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Abstract—As local random variations on Integrated Circuits
are increasingly impacting circuit behavior, there is an increasing
need to analyze the impact of these variations efficiently. A widely
used tool to analyze circuit behavior is the SPICE-level simulator.
To analyze the impact of random variations, these simulators
are used inside a CPU-intensive Monte-Carlo loop in current
industry practice. In this paper we show that it is possible to
build a SPICE-level simulator with built-in statistical capabilities,
to improve dramatically on the run time efficiency.

I. INTRODUCTION

Due to advances in semiconductor technology on-chip varia-

tions are rapidly increasing in importance. Many of these vari-

ations are inherently random, and statistical analysis is needed

to assess their impact. For analysis of the behavior of digital

and analog circuits at the transistor level typically a SPICE-

level simulator is used. To make such an analysis statistical,

current industry practice is to add a Monte-Carlo (MC) loop

around the simulator. The simulation is repeated many times

with different values of the random parameter(s) to sample

the statistical behavior of the circuit. To analyze the impact of

even just a single statistical parameter, typically thousands of

simulations are needed to obtain the statistics accurately. This

is due to the poor convergence of MC techniques: 1/
√
n, with

n the number of samples. If the number of random variables

increases, the number of required simulations quickly becomes

impractical. Thus, a MC SPICE-level analysis may still work

if just the effect of one or two global variations is studied,

but local variations are quickly becoming the dominant source

of variability in circuit behavior. Unfortunately, the statistical

simulation of a circuit with multiple transistors suffering from

local variations always involves many random variables, as

each transistor is impacted by several local variations in

parameters like length (L), width (W ), threshold voltage (Vt),

etc. It is clear that MC methods (even improved ones using

importance sampling) are unsuited for this analysis.

In this paper we explore the possibility of solving the circuit

equations of a circuit which depends on random variations

directly, eliminating the need for the MC outer loop. This is a

hard problem. Normal non-statistical SPICE-level simulation

already involves solving a (large) set of time-varying non-

linear ordinary differential equations (ODEs). Adding random
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Fig. 1. Transistor Model

variables turns this into the problem of solving a set of

non-linear random differential equations (RDEs). As a con-

sequence, all the voltages and currents which we calculate

will also turn into distributions. This requires the use of new

algorithms inside the simulator.

In Section III it is shown that efficient algorithms exist

which enable the direct solution of the RDEs in a statistical

Spice-level simulator. This solution is general in the sense

that there are no limitations to the statistical distributions of

the random variables, and that correlations are fully accounted

for.

Note: this paper explores RDEs only, which limits the

applicability to random variables which are stationary, ie the

statistics of the variables do not change during simulation. This

is true for basically all interesting sources of CMOS variability.

If we are interested in studying the effects of non-stationary

randomness (like noise), we enter the more general domain

of stochastic differential equations, which require other, more

complex algorithms. Direct solutions for such systems exist

as well. See for example [1] for a possible solution to such

systems.

II. STATISTICAL TRANSISTOR MODELS

A SPICE-level simulator models the behavior of transistors

in so-called companion models. Well-known MOS models are

the BSIM and PSP series of models [2]. For a statistical

SPICE-level simulator, the transistors need to have statistical

models, which means the dependence on the statistical param-

eters of interest ξ needs to be explicitly available. The simplest

possible statistical models use sensitivities (partial derivatives)

to obtain the statistics. These sensitivities can either be explic-

itly available in the model in the form of equations or tables,

or obtained by performing a finite difference calculation.



Our simulator is currently written in Matlab, and we do

not have access to Matlab versions of the BSIM4 model

for the 45nm and 32nm technologies which we use in our

experiments. Therefore, in our experiments we use a simplified

table-based model [3] targeted at fast simulation of CMOS

digital logic, as depicted in Figure 1. There is no technical

reason the algorithms explained below could not be used with

any existing accurate SPICE transistor model.

III. RDE-BASED STATISTICAL SIMULATION

Given a circuit to simulate, we derive the equations which

describe its behavior by applying the Kirchhoff current and

voltage laws, a process often called Modified Nodal Analysis

(MNA). The MNA equation can be written in the compact

format:

F (ẋ, x, t, p0) = 0 x(t0) = x0 (1)

where x denotes the state variable vector including node

voltages, ẋ is its time derivative and p0 represents the nominal

process parameter value vector.

Denote xs(t) as the solution of (1) which satisfies:

Fs = F (ẋs, xs, t, p0) = 0 x(t0) = x0 (2)

Since all process parameters have their nominal values p0,

xs(t) is deterministic, which means it can be solved by

well-known methods as employed in the current SPICE-level

simulators. If we take into account process variations, (1)

becomes a random differential equation (RDE):

Fx = F (ẋ, x, t, ξ) = 0 x(t0) = x0 + δ0 (3)

where ξ is the process variation vector which includes both

global and local variations, and δ0 denotes the initial condition

variation caused by process variations. It is worth noticing that

the main difficulty to solve (3) lies in the high nonlinearity

with respect to the random variables ξ and the large number

of process variations including local variations. In order to

make (3) manageable, it is linearized by a truncated Taylor

expansion around xs and p0.

Fx ≈ Fs +
∂Fs

∂ẋs

(t)(ẋ(t)− ẋs(t))

+
∂Fs

∂xs

(t)(x(t)− xs(t)) +
∂Fs

∂p0
(t)ξ = 0 (4)

To simplify the notation, the variation of state variable x is

denoted by y, thus x(t) can be rewritten as x(t) = xs(t) +
y(t). Inserting this to (4) and replacing the matrices ∂Fs/∂ẋs,

∂Fs/∂xs and ∂Fs/∂p0 with C(xs), −E(xs) and −F(xs),
respectively, we obtain:

C(xs)ẏ(t) = E(xs)y(t) + F(xs)ξ y(t0) = y0 = δ0 (5)

C, E and F are Nv × Nv , Nv × Nv and Nv × Np matrices

respectively, where Nv is the number of unknown nodes and

Np is the number of process variations. Consequently, the

nonlinear equation (3) is converted to a linear RDE in y with

xs-dependent coefficient matrices.

xs(t) can be solved by well-known deterministic methods

like in any SPICE-level simulator.

Unfortunately, the variation of state variable y(t) can not

be calculated directly from (5) since ξ is a random variable.

According to the Random Differential Equation (RDE) theo-

rem [4], (5) has a unique mean square solution which can be

represented by:

y(t) = Φ(t, t0)y0 +Θ(t)ξ = Ψ(t)ξ (6)

where Φ(t, t0) is the homogeneous solution of (5) satisfying

C(xs)Φ̇(t, t0)) = E(xs)Φ(t, t0) (7)

and Θ(t) is an integral in the range [t0, t], which depends on

Φ, C and each column of F [5]. If the initial condition x0 is

deterministic, then y0 is zero. For some types of simulations,

the voltage variation can be considered zero at time t0. Then,

the initial condition for our problem is deterministic. Even if

the initial condition y0 is statistical due to process variations,

it can also be represented as a first-order function w.r.t. ξ.

Therefore, y(t) can be rewritten as Ψ(t)ξ in (6) where Ψ(t)
is a Nv ×Np matrix.

We obtain Ψ(t) by substituting (6) into (5):

C(xs)Ψ̇(t) = E(xs)Ψ(t) + F(xs) (8)

After solving xs and Ψ(t), x(t) can be obtained based on

x(t) = xs(t) + y(t) and y = Ψ(t)ξ in (6).

x(t) = xs(t) +Ψ(t)ξ (9)

Equation (9) is used to calculate the time-varying moments

of voltages. The first two central moments and covariance are

expressed in (10)-(12), where the correlation coefficients ρ
between every pair of process variations are included in the

E{ξξT } calculation.

E{x(t)} = xs(t) (10)

V ar{x(t)} = Ψ(t)E{ξξT }ΨT (t) (11)

Cov{x(ta), x(tb)} = Ψ(ta)E{ξξT }ΨT (tb) (12)

As becomes clear from the above, in a statistical simulator

voltages and currents are no longer simple values but distri-

butions. In a SPICE-like simulator this means that for every

time t, the statistical distributions of voltages and currents are

obtained. Figure 2 shows a variable waveform, and how at

every time t a distribution is associated with the voltage.

IV. FROM VOLTAGE TO DELAY DISTRIBUTION

In the results section below we will analyze some digital

circuits. In digital circuits we are not just interested in voltage

waveforms, but also in the notions of arrival time and delay.

These are related to the time of crossing a certain reference

voltage, often the 50% of supply voltage level. The crossing

time tη is defined as the first time for voltages to cross the

threshold voltage Vη = η% · Vdd. The cdf of crossing time

is calculated when the nominal voltage is in transition. For a
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rising transition this is expressed as:

Fn = P (tη ≤ tn) = 1− P (tη > tn) = 1−Gn (13)

Gn = P (v1 ≤ Vη ∩ v2 ≤ Vη ∩ · · · ∩ vn ≤ Vη) (14)

= P (vn ≤ Vη|vn−1 ≤ Vη, . . . , v1 ≤ Vη) ·Gn−1(15)

= P (vn ≤ Vη|vn−1 ≤ Vη) ·Gn−1(n = 2 : N) (16)

=
P (vn ≤ Vη ∩ vn−1 ≤ Vη)

P (vn−1 ≤ Vη))
·Gn−1 (17)

where vi is the voltage of interest at time ti and Fn denotes the

cdf of crossing time at time tn. Equation (15) is rewritten in

(16) since the voltages are modeled as Markovian processes

[6], [7]. Based on (13) to (17) an iteration method is used

to calculate the cdf of the corresponding crossing time with

initial condition G1=1. Given the moments and covariances

calculated in the RDE-based statistical simulator in (10)-(12),

the joint probability and single probability in (17) can be

obtained.

The relationship between the cdf and the discretized pdf
(denoted by F and f respectively) in our algorithm is illus-

trated in Fig. 3. If the simulation uses a non-uniform time

step algorithm, the cdf needs to be uniformly sampled for pdf
computation. After uniformly sampling and interpolating from

the effective cdf with Ns samples, the Ns × 1 time and cdf
vectors are obtained and denoted as T1 and cdfu, respectively.

These vectors are used to calculate the pdf vector Ω with

element Ωk = cdfuk − cdfuk−1 (Ω1 = 0, k = 2 : Ns).

The last step is to calculate the moments of crossing time

in which we are interested. As an example, mean µ, standard

deviation σ and skewness γ are used. Denoting TT
1

as the

transposition of the column vector T1, the calculation method

can be formulated as follows [7]:

µ = TT
1
Ω σ = TT

2
Ω − µ2 (18)

γ = (Γ− 3µσ2 − µ3)/(σ3) (Γ = T3Ω
T ) (19)

The relationships between the elements of T2 and T3 with T1

are T2(k) = T 2

1
(k) and T3(k) = T 3

1
(k) where k = 1 : Ns.

The calculation method for a falling transition is similar to

the above methods with the only difference in (14) where vi
is replaced by Vdd−vi. If the waveform is non-monotonic and

crosses Vη multiple times, the method above can be used to

iteratively find all crossing times.

V. RESULTS

A. Variability in Digital Combinational Logic

We can simulate a digital cell and obtain the output voltage

statistics. From these voltage statistics we can obtain the

statistical distribution of the 50% crossing time (see Figure

4). From this we can calculate the moments (mean, standard

deviation, higher order moments if we want) of the delay

we are interested in [8]. The result we obtain in this way

could also be obtained by Statistical Static Timing Algorithms

(SSTA), but please observe that in our solution we can handle

arbitrary statistical distributions of the process parameters, and

handle the statistical correlation between the signals in the

circuit, while maintaining SPICE-level accuracy. As [8] shows,

our method is very accurate, with mean errors less than 1%

and σ errors less than 6% for a 45nm technology library [9],

even with strong correlations between input signals. In these

experiments we used 2 process parameters which vary, the

transistor length L and the threshold voltage Vt. The basis

for this comparison are extensive (10, 000 iterations) Monte

Carlo (MC) simulations in Cadence Spectre with a BSIM4

transistor model for the technology. The run time overhead

of our statistical extensions is very small, especially when

compared to MC iterations; adding L and Vt as random

variables increases the simulation run time of our MatLab code

by only 40%.

B. Variability in a D-Flipflop

In the analysis of digital logic, we are not restricted to

feedback-free combinational logic. As an example we look at

a D-flipflop from the same 45nm library, see Figure 5. With
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Fig. 5. D-FlipFlop schematics

28 transistors and multiple feedback paths this is already a

non-trivial example. Figure 6 shows the distributions of the

clock input CLK to the Q and Qn outputs. When compared

to again MC Spectre runs with a BSIM4 model, means errors

are again smaller than 1%, and σ errors smaller than 5%, for

a range of inputs signals and output loads. The run time in

our Matlab simulator is about 50 seconds, the MC Spectre run

takes about 40 minutes. This shows that even though we have

a slow Matlab implementation, we are already considerably

faster than a highly optimized industrial tool for this task.

C. Variability in Digital Sequential Logic

We can now also look at a very simple digital sequential

circuit, where the launching and catching flipflops are fully

included. In Figure 7 the circuit with 3 flipflops and an

AND-gate is depicted. The circuit includes wire resistance
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Fig. 7. Simple sequential circuit

and capacitance, both for the signal as well as for the clock

nets. Note that this circuit has a non-zero clock skew. For

this circuit, the maximum error of mean delay at the outputs

of all three flipflops is again smaller than 1%, the error in σ
is smaller than 8%. The run time for our prototype Matlab

simulator is a few minutes, the MC iterations in Spectre take

a few hours.

VI. CONCLUSION

This paper shows that methods do exist to perform statistical

SPICE-level simulation efficiently without the use of Monte

Carlo iterations. This leads to a huge run time improvement. In

this paper digital circuit behavior is analyzed, both combina-

tional as well as sequential. In the future it will be interesting

to study more general analog circuit behavior impacted by

parameter variation.
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