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Abstract—When deploying a multiagent system in chaotic
environments, some form of built-in fault-tolerance is a must.
Fault-tolerance includes keeping backup copies of critical
data. Existing platforms often choose to distribute data
copies by replication. For most purposes, replication uses
storage and bandwidth inefficiently. We investigate an in-
formation theoretic approach to choosing the most effective
way to distribute this data. This approach uses erasure cod-
ing as an efficient way to avoid unneeded replication and
still yield good error recovery. We propose the erasure-graph
model of the multiagent society. This model describes the in-
terconnections in the society, considering also ways the links
and agents can fail. We give a partitioning schema agents
can use to find the best distribution, given the knowledge of
the erasure-graph for the society. Computing the partition is
easily distributed over the agent society.

1 INTRODUCTION

Agent programs in multiagent systems (MAS) often use an
agent platform as middleware [11]. The platform controls
the messaging and the agent life-cycle. The reliability of
the agent platform has received little attention in practice,
though it is recognized as a MAS issue [22]. Notable MAS,
such as JADE [3] or COUGAAR [1], assume a reliable plat-
form. Sometimes the platforms provide persistence to non-
volatile media, protecting the agents from transient failures.
For both platforms, replication services exist; these services
have been implemented with simplicity in mind, rather than
efficiency. In this paper we user information-theoretic ar-
guments to show how efficient reliability in a MAS can be
derived from cooperation with a slight trade-off for an in-
crease in complexity. The resulting platform is called Com-

bined; this platform is based on the COUGAAR agent archi-
tecture, with additions that make it suitable for deployment
in chaotic, rapidly changing environments.

1.1 Application

The main motivation for looking at increasing the reliabil-
ity of multi-agent platforms is because it is desirable in ap-
plications. We will mention two applications which bene-
fit from the Combined approach. Emergency search-and-
rescue operations benefit from timely information delivery.
This deployment setting was also adopted as the prototype
application for Combined. We envision a near-future ap-
plication in which members of emergency service units (po-
lice, fire brigade, ambulance etc.) are equipped with short
range communication devices. Due to the nature of the de-
ployment, it cannot assume that communication infrastruc-
ture exists; the reliability of the communication devices can
also not be taken for granted. The devices work around these
impediments by cooperating in message delivery and keep-
ing each other’s observations; the body of the paper explains
the theory on which this possibility is based. As another ex-
ample, large scale distributed scientific applications, such as
Seti@Home [21], or Folding@Home [6] succeeded in har-
nessing worldwide processing power for highly demanding
computational tasks. The focus of their system architectures
has shifted from traditional parallel and distributed comput-
ing efficiency issues [12] to organizing and managing redun-
dant work done by worldwide computers. Some indication
of the system architecture can be found at [2]. The Com-
bined approach might aid this effort by offering a way to
preserve computation results despite computers leaving the
network.

1.2 Related Work

The system outlined in the introduction naturally compares
itself to similar peer-to-peer (P2P) systems. The early P2P
systems such as Napster [17], Gnutella [8], FreeNet [7] and
MojoNation [15] were the first to introduce the promise
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of ever-present file storage, and were a motivation for this
work. Subsequent P2P systems, such as Tapestry [24],
Chord [16], Pastry [20], Kademlia [13], Content Address-
able Network [18] discuss efficient key-based routing in var-
ious settings. These methods support deterministic message
routing in an overlay network. OceanStore [10] is an archi-
tecture for establishing global persistent storage; similarly,
the Cooperative Filesystem (CFS) is an application that uses
Chord to make a P2P-based read only storage system. Un-
like Combined, all these systems work with an overlay on
top of an existing Internet Protocol (IP). The underlying IP
network layer allows contact between any pair of the par-
ticipants at low cost. The interconnect mesh corresponds to
a complete graph. In Combined, however, connection es-
tablishes a spatial proximity based network mesh, with links
induced by the distance between nodes. Due to this external
constraint, the interconnect mesh is much sparser than that of
the mentioned systems. The contact between far away nodes
can be costly. Typically, the transitive closure of the Com-
bined interconnect mesh would correspond to the IP-based
interconnect used by the mentioned P2P systems. Another
important distinctions is that in Combined, cooperation is
needed for even the simplest operations such as contacting a
far away node. In the mentioned P2P systems, this operation
is handled by a lower level network protocol. The layering
simplifies the design, but limits the applicability of the over-
lay to networks in which IP is efficient. The ideas of Com-
bined are most thoroughly shared with OceanStore. This ar-
chitecture uses erasure coding to achieve high data reliability.
The improvement from using erasure coding over replication
was clearly shown in another paper [23] from the co-authors
of OceanStore. OceanStore considers erasure coding only
for deep archival; but also goes to considerable length to han-
dle data security. Combined intends to use data archival to
provide process persistence; but it does not consider data se-
curity explicitly.

1.3 Result

In Section 2, we present a graph-theoretic model using an
erasure graph to describe the system interconnections, and
a partition encoding for allocating data pieces (tags) to dif-
ferent agents. We then use this model to derive the storage
capacity of the resulting society, and prove that the capacity
cannot be larger than the availability figure of the most reli-
able agent in the network (Section 2.1). Assuming the avail-
abilities are known, we describe the strategy that an agent
can use to determine which code and data partition to choose
to make best use of the available capacity (Section 2.2). We
first give a calculation for a general interconnection case, and
random agent position within the network. We then simplify
the analysis by layering the neighbours in tiers and allowing
agents to delegate pieces of work to each other.

2 SYSTEM MODEL

We now give an overview of the system setup and notation.
For detailed definitions and more flexible models, the reader
is referred to [14]. The network of nodes is constructed
based on the interconnections created by a short range ra-
dio network: two nodes are connected if they are closer to
each other than a pre-determined range. This is a reason-
able assumption, shared by papers closely dealing with wire-
less network properties, such as [9]. Denote as V the set of
nodes {v1, . . . , vm}. If a connection between two different
nodes vi and vj exists, we insert the pair {vi, vj} into the set
E. The graph G (V,E) is interpreted in the usual sense: V
is a set of vertices, and E is a set of corresponding edges.
When we need to emphasize that V or E belong to a graph
G, we write VG and EG, respectively. The interconnection
mesh of G changes as the nodes move, join or leave the net-
work. When nodes leave the network, it can happen either
voluntarily or involuntarily; the latter can occur because of
network partitions or nodes being damaged, out of power, or
destroyed. The involuntary leave is called an erasure. Due
to nodes leaving the network, the interconnection graph de-
grades. If a node v leaves, it is removed from V , along with
the corresponding edges from E. Here we assume that each
node can leave independently with identical probability ε.
We call the graph G the erasure graph. Consider a source
node v from V that has during its lifetime produced valu-
able data (a tag) that should be preserved in case that v gets
erased. Node v can choose to deposit copies of the tag with
its neighbours. Depositing copies is commonly called repli-
cation. This approach, although effective, uses too much ex-
cess storage. Moving tags also costs bandwidth, so a smart
source node would want to minimize the cost. In [23], an al-
ternative approach was discussed, whereby the node uses an
erasure code to transform the tag and deposits only fragments
of the resulting coded messages to neighbours. Thanks to
the coding, only a fraction of the fragments is required for
successful decoding. There exist efficient methods (for in-
stance, the iterative decoding method from [19]) to recover
original tags. OceanStore and CFS [5] use these methods,
but assume that the missing tags were erased independently,
and those that remain are accessible independently. In the
locally-connected network mesh, these assumptions do not
necessarily hold. When trying to deposit a tag, v will have
a choice of contracting several neighbours and request them
to be tag keepers. Typically, v will want to pre-code the tag
as said before copying to the keepers. v would then make
a partition of the entire message. The partition is described
by a set Π = {π1, . . . , πm}. Each element of the partition
is in itself a set denoting which bit of the encoded message
is allocated to which node. For example, if the message was
5 bits long, and 2 nodes were available, one possible par-
tition would be: Π = {π1, π2}, where π1 = {1, 2} and
π2 = {3, 4, 5}. This means that bits 1 and 2 are allocated
to the node with index 1, and bits 3, 4 and 5 are allocated to
the node with index 2.
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To store the fragments, the source node v chooses the code
and the partition. It then contacts the nodes, as defined by
the partition, and deposits the message fragments. This is
called a write. To retrieve the stored information, v con-
tacts all the available keepers and retrieves the fragments.
The fragments are then re-assembled and decoded to pro-
duce the original tag. This is called a read. Between the
writes and corresponding reads, the keepers may be erased,
or may be unavailable at the time of the read. Although each
keeper has a probability ε to disappear, its availability also
depends on its connection to other nodes. We will denote
the availability of the node vi from V as wi. The writer will
typically want to know in advance the availability of the po-
tential keepers to decide which partition is the “best”. Due
to erasures, the graph G could be partitioned into connected
components. We denote as QG the set of all maximally con-
nected components for a given graph G. These maximal con-
nected components are called chains. Degrading a graph is
called a transition. Two simple writer decisions are given in
the following examples. The decisions are named according
to the cooperation policy: the Lone Ranger prefers to keep
all the message to itself; the Cloner prefers to make multiple
identical copies of the message.

Example 1 (The Lone Ranger) The source decides to keep
the entire message on a single node. The probability that the
message is readable is: Pr (readable) = Pr (keeper alive) ·
Pr (path to keeper exists) ≤ Pr (keeper alive) = ε.

Example 2 (The Cloner) The source node decides to dupli-
cate the tag with k keepers. This ensures that if at least one
keeper is present, the entire tag can be retrieved. However,
the case in which such storage space investment is justified is
very improbable. The probability that all but one keeper are
absent is: k(1 − ε)εk−1 ≤ kεk−1, and tends exponentially
fast to zero with k.

2.1 The Capacity of the Erasure Graph

For a given connected graph G, a writer would like to know
the storage capacity that G can offer. This section pro-
vides tools to do just that. Let us denote as X the message
that a writer needs to distribute across the network formed
by nodes V . For convenience, we consider that X is a
string of n binary digits. The reader will be able to re-
trieve only some fragments, due to the degradation of the
network. The mutual information1 on X and Y is given
as: I (X,Y ) = H (X) − H (X|Y ), where H (X) and
H (X|Y ) are, in order, the entropy of a random variable X
and the conditional entropy of a random variable X given
Y [4]. Since for a known X , any Y is known, it holds that:

1The meaning of mutual information in this case is simply the number
of bits shared by X and Y . Likewise, the entropy H (X) is the number of
bits in X , and the conditional entropy H (X|Y ) is the number of bits that
are left unknown in X if we know all the bits of Y .

I (X,Y ) = H (Y ) − H (Y |X) = H (Y ), i.e., knowing
X gives all the information over Y . The writer has some
freedom to choose the partition Π, if it knows the avail-
abilities for the nodes vi from V . This way, H (X|Y ) be-
comes a function of Π. Knowing all wi, writer can choose
the Π that maximizes H (X|Y ). The capacity of G is then
C = maxΠ I (X,Y ). We now express C in terms of wi in
Theorem 1, and find C explicitly in Theorem 2.

Theorem 1 (The Capacity of G given Π) Let G be an era-
sure graph. The capacity of the channel defined on the graph
G, under a given partition encoding Π and assuming uni-
form connection probability, is obtained by solving a linear
program:

C = max
Π

∑
1≤i≤|V |

wi|πi|;
∑

1≤i≤|V |
|πi| = n (1)

where coefficients wi for 1 ≤ i ≤ |V | depend on the connec-
tivity of the graph G:

wi =
|V |−1∑
e=0

εe(1 − ε)|V |−e

|V | − e
·

·
∑

Ep∈Pe

∑
H∈QEp◦G

|VH |ι (vi ∈ VH) . (2)

In Equation (2), ι (x) is an indicator function, equal to 1
when x is true, and equal to 0 otherwise. Ep is the era-
sure pattern, a function mapping each vertex of G into the
set {0, 1} and associated with a particular transition. It maps
v ∈ V to 1 if v is erased by the transition, or to 0 if v is
not erased by the transition. Ep can be applied to QG, to
obtain a new connected components set: each vertex that
Ep maps to 1 is removed from G along with correspond-
ing edges. QEp◦G is the maximally connected component
set that G is split into after applying the erasure pattern Ep.
Pe is the set of all erasure patterns on G, having exactly e
erasures. A consequence of Theorem 1 is the maximum ca-
pacity obtainable for a given graph G.

Theorem 2 (The Maximum Capacity of G) Let the chan-
nel be defined on the graph G, and let all availabilities wi be
known for all nodes vi from V . Let w∗ = max1≤i≤|V | wi.
Then it holds that: C = nw∗.

2.2 The Choice of the Partition

We have seen how the node availabilities affect the storage
capacity achievable by a given graph G. We will now de-
scribe the strategy the writer uses to find the “best” partition.
In [14], the subset of acceptable partitions is captured by the
following definition.
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Definition 1 (Distortion) Consider the transition between
the graphs with corresponding maximally connected compo-
nent sets QG and QEp◦G. Let Dc be the set of all possible
connected component configurations obtainable by applying
an erasure pattern Ep to QG, and let V (QEp◦G) be the set of
all vertices thereof. Let R = (1−εT )n−∑

i∈V (QEp◦G) |πi|.
The distortion is given by:

d(QG) =
∑

QEp◦G∈Dc

Pr (Ep) · R · ι (R > 0) . (3)

Given a maximum distortion dmax and the area v(dmax) =
{QEp◦G|d(QEp◦G) ≤ dmax}, the optimal configuration Q∗

G

is given by
Q∗

G = arg min
Q∈v(dmax)

f(Q), (4)

where f is a disambiguation function that helps in the choice
of the unique solution. The parameter εT is the decoding
threshold [19] of the employed decoder, the fraction of n
that can be erased, without entailing decoding error. f is a
goal function picked according to design criteria: (i) Given
a threshold εT , decoding must succeed if erasure fraction
is less; (ii) Given two partitions from v(dmax), the encoder
chooses a “more distributed” one; (iii) The encoder must
handle a variable number of hosts (|V |), and variable mes-
sage lengths n. The requirement (i) is implicitly satisfied by
choosing a threshold-εT code. Further requirements can be
satisfied in different ways; we choose the partition Π such
that the sum-squared of all fragment lengths (ni = |πi|) is
minimal. This choice is akin to mean-square energy mini-
mization in multi-channel signal detection : we assume that
each fragment length contributes independently to the entire
tag. The expected number of retrieved bits must be equal to
(1−εT )n. This expression is precisely equal to the sum of ni

weighed by wi for each node. Finally, the fragments should
form a partition of the message, thus the sum of ni must
be equal to n. For the same reason, for all i, the condition
ni ≥ 0 must hold. This argument gives rise to Theorem 3.

Theorem 3 (Choice of the Partition) Let n be the length of
the message, let wi be the availabilities of all the nodes from
V , for 1 ≤ j < i ≤ |V | and assume 0 < wj < wi < 1.
Assuming the least-squares disambiguation f , the partition
ni, is given:

ni = �λ1wi + λ2� ,

λ1 = (nSw + |V |n(εT − 1))/(S2
w − |V |Sw2),

λ2 = −(nSw2 + n(εT − 1)Sw)/(S2
w − |V |Sw2),

(5)

under the code feasibility condition mini wi < 1 − εT <
maxi wi.

As some ni may come out to be negative, violating con-
dition ni ≥ 0, we settle for the point closest to the one
found, but which lies in the area ni ≤ 0. In equation 5,

Sw and Sw2 are shorthands for
∑

i wi, and
∑

i w2
i respec-

tively. The writer can use the code feasibility condition to
choose the code: if maxi wi < 1 − εT , the code is un-
feasible; if 1 − εT < mini wi, the code is (over)feasible.
The Cloner strategy is always (over)feasible, so there al-
ways exists at least one applicable strategy for the writer.
To compute the partition, the writer needs the tuple: TV =(∑

i 1,
∑

i wi,
∑

i w2
i ,mini wi,maxi wi

)
. By partitioning

V into V1, . . . Vl, the writer can compute ni by combining the
results obtained from each TVl

. The writer will sub-divide
V into subsets depending on which its immediate neighbour
they can be reached by (see Figure 1). It will then deliver to
each Vl the fragments for all the members of TVl

, along with
its computed value of λ1 and λ2. Each Vl will have enough
information for further subdivision and delivery.

v0

v1 v2

v3

Figure 1: Subdividing V into subsets headed by nearest
neighbours. v0 is the writer. It delegates 3 fragments of a
single tag to its nearest neighbours, and v3. v0 also delivers
λ1 and λ2 to each of the neighbours.

3 CONCLUSIONS

This paper presented an information-theoretic approach to
improving multiagent platform reliability. We show how, by
using coding and partitioning, it is possible to achieve reli-
able data storage even when the platform itself is unreliable.
We define a criterion for a feasible code that is used to choose
the coding and partitioning. We show how the writers can
then make first partitions, and then delegate their neighbours
with sub-partitions. These information-theoretic arguments
come from the vast information and coding theory literature
but have so far received comparatively little attention in mul-
tiagent platforms despite potential gains. Multi-agent plat-
forms that employ this (or similar) coding types can be made
reliable enough to use in adverse, chaotic environments. The
exposition in this text assumes that the availability estimates
are known for all the nodes. In practice the estimates may
be costly to obtain. It may be acceptable that a lower bound
on the availability estimates is substituted. These can be ob-
tained at comparatively little cost, by sub-dividing the nodes
based upon the proximity to the writer, and then considering
only a subset of possible ways that a node can be accessible
to the writer. Apart from yielding the availability estimates,
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the sub-division can give rise to a distributed control algo-
rithm, whereby once determined, the partition is allowed to
dynamically change to compensate for changes in the net-
work connectivity. This algorithm and its properties are rec-
ommended for further work. The research has been funded
by DECIS Lab, Delft as a part of the Project Combined.
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A DERIVATIONS AND PROOFS

Proof. (Theorem 1) The probability of e erasures on a single
transition is given by:

Pr (e erasures) =
(|V |

e

)
εe(1 − ε)|V |−e.

Generate the set of all possible erasure patterns for a given e
and name it Pe. Every Ep ∈ Pe induces a set of connected
components QEp◦G, and each of the sets is composed by
connected graphs GEi ∈ QEp◦G. The mutual information
I (X,Y ) is the mean of the number of bits retrieved from
all the possible erasure patterns. The set of all possible era-
sure patterns P is given by the union of all individual era-
sure patterns: P =

⋃
0≤e≤|V | Pe. The average number of

bits retrievable from the channel depends on the particular
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transition, and ultimately of the erasure pattern within. Con-
sidering e known and looking at a particular erasure pattern
Ep, the average number of bits is obtained by averaging over
all possible connection points, since by assumption of the
theorem, a reader can be with uniform probability connected
to either of the remaining nodes of G.

I
(
X,Y |QEp◦G

)
=

∑
G∈QEp◦G

|VG|I (X,VG)∑
G∈QEp◦G

|VG| . (6)

From here it is easy to obtain that: I (X,Y ) =
E

[
I

(
X,Y |QEp◦G

)]
will yield the expression for mutual in-

formation for X and Y . These expressions depend upon
elements of Π. The expression includes multi-dimensional
sums, which ultimately depend on the (beforehand unknown)
connectivity of graph G. Let e remain fixed, and let us fo-
cus on equation (6). For a given v ∈ V , define 〈v〉| to be
the index of v. Substituting I (X,VG) by

∑
v ∈ VG|π〈v〉|,

it is seen that |π〈v〉| enters the sum on a number of occa-
sions. It is possible to determine how many times and with
what weight coefficient does |π〈v〉| appear in the appropriate
equation, and the answer depends on e and on the size and
number of the connected components that v can belong to.
Let the connected components be named chains, for conve-
nience. The shortest chain that v can be part of has size 1,
when v is its only element. The longest chain has size |V |,
when no degradation takes place. If v belongs to a chain of
size l, when e errors are present, its contribution to I (X,Y )
depends on the position of v in the string. There are differ-
ent ways in which v can be a member of a chain of size l.
Expanding the expectation in I (X,Y ), one obtains

I (X,Y ) = E
[
I

(
X,Y |QEp◦G

)]

=
∑

Ep∈P

∑
G∈QEp◦G

|VG|I (X,VG)∑
G∈QEp◦G

|VG| · Pr
(QEp◦G

)
(7)

and averaging the number of bits retrieved from each element
of P will give I (X,Y ). Since the degradation model is i.i.d.,
the probability of each Ep ∈ Pe is equal to εe(1 − ε)|V |−e.
By introducing an indicator function it is possible to restate
I (X,VG) as:

I (X,VG) =
∑

v∈VG

I (X, v)

=
|V |∑
i=1

I (X, vi) ι (vi ∈ VG)

=
|V |∑
i=1

|πi|ι (vi ∈ VG) . (8)

which permits separation of the sum in equation (6) as:

I (X,Y ) =
∑

Ep∈P

Pr
(QEp◦G

)
∑

G∈QEp◦G
|VG| ·

·
∑

G∈QEp◦G

|VG|
|V |∑
i=1

|πi|ι (vi ∈ VG) . (9)

Substituting P this becomes:

I (X,Y ) =
∑

Ep∈
S

0≤e≤|V | Pe

εe(1 − ε)|V |−e∑
G∈QEp◦G

|VG| ·

·
∑

G∈QEp◦G

|VG|
|V |∑
i=1

|πi|ι (vi ∈ VG) . (10)

for which, when Ep is an element of Pe, the following ex-
pression holds:

∑
G∈QEp◦G

|VG| = |V | − e, which is easily
seen to be true, since

∑
G∈QEp◦G

|VG| is the total number
of nodes present in the connected component QEp◦G. By
changing the order of summation in equation (7) such that
the first sum goes over all πi, and noting that for e = |V |
the sum component is equal to zero, one is able to find:
I (X,Y ) =

∑|V |
i=1 wi|πi|, where wi is given by equation (2).

�

Proof. (Theorem 2) Let wi and πi be permuted, without
loss of generality, so that w∗ = w1 ≥ w2 ≥ · · · ≥ w|V |.

C = max
Π

∑
1≤i≤|V |

wi|πi| ≤ w1

∑
1≤i≤|V |

|πi| = w1n, (11)

since for each i, wi|πi| ≤ w1|π1|. �

Proof. (Theorem 3) Let V be the set of nodes and
1 ≤ i ≤ |V |, wherever the index i appears. Assume that
all wi are known and adopt a shorthand ni = |πi|. The min-
imization problem is: Minimize

∑
i n2

i , given
∑

i wini =
(1 − εT )n,

∑
i ni = n, while ni ≥ 0. First we solve

the said constrained minimization problem. Then, we dis-
cuss the conditions under which the solution given by the
partial problem fits all the conditions ni ≥ 0. By using
the Lagrange multiplier method, we obtain the goal func-
tion: F (ni) =

∑
i

(
n2

i − λ1wini − λ2ni

)
. Taking partial

derivatives of F (ni) for all ni and solving the resulting sys-
tem of equations for λ1 and λ2 (an exercise that we omit
here), one obtains the equation 5. As ni might not always
be integer, we take the ceiling of the obtained value. To
show the condition for the existence of positive solutions,
we consider hyper-planes H1 :

∑
i wini = (1 − εT )n and

H2 :
∑

i ni = n. H1 intersects the coordinate axes at points
having coordinates all coordinates equal to 0, except for co-
ordinate i, which is equal to (1 − εT )n/wi. Likewise, H2

intersects coordinate axes at points whose i-th coordinate is
equal to n. mini wi and maxi wi always exist. Let w− be
the minimum, and w+ be the maximum. The non-zero co-
ordinates of H1’s intersection with the coordinate axes are
then (1 − εT )n/w− > n and (1 − εT )n/w+ < n, respec-
tively. Consider the plane α determined by these two points
and the coordinate system origin. The segments obtained
by intersecting H1 and H2 with α must intersect due to
Rolo theorem, and their intersection must have non-negative
coordinates. By joining the two conditions, one obtains:
w− = mini wi < 1 − εT < maxi wi = w+. �
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