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Abstract—This paper presents a useful extension for an
existing algorithm of capacitance sensitivity computation with
respect to multiple geometric variations. The existing algorithm
is applicable for BEM-based capacitance extraction tools and
provides good accuracy results. Using the Schur complement
technique, the extended algorithm can achieve an even better
accuracy at a modest increase of computational cost. With such
extension, the enhanced algorithm becomes more flexible in the
sense that it is able to provide different solutions for different
application requirements: high efficiency with good accuracy or
high accuracy with modest time cost.

I. INTRODUCTION

The magnitude of electrical and performance variations due
to physically induced process variations is becoming relatively
larger with each new technology node. Therefore, modeling
the variability of interconnect resistances and capacitances is
becoming more and more important.

As the modeling for resistances is relatively simple [1], [2],
most work has concentrated on capacitances. The study started
with the worst-case corner method, which was acknowledged
to be over pessimistic. A statistical approach using empirical
capacitance expressions was then proposed to overcome this
problem [3]. An enhanced lookup method based on analytical
capacitance models was presented in [4], to account for sys-
tematic variations by computing the derivatives of capacitances
with respect to the thickness and the linewidth deviations.
These derivatives were later referred to as sensitivities and
have been computed using the floating random walk (FRW)
method [5] and the boundary element method (BEM) [6].

These sensitivities w.r.t. geometric parameters are useful for
diverse variability modeling techniques. They are necessary for
establishing the parameterized system description in various
variation-aware techniques, such as the moment-based timing
analysis [7], the Hermite polynomial based statistic analysis
[8] and the parametric Model Order Reduction (pMOR) tech-
nique proposed in [9]. The sensitivities have been incorporated
in the Standard Parasitic Exchange Format (SPEF) [10]. Based
on the 2009 version of the SPEF standard, a netlist consisting
of the nominal values of parasitics and their sensitivities could
be generated by Layout Parasitic Extraction (LPE) tools for
subsequent analysis. Therefore, to be able to compute these
sensitivities according to different accuracy and efficiency
requirements can be very convenient and useful.

In general, it is very difficult to achieve a good accuracy and
a good efficiency at the same time. For instance, although the
traditional finite-difference (FD) method is often considered
as the accuracy reference for sensitivity computation, it is
too slow to be applicable in most cases [5]. On the other
hand, some techniques, such as [6], can achieve a very high
efficiency as a BEM technique while at the cost of accuracy.
In this paper, an extension of this BEM based algorithm is
proposed. The enhanced algorithm for sensitivities against
multiple parameters provides two options for designers: an
extremely fast computation with a good accuracy or a very
high accuracy at the cost of a modest computational time.

The rest of this paper is organized as follows. Section II
briefly introduces the capacitance extraction using the BEM.
Section III presents the cause of the accuracy loss of the
existing algorithm [6]. Then an extension of this algorithm
that achieves a higher accuracy is proposed. Experiments
are shown in Section IV to demonstrate the accuracy of the
enhanced algorithm. Finally, Section V concludes the paper.

II. BACKGROUND

Since our proposed method is an extension of the BEM, this
section briefly presents some background on BEM concepts
and notations.

Capacitances used in SPICE netlists are called network
capacitances (C) and can be specified in terms of the so-
called short-circuit capacitances (Cs) based on the following
relationship:

Cij = −Csij ∀ i 6= j

Cii =
∑N

j=1 Csij ∀ i = 1, 2, . . . N
(1)

where Cij is the coupling capacitance between conductors
i and j; Cii is the ground capacitance of conductor i. The
entry of the short-circuit capacitance matrix Csij equals to
the charge on conductor i when conductor j is held at a unit
potential and all other conductors are short-circuited to the
ground.

With the BEM for the capacitance extraction, the surfaces of
conductors are discretized into panels. Capacitances between
these discretized panels are called partial short-circuit capac-
itances, denoted by C̄s in this context, i.e., quantities with
an overbar relate to partial capacitances between panels. An
incidence matrix B is then used to associate Cs and C̄s:



Cs = BT C̄sB (2)

where C̄s ∈ Rm×m and B ∈ Rm×N , with m being the
number of panels and N being the number of conductors. The
incidence matrix B relates the panels to conductors, i.e., Bij

equals 1 if panel i lies on conductor j, and 0 otherwise. These
partial short-circuit capacitances C̄s can be obtained from the
inversion of an influence matrix Ḡ ∈ Rm×m (C̄s = Ḡ−1), and
thus the short-circuit capacitances Cs can be computed1as

Cs = BT Ḡ−1B (3)

where Ḡij is given by the evaluation of the Green’s function
between panel i and panel j.

III. ENHANCED ALGORITHM FOR SENSITIVITY
COMPUTATION

A. Problem statement

As mentioned, the technique proposed in [6] has a drawback
in terms of achieving a very high accuracy. The computational
error of sensitivities by this method is mostly in the range of
5%− 25%, depending on the structure of conductors and the
geometric parameters of interest.

To study the cause of this error, we first review the tech-
nique briefly. Without loss of generality, we consider in the
theoretical derivations in this paper only a single parameter
p. It being a linear sensitivity based model, extension towards
more parameters is trivial. As the existing algorithm [6] states,
the coupling capacitance sensitivity between two conductors
Cij w.r.t. a geometric parameter p can be computed as

∂Cij

∂p
= −

∑
k∈sp

 1

εAk

∑
a∈Ni

∑
b∈Nj

C̄sk,aC̄sk,b

 (4)

where C̄sk,a and C̄sk,b are entries of the partial short-circuit
capacitance matrix, ε is the material permittivity around panel
k and Ak is its area. The panel k refers to any panel lying
on the moving plate sp incident to parameter p. The moving
plate is the surface of which the position is moved slightly
due to a small variation in parameter p. For instance, there is
a cubic conductor with a parameter of interest p as shown in
Fig. 1. The moving plate is hence the rightmost sidewall and
the panels lying on it are named moving panels indicated as
the gray part in the figure. For clarity of discussion in the fol-
lowing, we give a notation of C

′

plt(p) for the sensitivity ∂Cij

∂p
computed in (4). This description (4) shows that sensitivities
w.r.t. different parameters are simply incident to different sets
of victim panels. All sensitivities w.r.t. multiple parameters can
be computed simultaneously once the associated partial short-
circuit capacitances are available, i.e., once the standard BEM
extraction is done. This is why such BEM-based algorithm for
the sensitivity computation can be highly efficient.

However, these moving panels are not the only victims due
to the parameter variation ∆p and are not the only cause of the
capacitance fluctuation. Obviously, the edge panels connected

1There are several techniques for speeding up or avoiding this costly matrix
inversion operation, but that is not the focus of this paper, and actually
indifferent for the proposed methodology.
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Fig. 1. A cubic conductor to demonstrate two parts of contributions to
the capacitance fluctuation due to parameter variation ∆p. Partial meshing
condition is shown.

to the moving plate are also influenced by ∆p, indicated as
the shadowed part in the figure. Their sizes (widths) are either
growing or shrinking depending on the direction of ∆p.

Thus these size-changing edge panels also contribute to the
capacitance variation induced by the ∆p. As will be shown
later, neglecting the contribution of these panels is the main
reason of the accuracy loss of the capacitance sensitivity
computation by the technique presented in [6]. In the next
section, an extension of this technique will be proposed to
achieve an improved accuracy by taking into account the
influence of the size-changing panels.

B. Algorithm extension by the Schur complement technique

As the capacitance fluctuation is a combined result of the
contributions of the moving panels and the size-changing
panels, it is natural to propose a superposition approach to
compute the sensitivity w.r.t. a parameter p:

C
′

tot(p) = C
′

plt(p) + C
′

frg(p) (5)

where C
′

tot(p) is the total or the enhanced capacitance sen-
sitivity to be derived and C

′

plt, given by (4), refers to the
contribution to the sensitivity from the field lines emanating
from the moving plate. C

′

frg(p) refers to the contribution from
the fringe field emanating from the size changing edge panels
on the shortened or elongated side of the conductor. Hence,
the main task is to compute C

′

frg(p).
To proceed, we first study carefully the relation between

these panels and the parameter variation ∆p. Note that if the
variation is in the opposite direction of the positive direction
of parameter p, as shown in Fig. 1, and the size (width)
of the edge panels is exactly the same as the value of the
variation ∆p, these panels can thus be considered disappeared
or eliminated due to such a parameter variation. They will
be referred to as fringe panels in the following. In other
words, the effect of these fringe panels on capacitances can
be captured by eliminating their associated entries from the
original partial short-circuit capacitance matrix. To do so, it
is necessary to let the fringe panels have an identical width
(wp), which can be done by setting appropriate parameters
for the mesh generation. This is the basic idea for computing
C

′

frg(p).
In the following, we will discuss how to develop such

basic idea into an implementable algorithm, using the Schur
complement technique. For a system not being subjected to
process variations, its partial short-circuit capacitance matrix
C̄s o is given by the inverse of the influence matrix Ḡo for
the originally designed dimensions. To distinguish the fringe



panels from the rest of the panels, the C̄s o and the Ḡo

matrices can be written as block matrices:

C̄s o =

(
Ac Bc

Cc Dc

)
Ḡo =

(
Ag Bg

Cg Dg

)
(6)

where Ac, Ag ∈ Rn×n correspond to the n fringe panels to
be eliminated, Dc, Dg ∈ R(m−n)×(m−n) correspond to the
rest of the panels. Bc = Cc

T and Bg = Cg
T describe the

connection between these two groups of panels.
Preserving the matrix block dimensions, the relation C̄s o =

Ḡ−1
o can be expressed as(
Ac Bc

Cc Dc

)
=

(
Ag Bg

Cg Dg

)−1

=(
SDg

−1 −SDg

−1BgDg
−1

−Dg
−1CgSDg

−1 Dg
−1+ Dg

−1CgSDg

−1BgDg
−1

)
(7)

where

SDg = Ag −BgDg
−1Cg (8)

is the Schur complement of the block Dg [11]. Next, we write
down the Schur complement of block Ac, using (7):

SAc = Dc −CcAc
−1Bc

= Dg
−1 + Dg

−1CgSDg

−1BgDg
−1−

(−Dg
−1CgSDg

−1) · SDg · (−SDg

−1BgDg
−1)

= Dg
−1 (9)

As addressed, Dg corresponds to the rest of the panels other
than the fringe panels to be eliminated. In other words, it is the
influence matrix for the remaining panels after eliminating the
fringe panels. Hence, the Schur complement of Ac, being the
inverse of Dg, is the updated partial short-circuit capacitance
matrix (C̄s∆frg

) after the fringe panel elimination:

C̄s∆frg
= Dc −CcAc

−1Bc (10)

It is exactly what needs to be calculated to further derive the
supplement sensitivity C

′

frg(p) in (5).
From C̄s∆frg

, we can now first derive the updated short-
circuit capacitance matrix Cs∆frg

with an updated incidence
matrix B∆frg analogical to (2). Then using (1), the updated
network capacitances C∆frg can be computed. Finally, using
the original network capacitances Co, the supplement sensi-
tivity that accounts for the effect of the fringe panels incident
to parameter p can be derived:

C
′

frg(p) = (C∆frg(p)−Co)/(−wp) (11)

where the minus sign comes from the fact that the variation
wp makes the corresponding parameter p smaller (shrinking).

In fact, we can consider the above approach for calculating
the sensitivity C

′

frg as an enhanced FD method. The cost of
the sensitivity extraction is the sum of the cost of extracting
C

′

plt(p) and C
′

frg(p). Note that the cost of computing C
′

plt(p)
was established to be negligible in [6]. We now show that
the computational cost of computing C

′

frg(p) is also small
compared to that of the nominal extraction.

In essence, two configurations must be computed as shown
in (11). The delta configuration is computed by a fast update
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Fig. 2. 3-D representation of 8 cubic conductors on 4 layers.

of the nominal configuration, using a much smaller system
of which evaluation of (10) forms the main cost. The cost of
the update can be estimated as follows. Note that n is the
number of fringe panels and m is the total number of panels.
In practical cases, n � m. Since Ac

−1 ∈ Rn×n and Bc =
Cc

T ∈ Rn×(m−n), the evaluation of (10) is much faster than
the evaluation of (3), which has a size of m ×m and is the
main cost of nominal extraction. In case of np parameters,
the computational cost is linear in np. Next section gives a
comparison of the accuracy and the efficiency between the
proposed algorithm and the traditional FD method.

IV. EXPERIMENT AND RESULTS

This section presents an experiment for verifying the ac-
curacy and the efficiency of the enhanced algorithm. The
algorithm has been implemented in C/C++ and the experiment
has been conducted on a 3.00GHZ Intel 2 Core CPU.

As shown in Fig. 2, the example has 4 layers with 8
cubic conductors. The cubic conductors present some kind
of practical worst case situation as for the relevance of the
fringe terms. Typically, the width of conductors is changed by
process variability, and not so much the length. If the length
is changed, it can be relevant only if the conductor is very
short, which means an almost cubic conductor. Hence this
experiment studies the effects of the width variations of cubic
conductors. Since the structure is symmetrical, only the widths
of the left side cubes (w1, w2, w3, w4) are studied. Sensitivities
given by the traditional FD method are used as references.

Table I compares the C
′

plt and C
′

tot sensitivities to C
′

ref as
obtained by the traditional FD method. For each parameter,
2 capacitances with the largest sensitivities to that parameter
are selected to demonstrate the accuracy improvement of the
enhanced algorithm. As shown, the errors of the sensitivities
C

′

plt may reach 26%, compared to C
′

ref . While it is acceptable
for many cases since sensitivity itself is a second order effect,
the proposed method can be used when greater accuracy is
needed. Indeed, the C

′

tot rows of Table I show errors of less
than 6%, providing a substantial accuracy improvement.

Using the computed sensitivity, it is also interesting to
conduct a variational study on the same structure to show how
much is the effect of parameter variations on capacitances (C),
and whether a linear model can capture such effects.

We assume ±30% variations of the nominal value of each
parameter. As for the reference, the dimension of the structure



TABLE I
RESULTS-I. COMPARISON OF THE SENSITIVITY COMPUTATION GIVEN BY

DIFFERENT TECHNIQUES

parameter: w1 parameter: w2
N1-GND N1-N2 N2-M2 N2-M3

Cnom (fF) 0.1969 0.0746 0.0666 0.0194
C

′
ref (fF/um) 0.1665 0.0548 0.0804 0.0188

C
′
plt (fF/um) 0.1297 0.0427 0.0717 0.0148

error -22.08% -22.05% -10.48% -21.30%
C

′
tot (fF/um) 0.1687 0.0572 0.0849 0.0191

error 1.34% 4.35% 5.57% 1.58%

parameter: w3 parameter: w4
N3-N4 N3-M4 N4-GND N4-M4

Cnom (fF) 0.0798 0.0228 0.1496 0.0844
C

′
ref (fF/um) 0.0594 0.0217 0.1207 0.0901

C
′
plt (fF/um) 0.0440 0.0170 0.0927 0.0789

error -25.99% -21.63% -23.20% -12.44%
C

′
tot (fF/um) 0.0603 0.0220 0.1209 0.0943

error 1.44% 1.30% 0.17% 4.64%

TABLE II
RESULTS-II. VARIATIONAL STUDY OF CAPACITANCES USING THE

LINEAR MODEL

parameter variations: -30%
N1-N2 N2-M2 N3-N4 N4-M4

Cnom (fF) 0.0746 0.0666 0.0798 0.0844
Cvar (fF) 0.0660 0.0548 0.0706 0.0712

variation in C -11.53% -17.72% -11.53% -15.64%
Cplt (fF) 0.0682 0.0558 0.0733 0.0726

error 3.29% 1.82% 3.81% 2.02%
Ctot (fF) 0.0660 0.0539 0.0708 0.0703

error 0.00% -1.79% 0.38% -1.22%

parameter variations: +30%
Cvar (fF) 0.0822 0.0808 0.0882 0.0999

variation in C 10.19% 21.32% 10.53% 18.36%
Cplt (fF) 0.0810 0.0773 0.0864 0.0963

error -1.41% -4.29% -1.94% -3.63%
Ctot (fF) 0.0832 0.0793 0.0889 0.0986

error 1.23% -1.84% 0.84% -1.32%

is modified manually by ±30% and a standard extraction is
performed to obtain the capacitance in the varied case (Cvar).
As shown in Table II, the resulting variation in capacitance
(compared to the nominal capacitance Cnom) goes easily
beyond 15%, and even 20%. It indicates that process variations
can not be simply neglected. An appropriate modeling method
needs to be found and applied, for instance, a linear model.
With the computed sensitivities (C

′

plt and C
′

tot), it is very easy
to build the linear model of capacitances, obtaining Cplt and
Ctot (see Table II). It shows that the linear model using C

′

plt

can already capture the variational effect nicely, with an error
of less than 5%. With the enhanced sensitivity C

′

tot, the linear
model is able to further decrease the error. Note that in general,
the variation hardly goes up to ±30% for back-end-of-line
(BEOL) processing. Thus, for realistic variations, the error of
the sensitivity using the proposed algorithm can be even less.

Regarding the CPU time, the linear model is much faster
than the FD method, as shown in Table III. Note that the
CPU time of the linear model (Cplt or Ctot) includes both

TABLE III
RESULTS-III. CPU TIME COMPARISON OF THE CAPACITANCE

VARIATIONAL STUDY

Cnom Cplt Ctot CFD

CPU Time 37.33′′ 37.69′′ 41.25′′ 186.69′′

(1×) (1.01×) (1.11×) (5.00×)

the computation of the nominal capacitance (Cnom) and the
sensitivities (C

′

plt or C
′

tot). It indicates that the algorithm for
the basic sensitivity computation is extremely fast and results
in only a little overhead. And the proposed algorithm for the
enhanced sensitivity also provides a competitive efficiency,
especially compared to the FD method which requires np extra
full capacitance extractions given np parameters of interest.

V. CONCLUSION

This paper proposes an extension for an existing algorithm
of BEM based capacitance sensitivity computation w.r.t. mul-
tiple geometric parameters. The extended algorithm is much
faster than the traditional FD approach while providing a
similarly high accuracy. The extension serves as a useful and
sometimes necessary supplement for the existing algorithm
which features high speed in generating good accuracy results.
The enhanced algorithm thus is able to offer users various
solutions for various requirements and applications. As such, it
provides a flexible tool for BEM-based capacitance extractors
subject to geometric process variations.
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