
erned by a parameter ε, specifying the ceil-
ing fraction of generated false positive traf-
fic (i.e. the fraction of total transferred
points of Mm as S is only complete). Ap-
proximation starts with a trivial summary
operator (e.g. supercube). If the approx-
imation yields more than fraction of ε of
false positive traffic, the operator is refined
by partitioning the range (dashed lines). The process is repeated recursivelly for
each member of the partition until a sufficiently detailed approximation is found.

Let us now compute the condition for the approximation refinement allow-
ing us to find an adequate approximation to an arbitrary set of objects from
Dataspace, at node n from the previous section. We already specified that for



7.3. MATCHING 169

simplicity Dataspace ≡ Mm . Consider now a sequence of random variables
〈X1,X2, . . . ,Xl〉 for some integer l , representing the object sequence received at
node n. The PDF for each of these variables is equal to fX ≡ f , as before. Now
the false positive traffic fraction ω is given as:

ω = Pr
(
(X ∈ A,X 6∈ Â) ∨ (X 6∈ A,X ∈ Â)

)
= Pr

(
X 6∈ A,X ∈ Â

)
≤ ε, (7.5)

due to the completeness of S. Expressing Pr
(
X 6∈ A,X ∈ Â

)
in terms of the

distribution density fX :

∫

x∈Mm

(
[x ∈ Â]− [x ∈ A]

)
fX (x )dx ≤ ε, (7.6)

where [·] denotes an indicator6. Now partition Mm to k approximately equal sets
M1, . . .Mk and rewrite Equation (7.6) in terms of the new sets:

∫

x∈Mm

(
[x ∈ Â]− [x ∈ A]

)
fX (x )dx =

∑

µ∈{Mi :1≤i≤k}

Pr (µ)

∫

x∈µ

(
[x ∈ Â]− [x ∈ A]

)
fX |µ(x | µ)dx ≤ ε,

(7.7)

where Pr (µ) = # µ /#(Mm) = 1/k , and fX |µ the conditional probability of X
with respect to the set µ. Finally:

1

k

∑

µ∈{Mi :1≤i≤k}

∫

x∈µ

(
[x ∈ µ ·Â]− [x ∈ µ ·A]

)
fX |µ(x | µ)dx =

=
1

k

∑

µ∈{Mi :1≤i≤k}

[µ ·A 6= ∅]

∫

x∈µ

(
[x ∈ µ ·Â]− [x ∈ µ ·A]

)
fX |µ(x | µ)dx ≤ ε,(7.8)

Each of the Mi can be further partitioned as given here, in order to obtain a
more precise hierarchical description of Â. The hierarchical description of Â hence
consists of all the sets Mi and their subdivisions that have a nonempty intersection
with A (hence also with Â). The size of the description is proportional with the
number of sets in the subdivision (with the proportionality constant the size of
an individual set description in the implementing code). Subtracting left-hand
sides of Equations (7.6) and (7.8) we see that the two approximations differ by:

1

k

∑

µ∈{Mi :1≤i≤k}

[µ ·A = ∅]

∫

x∈µ

(
[x ∈ µ ·Â]− [x ∈ µ ·A]

)
fX |µ(x | µ)dx (7.9)

6Indicator [P ], where P is some predicate has a value of 1 if the predicate is true and 0
otherwise (from [37]).



170 CHAPTER 7. THE EXECUTION MODEL

which is due to the subsets Mi that have an empty intersection with A but have
been counted in the coarser approximation of Equation (7.6) and left out in the
refined one (7.8).

We implemented the straightforward hierarchical summary operator as de-
scribed here and in Section 7.3. The set operations operate on integer-only cubes,
and the operations have been implemented as an extension of binary value only
methods described in [23]. The outcome of the summary operator is shown in

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
e
la

ti
v
e
 a

p
p
ro

x
im

a
ti
o
n
 s

e
t 
s
iz

e

False positive traffic

Relative approximation size versus the false positive traffic (Testing dataset)

dim1
dim2
dim3
dim4

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
e
la

ti
v
e
 a

p
p
ro

x
im

a
ti
o
n
 s

e
t 
s
iz

e

False positive traffic

Relative approximation size versus the false positive traffic (Random dataset)

dim1
dim2
dim3
dim4

Figure 7.2: The approximation results for a range of common data cube dimen-
sions ranging from 1 to 4.

Figure 7.2. The graphs show the relative sizes (up to a constant) of the cubes
from two different data sets. The first plot is a testing data set, with intersections
between cubes with dimensions from 1 to 4. The second plot shows randomly
generated data sets with intersection dimensions from 1 to 4. Plots show the
maximum allowed false positive traffic on the x-axis. The y-axis shows the size of
the resulting data set. The unit used is the size of the runtime memory image of a
single data cube7. Plots show a decrease in the description size with the decrease

7As per its current Java implementation. We did not optimize the size of the single data



7.3. MATCHING 171

in the summary precision.

Matching Algorithm

We now consider a matching implementation that takes the properties of the CBT
into account. The basic operation is simple and follows the lines of Algorithm 1
to implement a characteristic up-down message passing, common for a wide range
of algorithms executed on a tree.

Assume that a CBT has been constructed from the graph G. Let b be some
node from V . Let dn(b) be the set of downlinks of b and up(b) the uplink of b, or
⊥ if none. For x ∈ {p, c} (p standing for producer, and c for consumer) introduce
the respective summaries. Thus, φx

n is a x -summary of node n. Also, φx
n̄ is a

x -summary of the subtree rooted in node n (also denote as x̄ the complementary
summary, i.e. for p, p̄ = c and vice versa). µx

n is a match summary of node n.
µ

x

n̄ is a match summary of the subtree rooted in the node n. a → b denotes a
message sent from node a to node b. We formalize the matching requirement as
follows.

Definition 11 (Matching) Let a and b be nodes from G. Let the producer
summary of a be given as φa

p , and the consumer summary of b be φb
c . A matching

is found for a and b if there exists a node in G which determines that there exists
a set X ⊆ φa

pφb
c .

Further, the set M , such that X ⊆ M , must be delivered to both a and b.
The matching condition determines which producers and consumers need to be
connected together.

Definition 12 (Thread) Let a be a node and there be given a set of iterated
applications upk (a), for k ≥ 0:

T (a) = {a, up(a), up2(a), . . . } (7.10)

T (a) is a thread of a.

Lemma 7 The thread of any node a consists of the nodes on the path from a to
the core.

Proof. Let #T (a) be the path length from a to the core node. If #T (a) = 0, the
claim is true by definition. Assume the claim holds for #T (a) = k − 1. Consider
a for which #T (a) = k . The path from a to the core node leads through upa,
so T (a) = {a} ∪ T [up(a)]. In T (a), a is by definition on the path of the core.
Likewise, T [up(a)] are all on the path to the core. �

For any node b from a given CBT, the core node is a member of T (a). Therefore
for any two nodes a and b from the CBT, there exists at least one common node
in T (a) and T (b).

cube, although this is possible if needed.



172 CHAPTER 7. THE EXECUTION MODEL

Lemma 8 (Thread intersection) Any two threads have at least one common
node.

Lemma 8 is a prerequisite for deriving the Matching condition, as it shows
that there exists a node at which matching can be performed. It must be ensured
that the matching occurs for compatible nodes.

Proposition 7 (The CBT Matching) Let S be a complete summary operator,
and let u = up(b). Then the messages:

b → u : φx
b̄

= S[φx
b +

∑
k∈dn(b) φx

k̄
] (7.11)

∀ k ∈ dn(b) b → k : µ
x

k̄ = S[φx
k̄
· (φx̄

b + µ
x

b̄ +
∑

l∈dn(b)\k φx̄
l )] (7.12)

guarantee that matching is satisfied for all pairs of compatible producers and con-
sumers.

Proof. The operator S is complete. Hence given any set X ⊆ Mm , it must be
that X ⊆ SX . Consider two nodes a and b (a 6= b) with compatible summaries
φp
a and φc

b . By Lemma 8, there exists a node c such that c ∈ T (a) ∪ T (b). Two
cases can be distinguished. First arises when c 6= a and c 6= b. Second arises
when c = a or c = b. These cases are similar, so we work the first one out and
pick the second one up when appropriate.

Case c 6= a and c 6= b. There is a node ka so that ka ∈ T (a) and up(ka ) = c.
Similarly kb exists for b with analogous properties. We prove by induction that
for any node n ∈ T (a), and any x ∈ {p, c} it holds that φx

a ⊆ φx
n̄ . For n = a,

from Equation (7.11) it holds that:

φx
a ⊆ φx

n +
∑

k∈dn(n)

φx
k̄
⊆ S[φx

n +
∑

k∈dn(n)

φx
k̄
] = φx

n̄ . (7.13)

hence the base case holds. Assume now that for any sequence of up to l nodes
in
(
a, up(a), . . . , upl−1(a)

)
where l < #T a it holds that φx

a ⊆ φx
upl−1(a). Using

Equation (7.11), the fact that upl−1(a) ∈ dn[upl (a)], the completeness of S and
the inductive hypothesis:

φx
a ⊆ φx

upl−1(a) ⊆φx
upl (a) +

∑

k∈dn[upl (a)]

φx
k̄

⊆S[φx
upl (a) +

∑

k∈dn[upl (a)]

φx
k̄
]

⊆φx

upl (a)
.

(7.14)

completing the proof that φx
a ⊆ φx

n̄ for any n ∈ T (a).
Now turn to Equation (7.12). As φp

a and φc
b are compatible, a nonempty set

X = φp
a ·φc

b exists. We show that X is propagated to both a and b. Consider the



7.3. MATCHING 173

nodes c and ka . Rewriting Equation (7.12) for ka , we get:

X ⊆φp

k̄a
· φc

kb

⊆φp

k̄a
·

∑

l∈dn(c)\ka

φc
l

⊆φp

k̄a
· (φc

c + µp
c̄ +

∑

l∈dn(c)\ka

φc
l )

⊆S[φp

k̄a
· (φc

c + µ
p
c̄ +

∑

l∈dn(c)\ka

φc
l )] = µ

p

k̄a
,

(7.15)

and a similar line of reasoning shows that X ⊆ µ
c

k̄b
. Hence both ka and kb are

notified about a match containing at least X .

It remains to show that both a and b are notified with X . The proof is also
by induction, the base case thereof already given by Equation 7.15. Let l be such
that ka = upl (a), and let k ′

a = upl−1(a). By inductive hypothesis, X ⊆ µp

k̄a
.

X ⊆φp
k ′
a
· µp

k̄a

⊆φp

k̄ ′
a

· (φc
k ′
a

+ µ
p

k̄a
+

∑

l∈dn(c)\ka

φc
l )

⊆S[φp

k̄a
· (φc

c + µ
p

c̄ +
∑

l∈dn(c)\ka

φc
l )] = µ

p

k̄ ′
a

.

(7.16)

Analogous reasoning leads to X ⊆ µp
b and we conclude that the matching condi-

tion as per Definition 11 is fulfilled.

Case c = a or c = b. With respect to the former case, either ka or kb (but not
both) do not exist. Without loss of generality, assume c = a. The induction for
the summary φc

b still holds. Match X ⊆ φp
a · φc

b is found at a since X ⊆ φc
k̄b
· φp

a ,

and a is automatically notified of the match by Equation (7.10). To prove that b
is notified too, one uses the slightly modified induction given by Equations (7.15)
and (7.16). The base case, instead of Equation (7.15), is now:

X ⊆φc
k̄b
· φp

c

⊆φc
k̄b
· (φp

c + µc
ā +

∑

l∈dn(a) kb

φp
l )

⊆S[φc
k̄b
· (φp

c + µ
c

ā +
∑

l∈dn(a) kb

φp
l )] = µ

c

k̄b
,

(7.17)

and the rest of the inductive argument remains the same as before. Also here we
conclude that the matching condition is fulfilled, and the proposition holds. �



174 CHAPTER 7. THE EXECUTION MODEL

Bloom Filtering for Strings

In this section we refine the matching algorithm for the summaries that explicitly
have to do with character strings (that is, seqCHARs). In the Section 7.2 the
constraints were presented conceptually as subsets of the support set for a given
coordinate. In general this description is not compact, as for a coordinate with
the support set of k elements, there are 2k possible constraints to encode. Some
support sets have special structure that can be used to maintain a compact de-
scription even if the size of the support set is unlimited. This is precisely the case
for strings, whose support set is infinitely large, and consists of the union of the
sets of all character sequences with lengths 0, 1, 2 and so on.

Bloom filters [11] are a device to approximate set membership. A Bloom
filter is a randomized bit array (it uses randomized hash functions) and has some
possibility of yielding a false positive, that is it may posit that an element is in a
set, where it is not [61]. The Bloom filter can also be designed to allow for some
fixed fraction of false positives. The filter is most efficient if a positive implies
lengthy processing, and the “positive” set is only a small fraction of the universal
set. Even with false positives, the resulting set for which the lengthy operation is
performed is small.

Bloom Filter Properties

Let there be given a length-m bit sequence B , called the Bloom filter.

B : seq{0, 1}
#B = m

Assume that there are n elements of some set S in total to represent by the bit
array. Initially all the bits in the array are set to 0. A family of k hash functions
is adopted:

[S ]
h1, . . . , hk : S → 0..m − 1

It is assumed that the hash functions are independent and produce a random
distribution of the domain over the range 0..m − 1. The bloom filter is produced
from the n elements of the set S by computing in turn the values {hi(x ) | i ∈ 1..k}
for each x ∈ S and setting the bit hi(x ) of the array B to 1. Testing whether
some element q belongs to S amounts to computing T = {hi(q) | i ∈ 1..k} and
checking that 0 6∈ B(| T |).

The false positive probability is computed considering all the bits in B as
independent. The probability that some bit j in the array is left at 0 after all the
n elements of S are cached in B is equal to the probability that all the n · k bit
settings set some bit other than j . As there are m bits in total, the probability of



7.3. MATCHING 175

one hash missing one particular bit is is m − 1/m = 1 − 1/m. As there are n · k
bit settings, the probability that bit j remains unset is equal to the probability
that all the bit settings miss. That is:

(
1− 1

m

)kn

≈ e−kn/m . (7.18)

The probability of a false positive is equal to the probability that for the
element q all the k hashes evaluate to set bits of B . Thus the false positive
probability is approximated by:

[
1−

(
1− 1

m

)kn
]k

≈
(
1− e−kn/m

)k

= f . (7.19)

Taking the right-hand side of Equation (7.19), it can be noted that the false
positive probability for the Bloom filter as given here depends on the three pa-
rameters: k , m, and n. One may consider the choice of k for fixed m and n so
that the false positive probability f is minimized. In that case, f is minimized
easily considering that it shares a common minimum over k with ln f :

d ln f

dk
= ln e−kn/m +

kn

m

e−kn/m

1− e−kn/m
= 0. (7.20)

The Equation (7.20) is satisfied for k = m/n · ln 2 which can be readily checked8,
and this also constitutes a global minimum. In practice however, ⌈k⌉ or ⌊k⌋ are
applicable, as k is in fact constrained to integer values. Further, minimizing f in
terms of p = e−kn/m when k is minimum reveals that p = 1/2 minimizes f [61].
Thus, the Bloom filter performs best when the probability that each bit is set
is at 1/2. As the bits are independent, the sequence B then looks like uniform
random (binary) noise.

Counting Bloom Filters

A drawback of the original Bloom filter is that the element removal from the filter
is not supported. A moment’s thought reveals that simply setting indices of hi(q)
for an element q to 0 does not work as intended. Resetting these bits effectively
excludes many more elements from the Bloom filters, and precisely those that
have any bits that coincide with any hi(q). This is a large set because, opposed
to the original formulation of the filtering where all bits must be set for an element
to be a member, in this case any element may be reset for an element to not be
considered a member. The probability of this happening is now about 1 −m−n ,
which quickly gets close to 1, for increasing n.

8This claim can be derived by substituting t = e−kn/m and massaging Equation (7.20) until
the equation (1 − t) ln(1 − t) = t ln t is reached. From there can be concluded that 1 − t = t ,
hence t = 1/2. Returning to the substitution yields the result.



176 CHAPTER 7. THE EXECUTION MODEL

To support element removal from the filter, a counting modification is intro-
duced to the original filter definition. It replaces each bit of the original filter
with a counter. Adding an element q to a filter increments each counter in the
index {hi(q) | 1 ≤ i ≤ k}. Removing an element q from a filter decrements each
counter in the respective index set. Additionally, for space considerations, and for
practical purposes, all counters have a limited range, from 0 to some maximum
w . For this reason, the increment and decrement operations are saturating. Thus
incrementing w yields w instead of w + 1. Likewise decrementing 0 yields a 0
instead of −1. The saturation does not introduce errors in the filter operation.
It rather only prevents subsequent removal operations to restore the filter set
exactly.

Applying Bloom Filters in the Matching Algorithm

To apply the (counting) Bloom filter for the matching algorithm, one needs to
overload the union and intersection operators for the Bloom filter type. We in-
troduce a derivative of a Constraint , which is a counting Bloom filter. The newly
defined Constraint and the related operations given below can be readily plugged
into the previously defined matching algorithms.

BloomConstraint
b : seq 0..m − 1

h1, . . . , hk : seqCHAR → 0..m − 1

#b = k

Testing for membership is achieved by testing for the absence of the element
0 in the relational image of the element hash functions.

[X ]
∈ : X ↔ BloomConstraint

X 6= seqCHAR •
( ∈ ) = ∅

X = seqCHAR •
∀ x : X ; y : BloomConstraint •

0 6∈ y.b(| {y.hi(x ) | 1 ≤ i ≤ k} |)
⇔ (x , y) ∈ ( ∈ )

Further, computing union and intersection amounts to maximizing, or mini-
mizing the value of the respective counter. The intersections with other types are
all empty, while unions are undefined.



7.3. MATCHING 177

+ : BloomConstraint2 → BloomConstraint

· : BloomConstraint2 → BloomConstraint

∀ x , y, z : BloomConstraint •
z .b = 〈max (x .b(1), y.b(1)), . . . ,max (x .b(k), y.b(k))〉
⇔ (x , y) 7→ z ∈ ( + )

z .b = 〈min(x .b(1), y.b(1)), . . . ,min(x .b(k), y.b(k))〉
⇔ (x , y) 7→ z ∈ ( · )

Matching Implementation

In this section we present the implementation of the matching algorithm described
in Section 7.3. The implementation is presented in the form of an appropriate
CPN performing steps described in the algorithm description. The CPN reveals
the flow of control for the implementation. The synchronization between the
places and transitions functions according to the execution rules for the CPN.
The account of these rules was given in detail in Chapter 2.

The CPN implementing the matching is shown in the Figure 7.3. It is a
straightforward rewrite of the matching algorithm into the CPN form. The Figure
shows the places through which the specification and match tokens go within a
single agent. Using the folding technique the same CPN is used to specify the
states of all the nodes in the network. Places U ∗, D∗ and L∗ denote the set
of uplinks, downlinks and total links, respectively. The contents of these places
depends on the environment. The uplink places contain the uplink for every node.
The downlink places contain the downlinks for every node. We assume that the
external mechanism exists that maintains the current view of U ∗ and D∗. This
function is performed by the CBT package (see Chapter 6). Additionally, the
assertion L∗ = D∗ ∪ U ∗ holds, as uplinks and downlinks are also links9.

At the top of the CPN of Figure 7.3, one notes three “phantom” transitions:
(recvm), (recvs ) and (local). These are the interfaces to the mechanisms that
obtain the remote matches, remote specifications and the local specifications, re-
spectively. The remote matches correspond to match messages (see Equation 7.12)
obtained from the uplinks k for the node n. The remote specifications correspond
to the specifications obtained from downlinks (see Equation 7.11). Finally, the
local specifications are those published at the local node n, signifying the mes-
sages the node n is interested in. The same algorithm operates on both the
producer and the consumer summaries. This is denoted by an upper index x
(where x ∈ {p, c}) of the respective specifications and matches. Hence the given
algorithm can be understood as two superimposed CPNs, one for x = p, and the
other for x = c. These algorithms are not completely independent however, as in

9That is, the implementing classes for downlinks and uplinks are derived from a common
base class Link.



178 CHAPTER 7. THE EXECUTION MODEL

(recvm)
OO

(n,k ,µx
k )

��
�
�
�
�
�
�
� (recvs)OO

(n,k ,φx

k̄
)

��
�
�
�
�
�
�
� (local)

OO

(n,φx
n)

��
�
�
�
�
�
�
�

76540123RM__

(n,k ,µx
k )

��
??

??
??

??
??

??
??

??
??

?
(l,µx

l̄
)

**TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 76540123RS
OO

{(n,d,φx̄

d̄
)}

��

__

(n,{φx

d̄
})

��
??

??
??

??
??

??
??

??
??

?

(n,l,µx

l̄
)

''OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 76540123LS??(n,φx
n )

����
��

��
��

��
��

��
��

��
� OO

(n,φx
n)

��

76540123 L∗

•

(n,l)

��

CM
OO

(n,d,µx

d̄
)

��

CS
OO

(n,φx
n̄)��

DEL

76540123U ∗
__

(n,u)

��
??

??
??

??
??

??
??

??
??

?
ww

(n,u)

77oooooooooooooooooooooooooooooooo 76540123 M
OO

(n,d,µn

d̄
)

��

(n,k ,µx

k̄
)

77oooooooooooooooooooooooooooooooo 76540123 S
OO

(n,φx

k̄
)

��

76540123D∗
��

{(n,d)}

__???????????????????
''

{(n,d)}

ggOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

76540123
SS

•
(n,k ,µx

k̄
)

//
PM

(n,d,µx

d̄
)

��

(n,k ,µx

k̄
)

oo PS

(n,u,φx
n̄)

��

(n,u,φx
n̄)

// //''

(n,u)

ggOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 76540123
SM

•oo

76540123RSM

(n,d,µx

d̄
)

��
�
�
�
�
�
�
�

76540123RSS

(n,u,φx
n̄)

��
�
�
�
�
�
�
�

(sendm) (sends)

Figure 7.3: The CPN showing the matching algorithm.



7.4. THE WORKFLOW MECHANICS 179

the Equation 7.12, the complementing summaries, x and x̄ appear. Still, the two
CPNs are similar enough so as to be folded to a single net, given in Figure 7.3.

The remote and local summaries are collected in the places: Remote Match
(RM), Remote Summary (RS), and Local Summary (LS). For each node n re-
spectively, these places hold:

1. The matches received from another node k ;

2. The summaries received from another node k ; and

3. The local summary generated at the node n.

The transitions Compute Match (CM) and Compute Summary (CS) respectively
compute the Equation 7.12 and Equation 7.11. The transition Delete (DEL)
removes the stale matches and links when due to the environment influence a link
(i.e. a token on Link (L∗)) is lost.

The transitions CM and CS produce the computed Match (M) and Summary
(S) tokens which regularly get updated as the specifications on RM, RS and LS
change. Package Match (PM) and Package Summary (PS) package and ship
out the readies summaries to Ready Match (RSM) and Ready Summary (RSS).
These last tokes are picked up by (sendm) and (sends) and are being transferred
to the respective destinations. The destinations are shown in the CPN as d and
u respectively. Sent Summary (SS) and Sent Match (SM) maintain a tally of the
summaries already sent and will prevent the sending of new summaries for as long
as no changes to the summary occurred since it has been last sent.

The details of the token transfer between (sendx ) and the corresponding
(recvx ) are omitted in the presentation of the algorithm. This is because the
dialog mechanics has already been described before (e.g. Chapter 6). We there-
fore need only to mention a simplified model of the token transfer. The sent
triples at (sendx ) for x ∈ {m, s} always have the form t = (s , d , c), where s is
the source node identifier, d is the destination node identifier and c represents
the content of the transferred summary. At destination (i.e. (recvx )) the same
triples are received as t ′ = (d , s , c). As can be seen, first(t) and first(rest(t)). are
transposed in the received copy t ′ of t .

7.4 The Workflow Mechanics

In the previous sections, we described the data model used for the workflow
execution (Section 7.2), and then we described the mechanism used for matching
(Section 7.3). In this section we bring these elements together, describing how
the workflows are maintained by using them and how multiple function instances
coexist when they are physically located at different nodes.

The principal task of the workflow mechanics is to explain the way the datas-
pace and subspace selection can be used for flow control in a distributed workflow
execution system. In the Chapter 4 it was shown how inter-related tasks can be



180 CHAPTER 7. THE EXECUTION MODEL

cast into a workflow form by defining guard conditions which determine the neces-
sary and sufficient conditions for a task to be activated. It was also demonstrated
how such a specification is cast in terms of a CPN. From there we concluded that
a coordinated task set can be expressed in terms of an appropriately annotated
CPN. On the other hand, in the previous Sections it is shown how nodes can use
the constraints to select only the parts of the Dataspace for which they explicitly
express an interest in. The underlying thread in this Section is the provision of
a mechanism that can implement a CPN in terms of the operations available on
the Dataspace elements.

Versioning

A part of this task is the assignment of each CPN transition to a node that exe-
cutes the corresponding program code, and using the suitable producer-consumer
summaries to filter out from the Dataspace the appearance of only the appropri-
ate tokens that activate the transitions. Hence, for any CPN an appropriate set
of producer-consumer summaries need to be found, selecting only the elements
appropriate for a transition.

The network and node volatility is the main issue. Not only can the node
outage prevent a workflow component to be executed (if not handled properly), it
can also cause the system to lose track of the operations that were unfolding. The
nodes in the system must be able to transport the tokens from one to the other,
and also make a tally which tokens have been transported already. Hence for
all tokens, additional bookkeeping is needed to achieve this. Unfortunately, this
is not achievable through flagging the delivered objects locally. This is because
such a marking does not confirm that an object has in fact been delivered and
processed. Also, as multiple nodes may perform equivalent functions, it is possible
that due to aliasing, multiple equivalent objects are produced by different nodes.
There is no need to deliver multiple such objects (rather only one or two, for
instance). Hence flagging the objects as delivered would produce a system state
where there exist equivalent objects, of which one is flagged and the rest are not,
although all object instances should be considered delivered.

Flagging is not enough to ascertain that some object is delivered. This is be-
cause the “deliveredness” of an object can be determined only if the joint states
of both the producers and consumers are considered. Flagging an object as deliv-
ered amounts to estimating the state of the consumer as being “object has been
received”, and the estimate can of course be wrong. On the other hand, the sum-
maries used to determine the compatible interests can remain unchanged when
nodes join or leave the CBT. This is because the summaries at a node are always
obtained by computing a superset of the summaries forwarded by the neighbours.
In both cases, counters are required to denote the situations in which a change
to the object has occurred, without actual change on the object itself (i.e. a new,
identical, object instance has become available), or that a summary has changed
its composition, without changing the Dataspace subset it refers to.



7.4. THE WORKFLOW MECHANICS 181

The said issues are handled by introducing a version annotation for both the
objects and the summaries themselves. The object and the summary annotations
are somewhat different one from the other. The difference stems from the fact
that a summary is unique per CBT, whereas an object can appear accross the
nodes in multiple equivalent instances.

Version
tag : R

Object Versioning

For the object versioning, the version tag must fulfill two requirements:

1. Version distinction. Different versions of an object must be such that,
clearly, the object history can be derived from the versioning number.

That is, by comparing the version tags of two equivalent objects which are
not the same version, it is possible to determine which one of them is an
“earlier” and which one is a “later” version.

2. Object distinction. Different object instances with the same versions need
to be distinct from one another, but still be selectable based on the tag
identifier of the associated Version instance.

That is, by comparing the version tags of two equivalent objects with the
same version number, it is possible to establish an ordering based on the
version tag alone.

Adopting a real-numbered version tag handles these two issues. The total
ordering with respect to the relation ≤ is established on the set R, hence the
version numbers can be readily compared. As ≤ is also defined on the positive
integers (the set N), we observe that for the fulfillment of the requirement 1, using
N for this purpose would be just enough.

However, in that case, all the instances of an object with a particular ver-
sion tag would become indistinguishable. This would mean that a request for a
versioned object would yield potentially many hits, whereas only a single object
would suffice. For this reason, the following rule is adopted:

Proposition 8 (Object versioning) Let there be given an object o annotated
with a version v ∈ Version.

1. Version distinction Each object has a Version annotation containing a tag:
tag ∈ R. The version of an object o〈v = 〈tag ⇛ x 〉〉 is therefore given as
⌊v .tag⌋.

2. Object distinction Each object instance version is increased by the fraction10

{v .tag} an unique pseudo-random number from the interval 0..1.

10We use the notation from [37] which introduces the “decimal fraction” operator {x} by
defining {x} = x − ⌊x⌋.



182 CHAPTER 7. THE EXECUTION MODEL

Example 22 (Object versioning) Let there be given some object o ∈ Dataspace,
with version number 2, and let α and β be the nodes at which the object instances
reside.

The instances are referred to as o ⋄ α and o ⋄ β. When the object o is stored
at two nodes α and β, it is assigned a version number 2 increased by a pseudo-
random value in the interval 0..1. Hence the object instances would be referred to
as:

o ⋄ α〈v = 〈tag ⇛ 2.1362〉〉
and:

o ⋄ β〈v = 〈tag ⇛ 2.7213〉〉
respectively.

The randomized versioning ensures that the ordering between object instances
is preserved, and that the objects remain distinguishable within the same version
number. It is therefore possible for the consumers to specify a base version of
some wanted object o, and to also tune which version range they are interested
in. A consumer interested in a version t of o can start by requesting o with a
version tag that satisfies the predicate ( ≤ 2.1).

If, after some predefined time interval, the consumer does not receive such an
object, it can modify its summary to look for version tags that are the members
of the set defined by the unary predicate ≤ 2.2, and so on, until a suitable object
is found. The consumer can hereby gauge the stream of the delivered objects so
that the network is never overwhelmed with the delivered object copies. Also,
eventually the object with version tag 2 will be delivered to it, if it exists.

Proposition 9 (Copying rule) Whenever an object o〈v〉, with v ∈ Version.
is copied as a result of any operation (e.g. forwarding), the version annotation
v .tag ′ of the copy is set to:

v .tag ′ = ⌊v .tag + 1⌋+ rnd ,

where rnd is a pseudo-random number from the interval 0..1.

In this way, the object instances with an integer version tag ⌊x⌋ get assigned
a version number x which is between ⌊x⌋ and ⌊x⌋ + 1. It is straightforward to
determine the object instance version tag distribution in this interval.

Typically, a node requesting an object will try to obtain the most recent
version thereof, and as few redundant copies as possible. Ideally, only one object
instance will be received. A node can therefore tune its selection policy so that
with high probability only a single object instance is delivered, and as recent a
version as possible. To achieve this, it is an advisable strategy for a node to tune
its constraint policy so that on average, a single object is delivered to it. The
node selects the value ⌊x⌋ as the version number. The next step is to choose {x}
that yields one object as a result.



7.4. THE WORKFLOW MECHANICS 183

Proposition 10 (Versioning rule) Let ⌊x⌋ be the version number of an object
a node has an interest in. Assume that the number of pending objects between
⌊x⌋ and ⌊x⌋+ 1 is known to be n. Then the choice of {x} such that the version
constraint x = ⌊x⌋+ {x} yields a single object with the highest probability:

{x} = 1− e−1/n . (7.21)

Proof. Assume that n object instances are posted in the interval between ⌊x⌋
and ⌊x⌋+ 1. For brevity introduce shorthand q == {x}. Let X (q) be a random
variable denoting the number of the n objects with the version tag falling between
⌊x⌋ and ⌊x⌋+ q.

Then the probability that only a single object falls into this interval is:

Pr (X (q) = 1) = nq(1− q)n−1. (7.22)

The behaviour of Pr (X (q) = 1) on the set [0, 1]× [1, 100] is shown in Figure 7.4.
This probability reaches the extremal value at the same point as log Pr (X (q) = 1).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0  10  20  30  40  50  60  70  80  90  100 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

n*(1-q)
(
n-1)*q

Figure 7.4: Behaviour of the probability Pr (X (q) = 1) .

d

dn
log Pr (X (q) = 1) =

1

n
+ log(1− q) = 0, (7.23)



184 CHAPTER 7. THE EXECUTION MODEL

from where it is concluded that:

q = 1− exp(−1/n)

maximizes the probability that X (q) = 1, which then amounts to:

Pr (X (q) = 1)|q=1−e−1/n = ne−1/n(1 − e−1/n).

�

Hence, for selecting with highest probability an interval that contains a single
object, nodes should estimate the number of candidate objects n, and then set
the fraction {x} to the value given in the Equation 7.21.

As n is typically unknown, we must settle for an estimate for n. The estimate
can be derived as follows, from the past observations of the same version range
for one particular object instance.

Proposition 11 (Estimating instances) Assume that for r various values of
{x} being q1 up to qr , the following samples are obtained: n1, n2 up to nr . Then
the estimate for the total number of objects within the range 0..1 is:

n =
1

r

∑

1≤i≤r

ni

qi
. (7.24)

Proof. The probability for the realization of the event (n1, . . . ,nr ), where the
samplings of ni are independent for all i is:

Pr (n1, . . . ,nr ) =
r∏

i=1

(
n

ni

)
qni

i (1 − qi)
n−ni . (7.25)

The likelihood function is obtained as: L(n1, . . . ,nr ) = log Pr (n1, . . . ,nr ). Differ-
entiating L with respect to n:

dL(n1, . . . ,nr )

dn
=

d

dn

∑

1≤i≤r

log

(
n

ni

)
+ ni log qi + (n − ni) log(1− qi) = 0. (7.26)

The log-binomial log
(
n
ni

)
is expanded, taking into account that

(
a
b

)
= a!

b!(a−b)! for

a ≥ 0, b ≥ 0 and a − b ≥ 0, to yield:

L(n1, . . . ,nr ) =
∑

1≤i≤r




∑

1≤j≤n

log j −
∑

1≤j≤ni

log j −
∑

1≤j≤n−ni

log j





+ ni log qi + (n − ni) log(1− qi).

(7.27)

The sum-logs on the right-hand side of Equation (7.27) are approximated by the
Stirling formula:

∑

1≤k≤x

log k ≈
∫ x

1

log kdk = x log x − x , (7.28)



7.4. THE WORKFLOW MECHANICS 185

to yield the approximation:

L(n1, . . . ,nr ) ≈
∑

1≤i≤r

n log n − ni log ni − (n − ni) log(n − ni)

+ ni log qi + (n − ni) log(1− qi).

(7.29)

Differentiating the approximate expression for L from Equation (7.29), one
obtains the condition:

dL(n1, . . . ,nr )

dn
= r log n −




∑

1≤i≤r

log(1 − qi) + log(n − ni)



 = 0 (7.30)

that reduces to: ∏

1≤i≤r

(1− qi) =
∏

1≤i≤r

(
1− ni

n

)
. (7.31)

The Equation (7.31) is satisfied for:

n =
ni

qi
, for all 1 ≤ i ≤ r . (7.32)

Adding all the expressions n = ni/qi from Equation 7.32 up yields:

rn =
∑

1≤i≤r

ni

qi
, (7.33)

leading to Equation (7.24). �

From Proposition 11 we see how a node can estimate the number of object
instances, given past observations. Thus obtained estimate for n can then be
substituted into the Equation (7.24) to yield the size of the selection {x}.

This versioning alone is not enough for the correct selection of the desired
objects from the neighbouring nodes. As with objects, the summary versions
play an important role, and we therefore treat their versioning in the following
Section.

Summary Versioning

As with the objects, the summaries delivered between nodes must be versioned.
The versions on summaries are required to propagate the changes to the producer
and the consumer sets as well as the changes of the summaries themselves.

As an illustration, consider the society given in the Figure 7.5 showing the
interaction between three nodes named α, β and γ. The nodes are represented by
circles, and the summaries reported to uplinks are represented by the annotated
summaries φ. Figure 7.5 shows a simple scenario in which a new node joins an
already existing CBT structure for which a summary φ has already propagated



186 CHAPTER 7. THE EXECUTION MODEL

76540123
φ 〈v = 〈tag ⇛ 1〉〉

α

76540123

??��������

φ 〈v = 〈tag ⇛ 1〉〉
β 76540123

__?
?

?
?

γ

76540123
φ 〈v = 〈tag ⇛ 2〉〉

α

76540123
φ 〈v = 〈tag ⇛ 1〉〉

??��������
β 76540123

__????????

φ 〈v = 〈tag ⇛ 2〉〉
γ

Figure 7.5: The need for summary versioning.

through (left). Incidentally, the node γ contributes a new summary which denotes
the same Dataspace subset as those of the nodes α and β.

Since the summary of γ is also equal to φ, without additional provisions, α
would not need to modify its aggregated summary. But, although not changing
the summary is economic in terms of the bandwidth saved for not transferring
an unchanged summary, it also entails that γ will not be delivered any objects
present on α which have already been delivered for the summary version 1 of φ
during the time γ was not included as a consumer.

To do this, however, the node γ must specify a version tag that is higher than
that present in the uplink. It is not always necessary that γ requests all the objects
for its particular summary. This depends on whether γ is introduced to take up
the upcoming workload (from the time it joins onwards), or it is introduced to
take over the objects posted before it joined the network.

When computing the summaries (according to Proposition 7) in the CBT
structure, the node11 b annotates the resulting summary with a version tag that
is the maximum of all the version tags of the constituting summaries.

Proposition 12 (Versioning summaries) Let b be some node in the CBT.
Let dn(b) be the set of its downlinks. Let b compute the summary to be forwarded
to u = up(b) according to the Equation (7.11). Additionally, let each summary
φx
k̄

for all k ∈ dn(b), as well as φx
b be annotated with the corresponding version

tag. Let these annotations be φx
b .v and φx

k̄
.v for all k ∈ dn(b), respectively.

Then the annotation for φx
b̄

is obtained as:

φx
b̄
.v =

〈
tag ⇛ max

[
φx
b .v .tag,max k∈dn(b) φx

k̄
.v .tag

]〉
(7.34)

From the Equation (7.34) we see that each node b forwards a maximum version
tag of the subordinate summaries along with the summarized tag. This tagging
ensures that any change in the number of downlinks along a thread12 gets even-
tually propagated up a thread, as long as the version tag associated to the change
is the maximum along a thread.

11Refer to Proposition 7 on page 172 for details about the notation.
12I.e. those connected by the uplink and downlink relations.



7.4. THE WORKFLOW MECHANICS 187

A similar rule is valid for the match computation. Here the version tag of the
computed match is again the maximum of the version tags of all the summaries
used to compute it.

Proposition 13 (Versioning matches) Let b be some node in the CBT. Let
dn(b) be the set of its downlinks. Let b compute the summary to be forwarded
to k ∈ dn(b) according to the Equation (7.12). Additionally, let each summary
φx̄
k̄

for all k ∈ dn(b), as well as the summaries φx
b and φx

k̄
be annotated with

the corresponding version tags. Let these annotations be φx
b .v and φx

k̄
.v for all

k ∈ dn(b), respectively.
Then the annotation for µ

x
k̄ is obtained as:

µ
x

k̄ .v = 〈tag ⇛ max [φx
k̄
.v .tag, φx̄

b .v .tag,

µx
b̄ .v .tag,max l∈dn(b)\k φx

l̄
.v .tag]〉 (7.35)

The node b of the CBT can therefore specify a version tag through annotating
its client summary, and can observe the effect of putting an annotation into the
summary by testing the version tag on the respective match. Depending on the
intended role of the node, the node may want to impose the maximum version
tag for its thread. This happens if the node should collect the objects that had
been exported by other nodes in the CBT prior to its activation in the CBT. If
the node is included only to continue the work from a certain point onwards, it
need only set its version tag to be equal to that of the current match.

Hence, the strategy for a node that establishes a new connection with an uplink
in its CBT is to select a version tag for the summary higher than the previous one
for the respective match. And the strategy for a node that reinstantes an existing
connection is to set a version tag higher than that of the current match.

With the object and the summary versioning in place, the bookkeeping of
the object delivery is simple. Per object, a last delivered version tag is kept. It
denotes the last match version for which an object copy was delivered.

LastDelivered == Version

The delivery is directed by the following simple rule.

Proposition 14 (Delivery rule) Consider an object o〈l = 〈tag ⇛ l∗〉〉 and a
match µ〈v = 〈tag ⇛ v∗〉〉. Then the LastDelivered tag of o is updated, and the o
forwarded to the owner of µ by:

∆LastDelivered
v∗? : R

tag < v∗? •
deliver o for µ.
tag ′ = v∗?



188 CHAPTER 7. THE EXECUTION MODEL

As the matches consist of disjoint cubes, there will be at most a single cube
C within the match µ for which o ∈ C . Hence object is delivered only once for a
single node, per each version change that ensures that l∗ < v∗.

Waiting on Multiple Tokens

In Chapter 2 the triggering mechanism for transitions was described. The trig-
gering mechanism takes care that each CPN transition (implemented by a node
in the CBT) gets activated if and only if the preconditions for this are fulfilled.
The triggering mechanism must also take care that the tokens fulfilling the pre-
condition for some transition are processed only once, provided that no version
changes on these objects have taken place.

In line with the requirement to handle the node volatility13, multiple instanti-
ations of the same transition must be supported. By multiple instantiations of a
single transition, we mean multiple nodes which implement functionally identical
transitions. Supporting multiple instantiations translates into the bookkeeping
required to direct all the available tokens only to a specified set of receivers. To
understand this properly, we take a look at the components that any workflow
consists of, shown in the Figure 7.6.

Depending on the number of the input and output places we distinguish the
following CPN basic building blocks:

1. Contract is the building block consisting of a transition t , where #(◦t) >
1, and #(t◦) ≤ 1 (when #(t◦) = 0, then t is also a sink). Upon each
activation, the contract transition reduces the total number of active tokens
(as the number of input places is smaller than the number of output places).
According to the activation rules from Chapter 2, the token types b and c
must depend on only one of the other tokens (say a). Hence: b = b(a), and
c = c(a).

2. Expand is the building block consisting of a transition t , where #(◦t) ≤ 1,
and #(t◦) > 1 (when #(◦t) = 0, then t is also a source). Upon each
activation, expand increases the number of active tokens.

3. Reduce is the building block that consists of a transition t , which produces
and consumes tokens from the same place. Such a transition can occur
typically for cumulative operations, arising from say summation.

4. Map is the building block for which #(◦t) = #(t◦) = 1. This block con-
sumes a single token from the only place in ◦t , and delivers it to the only
place in t◦.

Note that the blocks for which simultaneously #(◦t) > 1, and #(t◦) > 1 can
be described by a serial concatenation of an expand block with one contract block,

13See page 10 on node volatility.



7.4. THE WORKFLOW MECHANICS 189

76540123 A

a
,,

76540123 B

b

��

76540123 C

c
rr

t
d

��76540123 D

(a)

76540123 A

a

��

t
b

��

c

��

d

��76540123 B 76540123 C 76540123 D

(b)

76540123 A

a

��

t

b

OO

(c)

76540123 A

a

��

t
b

��76540123 B

(d)

Figure 7.6: The basic CPN building blocks. (a) Contract. (b) Expand. (c) Re-
duce. (d) Map.

by making the unique post-place of the latter the unique pre-place of the former
(see Figure 7.7). The access modes14 are syntactic sugar so there is also no need
to show them here explicitly.

When the CPN is implemented, each transition is allocated to some node.
To prevent problems relating to volatility, as well as to enhance throughput, the
system designer would want to allocate multiple instances of the same transition
in different nodes. This gives rise to the need to synchronize the instantiations,
so that the activation semantics of the CPN can be honored. For this, some
distributed queuing method for each transition needs to be applied.

Various strategies exist for this [44]. The first option is centralized queue
regulation through an unique process, the queue manager. While simple, this
queuing solution has two important drawbacks:

1. With the increase in the number of queues to manage, the manager ends up
with a high workload. It ultimately becomes a bottleneck.

2. Under network and node volatility, the queue manager also becomes a single
point of failure, whose absence prevents the CPN execution.

14The access modes were shown in Chapter 2, on page 31.



190 CHAPTER 7. THE EXECUTION MODEL

76540123 A

a
,,

76540123 B

b

��

76540123 C

c
rr

t
d

��
�
�
�

76540123 D

d

��
�
�
�

t
e

��

f

��

g

��76540123 B 76540123 C 76540123 D

Figure 7.7: Attaching an expand to a contract building block.

The second option is having each producer multicast the state of the tokens it
contains to all the consumers. Again, the simplicity of the scheme is outweighed
by the two principal drawbacks:

1. This approach entails a lot of messages for synchronization.

2. Care must be taken that each token offered by a producer is consumed only
once in a given context.

A separate issue arises with the contract basic building blocks. A contract
building block (call it k) waits on multiple tokens originating from disparate
nodes. At the same time, the block k can have multiple instantiations residing
on different machines. Upon the delivery of the tokens in the set ◦k it must be
ensured that all tokens relevant for k are not only delivered to an instance of k ,
but also that all tokens of the places from ◦k are delivered to the same instance
of k .

The ideal approach for the synchronization of multiple producer-consumer in-
stances forwards the tokens (i.e. the products) so that all the consumer instances
are busy processing the tokens and that some goal function is optimized. Typical
goal functions are balancing the load on the consumers, maximizing the cumula-
tive token throughput, or minimizing the time for processing a single token.

We do not go into the ways the execution is optimized. Here we only treat the
mechanism with correct token delivery as the only functional requirement. On
the non-functional side though, the following requirements are important:

1. The avoidance of centralized setups (e.g. the queue manager approach given
above). This requirement stems from the network volatility assumption. In
a volatile network, it is not possible to employ an effective queue manager,



7.4. THE WORKFLOW MECHANICS 191

since it is as susceptible to volatility as any other process. It therefore
remains a bottleneck for the entire system, regardless of the existence of the
multiple instances of the consumers.

2. Proactive handling of the node volatility. This requirement specifies an
approach to handling node volatility before it occurs.

While it is considered an overkill in computer systems with assumed infre-
quent fault, it is quite a natural assumption in the communication systems,
for instance. As we identified node volatility to be ever-present in DWEAM,
proactive handling of node volatility is justified.

Mutual Adjustment Strategy

From the above requirements, the coordination strategy of mutual adjustment [82]
between the nodes implementing transition instances is imminent. The mutual
adjustment is a coordination strategy used in distributed systems, whereby the
system components cooperate in managing their own workload, without an ex-
ternal supervisor entity. The mutual adjustment strategy employed here is based
on the problem space partitioning concept. This strategy is used given that, due
to the task decomposition into a workflow and the representation by CPN transi-
tions, the transition instances apply identical procedures to the tokens in the input
place. As opposed to the queue manager approach, where the queue manager ex-
plicitly decides which worker takes a work item, we adopt an implicit approach,
in which no queue manager exists, and the task assignment is randomized.

We introduce a simple mutual adjustment schema based on the assignment of
unique identifiers to points of the Dataspace, and partitioning the identifier space
among all the interested transition instances. Trading off top performance for
coordinator-less operation, we obtain a strategy that guarantees eventual progress
of the involved tokens, if the processing is feasible (i.e. at least one appropriate
transition and the network connection exist). For this purpose an additional
coordinate is needed in the Dataspace. We call this coordinate the DSUID . It is
used as a mutual adjustment key.

[ DSUID ]

The DSUID is an unique identifier type, from which elements can be drawn
randomly. Further assume for simplicity that each transition of the CPN to be
executed has been allocated a distinct numeric DSUID too (presumably by the
system designer).

A straightforward way to implement DSUID is to represent its elements by
a sequence of l digits taken in some base b. In practice, b = 2 is usually used
(corresponding to using the identifiers encoded in binary), with l an implementa-
tion parameter, chosen so that bl is large enough to contain all the objects in the



192 CHAPTER 7. THE EXECUTION MODEL

Dataspace15. An element e ∈ DSUID is sampled from DSUID by generating uni-
formly at random each of the l sequence elements. As a result, set of the tokens
from Dataspace will have DSUID coordinates that also uniformly at random fill
the DSUID space.

To partition the DSUID set and allocate each partition element to some in-
stantiation i of a transition t , distinction must be made between instances t ⋄ i for
each i . For this, each node hosting an instance t ⋄ i should choose own identifier,
from which the transition identifier can be recovered, and the identity of t ⋄ i
can be maintained. Both goals can be achieved with a single identifier, as long
as the upper bound on the number of functions and the number of implementing
instances is known.

One can employ a simple idea coming from the coding for telecommunications
to achieve this goal. The transition instance identifier is built from two compo-
nents. The first is fixed, and corresponds to the transition identifier. One can
look at this as a “codeword”. To this codeword, an unique, randomly generated
identifier is superimposed, by bitwise addition, considering both identifiers as bi-
nary numbers. The randomly generated identifier corresponds to random “noise”
which is superimposed to a codeword when it is transferred through a communi-
cation channel. Well known coding schemes exist (Reed-Solomon, BCH, Turbo,
Low Density Parity Check Codes, to name a few) by which the original codeword
can be recovered efficiently from the “noisy” codeword.

In a similar manner, here the effect of noise is simulated, with the goal to
obtain unique identifiers, distinct with high probability, but which cluster around
the transition codeword, in the sense of some distance measure. A simple measure
such as Hamming distance16 suffices. From the unique identifiers, the transition
codeword can be recovered by standard decoding methods. Contrary to the com-
munication case where the noise is a feature of the communication medium, the
added noise in our case is under direct control. Care must be taken to make the
noise of low enough power so to not disturb the decoding by introducing spurious
errors. The random identifiers can be generated completely independently by the
implementing nodes.

Once the instance identifiers are assigned, a simple mutual adjustment strategy
can be employed: a produced object is delivered to all different transitions that
consume it, and within the transition, to the transition instances with DSUIDs
closest to the DSUID of the object itself. The system designer may decide to
instruct the system to deliver the object to c > 1 closest transition instances, thus
ensuring that the outage of any one single instance does not affect the subsequent
availability of the computation outcome. We arrive at a delivery proximity rule.

15This is easily achieved in practice, as for instance if b = 2 and l = 400, then bl ≈ 2.5 ·10120,
generously topping the number of hydrogen atoms in our galaxy.

16Hamming distance between two binary numbers x and y is equal to the number of bit
positions in x and y that have different value.



7.4. THE WORKFLOW MECHANICS 193

Proposition 15 (Delivery Proximity Rule) Objects representing the tokens
in the CPN are annotated with a randomly assigned DSUID, as described. In-
stances that implement transitions are assigned a randomly generated DSUID as
described. The token objects, when produced, are delivered to the c of the trans-
action instances which have the c closest DSUIDs to that of the token object.

Multiple Input Tokens

For transitions that expect tokens from at most a single place (such as the map
and expand from Figure 7.6b,d), the mutual adjustment strategy as described
by the previous section can be considered enough to ensure that a transition is
eventually delivered the tokens needed for firing.

With multiple tokens, as is the case of the reduce (Figure 7.6a), the mutual
adjustment entails a complication: the input tokens, which can originate at un-
related nodes, must be delivered to the same transition instance. It means that
the unrelated tokens must bear the same DSUID , so that the view on the closest
transition instance is the same for all the tokens, and that token DSUIDs must be
delivered to all of them. A possibility for brokering the DSUIDs in such a way is
to assign them upstream (in terms of the defining CPN) in a transition common
to all the tokens. The brokering example is given in Figure 7.8.

Such an arrangement implies that, for determining the transition instance
at the minimum-distance from a given object, the instance DSUIDs must be
known. The DSUID information can be readily attached to the producer and
consumer summaries. Each node delivers adds own DSUID to the summary,
together with all DSUIDs received from the downlinks. As the only nodes using
the DSUID data are those at which the transition instances reside, they are
the only ones at which the transition instance DSUIDs need to be kept. Call
the facility in which the transition instance DSUIDs are stored a DSUID table.
These tables contain the data about the transition instance DSUIDs and is kept in
synchrony with the DSUID labels delivered through the summaries and matches.
Unrelated DSUID table instances are not guaranteed to be synchronized, for
performance reasons. Synchronizing the DSUID tables would entail the need for
distributed transactions. Omitting the synchronization leads to a system state in
which different nodes may hold conflicting DSUID tables.

It can therefore occur that, for some contracting transition t there exist dif-
ferent transition instances, at nodes α and β, t ⋄α and t ⋄β respectively, to which
the related tokens from distinct places from ◦t get delivered, although they should
have been delivered to a single instance of t . These tokens trigger the guard of
their respective transition17 but as they are not present simultaneously at the
same node, the transition t would never get executed. We therefore have two
opposing forces in the token delivery: the delivery proximity rule, stating that for

17See Chapter 2 for the description of the guard in the blackboard-based CPN implementa-
tion.



194 CHAPTER 7. THE EXECUTION MODEL

76540123

��

DSUID generated

ww

���� ��76540123

��
�O
�O
�O

76540123

��
�O
�O
�O

76540123

��
�O
�O
�O

76540123

..

76540123

��

76540123

}}

��

DSUID used

99

%%

76540123

��

Figure 7.8: Brokering. The example shows an expand transition that generates
DSUIDs for three separate token streams. The streams are joined by two contract
transitions further down the CPN.

execution a token must be delivered to some of the transition instances closest
to it, and the DSUID table asynchrony, which prevents the related tokens to be
always delivered to the same transition instance.

It necessarily means that the tokens will be misdelivered at runtime. The mis-
deliveries are to occur when the nodes join or leave the network, as these events
change the set of the mentioned c minimum-distance nodes. Provided that the
network shows eventual stability in terms of the available nodes, the misdelivery
can be handled by requiring the secondary forwarding of the misdelivered ob-
jects. The criterion for misdelivery is based on comparing the actual DSUID of
a token on the local blackboard18. This requires an addition to the token and
summary/match reception algorithms, for additional inspection of each token for
the contract transition instances. In a nutshell, each change to the producer/-
consumer matches (propagating the consumer DSUIDs) triggers a local token
inspection on the local blackboard of the affected node. If, for some object o the
updated match contains an DSUID which is closer to o than the local transition,

18The blackboard implementation of the token processing mechanism for CPN is given in
Chapter 2 on page 34.



7.5. SUMMARY 195

the object is re-forwarded to the owner of the respective DSUID .

7.5 Summary

In this Chapter we supplied to the DWEAM model the final ingredient which
makes the execution of distributed workflows possible: the model for executing
distributed programs within the Distributed Workflow Execution Architecture for
Mobile (DWEAM) context.

We started off by introducing the location-independent mechanisms for object
delivery. We argued that such mechanisms are preferable for dynamic networks
in comparison to the delivery methods based on network-level addressing. The
general objection to network-level addressing is that it bears no resemblance to
the actual traffic patterns required in a distributed system, as the addresses reflect
the network structure, whereas in fact it is the data distribution structure that
needs to be reflected. Adopting content-based addressing alleviates this issue, as
content-based addressing describes the desired objects in terms of the features
that remain fairly constant during the system runtime, the data semantics. The
content-based addressing approach, while common in database systems, seems to
be fairly uncommon for the use in data delivery across system boundaries.

Curiously enough, content-based addressing is fairly common within the bo-
undaries of a single system, even if the system itself consists of multiple computers
joined together. To observe this claim as true one can look at database applica-
tions, where the objects of interest are routinely chosen based on the values of
various fields. The field values are drawn from the tables, in case of a relational
database, or objects, in case of an object-oriented database.

Unfortunately, the paradigm shift from content-based to network-based ad-
dresses comes at a price. Without the explicit notions of a sender and a receiver
a whole flurry of activity needs to be performed for the service discovery and
the matching. Hereby the notions of sender and receiver are replaced by the
notions of producer and consumer. The change naturally reflects the shift from
network-based to content-based addressing.

Although the content-based addressing schemes at first seem to be an unnec-
essary complication of an otherwise hygienic approach to distributed communi-
cation, it turns out that flexible, extensible, and scalable distributed applications
do in fact require content-based addressing. However, the frameworks we were
confronted with during the work on DWEAM (COUGAAR and Java Agent De-
velopment Environment (JADE), which we consider to be typical representatives
of the mainstream, general purpose, multi-agent platforms). This is painfully re-
alized to be true when implementing a distributed application and starting from
the “near end” with simple use cases that disregard distributed problems, and
realizing, halfway into the implementation, the scope of change needed in order
to bring into play the full scope for transparency, failover, distribution etc. At
the basis of all of this functionality is one or the other content-based addressing



196 CHAPTER 7. THE EXECUTION MODEL

scheme. Unfortunately, one is then left with the conlclusion that no standard
generic scheme is available for content-based communication, and that it is the
task of the application builder to invent an ad-hoc solution. For DWEAM we pro-
vided a generic approach to content-based data distribution, in hope to reinforce
the view in support of the content-based approach.

For the location independent data distribution to work, a notion of a commonly
understood Dataspace was necessary, and it had to be equipped with the operators
for manipulating the data contained within. At this point a serious tradeoff had
to be considered. The Dataspace had to, in essence, be a set encompassing all the
known, but also all the yet unknown (but constructible) types that may arise in
distributed systems. This requirement meant in effect that commonly recognized
semantics of the regions of the Dataspace must exist. It also means that the
slightly incompatible Dataspace regions can apear due to faulty or incremental
Dataspace design, and that nothing but design discipline can help prevent the
ambiguities arising from there. Unfortunately there seems little one can do to
prevent (ab)using the Dataspace concept to make incorrect programs, in line of
Brooks’ observation that: “there is no silver bullet [which irrevocably solves non-
incidental programming issues]” [16] . Once the Dataspace and the operations
have been defined, we could specify the method used for matching the producers
and consumers, relying on the availability of the CBT (see Chapter 6). The
matching method relied on the fact that the CBT is a tree, and hence on the
existence of a core node, to guarantee that matches between compatible nodes
would eventually be found. A generic method for matching was given, as well as
a specific method which involved the use of Bloom filtering to represent sets of
character sequences, that can be used for tagging messages and efficient recovery
of the appropriate content objects.

Finally the issues involved in the workflow mechanics were described, namely
those arising from the fact that the bookkeeping must be held at the level of object
groups or classes, rather than at the level of individual objects. We introduced the
versioning method allowing for multiple object instances to reside in the system,
as a consequence of multiple transition instances that produce them. This re-
quired the versioning of not only the objects, but also the summaries themselves.
The final issue was the synchronized token delivery for contract transitions. This
was resolved by introducing an unique identifier scheme for the contract tran-
sitions, and the distance scheme, whereby tokens are only delivered to closest
nodes in the identifier space. Further, dependent tokens were assigned the same
identifier, which is assigned early in the execution of the respective CPN. It was
thereby ensured that the related tokens would ultimately be delivered to the same
transition instance. The temporarily mismatched view on the available transition
instances is solved by allowing nodes to forward misdelivered objects closer to
their intended destinations.



Chapter 8

Conclusion

In this thesis, we looked in detail into the design of Distributed Workflow Execu-
tion Architecture for Mobile (DWEAM). In this final Chapter, we will summarize
the results from the thesis, outline the possibilities for further work, as well as
comment about the practical experience gained and possible further developments.

8.1 Introduction

To understand the design decisions made in the development of DWEAM one
needs to understand the context within which it was developed. DWEAM was
made under the aegis of the project Combined Systems. The project Combined

Systems was set up to investigate the possibilities of introducing information
systems in various phases of crisis management. One of the concerns within Com-

bined Systems was the deployment of information systems in the field alongside
emergency workers.

This concern presented a clear challenge: the requirement was to deploy a
distributed system (consisting of PDAs devices carried by the workers) into a
hostile environment, and entrust it with carrying out a computational task using a
set of volatile computation devices (PDAs) and a volatile wireless interconnection.
Such a requirement suggested that the operating environment for DWEAM plays
a crucial role in the runtime, affecting both the computational nodes, and the
connections between them. This is far from the clean-room environment in which
the conventional distributed systems are running, where errors are infrequent
and the interconnections do not change with time. Here, the structure of the
interconnection as well as the availability of the nodes are not known in advance,
and there is little initial structure to rely on.

To organize a meaningful computation in such a chaotic environment we
needed to develop a set of unique techniques. These techniques are the thesis
contributions that we mention in the next Section.

197



198 CHAPTER 8. CONCLUSION

8.2 Why Distributed Workflow Execution Now

The work on DWEAM has for the most part been an endeavour on the path seldom
taken in the world of distributed computing. From the literature surveys, it is seen
that most of the research interest in distributed computing has been in tightly
coupled distributed systems in which the computational resources are scarce. By
tight coupling we are encompassing a set of implied operating conditions of the
distributed systems, such as: the geographical co-location of the computers, the
scarcity of the resources, the reliability and high bandwidth of the network etc.

There seemed to have been comparatively little interest in distributed comput-
ing with a large number of diverse, unreliable and unreliably connected devices.
We argue, with reasonable confidence, that the reason for this is that the re-
search in distributed computing has been motivated by fashionable applications.
The applications of distributed computing have predominantly been either in the
world of scientific computation, the business world etc. In these scenarios, what
was required to get the job done was a computational powerhouse, with all its
computational power concetrated at one physical site.

As the Internet became ever more popular among casual users, this computa-
tional powerhouse scenario surprisingly remained unchanged. In effect, little has
fundamentally changed in the way we use the computer systems now, to what we
used to do say a decade or two ago. Although, admittedly, the number of sites we
are able to reach today from our workstations has grown immensely. Today, as
before, we mostly use our computers as terminals to access some computational
powerhouse for our own purpose. We use them for shopping, for searching, for file
transfer. We are able to use them at a great physical distance, but the nature of
the work being performed has remained centralized. In fact, only a few truly dis-
tributed applications are widely deployed today. These are almost exclusively file
sharing applications, built on Bit Torrent and similar distributed transfer proto-
cols. Further, scientific applications such as Boinc [13] appeared in recent years1,
but their data flow model is elementary: a chunk of work is received from a central
server, processed and returned; the main application logic remained centralized.

During the work on DWEAM, we emphasized the completely decentralized
solutions enabling the distributed execution of arbitrary workflows, not just the
fixed ones as is the case with Boinc. The interest in implementing arbitrary
workflows seems to have been proven justified, as Google Inc. wrote the first
articles about MapReduce [24, 47] while the work on this thesis was still unfolding.
MapReduce was produced from the massively parallel code used to power Google’s
search engine. Interestingly, MapReduce did not exist explicitly in the early years
of Google’s development. It has apparently been factored out of the existing code
instead, as the generic method for easy parallelization. While of course there
is little known how it is used, from what little information one can glean from

1Mid 2000’s as of this writing.



8.3. FUTURE WORK 199

MapReduce, there definitely exists a commercially lucrative future for distributed
workflow execution. Google’s success indicates this clearly, to our understanding.

8.3 Future Work

The work on DWEAM and distributed workflow execution motivates an interest-
ing path for both research and applications. The algorithms for service discovery
and work distribution methods may prove useful for non-volatile environments as
well.

For fixed networks, the DWEAM-like implementations of service discovery,
using proximity-based methods instead of content-based matching are being de-
veloped as a sequel to DWEAM since the end of the Combined project. In the
proximity-based service discovery, the notion of Dataspace (see Chapter 7) still
exists, in form similar to that from DWEAM. However, in the proximity-based
approach, the Dataspace is set up as a metric space (with a metric tailor-made
to fit the application), and queries into the Dataspace are performed by specify-
ing ball-like Dataspace subsets by defining a point and a radius. Such a metric
Dataspace is easily managed through a Distributed Hash Table (DHT) facility,
for which a variety of algorithms are known (e.g. Chord [63], Tapestry [92]). The
proximity-based queries substitute the fairly complicated content-based matching.

At the time of this writing, the metric Dataspace extension of the DWEAM
mechanisms is in the specification phase. The aim is to make a system specifi-
cation which, in a manner similar to that of MapReduce, enables one to execute
distributed tasks by manipulating objects accessible through handles placed in
the Dataspace.

In the sense of Brooks [16], this approach does not represent a silver bullet
that single-handedly solves all the problems of distributed computing. Through
the experience gained by working on DWEAM we are fairly convinced that such
a device is not likely to exist. Rather unfortunately, the design of distributed
systems seems to always have to be tweaked toward a specific application. As a
consequence, this Dataspace approach seems to be tweaked towards the applica-
tions which are naturally expressed in form of workflows. We expect that among
those that can be set up in the form of a workflow, numerous useful applications
can be found.

* * *



200 CHAPTER 8. CONCLUSION

The Eight Fallacies of Distributed Computing (by Peter
Deutsch)

Essentially everyone, when they first build a distributed application, makes the
following eight assumptions. All prove to be false in the long run and all cause
big trouble and painful learning experiences.

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology doesn’t change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous



Bibliography

[1] Combined web page. Online reference. http://combined.decis.nl.

[2] Distributed.Net Web Site. http://www.distributed.net.

[3] Linda in a mobile environment (LIME). Online reference.
http://lime.sourceforge.net/.

[4] Wireless foundations. http://www.eecs.berkeley.edu/wireless/.

[5] Semantic Data Modeling. Prentice Hall, Englewood Cliffs, 1992.

[6] Europe’s mobile market penetration is set to breach 100% in 2006
or early 2007. In Business Wire. Gale Group, November 2005.
http://www.researchandmarkets.com/reports/c28137.

[7] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
interpretation of computer programs. MIT Press, Cambridge, MA, USA,
1985.

[8] Marco Avvenuti, Alessio Vecchio, and Giovanni Turi. A cross-layer approach
for publish/subscribe in mobile ad hoc networks. In Thomas Magedanz,
Ahmed Karmouch, Samuel Pierre, and Iakovos S. Venieris, editors, MATA,
volume 3744 of Lecture Notes in Computer Science, pages 203–214. Springer,
2005.

[9] Tony Ballardie, Paul Francis, and Jon Crowcroft. Core Based trees (CBT). In
SIGCOMM ’93: Conference proceedings on Communications architectures,
protocols and applications, pages 85–95. ACM Press, 1993.

[10] BBN Technologies. The Cougaar Architecture Guide, 2004.

[11] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

[12] Barry W. Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K.
Clark, Bert Steece, Winsor A. Brown, Sunita Chulani, and Chris Abts. Soft-
ware Cost Estimation with Cocomo II (with CD-ROM). Prentice Hall PTR,
New Jersey, January 2000.

201



202 BIBLIOGRAPHY

[13] BOINC: Berkeley open infrastructure for network computing. Online refer-
ence. http://boinc.berkeley.edu/.

[14] J. P. Bowen. Formal Specification and Documentation Using Z: A Case Study
Approach. International Thomson Computer Press, 1996.

[15] R. K. Brayton and F. Somenzi. An exact minimizer for boolean relations. In
IEEE International Conference on Computer-Aided Design, pages 316–319.
IEEE, November 1989.

[16] Frederick P. Brooks. The Mythical Man-Month: Essays on Software En-
gineering, 20th Anniversary Edition. Addison-Wesley Professional, August
1995.

[17] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design
and evaluation of a wide-area event notification service. ACM Transactions
on Computer Systems, 19(3):332–383, 2001.

[18] Antonio Carzaniga and Alexander L. Wolf. Content-based networking: A
new communication infrastructure. In NSF Workshop on an Infrastructure
for Mobile and Wireless Systems, number 2538 in Lecture Notes in Computer
Science, pages 59–68, Scottsdale, Arizona, October 2001. Springer-Verlag.

[19] K. Mani Chandy and Jayadev Misra. The drinking philosopher’s problem.
ACM Trans. Program. Lang. Syst., 6(4):632–646, 1984.

[20] Daniel Corkill. Blackboard Systems. AI Expert, 6(9), January 1991.

[21] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley Series in Telecommunications. John Wiley & Sons, New York, NY,
USA, 1991.

[22] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Wide-area cooperative storage with CFS. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP ’01), Chateau
Lake Louise, Banff, Canada, October 2001.

[23] G. de Micheli. Synthesis and Optimization of Digital Circuits. McGraw Hill,
1994.

[24] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplifed data processing
on large clusters. Operating Systems Design and Implementation, pages 137–
149, 2004.

[25] Reinhard Diestel. Graph Theory. Springer-Verlag New York, 2000.

[26] Edsger W. Dijkstra. Notes on Structured Programming. circulated privately,
April 1970.



203

[27] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta Inf.,
1:115–138, 1971.

[28] Filip Miletić. About Blackboards and Petri Nets. Technical Report TR-
BBPN-05, Delft University of Technology, Circuits and Systems Group,
Mekelweg 4, 2628CD Delft, The Netherlands, August 2005.

[29] Filip Miletić and Patrick Dewilde. Data Storage in Unreliable Multi-agent
networks. In Proceedings AAMAS, July 2005. Utrecht.

[30] Michael J. Fischer. The consensus problem in unreliable distributed systems
(a brief survey). In Fundamentals of Computation Theory, pages 127–140,
1983.

[31] Folding at home. Online reference. http://folding.stanford.edu.

[32] Freenet. Online reference. http://freenet.sf.net/.

[33] Felix Gaertner. Revisiting Liveness Properties in the Context of Secure Sys-
tems. Technical report, 2002.

[34] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–
77, 1983.

[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[36] Gnutella. Online reference. http://gnutella.wego.com/.

[37] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics; Second Edition. Addison-Wesley, 1997. GRA r 94:1 1.Ex.

[38] Gryphon event notification. Online reference.
http://www.research.ibm.com/gryphon.

[39] P. Gupta and P. Kumar. Capacity of wireless networks. Technical report,
University of Illinois, Urbana-Champaign, 1999.

[40] Charles Anthony Richard Hoare. Communicating sequential processes. Com-
mun. ACM, 26(1):100–106, 1983.

[41] P. Homburg, M. van Steen, and A. S. Tanenbaum. An architecture for a
wide area distributed system. In Seventh ACM SIGOPS European Workshop,
pages 75–82, Connemara, Ireland, 1996.

[42] Yongqiang Huang and Hector Garcia-Molina. Publish/subscribe tree con-
struction in wireless ad-hoc networks. In MDM ’03: Proceedings of the
4th International Conference on Mobile Data Management, pages 122–140.
Springer-Verlag, 2003.



204 BIBLIOGRAPHY

[43] John Turek and Dennis Shasha. The Many Faces of Consensus in Distributed
Systems. Computer, 25(6):8–17, 1992.

[44] T. Johnson. Designing a distributed queue. In SPDP ’95: Proceedings of
the 7th IEEE Symposium on Parallel and Distributeed Processing, page 304,
Washington, DC, USA, 1995. IEEE Computer Society.

[45] U. C. Kozat and L. Tassiulas. Service discovery in mobile ad hoc networks:
an overall perspective on architectural choices and network layer support
issues. Ad Hoc Networks, 2(1):23–44, January 2004.

[46] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels,
Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer,
Christopher Wells, and Ben Zhao. Oceanstore: An architecture for global-
scale persistent storage. In Proceedings of ACM ASPLOS. ACM, November
2000.

[47] Ralf Lämmel. Google’s MapReduce Programming Model – Revisited. Draft;
Online since 2 January, 2006; 26 pages, 22 January 2006.

[48] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Trans. Software Eng., 3(2):125–143, 1977.

[49] Vincent Lenders, Martin May, and Bernhard Plattner. Service discovery in
mobile ad hoc networks: A field theoretic approach. In WOWMOM ’05: Pro-
ceedings of the Sixth IEEE International Symposium on a World of Wireless
Mobile and Multimedia Networks (WoWMoM’05), pages 120–130, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[50] Michael Luck, Peter McBurney, and Chris Preist. Agent Technology: En-
abling Next Generation Computing. The Agentlink Community, 2002.

[51] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. LYN n
96:1 P-Ex.

[52] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. LYN n
96:1 P-Ex, Theorem 3.1, pp. 27.

[53] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric, 2002.

[54] R. Meester and R. Roy. Continuum Percolation. Number 119 in Cambridge
Tracts in Mathematics. Cambridge University Press, 1996.

[55] Sun Microsystems. Jini network technology. http://www.jini.org.

[56] Filip Miletić and Patrick Dewilde. Distributed coding in multiagent systems.
In IEEE Conference on Systems, Man and Cybernetics. IEEE, October 2004.



205

[57] Filip Miletić and Patrick Dewilde. Coding approach to fault tolerance in
multi-agent systems. In IEEE Conference on Knowledge Intensive Multiagent
Systems. IEEE, April 2005.

[58] Filip Miletic and Patrick Dewilde. Data storage in unreliable multi-agent
networks. In Frank Dignum, Virginia Dignum, Sven Koenig, Sarit Kraus,
Munindar P. Singh, and Michael Wooldridge, editors, AAMAS, pages 1339–
1340. ACM, 2005.

[59] Filip Miletic and Patrick Dewilde. Design considerations for an
infrastructure-less mobile middleware platform. In Katja Verbeeck, Karl
Tuyls, Ann Nowé, Bernard Manderick, and Bart Kuijpers, editors, BNAIC,
pages 174–179. Koninklijke Vlaamse Academie van Belgie voor Wetenschap-
pen en Kunsten, 2005.

[60] Filip Miletic and Patrick Dewilde. A distributed structure for service descrip-
tion forwarding in mobile multi-agent systems. Intl. Tran. Systems Science
and Applications, 2(3):227–244, 2006.

[61] M. Mitzenmacher. Compressed bloom filters. In Proc. of the 20th An-
nual ACM Symposium on Principles of Distributed Computing, IEEE/ACM
Trans. on Networking, pages 144–150, 2001.

[62] Mojonation. Online reference. http://www.mojonation.net/.

[63] Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In
ACM SIGCOMM 2001, San Diego, USA, September 2001.

[64] Napster. Online reference. http://www.napster.com/.

[65] Paal Engelstad and Yan Zheng. Evaluation of Service Discovery Architec-
tures for Mobile Ad Hoc Networks. In WONS, pages 2–15. IEEE Computer
Society, 2005.

[66] G. Picco, G. Cugola, and A. Murphy. Efficient content-based event dispatch-
ing in the presence of topological reconfigurations. In Proc. of the 23 Int.
Conf. on Distributed Computing Systems (ICDCS 2003), 2003.

[67] Amir Qayyum, Laurent Viennot, and Anis Laouiti. Multipoint relaying: An
efficient technique for flooding in mobile wireless networks. Technical Report
Research Report RR-3898, INRIA, February 2000.

[68] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content addressable network. Technical Report TR-00-
010, University of California at Berkeley, Berkeley, CA, 2000.

[69] Wolfgang Reisig. Elements of Distributed Algorithms. Springer, 1998.



206 BIBLIOGRAPHY

[70] T. Richardson and R. Urbanke. Modern coding theory, June 2003.

[71] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. Lecture Notes in
Computer Science, 2218:329–351, 2001.

[72] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 1996.

[73] Francoise Sailhan and Valerie Issarny. Scalable service discovery for manet.
In PERCOM ’05: Proceedings of the Third IEEE International Conference
on Pervasive Computing and Communications, pages 235–244, Washington,
DC, USA, 2005. IEEE Computer Society.

[74] Seti at home. Online reference. http://setiathome.ssl.berkeley.edu/.

[75] Claude E. Shannon. A mathematical theory of communication. Bell Sys-
tems Technical Journal, 27(3):379–423, July 1948. Continued 27(4):623-656,
October 1948.

[76] G. Smith. An Object-Oriented Approach to Formal Specification. PhD thesis,
St. Lucia 4072, Australia, 1992.

[77] Graeme Smith. A semantic integration of object-Z and CSP for the specifica-
tion of concurrent systems. In John Fitzgerald, Cliff B. Jones, and Peter Lu-
cas, editors, FME’97: Industrial Applications and Strengthened Foundations
of Formal Methods (Proc. 4th Intl. Symposium of Formal Methods Europe,
Graz, Austria, September 1997), volume 1313, pages 62–81. Springer-Verlag,
1997.

[78] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall Interna-
tional Series in Computer Science, 2nd edition, 1992.

[79] V. S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus,
Fatma Ozcan, and Robert Ross. Heterogeneous Agent Systems. MIT
Press/AAAI Press, Cambridge, MA, USA, 2000.

[80] V. S. Subrahmanian, Piero Bonatti, Jürgen Dix, Thomas Eiter, Sarit Kraus,
Fatma Ozcan, and Robert Ross. Heterogeneous Agent Systems, chapter 1,
page 21. MIT Press/AAAI Press, Cambridge, MA, USA, 2000.

[81] M. Turoff, M. Chumer, B. van de Walle, and X. Yao. The design of a
dynamic emergency response management information system. Journal of
Information Technology Theory and Applications, 5:4:1–36, 2004.

[82] Chris J. van Aart, Bob Wielinga, and Guus Schreiber. Organizational build-
ing blocks for design of distributed intelligent system. Int. J. Hum.-Comput.
Stud., 61(5):567–599, 2004.



207

[83] A. J. van der Hoeven, A. A. de Lange, E. F. Deprettere, and P. M. Dewilde.
A new model for the high level description and simulation of vlsi networks.
In DAC ’89: Proceedings of the 26th ACM/IEEE conference on Design au-
tomation, pages 738–741, New York, NY, USA, 1989. ACM Press.

[84] Pieter van der Wolf. Architecture of an Open and Efficient CAD Framework.
PhD thesis, TU Delft, June 1993.

[85] G. Vitaglione, F. Quarta, and E. Cortese. Scalability and performance of
jade message transport system, 2002.

[86] Y. Watanabe and R. K. Brayton. Heuristic minimization of multiple-valued
relations. IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, 12(10):1458–1472, October 1993.

[87] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication: A
quantitative comparison.

[88] David A. Wheeler. SLOCCount user’s guide. Online reference,
http://www.dwheeler.com/sloccount/sloccount.html, August 2004. version
2.26.

[89] Berkeley wireless foundations. Online reference.
http://www.eecs.berkeley.edu/wireless/vision.html.

[90] Workflow. online reference. http://en.wikipedia.org/Workflow.

[91] Yi-Min Wang, Lili Liu, Chad Verbowski, Dimitris Achlioptas, Gautam Das,
and Paul Larson. Summary-based Routing for Content-based Event Dis-
tribution Networks. ACM SIGCOMM Computer Communications Review,
34(5):59–74, October 2004.

[92] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D.
Joseph, and John D. Kubiatowicz. Tapestry: A resilient global-scale overlay
for service deployment. IEEE Journal on Selected Areas in Communications,
22(1):41–53, January 2004.





Acknowledgments

This thesis is an outcome of my Ph. D. research done at the Circuits and Systems
(CAS) group of Delft University of Technology. The research was conducted from
January 2003 until January 2007. During that time, numerous people influenced
constructively on its making. I am taking the opportunity to thank them here.

First and foremost, my gratitude goes to prof. dr. ir. Patrick Dewilde. In
late 2002, he gave me the opportunity to become the first in the CAS group on
the Intelligent Systems research track. His expert guidance has been invaluable
throughout the research ever since.

Further thanks go to all the members of the CAS group. They created just the
right hue of a relaxed and productive work environment that I had the privilege of
enjoying in the past years. They welcomed me, helped on numerous occasions with
issues simple and complex alike, asked pointed questions, engaged into discussions,
and in short did everything to make the time spent at CAS worth the while. I
hope they would continue in the same spirit in the upcoming years.

No thank-you note would be complete without the mention of my fellow re-
searchers at DECIS Lab in Delft. Thanks to dr. Kees Nieuwenhuis, without
whom DECIS would not be the same. Also to Paul Burghardt, the project leader
of Combined and an expert cat-herder who balanced the adventurous spirit of the
researchers with the necessity of producing practical, usable results. The quick
tip o’ the hat does no justice to you, but is second best to writing a book in itself
on all the ways that you have influenced me, guys and gals: Aletta, Bernard,
Bogdan, Chris, Els, Geert, Gregor, Guido, Hakan (“the Hackman”), Jan (×2),
Jan Maarten, Jeroen, Josine, Joost, Kees, Lauwrens, Leo, Leon, Martijn, Mar-
tien, Marielle, Marinus, Niek, Patrick (×2), Renee, Rianne, Peter, Ronald, Siska,
Stijn, Thomas, and Wim.

Thanks to Kientz-sensei and the members of Aikido Stichting Delft (ASD) for
the best break from the “all work, no play” routine.

Special thanks go to Milan, Tanja, Ognjen and Maša for all their support, for
being the family away from home. Also Marc, who has taken on so many roles
in my life it becomes difficult to explain them all. He has been a friend, adviser,
supporter, handyman, language tutor, drink buddy, fellow adventurer, critic and
more. As if that were not enough, I also had him proof-read and translate the
thesis propositions. The Djapić-Litavski family gave extensive advice on the ins

209



210 ACKNOWLEDGMENTS

and outs, ups and downs, lefts and rights, backs and forths of expat life, always
with a freshly brewed cup of latest news, never forgetting to invite me to their
trips around Dutch countryside.

Thank you, friends and family worldwide, for being there in need: Aleksa,
Ana, Bežanija, Boba, Bondža, Boris, Coa Pop, Darko, Djenka, Dušica, Edin,
Fića, Habi, Jasmina, Joe, Jomu, Jovana, Klinceza, Laza, Leka, Maja, Marina,
Marko, Mighty, Milan, Miloš, Nada, Nataša, Pedja, Sava, Silva, Sloba, Sofija,
Vlada, Zmaj, and Željko.

Most of all, thanks to my parents, Slavica and Dragǐsa. And to Marija, for
her continued support throughout the years when I needed it the most.

Filip Miletić
April 2007
Arcen



Samenvatting

Een architectuur voor executie van taken onder ongunstige
omstandigheden

(An Architecture for Task Execution in Adverse Environments)

Filip Miletić

Dit proefschrift beschrijft een architectuur voor gedistribueerd rekenen in mo-
biele omgevingen. Het begrip workflow staat voor het operationele aspect van
een werk procedure. Het begrip omvat de structuur van de taken, wie ze uitvoert,
wat hun operationele wijze is, hoe zij gesynchronizeerd worden, hoe de informatie
vloeit om de taken te ondersteunen en hoe zij worden bijgehouden in het systeem.
De ontworpen architectuur is getest in een prototype implementatie genaamd
’Distributed Workflow Execution Architecture for Mobile (DWEAM)’.

Interesse in architecturen voor gedistribueerde executie van ’workflows’ bestaat
sinds lang. Er is echter nog nooit een adequate behandeling van ’workflow’ ex-
ecutie gegeven voor mobiele systemen. Een mobiel ’workflow’ systeem kan van
groot belang zijn voor gebruikers die een gecoördineerde opdracht moeten uitvo-
eren in een complexe omgeving en zelf moeten instaan voor het tot stand komen
van de coördinatie. Typische gebruikers zijn leden van een ploeg die optreedt bij
de bestrijding van een ramp, bijvoorbeeld een ploeg brandweerlui, politieagen-
ten of medisch personeel, waarbij de samenwerking tussen de leden gehinderd
wordt door mobiliteit en een slechte communicatieomgeving. Communicatie met
een GSM netwerk, dikwijls gebruikt in een stadsomgeving, levert dikwijls niet
de gewenste ’Quality of Service’, als de beschikbaarheid ervan al niet verstoord
wordt door de zich uitbreidende ramp, schade of overbelasting van de infrastruc-
tuur. Ouderwetse, toegespitste systemen zoals Walkie-Talkie omgevingen zijn
ontworpen voor communicatie tussen mensen alleen en bieden geen verbinding
met een informatieverstrekkende achtergrond. Om deze redenen hebben wij onze
inspanningen toegespitst op een systeemarchitectuur die tegelijk communicatie
en onafhankelijkheid van de infrastructuur nastreeft, èn in staat is om zowel de
werkprocedures voor menselijke agenten als de informatievoorziening te onders-
teunen.

In dit proefschrift beginnen we met het DWEAM probleem in de bredere
context van systemen met meerdere initiatieven, actoren en agenten te plaatsen.

211



212 SAMENVATTING

Daaruit blijkt dat DWEAM slechts een componente is van een breder systeem
dat de naam Chaotic Open-World Multi-Agent Based Intelligent Networked De-
cision Support System (Combined) gekregen heeft. We geven een gestroomlijnde
beschrijving van Combined en de eisen gesteld aan het gecombineerde systeem.
Volgend op die beschrijving geven we een overzicht van, en commentaar op gere-
lateerd werk uit de literatuur. We beschrijven de ’toolkit’ dat we zullen gebruiken
in de overige hoofdstukken, met name de ’Object-Z taal’ en de ’Coloured Petri
Nets’ (Coloured Petri Net (CPN)). We sluiten dit eerste hoofdstuk af met een
formele beschrijving van de taken die DWEAM moet vervullen en de beschrijving
van het gedistribueerde ’blackboard’ dat als achtergrondskader gebruikt wordt.

We vervolgen met een beschrijving van de methode die we gebruiken om de
informele, onderling verbonden taakbeschrijvingen om te zetten in een CPN. Het
systeem vertaalt vervolgens de CPN beschrijving in een implementatie die gebruik
maakt van het gedistribueerde ’blackboard’.

In een volgend hoofdstuk geven we de beschrijving van de operationele omgev-
ing en het geheugen model. We onderzoeken de connectiviteit van een verzameling
knooppunten in twee dimensies. Vervolgens komt dan de geheugen opslag aan de
orde, we schatten de ’performance’ van de data partitionering en hoe preservering
van de ’tokens’ kan gewaarborgd worden.

Wat de data distributie betreft, komen de noties ’producent’ en ’gebruiker’
aan de orde. We definiëren de Service Discovery Problem (SDP). Daarna wordt
de CBT gebruikt om een oplossing te geven voor de SDP, door producenten en
gebruikers te vinden die compatiebel zijn, namelijk die data met elkaar willen of
moeten uitwisselen. We geven een gedetailleerde analyse van het algoritme dat
de CBT opbouwt, en gebruiken daarbij de CPN beschrijving van de diverse fasen
van de operatie. Ook de ’performance’ komt hierbij aan de orde.

Al de data in het DWEAM systeem moet voldoen aan het Dataspace model.
Dit laat toe een ’Matching Algorithm’ te construeren. De CBT structuur die
voorheen is opgebouwd wordt gebruikt om de ’matching’ tussen compatiebele
producenten en gebruikers te realizeren. We geven een bewijs voor het ’matching
algorithm’ en een CPN beschrijving van zijn implementatie.

We sluiten de thesis af met een lijst contributies, beschouwingen over het
perspectief van gedistribueerde ’workflow’ systemen in een hedendaagse context
en ideeën voor verder werk in deze context.



About the Author

Filip Miletić was born on November 22, 1978 in Kruševac, Serbia. In 1997, he
graduated from the secondary school “Gimnazija” (“Gymnasium”) in Kruševac.
The same year, he entered the School of Electrical Engineering, at the University
of Belgrade, in Serbia. During the studies, he was on an internship at the Circuits
and Systems Group of Delft University of Technology, from October 2001 until
April 2002. There he developed components for the Leon SPARC soft-processor.
He then returned to Belgrade to finish his studies.

In 2002, he obtained the title Graduate Electrical Engineer from the University
of Belgrade, also on the topic of soft-processor development. In 2003, he started
his Ph. D. studies at the Circuits and Systems Group in the context of intelligent
systems design. He participated in the project Combined, investigating multi-
agent approaches for building crisis-management information systems. Starting
January 2007, he works at Océ Technologies B. V. in Venlo, Netherlands as a
hardware engineer.

213



Propositions accompanying the thesis
An Architecture for Task Execution in Adverse Environments

by Filip Miletić

1. Content-based addressing is preferable for dynamic networks in comparison to the usual
end-to-end addressing as used on the Internet today. The end-to-end addressing bears no
resemblance to the traffic patterns, as the addresses reflect the network structure, and are
invalidated due to changes in the network. [This thesis]

2. When Internet was first created, it was designed to allow an arbitrary pair of users to
communicate via connected computers. Further progress of the Internet must rely on
decentralized groupware.

3. Internet-wide groupware must balance its merits with the ease of use. Internet Relay Chat
(IRC) and Usenet, services with inherent many-to-many communication, lost in popularity
despite their potential in favor of centralized services such as the World-Wide Web (WWW)
and Instant Messaging (IM), for not striking a good balance.

4. The service guarantees of the Internet protocols (TCP and UDP) are oft misunderstood in
the computer engineering community. UDP is considered “unreliable,” and TCP “reliable,”
following the original TCP/IP glossary. But this is wrong, for “reliable communication”
is an oxymoron. Still, assuming TCP reliable even makes it into software designs, yielding
programs that lock up when their TCP connections fail.

5. If the best invention in the world is the sliced bread, then the toaster must be the second
best. That is, all good ideas need the right environment to bake in.

6. The C compilers are notorious for being unhelpful with program diagnostics. In your daily
use of the C compiler, two error messages appear much more frequently than any other.
They are: “Parse error” and “Segmentation fault.” These two translate into less technical
language as: “There is an error somewhere in your code,” and “I told you so.”

7. One’s command of a foreign language correlates well with one’s ability to amuse another
in that language.

8. Proving impossibility theorems is the best job for a computer scientist. Do it right, and
you do not have to write even a single line of code, because you have already proved that
writing them leads nowhere.

9. It is easier to move a networking problem around (for example, by moving the problem to
a different part of the overall network architecture) than it is to solve it. Corollary: It
is always possible to add another level of indirection. [Truth #6, from “RFC1925: The
Twelve Networking Truths”] Added Corollary: Network reliability issues set behind the
horizon.

10. For workflow execution in dynamic networks, the traditional sender and receiver should be
replaced by the notions of producer and consumer. Otherwise, the cost of service discovery
becomes too high. [This thesis]

These propositions are considered opposable and defendable and as such have been approved by
the supervisor, prof. dr. ir. Patrick M. Dewilde.



Stellingen behorend bij het proefschrift
An Architecture for Task Execution in Adverse Environments

door Filip Miletić

1. Op inhoud gebaseerde adressering heeft de voorkeur voor dynamische netwerken boven de
end-to-end adressering zoals die tegenwoordig op Internet gebruikt wordt. De end-to-end
adressering, lijkt niet op de verkeerspatronen, omdat de adressen de netwerk structuur
weergeven en worden ongeldig gemaakt door veranderingen in het netwerk. [Dit proef-
schrift]

2. Toen Internet net bestond, was het ontworpen om twee gebruikers te laten communice-
ren via onder elkaar verbonden computers. Verdere ontwikkeling van het Internet moet
vertrouwen op decentraal groupware.

3. Groupware voor Internet moet een balans vinden tussen zijn verdienste en gebruikersge-
mak. Internet Relay Chat en Usenet, diensten met inherente many-to-many communicatie,
verloren populariteit ondanks hun mogelijkheden ten gunste van gecentraliseerde diensten
als het World-Wide-Web en Instant Messaging, omdat ze de goede balans niet vonden.

4. De gegarandeerde diensten van Internet protocollen (TCP en UDP) worden vaak niet goed
begrepen binnen de computer ontwikkel gemeenschap. UDP wordt als “onbetrouwbaar”
beschouwd en TCP als “betrouwbaar”, volgens de originele TCP/IP glossarium. Maar
dit is verkeerd omdat onbetrouwbare communicatie een oxymoron is. Maar aangenomen
dat TCP betrouwbaar is komt het zelfs in software designs voor, waardoor programma’s
vastlopen als de TCP verbinding wordt verbroken.

5. Als de beste uitvinding ter wereld gesneden brood is, dan is de broodrooster de op één na
beste. Alle goede ideën hebben de juiste omgeving nodig om te roosteren.

6. C-compilers zijn berucht om hun slechte hulp bij programma diagnose. In het dagelijks
gebruik van de C-compiler komen twee foutmeldingen veel vaker voor dan andere. Dat
zijn: “Parse error” en “Segmentation fault”. In minder technische termen betekenen deze
meldingen: “Er zit ergens een fout in je code” en “Ik heb het toch gezegd?”

7. Iemands beheersing van een vreemde taal correleert goed met iemands vermogen om een
ander te amuseren in die taal.

8. Het bewijzen van onmogelijkheids theorema’s is de beste baan voor een computer weten-
schapper. Als je het goed doet hoef je nooit een regel code te schrijven, omdat je al bewezen
hebt dat het schrijven nergens leidt.

9. Het is makkelijker om een netwerk probleem door te schuiven (bijvoorbeeld door het pro-
bleem te verplaatsen naar een ander deel van de totale netwerk architectuur) dan om het op
te lossen. Gevolg: Het is altijd mogelijk om een extra laag van indirectheid toe te voegen.
Netwerk betrouwbaarheid kwesties over de horizon worden vooruitgeschoven.

10. Bij werkwijze uitvoering in dynamische netwerken, zouden de begrippen van verzender
en ontvanger vervangen moeten worden door de begrippen van leverancier en gebruiker.
Anders worden de kosten van de service discovery te hoog. [Dit proefschrift]

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goedgekeurd
door de promotor, prof. dr. ir. Patrick M. Dewilde.


	to1Introduction
	Outline of This Chapter
	Background
	Properties
	Problem Statement
	Contributions
	Outline of The Thesis

	to2Toolkit
	Introduction
	Description Quality Requirements
	Representation with Object-Z and cpn
	Object-Z Description
	The PN and cpn Descriptions
	cpn Simulation by a Blackboard
	Blackboard Semantics
	cpn Simulation with a Blackboard
	Summary

	to3Architecture Overview
	Introduction
	Resources
	Layering
	Componentized Layer Structure
	Component Overview
	Summary

	to4Task Mapping
	Introduction
	Requirements
	Enabler Mapping (em)
	Mapping Tasks to Nodes
	Distributed Blackboard
	Related Work
	Summary

	to5The Environment and Storage Model
	Introduction
	Connectivity Function
	The Storage Model
	System Model
	Summary

	to6Core Based Tree (cbt)
	Introduction
	Problem Description
	Solution Outline
	Algorithm Description
	Performance
	Summary

	to7The Execution Model
	Introduction
	Data Model
	Matching
	The Workflow Mechanics
	Summary

	to8Conclusion
	Introduction
	Why Distributed Workflow Execution Now
	Future Work

	Bibliography
	Acknowledgments
	Samenvatting
	About the Author

