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Space-Time-Doppler Block Coding for Correlated
Time-Selective Fading Channels

Xiaoli Ma, Member, IEEE, Geert Leus, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE

Abstract—Coping with time-selective fading channels is chal-
lenging but also rewarding, especially with multiantenna systems,
where joint space-Doppler diversity and coding gains can be
collected to enhance performance of wireless mobile links. These
gains have not been quantified, and space-time coded systems
maximizing joint space-Doppler benefits have not been designed.
Based on a parsimonious basis expansion model for the un-
derlying time-selective (and possibly correlated) channels, we
quantify these gains in closed form. Furthermore, we develop
space-time-Doppler coded systems that guarantee the maximum
possible space-Doppler diversity, along with the largest coding
gains within all linearly coded systems. Our three novel designs
exploit knowledge of the maximum Doppler spread, and each
offers a uniquely desirable tradeoff, including high spectral ef-
ficiency, low decoding complexity, and high performance. Our
analytical results are confirmed by simulations and reveal the
relative of merits of our three designs in comparison with an
existing approach.

Index Terms—Basis expansion channel model, diversity, fading,
phase sweeping, space-time coding, time-varying channel.

I. INTRODUCTION

MODELING temporal channel variations and coping
with time-selective fading are important and chal-

lenging tasks in mobile communications. Time-selectivity
arises due to oscillator drifts, phase noise, multipath propa-
gation, and relative motion between the transmitter and the
receiver. In wireless mobile communications, time-variations
and fading introduce selectivity in the time-domain, which in
turn causes performance degradation. This motivates research
toward efficient coding and modulation schemes that improve
the reliability of information transmission over rapidly fading
wireless links.
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Traditionally, the popular approach to cope with fading has
been to rely on diversity-enriched transmission and reception.
Using multiple antennas, Space-Time (ST) coding offers such
an approach and potentially boosts data rates when communi-
cating over flat [4] or frequency-selective channels [1]. When
transmissions are properly designed, quasistatic (constant over
a block) frequency-selective channels offer also multipath diver-
sity [13], [25], [26]. If, on the other hand, the channels are time-
varying, judicious design of even single-antenna transmissions
enables an additional diversity dimension, namely, Doppler-di-
versity [15]. Joint exploitation of the ST and Doppler (STDO)
diversity dimensions with multiple transmit-antennas is the goal
of this paper.

The Doppler dimension can be induced naturally by time-se-
lective channel effects, but it can also be injected intentionally
to enhance diversity, or even introduce it, by a so-termed phase
sweeping transmission that adds time-variations to an originally
slow-fading channel [8], [11]. Unfortunately, the analog phase-
sweeping-based approaches of [8], [11] consume extra band-
width, and they are not designed to bring joint STDO benefits.
The potential of STDO diversity was alluded to in [16], which
dealt with quasistatic fading channels. An attempt to collect
STDO gains was also made in [19] through the design of the
so-called “smart-greedy” codes. Interestingly, although all ex-
isting works [8], [11], [16], [19] appreciated the importance of
capitalizing on time-selectivity, none tailored its design to an ex-
plicit model of the underlying time-variations. STDO gains have
not been quantified, and designs enabling the maximum STDO
diversity provided by the channel along with large coding gains
are missing.

The present paper fills these gaps by making use of an ex-
isting basis expansion model (BEM) [5], [15], which we adopt
to capture parsimoniously the time-selective multiantenna chan-
nels. The basic idea behind our novel STDO coded designs is to
utilize knowledge of the maximum Doppler spread at the trans-
mitter. This key parameter that is readily measurable from the
operational environment specifies all our multiantenna transmit-
ters need to know about the BEM and allows us to quantify rig-
orously the maximum STDO diversity and coding gains. These
gains benchmark the performance of STDO coded schemes in
the presence of (even correlated) rapidly fading channels.

Equally important, the BEM facilitates our development and
analysis of three STDO codecs. While we show that they are all
capable of collecting the maximum STDO diversity, each offers
a uniquely desirable tradeoff, including high spectral efficiency,
low decoding complexity, and high coding gain. Our first STDO
codec comprises a properly designed digital phase sweeping
(DPS) scheme. Unlike [8] and [11], our DPS design renders the
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Fig. 1. Unifying discrete-time model of transmitter and receiver for STDO
designs.

set of time-selective fading multiantenna channels mathemati-
cally equivalent to a single combined faster channel offering the
maximum joint STDO diversity. The other two STDO codecs
are block orthogonal designs and emerge from a simple but neat
duality property that we establish between the time-selectivity
captured by the BEM and the frequency selectivity that is known
to be approximated well by the finite impulse response (FIR)
tapped delay line model. This duality property underpins our
idea of transforming ST designs that have been developed for
single- and multicarrier transmissions over frequency-selective
channels [13], [25], [26] to our time-selective channels param-
eterized by the BEM.

The rest of the paper is organized as follows. Section II intro-
duces our time-varying channel and the overall system model.
In Section III, we provide a unifying description of our STDO
designs and derive our performance criteria for STDO coding.
Sections IV and V, respectively, deal with our digital phase
sweeping and the block STDO codecs. Section VI verifies
our BEM fitting results and confirms our STDO performance
claims by simulations. Section VII concludes this paper.

Notation: Upper (lower) bold face letters will be used for
matrices (column vectors). Superscript will denote Hermitian,

conjugate, transpose, and pseudo-inverse. We will reserve
for the Kronecker product and for expectation. We will

use to denote the st entry of a matrix ,
tr for its trace, and to denote the st entry of the
column vector ; will denote the identity matrix and

the normalized (unitary) FFT matrix; diag will
stand for a diagonal matrix with on its main diagonal.

II. PRELIMINARIES AND PROBLEM STATEMENT

We consider a wireless link with transmit-antennas,
receive-antennas, and time-selective fading channels. Fig. 1 de-
picts the discrete-time equivalent baseband model under consid-
eration.

A. Channel Model

Consider a multipath fading environment, where a number
of reflected or scattered rays arrive at the receiving end with
different delay, frequency offset, phase, and attenuation [17, p.

802]. If all rays arrive at the receiver almost simultaneously with
a common propagation delay (that can be set to zero without
loss of generality), then the channel experiences a time-selective
nondispersive propagation. Let denote the time-varying im-
pulse response of the resulting channel that includes transmit-re-
ceive filters as well as time-selective propagation effects, and let

denote the Fourier transform of . Although the band-
width of over a finite time horizon is theoretically infinite,
we practically have that for ,
where is the maximum frequency offset (Doppler shift) of
all the rays. Considering that a block of symbols with symbol
period is time-limited, we sample along with period

, and collect samples ,
where . Transforming these frequency-do-
main samples back to the time-domain and sampling along the
time , we obtain samples . Using the serial index , we can
describe the block index as and write our discrete-time
baseband equivalent channel model as (see [15] for detailed
derivations)

(1)

where , and . Equa-
tion (1) constitutes our Basis Expansion Model (BEM). With

denoting the initial time of the th interval ,
the BEM represents for using

a) coefficients that remain invariant
per block, but are allowed to change with ;

b) Fourier bases that capture even rapid time vari-
ations but are common .

Unlike [16], the complex exponential bases allow to vary
not only across blocks but also within every block. Notice also
that the physical parameter dictating the BEM order is the
Doppler spread , since and in
are known to the designers.

Since the maximum Doppler shift can be measured ex-
perimentally from the maximum mobile speed and the carrier
frequency in practice, we assume the following.

Parameter is bounded and known.
Although not widely known, the finitely parameterized BEM for
time-varying channels plays as important a role in the design of
transmitters and receivers, as the FIR tapped delay line plays
for time-invariant frequency-selective channels. Per block of
symbols, the BEM in (1) can be viewed either as deterministic
or as the realization of a stochastic process with random coef-
ficients . Within each block , we will
allow these coefficients to be correlated, but since we will work
on a block-by-block basis, correlation across blocks will be ir-
relevant.

For time-selective channels, the Jakes’ model has been widely
adopted. However, from a channel estimation point of view, the
Jakes’ model is not as useful, because the number of parame-
ters can be prohibitively large. In contrast, the BEM provides
pragmatic description, which captures the main variations of
time-selective channels. The finite parameterization of the BEM
will allow us not only to quantify the STDO diversity but also
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to devise multiantenna transmissions that achieve maximum di-
versity and coding gains.

B. Transmitter-Receiver Structure

The information-bearing symbols are drawn from a
finite alphabet and parsed into blocks of size :

. Each block is linearly pre-
coded by the matrix , resulting in . This
operation will be termed the outer STDO coding. Each block

is further transformed into blocks of size
by a mapper : . This oper-

ation will be termed the middle STDO coding. Each block
is finally linearly processed by the matrix , resulting
in . This operation will be termed the inner
STDO coding. Not all specific STDO designs will rely on all
three (outer, middle, inner) stages of our unifying structure. If
one, e.g., the inner stage is inactive, we will simply set .

The sequence obtained by parallel-to-serial converting
the blocks is then pulse-shaped, carrier modulated, and
transmitted from the th transmit-antenna. The th sample at
the th antenna’s receive-filter output is

(2)

where is the time-selective channel response
from the th transmit-antenna to the th receive-antenna
(notice the channel dependence on ), and is com-
plex additive white Gaussian noise (AWGN) at the th
receive-antenna with mean zero and variance . Ac-

cording to (1), we have ,
, , where , and

, as in (1).
At each receive-antenna, the symbol rate sampled sequence

at the receive-filter output is serial-to-parallel converted
to form the blocks . The matrix-
vector counterpart of (2) can then be expressed as

(3)

where is an diagonal channel matrix that obeys
the BEM

(4)

with diag and the
’s independent identically distributed (i.i.d.) AWGN noise

vectors, which are defined similar to the ’s. Each block
is linearly processed by the matrix to yield

. This operation is termed the inner STDO
decoding. The blocks are further “demapped” to a block

by . This operation is

termed the middle STDO decoding. The block is finally de-
coded by to obtain an estimate of as .
This operation is termed the outer STDO decoding.

In this paper, we will show how to design the inner, middle,
and outer STDO coders and decoders in order to collect joint
space-Doppler diversity. Since in the following we will work
on a block-by-block basis, we will drop the block index .

III. DESIGN AND PERFORMANCE CRITERIA

In this section, we will design criteria for our STDO coding.
Our derivations are based on the following operating conditions.

) BEM coefficients are zero-mean, complex
Gaussian random variables.

) Channel state information (CSI) is available at the re-
ceiver but unknown at the transmitter.

) High signal-to-noise ratio (SNR) is considered for de-
riving the diversity and coding gains.

When transmissions experience rich scattering and no line-of-
sight is present, the central limit theorem validates A2). Notice
that we allow not only for independent random channel coef-
ficients but also for spatial and/or temporally correlated ones
within each block.

Let us consider the best performance possible with STDO
coded transmissions. Similar to [11], [17], [19], we will resort to
the pairwise error probability (PEP) to define our optimality cri-
teria. Define the PEP as the proba-
bility that maximum likelihood (ML) decoding of erroneously
decides instead of the actually transmitted . Conditioned on
the ’s, the Chernoff bound yields [17, p. 456]:

(5)

where ,

the distance in the exponent is

,

, depends on and the bases (see Appendix A
for details), and . Since our analysis will allow
for correlated channels, we will denote the channel correlation
matrix and its rank, respectively, by

and rank (6)

Eigenvalue decomposition of yields . By
defining

(7)

can be rewritten in terms of the eigenvalues of the
matrix as , where the ’s are
the eigenvalues of , and the ’s have independent unit-
mean Rayleigh distribution.

Since we wish our STDO coders to be independent of the
particular channel realization, it is appropriate to average the
PEP over the independent Rayleigh distributed ’s. If
rank , then eigenvalues of are nonzero; without loss
of generality, we denote these eigenvalues as .
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At high SNR, the resulting average PEP is bounded as follows
(see e.g., [15], [17]):

(8)

where is the diversity order, and

is the coding gain for the error pattern

. Accounting for all possible pairwise errors, the
diversity and coding gains for our STDO multiantenna systems
are defined, respectively, as

and (9)

Because the performance of STDO depends on both and ,
it is important to maximize both of them, but before special-
izing to particular STDO designs that accomplish this, we wish
to quantify the maximum possible and supplied by our
BEM.

Equation (8) discloses that depends on the rank of .
As the rank can not exceed the dimensionality, checking the
dimensionality of , we recognize that the maximum diversity
gain is given by

(10)

and it is possible to achieve if and only if the matrix
in (7) has full rank , .

It is well known that at reasonably high SNR, the diversity
order plays a more important role than the coding gain when
it comes to improving the performance in wireless fading chan-
nels [19]. Thus, our STDO coding will focus on maximizing the
diversity order first and then improving the coding gain as much
as possible. Equation (8) also indicates that is the product
of the nonzero eigenvalues of . It is not easy, however, to ex-
press in closed form, but we can benchmark it when has
full rank .

Since is not known at the transmitter, we will allocate the
transmit-power equally to the substreams corresponding to
the transmit-antennas. For this reason, we set

(11)

where is the power per information symbol. If the mapping
from to satisfies

(12)

where and are vectors, then we call this ST trans-
mitter a linearly coded1 one. In Appendix A, we prove that the
maximum coding gain for these linearly coded systems when

has full rank is

det (13)

1This general class was considered also in [7] when designing capacity max-
imizing linear dispersion ST-coded transmissions over flat-fading channels.

where is the minimum Euclidean distance of the constel-
lation points in the finite alphabet .

In deriving performance bounds, we have assumed ML
decoding, which comes with high computational complexity.
Therefore, when we design the STDO encoders to guarantee
the maximum diversity order, we will keep in mind the need
to reduce decoding complexity while preserving the optimality
in decoding. Before we proceed to design STDO coders, we
summarize our results so far in the following proposition.

Proposition 1: Consider multiantenna transmis-
sions through time-selective channels adhering to a BEM as in
(1) with bases. If the correlation matrix of the channel co-
efficients in (6) has rank , then the maximum diversity order of
transmissions in (3) is . For linearly
coded systems, if has full rank , then
the maximum coding gain is det .

Notice that Proposition 1 provides a nice theoretical frame-
work to justify, corroborate, and benchmark the results in [8],
[11], [16]. However, it does not tell how to achieve this desir-
able maximum diversity and large coding gains. In the following
two sections, we will provide three schemes, which enable the
maximum STDO diversity and large coding gains.

IV. DIGITAL PHASE SWEEPING—FROM MIMO TO SISO

The first design that we study can be viewed as the dual of
delay-diversity [18], which was originally developed for con-
verting ST frequency-flat channels into a single frequency-se-
lective channel. We will rely on the property that DPS can con-
vert ST time-selective channels into a single faster time-selec-
tive channel. The analog phase sweeping (a.k.a. intentional fre-
quency offset) idea was introduced in [8] and was later on com-
bined with channel coding to further improve performance in
[11]. The two transmit-antenna analog implementation modu-
lates the signal of one antenna with a sweeping frequency
in addition to the carrier frequency , which is present in both
antennas [8], [11]. This causes bandwidth expansion. Further-
more, without an explicit channel model, [8] and [11] are unable
to quantify diversity and coding gains.

A. DPS Encoding

For the DPS method, the middle STDO encoder is just
a power splitter (see Fig. 1). By equally allocating the signal
power, we obtain , . This means that
for DPS, we have . Using (3), and can then be
related via

(14)

Observing (4), we notice that different channels share the same
exponential bases, but they have different channel coefficients.
Suppose that we shift the bases of each channel corre-
sponding to one of the transmit antennas so that all the bases
are consecutive on the fast Fourier transform (FFT) grid of com-
plex exponentials, as shown in Fig. 2 for .
Then, we can view the channels to each receive-antenna as
one equivalent time-selective channel with bases. To
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Fig. 2. DPS illustration. Black, hollow, and gray circles are shifted FT bases
from three channels.

realize this intuition, we select the matrices , which
determine the inner STDO encoder, as

diag

where . As , the exponentials
of the channel corresponding to the first transmit an-
tenna remain unchanged, but those corresponding to the second
channel are shifted from their original location in

to after multiplication with the DPS ma-
trix , which takes place at the second transmit-antenna, i.e.,

. Proceeding likewise with all
DPS matrices, it follows that (14) can be rewritten as

(15)

where . Comparing (14) with (15), we
arrive at Fig. 2.

Property 1: DPS converts the transmit-antenna system,
where each channel can be expressed via exponential
bases to a single transmit-antenna system, where the equivalent
channel is expressed by exponential bases.

Notice that since operates in the digital domain, the
sweeping wraps the phases around , which explains
why DPS does not incur bandwidth expansion.

Remark 1: To avoid overlapping the shifted bases, we should
make sure that . As for each receive-antenna, we
have unknown BEM coefficients corresponding to
channels every symbols. This condition guarantees that the
number of unknowns is less than the number equations. There-
fore, even from a channel estimation point of view, this condi-
tion is reasonable.

With the equivalence established by Property 1, our outer
STDO codec, which is determined by and , can be any

single-input codec that achieves the maximum diversity gain
for the single transmit-antenna time-selective channels corre-
sponding to each receive-antenna. From [15, Prop. 2], we know
that ML decoding by means of achieves the maximum di-
versity gain if the linear precoder is designed in such a way
that has at least nonzero entries for all possible
error vectors . However, ML decoding for the
entire block entails high computational complexity. To
reduce the decoding complexity, we will split the design of the
outer STDO encoder in groups of smaller size.

Grouped Linear Constellation Precoded (GLCP) orthogonal
frequency division multiplexing (OFDM) was proposed in
[12] for single-antenna transmissions over frequency-selective
channels. It provides one with a means of reducing decoding
complexity without sacrificing the PEP-benchmarked perfor-
mance. Here, we will design the outer STDO encoder by
adjusting this GLCP approach to our BEM for time-selective
channels. Toward this objective, we select the transmitted block
size and demultiplex the information vector
into groups: . Each group has length and
contains the symbols collected in a vector as follows:

(16)
Correspondingly, we define the linearly precoded block of the

th group as

(17)

where is an matrix. To enable the maximum
diversity, we select from the algebraic designs of [23]. The
overall transmitted block consists of multiplexed subblocks

as follows:

(18)

Notice that can be obtained from ’s via a block in-
terleaver with depth . Equivalently, we can relate with
as

with ... (19)

where is the th row of , and denotes the Kronecker
product. Equations (16)–(18) or, equivalently, (19) summarize
our STDO transmitter design based on DPS.

To collect full diversity and large coding gains, we not only
need to design the transmitter properly, but we must also select
a proper decoder at the receiver.

B. DPS Decoding

Following the “reverse order” of DPS encoding, we start from
the inner decoder. The inner decoder for the th receive antenna
is designed as , . Hence, in the unifying
block diagram of Fig. 1, we have , . Let
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us denote the equivalent faster single transmit-antenna channel
matrix as

(20)

Since the received blocks from all receive-antennas con-
tain the information block , we need to combine the informa-
tion from all received blocks to decode . To retain decoding
optimality, we choose the maximum ratio combining (MRC)
method. The MRC for in (15), amounts to selecting
the middle decoder as [cf. (20)]

(21)
Existence of the inverse in (21) requires (only for the DPS de-
sign) the channels to satisfy the following.

) Channels are coprime, i.e.,

.

Assumption A5) is more technical rather than restrictive since
it requires that not all equivalent channels are identically zero at
the same time slot. For random channels, A5) excludes an event
with probability measure zero.

With the MRC of (21), the output of is given by

...

(22)
where . Thanks to A5), it can be verified
that satisfies . Since the ’s are i.i.d. additive white
Gaussian noise (AWGN) vectors, the noise vector retains its
whiteness.

Following MRC, we split into groups:

(23)

where ,
is the corresponding diagonal submatrix from

for the th group, and is
the corresponding AWGN noise vector that is similarly defined
as .

ML decoding by means of can then be implemented
by applying the Sphere Decoding (SD) algorithm [21] on sub-
blocks of small size .

The performance of our DPS depends on the selection of the
subblock size . When , the maximum
diversity order in (10) is achieved.

We summarize our diversity and coding gain results for DPS
in the following proposition (see Appendix B for a proof).

Proposition 2: The maximum achievable STDO diversity
order is enabled by our DPS design when the group
size is selected as . When the channel
correlation matrix has full rank , our

DPS design enables also the maximum possible coding gain
among all linearly coded transmissions that is given in closed
form by . Transmission rate 1
symbol/sec/Hz is achieved by this DPS design.

In fact, the group size controls the tradeoff between per-
formance and decoding complexity. When ,
as decreases, the decoding complexity decreases, whereas
at the same time, the diversity order decreases. By adjusting

, we can balance the affordable complexity with the re-
quired performance.

The matrices in (14) introduce digital phase
sweeping in our block transmissions, which is reminiscent of
that used in [8] and [11], to increase the variation (and, thus,
the potential for diversity) of time-selective channels. The
differences between our design and [8] are as follows.

i) We generalize the phase sweeping idea to multiple
transmit- and receive-antennas.

ii) We collect not only space-diversity as in [8] but
Doppler diversity as well.

iii) DPS can be used not only for coded but for uncoded
systems as well.

iv) Our digital design does not consume extra bandwidth.
v) Combined with GLCP, our DPS can afford low de-

coding complexity.

V. BLOCK STDO CODES

In this section, we follow a different approach to designing
STDO codes for rapidly varying channels. The main idea here is
to invoke the inner STDO codec to transform the time-selective
channels into frequency-selective channels by means of FFT
and IFFT operations. As middle and outer STDO encoder, we
can then use any of the existing orthogonal Space-Time-Multi-
path (STM) designs to achieve the maximum diversity and large
coding gains. In the following, we will first establish the du-
ality between our finite basis expansion model for time-selective
channels, and the popular finite impulse response (FIR) tapped
delay line model for frequency-selective channels. Then, we
will design two STDO coders based on their dual STM coders.

A. Time-Frequency Duality

It is well known that circulant matrices can be diagonalized
by (I)FFT matrices [6, p. 202]. Using this property and recalling
that the BEM in (4) has its bases on the FFT grid, we can rewrite

as

(24)

where is a circulant matrix with first column

, and denotes

the -point FFT matrix with the st entry
. If we now design the inner

STDO codec in Fig. 1 as

and
(25)
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then based on (3), (24), and (25), we obtain

(26)

It is well known that for transmissions over frequency-selec-
tive channels, one can insert (at the transmitter), and remove (at
the receiver) a cyclic prefix (CP) to render the channel equiva-
lent to a circulant matrix; see, e.g., [12], [25], and [26]. Then,
the circulant matrix can be diagonalized by FFT and IFFT op-
erations. Equations (24)–(26) suggest the converse direction;
thanks to the BEM, it is possible to convert the diagonal time-se-
lective channel to a circulant matrix after IFFT and FFT
operations. The BEM coefficients are dual to the channel
taps of a frequency-selective channel. Hence, the inner STDO
codec is capable of transforming our multiantenna ST time-se-
lective channels into ST frequency-selective channels.

In order to achieve the maximum diversity gain , we can
adopt some of the existing STM codecs as our middle and outer
STDO codecs. In the following, we will design and analyze
a low-complexity CP-based approach and a high-performance
Zero Padding (ZP)-based approach.

B. CP-Based Approach

In this approach, we start by designing the middle STDO
codec, which consists of two stages. The first stage implements
ST block coding that is used to collect the spatial diversity. The
second stage implements a GLCP-OFDM-based module to col-
lect the Doppler (that can now be viewed as multipath) diversity.

The ST block coding stage comprises an extension of the gen-
eralized complex orthogonal design (GCOD) developed in [20]
for flat channels to our time-selective channels. Consider split-
ting into equally long subblocks of size as the input
of the GCOD, i.e., . Define the size of the output of
the GCOD as . Therefore, the rate of the ST block code
is . Our ST block code matrix is

(27)

where , and the real ma-
trices satisfy
the following properties:

and (28)

The symbols of the th column of are directed to the th
transmit-antenna.

Thanks to the FFT inner codec, the time-selective channel is
converted to a frequency-selective channel. Dealing now with
a frequency-selective channel, the second stage of our middle

STDO codec forms an OFDM-based block transmission (sim-
ilar to [12]). After the first stage of ST block coding, we per-
form an IFFT and add a cyclic-prefix (CP)2 to each subblock
with length , i.e., subcarriers for each OFDM symbol.
In matrix form, these operations can be described as

where is a power-normalizing constant,
and is a matrix implementing the CP
insertion, with

and

Correspondingly, at the receiver, we design the middle STDO
decoder following the reverse order of the two en-
coding stages. Specifically, we remove the CP and perform an
FFT by premultiplying with
the received block on each antenna, where

is a matrix description of
the CP removal operation. Recalling (26), and our inner codec,
we infer that the equivalent channel matrix facing the middle
STDO codec is a circulant matrix . With the OFDM
module, the equivalent channel becomes

(29)

where diag , and
.

To decode the ST block code, we need to simplify our
input–output relationship using (29). Based on (26) and (29),
after CP removal and FFT processing, we obtain

where stands for the th column of . Plugging into
(27), we rewrite as

where , and and
are the th columns of and , respectively.

2Actually, here, we add both a cyclic prefix and a cyclic suffix. Since the suffix
has the same effect as the cyclic prefix in OFDM system, for convenience, we
still call it cyclic prefix.
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Fig. 3. CP-based STDO transceiver design.

Similar to the DPS decoding scheme in Section IV, we will
rely on MRC to combine the received blocks from different an-
tennas. Based on the orthogonality of ’s and ’s in (28), to
implement the MRC, we use the combiner

where
,

, . Here, for the CP-based scheme
only, we need to modify A5) as follows:

) Channels are coprime, i.e.,

.

Under A5’), we have . At the receiver, the th sub-
block corresponding to is

where , is
a circular AWGN vector.

The outer STDO encoder is designed as

The th subblock is precoded by , i.e., ,
. As in the DPS design, in order to reduce the decoding

complexity, we again pursue the design of in a grouped form.

Since the equivalent channel matrix between and is diag-
onal, we can write the th group of , which is defined as ,
as

(30)

where is an matrix designed according to
[23] with . Again, ML decoding for can be
performed by using sphere-decoding with block size .

Based on (12), we can verify that our CP-based approach also
constitutes a linearly coded transmission. When ,
the maximum diversity order is enabled. Furthermore, when

, and we select , the coding
gain for this CP-based scheme satisfies [cf. (13)]

(31)

where , and the
upper bound is achieved when satisfies a
certain algebraic property [23].

The encoding and decoding processes of this CP-based ap-
proach are summarized in the block diagram of Fig. 3, and
our results are collected in the following proposition (see Ap-
pendix C for a proof):

Proposition 3: CP-based STDO block codes enable the max-
imum space-Doppler diversity , when

, and offer low (FFT-based) sphere decoding complexity at
the receiver. When the channel correlation matrix has full
rank , the CP-based design achieves the maximum
coding gain of linearly coded systems, asymptotically, as

increases. The transmission rate of the CP-based design
is , where is the rate of the corre-
sponding block ST codes (specified in [20]).
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Fig. 4. ZP-based STDO transceiver design.

C. ZP-Based Approach

In this ZP-based approach, zero padding (ZP) replaces the CP
guard. Similar to the CP-based design, there are two stages of
the middle STDO codec. The first stage implements the GCOD,
which is similar to (27), while the second eliminates inter-block
interference (IBI) by padding zeros after each subblock.

As in Section V-B, we extend the scalar GCOD of [20] to the
block based GCOD

(32)

where is defined as in (32); is a time-reversal matrix
with entries , and the matrices

are de-
fined as in (28). As for the second stage of the middle STDO
encoder, instead of inserting the CP as in Section V-A, we in-
sert leading and trailing zeros in each subblock. Based on the
design of the inner codec in (25) and the middle STDO encoder,
the input–output relationship from to is

(33)

where implements the ZP
insertion. We can verify that

, where the circulant ma-
trix has the same structure as . The outer STDO
encoder is selected here to be an identity matrix, i.e., .

At the receiver, to decode the ST block code and combine the
results from different receive antennas, we use the MRC matrix

(34)

where = ,

, and is an time
reversal matrix. Similar to A5) and A5’), we need the
following assumption.

Channels are coprime, i.e.,

.

The output of the MRC combiner in (34) is

To decode from , can again rely on sphere-decoding
implemented on blocks of size .

Similar to the CP-based scheme, the ZP-based one also en-
ables maximum diversity. When , we find
the coding gain as (see Appendix D for a proof).

(35)

The coding and decoding processes for the ZP-based scheme
are summarized in Fig. 4, and the major results on performance
are established by the following proposition:

Proposition 4: ZP-based STDO block codes enable the max-
imum space-Doppler diversity , . When the
channel correlation matrix has full rank , the
ZP-based design achieves the maximum coding gain of
linearly coded systems. The transmission rate of ZP-based de-
sign is , where is the rate of the cor-
responding block ST codes (specified in [20]).

Remark 2: Comparing our three STDO designs, we note that
i) all schemes guarantee the maximum diversity gain; ii) DPS
and ZP-based schemes achieve also the maximum coding gain,
while the CP-based scheme achieves the maximum coding gain
asymptotically (as increases); iii) to guarantee the max-
imum diversity gain, the CP-based scheme provides the lowest
decoding complexity; iv) to deal with IBI, CP- and ZP-based ap-
proaches rely on CP or ZP guards, which consume extra band-
width compared with the DPS scheme that does not require any
guard. Furthermore, together with the GCOD design benefits
[19], our CP- and ZP-based STDO codecs inherit also its limi-
tation in suffering up to 50% rate loss when antennas
are signaling with complex constellations. Notwithstanding, the
DPS attains full rate for any .

VI. SIMULATED PERFORMANCE

We present simulations to confirm the performance of our
maximum diversity schemes.

Test Case 1 (Comparisons Among the Three STDO
Codecs): We compare DPS, CP-Based, and ZP-Based schemes
with transmit antennas, bases per channel,
and BEM parameters that are i.i.d., Gaussian, with mean zero,
and variance . We choose quadrature phase shift
keying (QPSK) modulation for all these schemes. The number
of information symbols per block is . For DPS, the
transmitted block length , while for CP- and ZP-based
schemes, the block length because of the CP and
ZP guards, respectively. The linear precoder with grouping is
employed for DPS and CP-based schemes with group sizes

and , respectively. Fig. 5 depicts the BER
performance of these three codecs. SD has been employed
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Fig. 5. Comparisons among the three proposed STDO codecs.

Fig. 6. Comparisons among the three proposed STDO codecs when N = 4.

for all schemes. We observe that i) from the slope of the BER
curves for , all three schemes guarantee the maximum
diversity order ; ii) with either
or 2, the ZP-based scheme exhibits the best performance among
the three; iii) compared with CP, the performance of DPS incurs
about 0.5 dB loss at high SNR for ; iv) as increases,
the performance difference among three schemes diminishes at
high SNR.

Fig. 6 depicts the performance of our three STDO when
. For CP- and ZP-based schemes, we select the block ST code

as in [20, Eq. (38)], which loses 50% rate. To maintain similar
rates, we select QPSK for CP- and ZP-based schemes and bi-
nary phase shift keying (BPSK) for DPS with the same symbol
power. The information block length is . From Fig. 6,
we observe that DPS outperforms both CP and ZP. Note that
even in this case, CP- and ZP-based schemes have lower rate
[(9/11) bit/sec/Hz] than DPS (1 bit/sec/Hz).

Test Case 2 (Comparisons With [19]): In this example, we
compare our DPS scheme with the smart-greedy code proposed

Fig. 7. Comparison of DPS with the smart-greedy (SG) codes in [19].

in [19] for . To maintain the same rate, we
select BPSK for our DPS scheme and use the code in [19, Ex.
3.9.2]. Each channel has bases, and the channel
coefficients are i.i.d. with mean zero and variance .
First, we consider the uncoded setup. The information block
length is . The number of groups for DPS is

so that these two schemes have comparable decoding
complexity. Fig. 7 depicts the BER versus SNR comparison for
the smart-greedy code and our DPS (the solid lines). It is evident
that DPS outperforms the “smart-greedy” coding because the
former guarantees the full space-Doppler diversity.

Furthermore, we consider the coded case for both schemes.
We select a (7,3) Reed–Solomon coder with block interleaving.
The number of information bits is 90. Therefore, the length of
the coded block of bits is 210. We select the depth of the block
interleaver as 42. For the DPS design, we split the coded bits
into five blocks. Each block is divided into seven groups. The
simulation results are shown in Fig. 7 (the dashed lines). Note
that the DPS scheme still outperforms the smart-greedy codes
remarkably.

Test Case 3 (Correlated Channels): In this example,
we investigate the performance of our three schemes when
the channel coefficients are not i.i.d. The carrier frequency
is now GHz, and the maximum mobile speed is

km/hr. For these and values, we
find that Hz. The sampling period is defined as

ms. Thus, the number of bases is . We generate
each channel correlation matrix ,
where is a unitary matrix, and is
a diagonal matrix. The th entry

of is ,
where is a normalizing factor. It is clear that the choice of
entries of reflects the underlying Doppler spectrum. We
consider the channels corresponding to different antennas to be
independent. Then, we generate , where the
entries of are i.i.d. with zero mean and unit variance.
We consider and for all schemes. In this
example, . For the CP-based scheme, we still use the
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Fig. 8. Comparisons among three proposed schemes and the smart-greedy
(SG) code in [19], with correlated channels.

GLCP method with group size , whereas for the DPS
method, we select . The information block length for
all schemes is . Hence, for CP- and ZP-based schemes,
the transmitted block length is . We select BPSK
modulation throughout this experiment. The rate for DPS and
the smart-greedy code of [19] is 1 bit/sec/Hz, whereas the rate
is (9/11) bits/sec/Hz for CP- and ZP-based schemes.

Fig. 8 depicts the BER performance for our three proposed
schemes and the smart-greedy code in [19, Ex. 3.9.2]. It can be
seen that all our proposed schemes achieve full diversity (in this
case, it is ) and outperform the “smart-greedy” code
of [19]. Compared with the CP-based and DPS schemes, the
ZP-based scheme has about 1 dB gain at BER . How-
ever, note that both CP- and ZP-based schemes have lower rate
than DPS.

Test Case 4 (Channels Generated by Jakes’ Model): For
the single-antenna case, we have shown that even for channels
generated by Jakes’ model, our Doppler diversity claim holds
true [15]. In this example, we will test the performance of
our three STDO schemes when channels are generated by the
Jakes’ model [10] but are spatially independent. The parameters
for Jakes’ model are carrier frequency GHz, mobile
speed km/hr, and sampling period s. The
transmitted block length is for DPS and 304 for ZP-
and CP-based schemes. The BER performance of the schemes
with is depicted in Fig. 9. In the same figure,
we plot the single-antenna case when GLCP is used to enable
Doppler diversity. From the simulation results, we observe that
ZP- and CP-based schemes exhibit error floor because i) after
FFT and IFFT operations, the circulant matrix 24 is full (the
generating vector has length instead of , although
the number of dominant entries is only ), and ii) after
CP or ZP insertion, the equivalent channel matrices [cf. (29)]
is not exactly block-diagonal, which is due to the presence of
inter-subblock interference. Note that at the receiver, we still
rely on MRC as Section V in order to retain the low decoding
complexity of the ZP- and CP-based methods. This explains

Fig. 9. Comparisons among three proposed schemes with channels generated
by Jakes’ model.

why the performance of these two schemes shows an error floor
at high SNR. On the other hand, GLCP-DPS scheme enjoys
joint Doppler and spatial diversity. Comparing with the single
antenna case, we deduce that GLCP-DPS enables the joint
space-Doppler diversity, even when the channels are generated
the Jakes’ model and, thus, do not exactly adhere to the BEM.

VII. CONCLUDING SUMMARY

We relied on an existing basis expansion model (BEM)
to benchmark the performance of multiantenna space-time
coded transmissions over correlated time-selective fading
MIMO channels. Specifically, we expressed in closed form the
maximum achievable space-Doppler diversity gain in terms
of the number of transmit-receive antennae and the number
of bases. Furthermore, we quantified in closed-form the max-
imum possible coding gain for all linearly coded space-time
transmissions and found it to depend on the rank of the BEM
coefficients’ correlation matrix and the minimum Euclidean
distance of the constellation used.

In addition to performance limits, the BEM enabled us to
develop space-time-Doppler (STDO) coded designs capable of
achieving (or approaching) these gains, using only knowledge
of the maximum Doppler spread. We established two neat BEM
properties that played an instrumental role in these designs:
i) Multiple BEMs with bases each can be ren-
dered mathematically equivalent to a single faster BEM with

bases, via a digital phase sweeping operation at the
transmitters; and ii) a BEM for time-selective channels is dual
to a tapped delay line model for frequency-selective channels,
which allows designs developed for one model to be used for
the other after incorporating appropriate FFT-based operations
at the transmit-receive sides.

The first property led us to an STDO-coded system based
on a novel digital phase sweeping design, which collects the
maximum joint space-Doppler diversity and large coding gains,
whereas it facilitates application of SISO channel estimators
and affords a low-complexity modular implementation when
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working with linearly precoded small-size groups of symbols.
Its unique feature is full rate (1 symbol/sec/Hz) operation, re-
gardless of the constellation and the number of transmit-receive
antennae. The second property showed us the way to adjust
existing space-time coded designs maximizing space-multipath
diversity over frequency-selective channels to collect joint
space-Doppler gains over our time-selective MIMO channel.
Using the same property in the reverse direction, we estab-
lished that the limits on coding gains we derived for the BEM
apply to space-time coded transmissions over frequency-selec-
tive MIMO channels as well. The multipath-inspired designs
yielded space-time-Doppler coded block transmissions with
cyclic prefix or zero padding guard intervals. The former system
affords the lowest (FFT-based) complexity, whereas the latter
exhibits the best performance. With two transmit-antennas,
they have full rate, but with more transmit-antennas, they both
suffer the same rate loss as space-time block orthogonal designs
do with complex constellations.

All three designs were developed in a unifying framework
that entails three-stages (outer-middle-inner) of encoding and
decoding. Their relative strengths were delineated both analyt-
ically and with simulations that also compared them with an
existing system. Both coded and uncoded transmissions were
tested over i.i.d. and correlated channels and confirmed that the
proposed designs outperform existing alternatives as they ex-
ploit fully the joint space-Doppler diversity that becomes avail-
able with time-selective channels.

APPENDIX A
PROOF OF (13)

Let , where

(36)

Suppose temporarily that in (10) has been achieved,
i.e., that has full rank . Furthermore, using the defi-
nition of in (36), when , we find that

det det with

...
...

. . .

...
. . .

...

where stands for terms that are irrelevant at this point, and
. Based on (7), we find in (9) as

det

det det (37)

Starting from (5), given , we can upper-bound
in (37) as [cf. Hadamard’s inequality [9, p. 117]]

det (38)

Based on (12), the equipowered condition in (11) is equivalent
to

(39)
Arguing by contradiction, it follows readily from (39) that

(40)

Now, let be the finite alphabet set for the entries of .
Notice that the left-hand side of (40) is related to the minimum
Euclidean distance among the constellation points in .
If we let denote the same distance for the points in , we
deduce that

(41)

Based on (41), we further upper-bound the coding gain in (38)
for our linearly coded system by

det

Note that the maximum coding gain depends on the
underlying constellation through and is inversely propor-
tional to the number of transmit antennas because of the
power splitting.

APPENDIX B
PROOF OF PROPOSITION 2

To derive the diversity and coding gains of our DPS design,
we need to find the Euclidean distance between and ,
corresponding to two different symbol blocks and . From



MA et al.: SPACE-TIME-DOPPLER BLOCK CODING 2179

(23), we have , where

, , and

, and diag . The diver-
sity order is the rank of the matrix

According to [23], there always exists a linear precoder
that guarantees the full rank of , when . The matrix

has full rank. If , then arguing as in Sec-
tion III, we infer that DPS achieves the maximum diversity order

. The coding gain is .
Furthermore, when and
, based on the equi-spaced grouping design, we can verify that

. Therefore, the coding gain is

(42)
Equation (42) shows that the maximum coding gain depends on

and, thus, on the design of . For designing the latter,
we borrow the following result from [23].

Result 1 [23, Prop. 5]: Consider a quadrature amplitude
modulation (QAM) [or pulse amplitude modulation (PAM)]
constellation with minimum distance . For ,
the linear precoder in (17) can be designed such that

(43)

when the number satisfies a certain algebraic property,
the upper bound in (43) is achieved. Based on Result 1 and the
unitarity of [since we choose ], we have

(44)

Notice that even the lower bound is about 70% of the upper
bound. This result implies that when our grouped DPS design
utilizes the linear precoder of [23], it can achieve the maximum
coding gain

Checking with (12), we confirm that our DPS design is a linearly
coded ST system. Recalling that the maximum diversity and
coding gains of the latter are given by (10) and (13), we have
shown that our GLPC-based DPS scheme achieves and

.

APPENDIX C
PROOF OF PROPOSITION 3

To derive the diversity and coding gains for the CP-based ST
block STDO, we calculate the Euclidean distance of and

as

where is the corresponding rows from in (36)

for the group , and

diag . Similar to the DPS
design, guarantees the full rank of for any .
Therefore, it follows readily that when , the
maximum diversity order is achieved.

Based on (12), we can verify that our CP-based approach
constitutes also a linearly coded transmission. Similar to the
DPS design, when , and we select

, the coding gain for this CP-based scheme satisfies (31)
[cf. (13)].

APPENDIX D
PROOF OF (35)

We express the Euclidean distance between and as

(45)

where is a Toeplitz matrix generated by . When
has full rank , the coding gain of the

ZP-based scheme becomes [cf. (37) and (45)]

(46)

where is an Toeplitz matrix with
first column . Considering single-error events, i.e,

, , with , we
obtain

Recalling (46), we can upper bound the coding gain as

(47)

To show that the ZP-based approach achieves this upper bound
of the coding gain, we need to show that

, .
Suppose the first nonzero entry of the error vector is the
th, and split the matrix into two submatrices and

, where contains the first rows of , and

includes the remaining rows. Since ,
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we obtain ,
and as the matrix is positive definite, we have

Because is positive semi-definite, the matrix

is positive semi-definite as well. Hence,
we find that

where diag , and ’s are the

eigenvalues of , which are non-neg-
ative. From our design of , it is easy to see that

. Therefore, we obtain

Hence, the coding gain of the ZP-based scheme is lower
bounded by

(48)

Combining (47) and (48), we have proved (35).
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