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a b s t r a c t

In this paper, a signal processing framework in a generalized Fourier domain (GFD) is

introduced. In this newly proposed domain, a parametric form of control on the periodic

repetitions that occur due to sampling in the reciprocal domain is possible, without the

need to increase the sampling rate. This characteristic and the connections of the

generalized Fourier transform to analyticity and to the z-transform are investigated. Core

properties of the generalized discrete Fourier transform (GDFT) such as a weighted

circular correlation property and Parseval’s relation are derived. We show the benefits of

using the novel framework in a spatial-audio application, specifically the simulation of

room impulse responses for auralization purposes in e.g. virtual reality systems.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we introduce a framework for signal
processing in a generalized Fourier domain (GFD). In this
domain a special form of control on the periodic repeti-
tions that occur due to sampling in the reciprocal domain
is possible, without the need to increase the sampling
rate. First in Section 2 we review the definition of the
generalized discrete Fourier transform (GDFT) and its
associated generalized Poisson summation formula
(GPSF), both previously introduced in [1]. Analogous to
the periodic extension of a finite-length signal that occurs
in standard Fourier theory [2,3], here we introduce the
concept of ‘‘weighted periodic signal extension’’ that
naturally occurs when working in the GFD. Next we study
the connections of the presented theory to spectral
sampling, analyticity and the z-transform. This analysis
also serves as a discussion of the generalized Fourier
transform and its relationship to the standard Fourier
transform. In Section 3 important properties of the GDFT
. All rights reserved.
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are derived such as the weighted circular correlation
property and Parseval’s energy relation for the GFD that,
together with the previously introduced weighted circular
convolution theorem for the GDFT, are fundamental to
build a general-purpose GFD-based signal processing
framework. To finalize our discussion in Section 4 we
show how the novel framework can be used in spatial-
audio applications such as the simulation of multichannel
room impulse responses for auralization purposes in e.g.
virtual reality and telegaming systems.
2. A generalized Fourier domain

Let us define the generalized discrete Fourier trans-
form for finite-length signals x(n), n¼ f0, . . . ,N�1g, with
parameter a 2 C\f0g as,

F afxðnÞg9XaðkÞ ¼
XN�1

n ¼ 0

xðnÞebne�jð2p=NÞkn, ð1Þ

for k¼ f0, . . . ,N�1g, where b¼ logðaÞ=N. The inverse GDFT
is given by [1],

F�1
a fXaðkÞg9xðnÞ ¼

e�bn

N

XN�1

k ¼ 0

XaðkÞe
jð2p=NÞkn: ð2Þ
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Fig. 1. Geometrically weighted extension of a finite length signal when

evaluated outside its original domain, for a¼ 0:5 and N¼10.
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The GDFT (1) is equivalent to the ordinary discrete Fourier
transform of the modulated signal xðnÞebn. The finite-length
signal ebn for n¼ f0, . . . ,N�1g, is of finite energy for all
a 2 C\f0g, therefore for x(n) a signal of finite energy, the
GDFT can be properly defined [2,1]. Note that when a¼ 1,
the transform pair correspond to the standard DFT pair.

Let us denote the periodic extension of XaðkÞ by ~XaðkÞ for
k 2 Z. Clearly we have that ~XaðkÞ ¼ XaððkÞÞN , where
XaððkÞÞN9Xaðk mod NÞ, i.e. the circular shift of the sequence
is represented as the index modulo N. On the other hand (1)
and (2) imply a geometrically weighted periodic extension of
the signal x(n) when evaluated outside f0, . . . ,N�1g. This is
stated by the generalized Poisson summation formula
(GPSF) associated with the transform [1],

~xaðnÞ9
X
p2Z

apxððnÞÞN¼
e�bn

N

XN�1

k ¼ 0

XaðkÞe
jð2p=NÞkn, ð3Þ

where n 2 Z, p¼�bn=Nc and ððnÞÞN ¼ nþpN. We can regard
~xaðnÞ as a superposition of infinitely many translated and
geometrically weighted ‘‘replicas’’ of x(n). The replicas out-
side the support of x(n) are weighted by ap and ~xaðnÞ ¼ xðnÞ

for n¼ f0, . . . ,N�1g. This is illustrated in Fig. 1, where a
finite signal and (a part of) its geometrically weighted
extension are depicted for a¼ 0:5 and N¼10. Therefore to
work in the generalized Fourier domain implies a manip-
ulation of the signals involved via their geometrically
weighted extensions. This is an important fact as we will
see through the rest of the paper.

Signals of the form ~xaðnÞ although infinitely long and not
being of finite energy can be decomposed into its generalized
Fourier transform components by means of (1), evaluating
the transform over a signal interval (‘‘period’’) of length N.
This fact follows directly from the generalized Poisson
summation formula (3) which shows, that the inverse trans-
form ðexpð�bnÞ=NÞ

PN�1
k ¼ 0 XaðkÞexpðjð2p=NÞknÞ is of the

form ~xaðnÞ when evaluated over n¼Z.

2.1. Connection to sampling, analyticity and the z-transform

The summation formula (3) has an important relation-
ship to spectral sampling. The connection of the (discrete-
time) generalized Fourier transform to analyticity and to
the z-transform follows as part of the analysis. These
relationships are used in a practical application of the
theory in Section 4.

Let us begin with the connection to analyticity. Define
the standard spectrum of a discrete-time signal by SðoÞ,
where o 2 R represents angular frequency and let
SðoÞ 2 L2

½�p,p�. Since the original signal s(n), n 2 Z, is
defined for discrete-time it is clear that SðoÞ is a periodic
function of o with period equal to 2p. The signal s(n)
could represent the samples of a continuous-time signal,
but without the sampling interval that information is lost
and no particular analog representation is to be inferred.
Let us assume for a moment that SðoÞ can be analytically
continued into the complex angular–frequency plane.
This is SðoÞ-SðozÞ, where oz 2 C is the complex-valued
angular frequency. Let or and oi denote the real and
imaginary parts respectively of oz. Then from the defini-
tion of the discrete-time Fourier transform we have,

SðozÞ ¼
X1

n ¼ �1

sðnÞe�jozn,

Sðorþ joiÞ ¼
X1

n ¼ �1

sðnÞe�jðor þ joiÞn,

Sðorþ joiÞ ¼
X1

n ¼ �1

sðnÞeoine�jor n: ð4Þ

From here we see that if s(n) is a causal sequence and the
analytic continuation of SðoÞ is done on the lower half of
the complex plane then oio0,

Sðorþ joiÞ ¼
X1
n ¼ 0

sðnÞeoine�jor n,

and the extra factor eoin can only improve the conver-
gence rate of the series. Now,

lim
oi-�0

Sðorþ joiÞ ¼ lim
oi-�0

X1
n ¼ 0

sðnÞe�jor nþoin,

¼
X1
n ¼ 0

lim
oi-�0

sðnÞe�jor nþoin,

¼ SðoÞ:

On the other hand we have thatZ p

�p
9Sðorþ joiÞ9

2
dor

¼

Z p

�p
Sðorþ joiÞS

n
ðorþ joiÞ dor ,

¼

Z p

�p

X1
n ¼ 0

sðnÞe�jor nþoin
X1

m ¼ 0

snðmÞejor mþoim

 !
dor ,

¼
X1
n ¼ 0

sðnÞeoin
X1

m ¼ 0

snðmÞeoim

Z p

�p
ejor ðm�nÞ dor

 !
,

¼ 2p
X1
n ¼ 0

sðnÞeoinsnðnÞeoin,

¼ 2p
X1
n ¼ 0

9sðnÞ92
e2oino2p

X1
n ¼ 0

9sðnÞ92
,

where n denotes complex conjugation. Recalling Parse-
val’s relation and noting that SðoÞ 2 L2

½�p,p� implies
sðnÞ 2 l2ðZÞ [3,2], then for a positive constant C,Z p

�p
9Sðorþ joiÞ9

2
dor oC:
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The function Sðorþ joiÞ is the analytic continuation from
the real line into the lower half of the complex plane of
the spectrum of the causal signal s(n). By the same
arguments if sðnÞ ¼ 0 for n40 (i.e. is an anticausal signal),
then its spectrum admits analytic continuation into the
upper half of the complex angular–frequency plane.

Define now a discrete-time generalized Fourier trans-
form as,

SaðoÞ ¼
X1

n ¼ �1

sðnÞebne�jon, ð5Þ

with inverse transformation,

sðnÞ ¼
e�bn

2p
¼

Z p

�p
SaðoÞejon do, ð6Þ

where, as in (1), b¼ logðaÞ=N and a 2 C=f0g. By our
previous discussion we can write

SaðoÞ ¼ Sðoþ jbÞ ¼ Sðo�biþ jbrÞ,

where br and bi are the real and imaginary parts respec-
tively of parameter b. Clearly if br o0 (or equivalently
9a9o1) the transform is well defined for causal signals. In
the same way if br 40 (i.e. 9a941) the transform is well
defined for anticausal signals. In both cases the general-
ized spectrum can be obtained via analytic continuation
(into the proper half of the complex plane) of the standard
Fourier spectrum. Also note that bi implies a frequency
shift. If the principal value of logðaÞ is to be taken this shift
is limited from �p=N to p=N.

Recall now the definition of the z-transform,

SðzÞ ¼
X1

n ¼ �1

sðnÞz�n:

Since parameter a is constant, we find the transform (5)
to be a particular case of the z-transform, with
z¼ e�br�jðbi�oÞ. This implies 9z9¼ 9a9�1=N

, with the real
positive Nth-root being the only root satisfying the
equation. The discrete-time GFT can be viewed as the
z-transform of the signal evaluated on a circle of radius
9a9�1=N

. When 9a9¼ 1 the evaluation is done on the unit
circle and the GFT is equivalent to the standard Fourier
transform shifted in frequency, this is, SaðoÞ ¼ Sðo�y=NÞ,
with a¼ ejy. We can now extend the definition of the GFT
to signals other than single-sided (causal or anticausal). If
the z-transform of the signal has a region of convergence
that includes the circle of radius 9a9�1=N

, then the GFT
exists. Note that finite-length signals have as region of
convergence the whole z-plane with exception of the
points z¼ 0 and/or z¼1. Since a 2 C=f0g the GFD always
exists for finite-length signals of finite energy.

The relationship of (3) to spectral sampling is now
explored. Since SaðoÞ is a periodic function of o the
integral in (6) can be taken over any interval of length 2p.
To make the derivation simpler let

sðnÞ ¼
e�bn

2p ¼
Z 2p

0
SaðoÞejon do:

The integral can be approximated using a rectangular quad-
rature rule, dividing the integration interval uniformly into N

subintervals and using the samples of the integrand at the
subinterval points. Let 2p=N be the sampling interval, thenZ 2p

0
SaðoÞejon do� 2p

N

XN�1

k ¼ 0

Sa
2p
N

k

� �
ejð2p=NÞnk:

An approximation of s(n), call it ~saðnÞ, is thus obtained as

~saðnÞ ¼
e�bn

N

XN�1

k ¼ 0

Sa
2p
N

k

� �
ejð2p=NÞnk:

Substituting (5) into this last expression reveals the connec-
tion of ~saðnÞ to the original signal s(n),

~saðnÞ ¼
e�bn

N

XN�1

k ¼ 0

X1
m ¼ �1

sðmÞebme�jð2p=NÞkm

 !
ejð2p=NÞkn

¼
e�bn

N

X1
m ¼ �1

sðmÞebm
XN�1

k ¼ 0

ejð2p=NÞkðn�mÞ

 !
:

For p 2 Z, p¼�bn=Nc we have [3],

XN�1

k ¼ 0

ejð2p=NÞkðn�mÞ ¼
N, m¼ nþpN,

0, otherwise:

(

Then

~saðnÞ ¼ e�bn
X1

p ¼ �1

sðnþpNÞebðnþpNÞ

¼
X1

p ¼ �1

sðnþpNÞebpN ¼
X1

p ¼ �1

apsðnþpNÞ:

So that

~saðnÞ ¼
X1

p ¼ �1

apsðnþpNÞ ¼
e�bn

N

XN�1

k ¼ 0

Sa
2p
N

k

� �
ejð2p=NÞnk:

We have arrived to the generalized Poisson summation
formula (3), which states that uniform spectral sampling of
the generalized Fourier spectrum SaðoÞ implies a geometri-
cally weighted periodic summation of the original discrete-
time signal s(n). This property is used in a spatial-audio
application in Section 4, but first we analyze some properties
of the GDFT.

3. Properties of the GDFT

In this section we present some important properties
of the GDFT, these are a fundamental part in any GFD-
based signal processing framework. In the following let
x(n) and y(n) for n¼ f0, . . . ,N�1g be two finite-duration
and in general complex signals of length N, and XaðkÞ and
YaðkÞ for k¼ f0, . . . ,N�1g their respective GDFTs.

Property 1. Weighted circular convolution. Point-wise multi-

plication of XaðkÞ and YaðkÞ in the GFD corresponds to the

weighted circular convolution of x(n) and y(n) in the time

domain, i.e.

F�1
a fXaðkÞYaðkÞg ¼

e�bn

N

XN�1

k ¼ 0

XaðkÞYaðkÞe
jð2p=NÞnk

¼
XN�1

m ¼ 0

xðmÞ ~yaðn�mÞ,
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F�1
a fXaðkÞYaðkÞg ¼

XN�1

m ¼ 0

xðmÞapyðn�mþpNÞ

¼
XN�1

m ¼ 0

xðmÞapyððn�mÞÞN , ð7Þ

or

ðxn ~yaÞðnÞ2
Fa

XaðkÞYaðkÞ,

where n is the linear convolution operator. The operation
can thus be seen as the linear convolution of one of the
signals e.g. x(n), with the respective signal extension of
the other, ~yaðnÞ. Note that for n¼ f0, . . . ,N�1g we have
that ðn�mÞ 2 f�Nþ1, . . . ,N�1g, and thus p 2 f0,1g, so that
(7) can be rewritten as

Xn

m ¼ 0

xðmÞyðn�mÞþa
XN�1

m ¼ nþ1

xðmÞyðNþn�mÞ, ð8Þ

where the left hand summation represents the contribu-
tion of N linear convolution terms, and the right hand
summation the contribution of N circular convolution
terms (which are in fact the last terms of the linear
convolution). The factor a effectively weights the amount
of circular convolution that is obtained. The proof is
given in [1]. Property 1 can be exploited to compute
linear convolutions in the GFD without the need of zero-
padding, using GDFTs with e.g. parameter a¼ 7 j or
a51 2 R, [1].

Next we present the shifting properties for the GDFT,
the first accounts for a shift in the time-domain the
second for a shift in the GFD.

Property 2. Time-domain shift.
For n0 2 Z,

~xaðn�n0Þ2
F a

ebn0 e�jð2p=NÞkn0 XaðkÞ:

The GDFT with parameter a of the shifted signal
~xaðn�n0Þ is equal to the modulated generalized spectrum
of the original signal x(n). The proof is given in Appendix
A.

Property 3. GFD shift. For k0 2 Z,

xðnÞejð2p=NÞk0n2
F a ~Xaðk�k0Þ ¼ Xaððk�k0ÞÞN :

To circularly shift the generalized spectrum XaðkÞ of a
signal is equivalent in the time-domain to modulate the
signal with the function ejð2p=NÞk0n. The proof is given in
Appendix B.

Property 4. Time reversal.

~xað�nÞ2
Fa�1 ~Xað�kÞ:

The GDFT with parameter a�1 of the time-reversed
extension of x with parameter a, ~xað�nÞ, is thus equivalent
to reversing (modulo N) the GDFT of x(n) with parameter
a. This result is a direct consequence of the reciprocal-
symmetric structure of the signal extension ~xaðnÞ with
respect to a. Notice that if the extension is time reversed
the geometrically weighted ‘‘replicas’’ outside the support
of xð�nÞ no longer correspond to a weight ap but to a�p.
Therefore to obtain Property 4 a GDFT with parameter a�1

has to be applied to the time reversed extension, ~xað�nÞ.
The proof is given in Appendix C.

Property 5. Time domain complex-conjugate.

xnðnÞ2
Fan ~X

n

að�kÞ:

To take the inverse GDFT with parameter an of ~X
n

að�kÞ

is equivalent to take the complex conjugate of the time
domain signal xnðnÞ. The proof is given in Appendix D.

Consider that the real part of a complex signal is given
by RfxðnÞg ¼ ð1=2ÞðxðnÞþxnðnÞÞ, and its imaginary part is
given by IfxðnÞg ¼ ð1=2jÞðxðnÞ�xnðnÞÞ. The last property
(making a-an) can then be used to derive the following
results,

RfxðnÞg2
Fa 1

2
ðXaþ ~X

n

an ð�kÞÞ:

The real part of a complex signal x(n) can be obtained by
taking the inverse GDFT with parameter a of a linear
combination of the GDFT of x(n) with parameter a, and
the GDFT of x(n) with parameter an conjugated and
reversed (modulo N). Correspondingly we also have that,

IfxðnÞg2
Fa 1

2j
ðXa� ~X

n

an ð�kÞÞ:

Property 6. GFD complex-conjugate.

~xn

að�nÞ2
Fa�n

Xn

aðkÞ,

where a�n ¼ ðanÞ
�1. To take the complex conjugate of the

spectrum, Xn

aðkÞ is equivalent to take the GDFT with
parameter a�n of ~xn

að�nÞ. The proof is given in Appendix E.
Before we proceed with the next property let us define

the weighted circular correlation of two in general com-
plex length N signals, x(n) and y(n) by the linear (deter-
ministic) correlation function of x(n) and ~ya�n ðnÞ, i.e.,

~ra,xyðnÞ ¼ xðnÞn ~yn

a�n ð�nÞ

¼
XN�1

m ¼ 0

xðmÞ ~yn

a�n ðm�nÞ

¼
XN�1

m ¼ 0

xðmÞða�pynðm�nþpNÞÞ

¼
XN�1

m ¼ 0

xðmÞða�pynððm�nÞÞNÞ, ð9Þ

where we have used the fact that linear correlation can be
expressed in terms of the linear convolution of the signals
with one of them time-reversed and conjugated. Note that
for n¼ f0, . . . ,N�1g we have,
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~ra,xyðnÞ ¼

XN�1

m ¼ 0

xðmÞynðmÞ, n¼ 0

a�1
Xn�1

m ¼ 0

xðmÞynðNþm�nÞ

þ
XN�1

m ¼ n

xðmÞynðm�nÞ, otherwise:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ

Let us now state the following property.

Property 7. Weighted circular correlation.

~ra,xyðnÞ2
Fa

Ra,xyðkÞ ¼ XaðkÞY
n

a�n ðkÞ,

where by definition Ra,xyðkÞ is the GDFT of ~ra,xyðnÞ ¼ xðnÞ

n ~yn

a�n ð�nÞ. The proof of this property follows directly
from the complex-conjugate property (Property 6) with
a-a�n, the weighted circular convolution property
(Property 1), and Eq. (9).

In analogy to the weighted circular convolution prop-
erty a weighted circular correlation can be obtained by
point-wise multiplication of the spectra in the GFD.
However in this case one of the two spectra corresponds
to the complex conjugate of the GDFT of the signal with
parameter a�n. Notice that when 9a9¼ 1 we have,

~ra,xyðnÞ2
Fa

Ra,xyðkÞ ¼ XaðkÞY
n

aðkÞ,

this includes the standard DFT correlation theorem (a¼ 1).
The following property is a direct consequence of the

weighted circular correlation theorem.

Property 8. Parseval’s energy relation.

XN�1

n ¼ 0

xðnÞynðnÞ ¼
1

N

XN�1

k ¼ 0

XaðkÞY
n

a�n ðkÞ: ð11Þ

This equality represents Parseval’s theorem for the GDFT.
It follows by evaluating F�1

a fRa,xyg ¼ ~ra,xyðnÞ at n¼0. For
the case yðnÞ ¼ xðnÞ we further have,

XN�1

n ¼ 0

9xðnÞ92
¼

1

N

XN�1

k ¼ 0

XaðkÞX
n

a�n ðkÞ: ð12Þ

The energy in the finite duration signal x(n) is
expressed in terms of the frequency components
fXaðkÞX

n

a�n ðkÞg
N�1
k ¼ 0. From here we see that if 9a9¼ 1 the

energy in x(n) equals 1=N times the energy in XaðkÞ i.e.,

XN�1

n ¼ 0

9xðnÞ92
¼

1

N

XN�1

k ¼ 0

9XaðkÞ9
2

for all a : 9a9¼ 1: ð13Þ

4. A spatial-audio signal processing application.

In this section we consider the simulation of room
impulse responses as an application for the GFD-
framework just presented. Let us start with the sound
field inside a box-shaped room which always contains
reverberation (at least in the vast majority of real-life
cases). If the source of sound is perfectly omnidirectional
(a monopole) and produces a perfect delta pulse at a
certain time, then the resulting sound field measured at a
single point in space is called the room impulse response
(RIR) [4,5]. Current approaches to model the sound field in
a room although accurate are computationally complex
[4,6–9]. In the context of spatial-audio applications like
virtual reality systems, real-time or interactive simulation
of RIRs at all positions in a room becomes a challenging
problem.

Consider now a room with fully reflective walls. In this
case, the sound field inside the room is given by a periodic

summation of the sound field of the source [10]. Intui-
tively this summation represents the effect of reverbera-
tion, since the reflections of the sound field produced by
the source(s) on the walls can be modeled by spatial
copies of the sources outside the room. If a room could
have fully reflective walls, these copies would be perfect
and the summation would be perfectly periodic. A key
observation to derive a fast algorithm to model the sound
field in a room is then the following, sampling of a function

results in a periodic summation of its Fourier transform. This
relation is given by the Poisson summation formula [2,1]
and it is a well known property in digital signal processing
(see, e.g. [3]). If we carefully sample the spatio-temporal
spectrum of the sound field produced by the source and
apply an inverse Fourier transform on this sampled
spectrum we can obtain the required periodic summation
that constitutes the sound field in the whole room [10].
Using this method we dramatically reduce the complexity
needed to compute individual impulse responses from
OðN3

t Þ per receiver position (with Nt proportional to the
desired reverberation time T60) of approaches related or
based on the mirror image source method [7], to
OðNologðNoÞÞ (with No proportional to the maximum
desired temporal bandwidth say, ob) taking advantage
of the FFT. On the other hand in virtually all real-life cases
the walls in a room are at least partially absorptive, the
summation defining the sound field in a room is therefore
never perfectly periodic. Using standard Fourier theory is
however impossible to obtain something different than a
periodicity-sampling relation in reciprocal domains. And
therefore although of theoretical importance, the method
in [10] has no direct practical use.

If the walls are no longer fully reflective in [11] is
shown that the sound field in the room can be modeled by
a weighted periodic summation, of the form given by the
generalized Poisson summation formula [1] (in this paper
a discrete version of the formula is given by (3)). Every
time the sound field is reflected on a wall, part of its
energy is absorbed and its frequency components might
experience a phase change. Higher order reflections can
then be seen as geometrically weighted copies of the
sound field of the source. A GFD based method for the
simulation of RIRs is then derived as follows. For every
source in the room first and second-order reflections on
orthogonal walls [10,11] are considered first. To model
these, another seven virtual sources are added at positions
outside the room. A total of eight mother sources are then
considered. The sound field of each mother source is then
factored into waves traveling only in the direction of each
of the eight space octants. This gives rise to a total of 2ð3�2Þ
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spatio-temporal functions to be considered. Let plqðx,tÞ
represent these functions where l¼ f0, . . . ,7g is the
mother source index and q¼ f0, . . . ,7g is an enumeration
of the octants, x¼ ½x,y,z�T is the space variable vector
where the superscript T denotes matrix transposition, and
t 2 R denotes time. The reverberated sound field in the
room is then modeled by [11],

pðx,tÞ ¼
X7

l ¼ 0

X7

q ¼ 0

Rlq

X
n2Z3

Y
i2fx,y,zg

R7
i ni

0
@

1
AplqðxþKn,tÞ, ð14Þ

where K is the generator matrix of the periodicity lattice
L (i.e. the multidimensional signal ‘‘period’’), Rlq are
constants required, n¼ ½nx,ny,ny� is a triplet of integers,
Ri, for i 2 fx,y,zg are the reflection factors of the walls, e.g.
rx ¼ rx0rx1 where Rx0 is the reflection factor of the wall
perpendicular to the x direction at the origin of coordi-
nates and Rx1 the reflection factor of the opposite wall.
The sign of the exponent in the product over i 2 fx,y,zg
depends on the particular octant in the definition of the
function Rlq. The reader is referred to [11] for the details of
this derivation. The important result behind (14) is that
the infinite summation over n is a weighted periodic

summation, of the form given by the generalized Poisson
summation formula, which for multidimensional signals
takes the form,

X
n2Zn

Yn�1

i ¼ 0

ani

i

 !
pðxþKnÞ ¼

e�bT x

9K9

X
k2Zn

PaðUkÞejðkT UT xÞ, ð15Þ

where n 2 Z is the dimension of the space, 9K9 is the
absolute value of the determinant of K, U¼ 2pK�T is the
generator matrix of the spectral sampling lattice F (the
(scaled) reciprocal lattice of the periodicity lattice L),
b¼K�T logðaÞ, a 2 Cn : aia0 8i¼ 0, . . . ,n�1, is the para-
meter of the multidimensional generalized Fourier trans-
form Pa, and logðaÞ9½logða0Þ, . . . ,logðan�1Þ�

T .
The main result in [11] relates the sound field in a

room with a sampling condition on the generalized Four-
ier spectrum. This is, if K denotes the generator matrix of
the lattice specifying the spatial periodic packing of the
sound fields plqðx,tÞ, and U denotes the generator matrix
of the lattice specifying the sampling points of the spatial-
generalized spectra, then making U¼ 2pK�T , the func-
tions PalqðUk,oÞ, k 2 Z3 are the generalized Fourier coef-
ficients of

X
n2Z3

Y
i2fx,y,zg

RBqðiÞni

i

0
@

1
AplqðxþKn,tÞ, ð16Þ

with a¼ ½RBqðxÞ
x ,RBqðyÞ

y ,RBqðzÞ
z ,1�T , where o is the temporal

frequency variable and Bqð�Þ ¼ 71, depending on the
coordinates defining the qth octant of the space.

To apply the method on a computer, all frequency
variables (not only the spatial-frequency variable) must
be sampled. Sampling the temporal-frequency variable o
introduces temporal aliasing. Let W be the matrix of the
spectral sampling lattice W¼ diagðU,OsÞ, Os is the
temporal-frequency sampling interval. Define D¼ diag
ðK,TsÞ, so that W¼ 2pD�T

¼ 2pdiagðK,TsÞ
�T , where
Ts ¼ 2p= Os is the interval of temporal periodicity. Then

~palqðx,tÞ9
X
n2Z3

X
n2Z

Y
i2fx,y,zg

RBqðiÞni

i

0
@

1
AplqðxþKn,tþTsnÞ: ð17Þ

The summation over n 2 Z, na0, is the temporal aliasing.
We can neglect it making Os51, (Ts becomes large), this
increases computational complexity since a smaller sam-
pling interval implies more samples needed in the recon-
struction. Taking advantage of the GFD framework,
temporal aliasing can be further reduced using a temporal
component different than 1 in the a parameter of (16),
without the need to change the sampling rate. We derive
this below, after the current discussion.

The sound field is therefore approximated,

pðx,tÞ �
X7

l ¼ 0

X7

q ¼ 0

e�bT
q x�bt

9D9

X
k2Z4

RlqPalqðWkÞejðkT WT
½xT ,t�T Þ: ð18Þ

Further, the infinite summation over k in (18), must be
limited to a finite number of elements. Extending peri-
odically this finite set of spectral coefficients, we impose a
discretization of the space-time function, so that a
sampled (in both space and time) sound field is approxi-
mated (which can then be handled on a computer). The
spectral set must be big enough to cover the support of
the spectrum if corruption due to aliasing is to be avoided.

Let SDC, be the spectral periodicity lattice, and G the
spatio-temporal sampling lattice, assume DDG. Then
C¼ 2pR�T , so that,

~palqðCnÞ ¼
e�bT Cn

NðD=GÞ

X
k2VRð0Þ

9C9�1
PalqðWkÞejðkT WT CnÞ, ð19Þ

where VSð0Þ is the (central) Voronoi region around the
origin of lattice S, NðD=GÞ is the number of lattice points
of G that lie in VDð0Þ (the central Voronoi region of lattice D).
Making VRð0Þ larger implies a finer sampling of ~palq. Further
we have that,

NðD=GÞ ¼
9D9
9C9
¼
ð2pÞ49W�T9

ð2pÞ49R�T9
¼

9R9
9W9
¼NðS=CÞ:

The sampled sound field is thus obtained by,

pðCnÞ �
X7

l ¼ 0

X7

q ¼ 0

Rlq
~palqðCnÞ for Cn 2 VDð0Þ: ð20Þ

Considering that the spectrum energy is concentrated in
J/Jr9o=c9 [12] we can evaluate up to a given ob. Note that
(19) has the form of a generalized Poisson summation
formula (the multidimensional extension of (3)), the right
hand term is thus a multidimensional GDFT and the inner
summation over k corresponds to a DFT (this comes from
the fact that the GDFT is equivalent to the DFT of the
modulated input signal). Using the FFT, the operation will
take only OðN4

o log NoÞ operations for computing NðD=GÞ
spatio-temporal positions, with No proportional to ob.
Since NðD=GÞ ¼NðS=CÞ, the method is of complexity
OðNo log NoÞ per receiver position. Again the reader is
referred to [11] for detailed experimental results.

Returning to Eq. (17), we see that temporal aliasing
is introduced due to spectral sampling of o. Clearly, by
making the spectral sampling period Os smaller, the



Fig. 2. Simulated room impulse responses.
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aliasing components in the time dimension appear further
apart from each other, reducing the error. In time the RIR
does not have compact support, but it is a causal (single
sided) function, having a starting point in time and an
exponential decay afterwards (see e.g. [5] for a parametric
characterization of this decay). A simulated example RIR
using the Mirror Image Source Method (MISM) [7], is
depicted in Fig. 2, together with a RIR simulated using the
GFD approach described above and in [11], the error
power between both signals is plotted in dB. The band-
width frequency is ob ¼ 2pð2 kHz, so that the temporal
sampling frequency is f s ¼ 4 kHz. The length of the RIR is
Th ¼ 1:02 s or 4096 taps. The GFD method RIR shown in
Fig. 2 is obtained according to (19) and (20) using a
parameter a¼ ½RBqðxÞ

x ,RBqðyÞ
y ,RBqðzÞ

z ,1�T , so that the spatial part
of the a parameter applied in the generalized Fourier
synthesis gives the required spatial weighted periodicity,
and in time a standard Fourier synthesis is applied. The
RIR is thus one spatial sample of the set pðCnÞ. The
spectral sampling period is set to Os ¼ 2p=ð2ThÞ, so that
the interval of temporal periodicity (and thus temporal
aliasing) Ts is 2 times the reverberation time.

Using a temporal component ata1 in the a parameter,
we can further reduce the temporal aliasing. Since the RIR
is a causal function of time, the repeated terms to the
right of the temporal support of the RIR (for no0), do not
contribute to the time-domain aliasing. Therefore we can
rewrite (17) as,

~palqðx,tÞ ¼
X
n2Z3

Y
i2fx,y,zg

RBqðiÞni

i

0
@

1
AplqðxþKn,tÞ

þ
X1
n ¼ 1

X
n2Z3

ðan
t Þ

Y
i2fx,y,zg

RBqðiÞni

i

0
@

1
AplqðxþKn,tþTsnÞ:

ð21Þ
In principle by making e.g. at 51 we can further reduce
the temporal aliasing without the need to increase the
spectral sampling period Os. In practice however, the
accuracy of the computations is limited by the arithmetic
precision used, moreover the causality of the RIR in time
is only strictly valid in non-bandlimited scenarios. This is,
by limiting the summation over k in (18) to a finite
number of elements, we are effectively multiplying the
discrete spatio-temporal spectrum by a multidimensional
rectangular window. In space-time this has the effect of a
convolution with a multidimensional sinc function, mak-
ing the resulting band-limited RIR non-causal. In this case
(17) for na0 defines the aliasing terms, but still the terms
for no0 have less corruptive influence. Despite these
practical issues it is still possible to reduce the temporal
aliasing using a temporal component e.g. at 51 in the
generalized Fourier synthesis (19). In Fig. 3(a)–(d) results
of the generalized Fourier synthesis are given setting
at ¼ 0:5, at ¼ 10�2, at ¼ 10�3 and at ¼ 10�4 respectively.
Indeed aliasing corruption decreases for the first two cases,
but for at ¼ 10�3 and at ¼ 10�4 the repeated terms to the
right of the temporal support of the RIR become too large,
having a negative impact in the reconstruction. Clearly the
corruption is more pronounced to the right of the support of
the RIR. In this case setting the parameter at ¼ 10�2 gives a
good reconstruction, especially when compared with the
result obtained setting at ¼ 1 depicted in Fig. 2. Working in
the GFD on the temporal dimension allows a non-negligible
gain in accuracy.

The method for multichannel simulation of RIRs has an
important application in immersive virtual gaming (using
for example stereo headphones). In this case many RIRs
for different (virtual) room conditions need to be com-
puted and later fast convolved with a given audio signal
(i.e. auralization) to give the users an audio experience
such that they have the impression of being in the game
field. For example, at one moment the users could be at an
open location such as a park, and at another moment they
could be inside a room. To create a satisfactory experi-
ence, the system have to reproduce the acoustic charac-
teristics of different scenarios for moving sources/
receivers. The computation of all the necessary RIRs can
be done with low-complexity using the GFD method
presented in [11]. A GDFT in the temporal dimension
can be applied to reduce aliasing corruption as explained
above. The novel GFD framework presented in this paper
can then be used to perform fast convolution for auraliza-
tion or other signal processing tasks in the GFD.

5. Concluding remarks

In this work, a generalized Fourier domain (GFD) signal
processing framework is introduced. The proposed frame-
work allows a special form of control on the periodic
repetitions that occur due to sampling in the reciprocal
domain. We show that this property can be expressed in
terms of a weighted periodic extension of a signal. We
demonstrate that the (discrete-time) generalized Fourier
transform can be seen as a special case of the z-transform,
and relate the analytic continuation of the standard
Fourier spectrum to the generalized Fourier spectrum.



Fig. 3. Comparison of RIRs simulated with the GFD method setting parameter at to different values, and the same RIR simulated with the MISM depicted

in Fig. 2. (a) at ¼ 0:5, (b) at ¼ 10�2, (c) at ¼ 10�3, (d) at ¼ 10�4.
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Core properties of the generalized discrete Fourier trans-
form (GDFT) are given. These allow to concisely work in
the GFD. The close relationship of the GDFT to the DFT
allows a generalized fast Fourier transform (GFFT) to be
directly obtained via the FFT.

The novel framework opens possibilities for signal
processing applications where working on the GFD results
in a computational or analytical advantage. As an exam-
ple, we review a method for low-complexity simulation of
room impulse responses (RIRs) [10,11] based on the GFD.
The framework presented in this paper can then be used
to perform e.g. auralization, adaptive filtering or other
acoustic signal processing operations in the GFD.

MATLABs code to implement the GDFT is available on-
line for educational and non-profit purposes at the web-
page of TuDelft SIPLAB (http://siplab.tudelft.nl).
Appendix A. Proof of Property 2
Proof. Time-domain shift property.

For n0 2 Z, we have that

~xaðn�n0Þ ¼ apxððn�n0ÞÞN ¼ apxðn�n0þpNÞ,

where p¼�bðn�n0Þ=Nc. Then,

F af ~xaðn�n0Þg ¼
XN�1

n ¼ 0

~xaðn�n0Þe
bne�jð2p=NÞkn

¼
XN�1

n ¼ 0

apxðn�n0þpNÞebne�jð2p=NÞkn,

http://siplab.tudelft.nl
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make m¼ n�n0þpN, then

F af ~xaðn�n0Þg ¼
XN�1

m ¼ 0

apxðmÞebðmþn0�pNÞe�jð2p=NÞkðmþn0�pNÞ

¼ ebn0 e�jð2p=NÞkn0
XN�1

m ¼ 0

xðmÞebme�jð2p=NÞkm

¼ ebn0 e�jð2p=NÞkn0 XaðkÞ: &

Appendix B. Proof of Property 3
Proof. GFD shift property.
For k0 2 Z,

F afxðnÞe
jð2p=NÞk0ng ¼

XN�1

n ¼ 0

xðnÞejð2p=NÞk0nebne�j ð2p=NÞknð Þ

¼
XN�1

n ¼ 0

xðnÞebne�j ð2p=NÞnðk�k0Þð Þ

¼
XN�1

n ¼ 0

xðnÞebne�j ð2p=NÞnððk�k0ÞÞNð Þ

¼ Xaððk�k0ÞÞN ¼
~Xaðk�k0Þ: &

Appendix C. Proof of Property 4
Proof. Time reversal.
For

~xað�nÞ ¼
xðnÞ for n¼ 0

axðN�nÞ for n¼ f1, . . . ,N�1g,

(

we have that,

F a�1 f ~xað�nÞg ¼ xð0Þþ
XN�1

n ¼ 1

axðN�nÞe�bne�jð2p=NÞkn,

set m¼N�n, then,

F a�1 f ~xað�nÞg ¼ xð0Þþ
XN�1

m ¼ 1

axðmÞe�bðN�mÞe�jð2p=NÞkðN�mÞ

¼ xð0Þþ
XN�1

m ¼ 1

xðmÞebme�jð2p=NÞðN�kÞm

¼
XN�1

m ¼ 0

xðmÞebme�jð2p=NÞðN�kÞm

¼ XaðN�kÞ ¼ ~Xað�kÞ,

since b¼ logðaÞ=N. &

Appendix D. Proof of Property 5
Proof. Time domain complex-conjugate.

F an fxnðnÞg ¼
XN�1

n ¼ 0

xnðnÞeb
nne�jð2p=NÞkn
¼
XN�1

n ¼ 0

xðnÞebnejð2p=NÞkn

 !n

¼
XN�1

n ¼ 0

xðnÞebne�jð2p=NÞðN�kÞn

 !n

¼ ~X
n

að�kÞ: &

Appendix E. Proof of Property 6
Proof. GFD complex-conjugate.

F�1
ðanÞ

�1 fX
n

aðkÞg ¼
eb

nn

N

XN�1

k ¼ 0

Xn

aðkÞe
jð2p=NÞkn

¼
eb

nn

N

XN�1

k ¼ 0

XaðkÞe
�jð2p=NÞkn

 !n

¼
xnð0Þ, n¼ 0

eb
nnxnðN�nÞeb

n
ðN�nÞ, otherwise

(

¼
xnð0Þ, n¼ 0

ðaxðN�nÞÞn, otherwise

(

¼ ~xn

að�nÞ,

since b¼ logðaÞ=N. &
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