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A Generalized Poisson Summation Formula and its
Application to Fast Linear Convolution

Jorge Martinez, Richard Heusdens, and Richard C. Hendriks

Abstract—In this letter, a generalized Fourier transform is intro-
duced and its corresponding generalized Poisson summation for-
mula is derived. For discrete, Fourier based, signal processing, this
formula shows that a special form of control on the periodic repe-
titions that occur due to sampling in the reciprocal domain is pos-
sible. The present paper is focused on the derivation and analysis of
a weighted circular convolution theorem.We use this specific result
to compute linear convolutions in the generalized Fourier domain,
without the need of zero-padding. This results in faster, more re-
source-efficient computations. Other techniques that achieve this
have been introduced in the past using different approaches. The
newly proposed theory however, constitutes a unifying framework
to the methods previously published.

Index Terms—Generalized Poisson summation formula, linear
filtering, weighted circular convolution.

I. INTRODUCTION

T HE classical Poisson summation formula, expresses the
fact that discretization in one domain implies periodicity

in the reciprocal domain [1]. This periodicity comes in the form
of a periodic summation of the signal values. In Fourier based
digital signal processing (DSP), we have to deal with the pe-
riodic repetitions that appear due to the discrete nature of the
domains where our signals are defined. In virtually all applica-
tions, the effect of overlapped repetitions is an issue that must
be avoided, or at least controlled. In many cases the only way
to achieve this is by increasing the sampling rate in the recip-
rocal domain [1], a costly operation in terms of memory and
computational resources. In this letter we introduce a general-
ized Fourier domain (GFD) and derive its generalized Poisson
summation formula. The newly proposed equation, relates the
samples of the continuous generalized spectrum of a signal, with
a geometrically weighted periodic extension of the signal. As it
will be explained, this formula shows that a parametric form of
control on the periodic repetitions that occur due to sampling in
the GFD is possible, without the need to increase the sampling
rate. This result has in principle many potential applications, the
work presented here however, will be focused on the derivation
and analysis of the weighted circular convolution theorem for
the generalized discrete Fourier transform (GDFT).
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For finite discrete-time signals of length , point-wise
multiplication of the discrete spectra of the signals corresponds
to circular convolution [1]. In order to perform a linear convo-
lution (i.e., LTI filtering), the input signals are first zero-padded
to at least length and then transformed, increasing the
number of computations needed [1]. In this letter we show how
the newly proposed theorem can be used to perform linear con-
volutions in the GFD without the need of zero-padding, imple-
menting the GDFT by means of the FFT. As we show, this re-
sults in a more efficient computation in terms of memory lo-
cations and operations needed. Although techniques to obtain
a linear convolution without zero-padding have been developed
in different contexts, e.g., [2] and [3], we show that the proposed
theory constitutes a unifying framework to these approaches.

II. POISSON SUMMATION FORMULA
AND CIRCULAR CONVOLUTION

Consider the Fourier transform for a signal
given by

(1)

where is the angular frequency variable, and
represents time. If (1) exists, then we call the spectrum of the
signal . The inverse transformation is given by [1]

(2)

The Poisson summation formula then links the signal to the
samples of its spectrum [1], i.e.,

(3)

From this equation we see that the repetitions of the periodic
summation at the right-hand side will overlap if the length of
the support of signal is larger than . Thus, given a fixed
signal with finite-length (compact) support, the only way to
avoid overlapping using (3) is to increase the value of . This
means a smaller spectral sampling interval , which im-
plies increased spectral sampling rate, and consequently, more
memory and computational resources. This formula also allows
us to easily understand the effect that frequency discretization
has on the convolution product of two signals, say and ,
when performed in the frequency-domain. That is

(4)

where denotes the linear convolution operator, and where we
have made use of the convolution theorem [1]. The periodic rep-
etitions that appear in the time domain will overlap when the
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support of the convolution between and is larger than ,
and consequently, it will be impossible to obtain the linear con-
volution result using (4). This is exactly how circular convo-
lution is defined, as a periodic or cyclic version of linear con-
volution [1]. We will show that, by introducing a generalized
Poisson summation formula, a special form of control on these
repetitions can be obtained.

III. A GENERALIZED POISSON SUMMATION FORMULA

We now define a generalized Fourier transform for
, and as follows:

(5)

where . This is equivalent to the ordinary Fourier
transform (if it can be defined) of the modulated signal .
Note that (5) can be seen as a particular case of the Laplace
transform, therefore for , with the real part
of , we have that (5) would not be defined on all , but
only on the dense subset of all causal and anticausal (single-
sided) functions [4]. Hence, for finite-length signals, operation
(5) can always be defined, since these signals are special cases
of single-sided functions. The inverse transformation follows as

(6)

Evaluating in (3), we obtain a generalization of the
Poisson summation formula:

so that

or

(7)

since . This equation, relates the samples of the con-
tinuous generalized spectrum of a signal, with a geometrically
weighted periodic extension of the signal. Therefore, an extra
form of control can be obtained over the repetitions via the pa-
rameter . In analogy, let us now define the generalized dis-
crete Fourier transform (GDFT) for finite length signals ,

, , as follows:

(8)

where . The inverse GDFT is given by

(9)

In this case, the generalized Poisson summation formula takes
the following form:

(10)

since . Taking in (10), and ap-
plying the convolution theorem we obtain

(11)

For , this corresponds to the standard Fourier case as
already shown for the continuous time case in (4). From (11) we
see how circular convolution is related to linear convolution. Al-
though the original sequences and are of length , its con-
volution product is however of length . Then it follows
that for , represents the linear convo-
lution of and plus the last terms of one overlapped
repetition. The classical approach of zero-padding avoids this
situation by making large enough, so that the periodic rep-
etitions in (11) are sufficiently appart to avoid overlapping. In
Section IV we will derive theweighted circular convolution the-
orem for the GDFT pair (8) and (9). This theoremwill be used to
perform linear convolutions in the GFDwithout the need of zero
padding, taking advantage of the weighting effect that factor
has on the repetitions of the signal as expressed by the general-
ized Poisson summation formula (10).

IV. WEIGHTED CIRCULAR CONVOLUTION THEOREM

We have the following result.
Proposition 1: Let , and ,

be the signals to be convolved. For
, we have

(12)

(13)

where the left hand summation in (13) represents the contribu-
tion of linear convolution terms, and the right hand summa-
tion the contribution of circular convolution terms (which
are in fact the last terms of the linear convolution). The factor
effectively weights the amount of circular convolution that

is obtained. Thus, given two discrete-time, finite length signals,
and , point-wise multiplication of their generalized

discrete spectra, and , corresponds to a weighted
circular convolution in the time-domain. The proof is given in
the Appendix.

V. LINEAR CONVOLUTION USING THE GDFT

To compute the weighted circular convolution operation
given by (12), the generalized spectrum of the signals to be
convolved is obtained using the GDFT (8). Note that this
operation can be implemented, by taking the FFT of the
modulated signal, with . The inverse
transform (9) can be obtained by multiplying the IFFT of the
generalized spectrum with the inverse function . For finite
energy signals, the theory of Laplace integrals [4], ensures
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the existence of the GDFT for any value of ,
as previously mentioned in Section III. Let us now analyze
a special case of the weighted convolution theorem, setting

, with the imaginary unit. For real signals and , the
resulting signal obtained after applying (12) becomes complex
(its spectrum not being Hermitian symmetric). By a careful
inspection of (13), it is noted that as a result, the first values
of the linear convolution are stored in the real part of the signal,
and the remaining terms are perfectly preserved in its
imaginary part. Hence, concatenating the real and imaginary
parts, a point, error-free convolution can be obtained
in the GFD without the need of zero-padding. If and are
complex, then two transforms are necessary to obtain a linear
convolution, i.e., for . Two show this, let us denote by
the result of (12) setting , and by the result setting

. Further denoting by and the real and imaginary
parts respectively, of the linear convolution between and ,
then by (13) we obtain

Clearly, the first samples of the linear convolution are ob-
tained by and the remaining samples by

.
If one takes , with in (12), then not an

exact, but an approximation of linear convolution is obtained.
In fact, only the first values of the linear convolution are
approximated, since the circular convolution terms in (13) are
attenuated by a very small factor. The approximation can be
made as accurate as possible (making as small as possible),
up to the limits imposed by finite word-length arithmetic. This
holds for both complex or real inputs. In this case for real time-
domain signals, Hermitian symmetry still holds. Therefore, the
point-wise multiplication of the spectra can be performed over
the first DFT coefficients if is even, and
coefficients if is odd.
Two techniques to obtain a linear convolution without the

need of zero-padding have been previously introduced in [2]
and [3], following different approaches. By setting we di-
rectly obtain what the authors in [2] call the right-angle circular
convolution (RCC), and for the left-angle circular con-
volution (LCC). Further in [3], the authors propose to multiply
the input sequences by a scaling factor . This is equiv-
alent to use GDFTs with parameter in our proposed
derivation. Hence, these techniques can be seen as particular
cases of the weighted circular convolution theorem. The newly
proposed theory constitutes therefore a generalization that not
only provides a unifying framework for previous methods, but
also allows for a deeper insight into the problem. This leads to
the formulation of new applications, such as the approximation
here proposed setting .

VI. COMPUTATIONAL COMPLEXITY ANALYSIS
AND EXPERIMENTS

In real applications, one would like to use the convolution
theorem together with the FFT in order to perform linear con-
volutions in the frequency-domain with reduced complexity [1].

In some of these applications, the goal is to convolve two fi-
nite length signals without worrying about causality or delay
(like in the multiplication of two long polynomials). In many
real-time DSP problems however, the goal is to filter a long
signal, using a finite length (in general much shorter) LTI filter.
This is achieved in a block-by-block basis, performing shorter
convolutions at each step using well known approaches [1].
In all cases, the operation at hand can be seen as the linear
convolution of a length- signal, say with a length-
filter, say , where without loss of generality the assumption

is made. The result of the convolution is therefore of
size .
An exact complexity analysis is a lengthy and complex task.

State-of-the-art FFT algorithms deliver quite inhomogeneous
(although asymptotically “equivalent”) performance [5]. In
each specific case, advantageous conditions can be exploited
by the algorithms. The complexity then, becomes a function
of the FFT length, the signals class, symmetries present in the
input and output signals, hardware architecture, etc [5].
Let us now analyze the total number of multiplications

needed as a reasonable basis for comparing the computational
complexity. For simplicity, real-valued signals are considered.
Thus, given and , the classical frequency-domain
approach requires to pad both signals to at least a size of

. Moreover, we have that , hence
the complexity can be expressed as a function of and the
ratio, , where . Then, we
have that three (I)FFTs are needed to transform the signals
to the frequency-domain and back to the time-domain. For
each of these, the FFT (or IFFT) requires approximately

real multiplications [5]. The
point-wise multiplication of the spectra requires
multiplications, since Hermitian symmetry can be exploited
[1]. Hence, the total number of multiplications performed is

.
For the GFD method setting , only the filter, must

be zero-padded to a size . To implement a GFFT or IGFFT
as proposed in Section V, the (de)modulation of the signals re-
quire multiplications each. The FFTs require approximately

multiplications each. The point-wise multiplication
of the generalized spectra requires multiplications. The total
number of multiplications needed is thus .
From here, it is clear that the complexity ratio for the GDFT
based convolution to the frequency-domain based convolution
is approximately,

. For example setting , in the limiting case
, which implies , the frequency-domain im-

plementation shows to be about 1.4 times faster than the GDFT
approach. This is caused by the very short length of the filter.
The overhead produced by the extra multiplications needed in
the GDFT method is not compensated. On the other hand, for

, we have that the complexity ratio can be expressed
as . In this case the
GDFT based convolution is about 1.5 times faster than the clas-
sical frequency-domain approach.
For the GDFT method setting , the complexity ratio

is approximately
, since Hermitian symmetry can be exploited and the
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Fig. 1. LTI filtering of a speech signal frame and a low-pass filter ,
performed in the spectral domain for . The standard frequency-domain
approach using zero-padding to samples and the novel GDFT method are
compared.

(de)modulation of the signals require a total of multipli-
cations. In this case, for the limiting case
shows that the GDFT method is still slightly more complex
than the frequency-domain algorithm. For on the other
hand, the GDFT method is about two times faster.
From these results we see that for the GDFT approach, the

most efficient choice for the filter size is . This avoids
trivial operations on the zeros added to the filter to be com-
puted, giving the maximum performance increase with respect
to the standard frequency-domain method, since the signal and
the filter do not need to be zero-padded. In this case, it is also
easy to see that the new approach can be implemented using
roughly half the amount of memory that it is needed for the stan-
dard frequency-domain based convolution.
In Fig. 1 an example of LTI filtering of a speech signal frame
, using a low-pass filter for is given. Both

the classical frequency-domain approach using zero-padding to
samples and the novel GDFT approach (12) for

and are compared. After repeating the experiment
times, the classical approach took 62.7 s to complete. The

GDFT approach took 45.4 s to complete for the case ,
and 32.2 s for the case , showing the advantage of
the GDFT method in agreement with the analysis conducted
above. For the case the result is not exact, and only
the first values of the operation can be compared. A plot
in dB of the square error between both approaches shows that
a very accurate approximation of LTI filtering is obtained. All
tests were performed using double floating-point precision in
MATLAB® on a standard desktop PC.

VII. CONCLUSIONS

In this work, a generalized Poisson summation formula has
been proposed. It conceptually allows us to obtain a special form
of control on the periodic repetitions that occur due to sampling
in the reciprocal domain. Using this result, a weighted circular
convolution theorem for the GDFT is derived, which is used to
perform efficient, non zero-padded linear convolutions. Alto-
gether, these results have applications which range from simple
multiplication of long polynomials, toWiener filtering, adaptive
filtering, near-field beamforming, and many more.

APPENDIX
PROOF OF PROPOSITION 1

Proof: Let

For we have [1]

otherwise.
(14)

Therefore, we have that ,
and , where is the nearest integer .
Further using (14) we obtain

(15)

Since the output signal is of length , we have that
, and thus , so that (15) can be

rewritten as

REFERENCES

[1] J. G. Proakis and D. G. Manolakis, Digital Signal Processing, Princi-
ples, Algorithms and Applications, 4th ed. Upper Saddle River, NJ:
Prentice-Hall, 2007.

[2] C. Radhakrishnan and W. Jenkins, “Modified discrete fourier trans-
forms for fast convolution and adaptive filtering,” in Proc. ISCAS,
May-Jun. 2010, pp. 1611–1614.

[3] Z. Babic and D. Mandic, “A fast algorithm for linear convolution
of discrete time signals,” in 5th Int. Conf. Telecommunications in
Modern Satellite, Cable and Broadcasting Service, Sep. 2001, vol. 2,
pp. 595–598.

[4] K. B. Wolf, Integral Transforms in Science and Engineering. New
York: Plenum, 1979.

[5] M. Frigo and S. Johnson, “The design and implementation of fftw3,”
Proc. IEEE, vol. 93, no. 2, pp. 216–231, 2005.


