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A new fast computational structure identical both for the forward and backward

modified discrete cosine/sine transform (MDCT/MDST) computation is described. It is

the result of a systematic construction of a fast algorithm for an efficient implementa-

tion of the complete time domain aliasing cancelation (TDAC) analysis/synthesis MDCT/

MDST filter banks. It is shown that the same computational structure can be used both

for the encoder and the decoder, thus significantly reducing design time and resources.

The corresponding generalized signal flow graph is regular and defines new sparse

matrix factorizations of the discrete cosine transform of type IV (DCT-IV) and MDCT/

MDST matrices. The identical fast MDCT computational structure provides an efficient

implementation of the MDCT in MPEG layer III (MP3) audio coding and the Dolby Labs

AC-3 codec. All steps to derive the computational structure are described in detail, and

to put them into perspective a comprehensive list of references classified into categories

is provided covering new research results achieved in the time period 1999–2008 in

theoretical and practical developments of TDAC analysis/synthesis MDCT/MDST filter

banks (general mathematical, symmetry and special properties, fast MDCT/MDST

algorithms and efficient software/hardware implementations of the MDCT in MP3).

Crown Copyright & 2009 Published by Elsevier B.V. All rights reserved.
1. Introduction

The complete time domain aliasing cancellation
(TDAC) analysis/synthesis MDCT (modified discrete cosine
transform) filter banks [1,2] are the fundamental proces-
sing blocks in the current international audio coding
standards. Well known modern information technologies
for high-quality compression and decompression of digital
audio signals in consumer electronics are e.g., the MPEG
family: MPEG-1 layer III ISO/IEC 11172-3 [5], MPEG-2 layer
III ISO/IEC 13818-3 [6] known as MP3, MPEG-2 AAC [8],
MPEG-4 audio ISO/IEC 14496-2 [9] and the recently
09 Published by Elsevier

: +421 2 54773 271.
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developed MPEG-4 high-efficiency AAC (HE-AAC) [10],
proprietary digital audio compression algorithms such as
Sony ATRAC (adaptive transform acoustics coding)/
ATRAC2/SDDS (Sony dynamic digital sound), AT&T per-
ceptual audio coder (PAC) or Lucent Technologies PAC/
Enhanced PAC/Multichannel PAC [4,13], and Dolby Labs
AC-3/Dolby Digital/Dolby SR.D [7]. A general overview of
audio codecs can be found in [3,4,12,13]. In addition, the
complete TDAC analysis/synthesis MDCT filter banks are
also used in the non-proprietary, patent-and-royalty-free
Ogg Vorbis codec [11]. Thus, an efficient implementation of
the TDAC MDCT processor has become the key technology
to realize low-cost audio decoders in (portable) MP3
players and digital multimedia systems in particular.

Generally, in all audio codecs the size of a data block
transformed by the MDCT is variable ðN ¼ 12;36;128;256;
512;2048Þ. The computation of the complete analysis/
B.V. All rights reserved.
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synthesis MDCT filter banks is the most time-consuming
operation, and therefore, the existence of fast, efficient
algorithms with a simple and regular structure is very
important. The MDCT is equivalent to the modulated
lapped transform (MLT) [43] which belongs to the class of
lapped transforms. Basis vectors of the MDCT and the
corresponding modified discrete sine transform (MDST)
form a complex extension of the MLT, the so-called
modulated complex lapped transform (MCLT) [47]. The
real part of an MCLT corresponds to the MDCT or MLT, and
its imaginary part corresponds to the MDST. In the last
decade a number of fast algorithms for the efficient
computation of MDCT [20–42,52–58], MLT [43–46] and
MCLT [47–51] have been proposed/modified/improved.
Almost all existing fast algorithms developed up to now
employ other discrete sinusoidal unitary transforms such
as the discrete Fourier transform (DFT) or discrete cosine/
sine transforms of type II and IV (DCT-II/DST-II and DCT-
IV/DST-IV) of lower size, or they are based on recursive
filter structures [52–58]. Particularly, a proposed efficient
MDCT implementation in MP3 audio coding [22] based on
the fast algorithm derived in [25] has been sequentially
improved and optimized in terms of arithmetic complex-
ity and structural simplicity [24,30–32,34,36]. Recently,
MP3 audio decoders for real-time processing have been
realized on high-performance programmable DSP proces-
sors [60–62,65,70], universal RISC-based ARM processors
[63,64,67,69], and implemented into VLSI full-custom
ASIC [59,68] or semi-custom circuits (FPGA) [34,66].

In this paper, a new fast computational structure
identical both for the forward and backward MDCT/MDST
computation is described. It is the result of a systematic
construction of a fast algorithm for an efficient imple-
mentation of the complete TDAC analysis/synthesis
MDCT/MDST filter banks. Consequently, the same compu-
tational structure can be used both for the encoder and
decoder, thus reducing design time and resources. The
corresponding generalized signal flow graph is regular and
defines new sparse matrix factorizations of DCT-IV and
MDCT/MDST matrices. First, the definitions of complete
TDAC analysis/synthesis MDCT and MDST filter banks are
presented. Then, the MDCT and MDST as the block
transforms applied to a single data block are considered
and their general mathematical, symmetry and special
properties are discussed in detail. In particular, matrix
representations of the MDCT and MDST block transforms,
their properties and consequences from the viewpoint of
terminology used in the literature are emphasized. The
systematic construction of fast analysis/synthesis MDCT
filter banks is described in Section 3. In Section 4 the fast
MDCT computational structure is derived. Finally, in
Section 5 the fast MDCT computational structure is
compared with existing fast algorithms and its important
characteristics are discussed in detail. This fast MDCT
computational structure provides an efficient implemen-
tation of the MDCT in MP3 audio coding and the AC-3
codec. It is important to note that the paper is intended to
have a tutorial value. For a potential reader a comprehen-
sive list of references is provided covering new research
results achieved in the time period 1999–2008 in
theoretical and practical developments TDAC analysis/
Please cite this article as: V. Britanak, H.J.L. Arriëns, Fast compu
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synthesis MDCT/MDST filter banks (general mathematical,
symmetry and special properties, fast MDCT/MDST, MLT
and MCLT algorithms and efficient software/hardware
implementations of the MDCT in MP3).

2. Definitions, basic facts and notations

This section consists of several subsections. Besides
definitions, basic facts and notations being used in the
paper, this section covers both known and new theoretical
research results referring to the MDCT and MDST filter
banks. First, definitions of complete TDAC analysis/synth-
esis MDCT and MDST filter banks are presented (Section
2.1). When investigating general mathematical properties
of the MDCT and MDST, and when developing fast
computational structures for their efficient implementa-
tion, they are frequently considered as block transforms
applied to a single data block. Defining them as block
transforms enable us to investigate additional properties
such as the periodicity and anti-periodicity of MDCT/
MDST transform kernels, symmetry properties of MDCT/
MDST basis vectors and to determine a relation between
the MDCT and MDST (Section 2.2). An alternative way to
represent the MDCT and MDST block transforms is in
matrix–vector form. Matrix representations are very
powerful tools to analyze MDCT/MDST characteristics of
the single data block both in time and frequency domains
[76,77]. In particular, on the basis of matrix representa-
tions the concept of TDAC and special MDCT/MDST
properties having an impact on audio coding performance
are better understood (Section 2.3).

2.1. Complete TDAC analysis/synthesis MDCT filter banks

The complete TDAC analysis and synthesis MDCT filter
banks are, respectively, defined as [1,2,71]

cðtÞk ¼

ffiffiffiffi
4

N

r XN�1

n¼0

wnxðtÞn cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �
,

k ¼ 0;1; . . . ;
N

2
� 1, (1)

x̂
ðtÞ
n ¼

ffiffiffiffi
4

N

r
wn

XðN=2Þ�1

k¼0

cðtÞk cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �
,

n ¼ 0;1; . . . ;N � 1, (2)

where wn is a windowing function, and a superscript t

denotes the data-block number. N, being the length of the
data block is assumed to be an even integer. In the
analysis filter bank given by (1), for the t-th data block, N

windowed time domain samples fxðtÞn g are used to
calculate N=2 unique transform coefficients fcðtÞk g. Vice
versa, the t-th block of N=2 transform coefficients fcðtÞk g is
used to calculate N windowed time domain aliased
samples fx̂

ðtÞ
n g with the synthesis filter bank given by (2).

The complete TDAC analysis/synthesis MDCT filter bank
provides critical sampling, overlapping of adjacent data
blocks by N=2 samples, possesses energy-packing cap-
ability and allows perfect reconstruction. To achieve
critical sampling in combination with overlapping data
tational structures for an efficient implementation of the
ignal Process. (2009), doi:10.1016/j.sigpro.2009.01.014
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Fig. 1. Plot of sine windowing function for N ¼ 2048.
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Fig. 2. Plot of the Ogg Vorbis windowing function for N ¼ 2048.
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blocks, a subsampling in the frequency domain is
performed by the analysis MDCT filter bank. This
subsampling introduces aliasing in the time domain, but
this can be cancelled by overlapping and adding of two
adjacent recovered data blocks by the synthesis filter
bank. This procedure is known as TDAC [1,2,71]. It is
important to note that the time domain aliased data
sequence fx̂

ðtÞ
n g does not correspond to the original data

sequence fxðtÞn g.
Two succeeding data blocks t and t þ 1 are overlapped

by N=2 samples so that for each data block N=2 new time
domain samples are processed. For a smooth block
overlapping a windowing function wn is applied to fxðtÞn g.
By applying analysis and synthesis MDCT filter banks a
time domain aliasing error is introduced which is
independent for each half of the data block. This leads to
the realization of adaptive block-size switching (proces-
sing with variable-block size) [12]. Flexible dynamic
block-size switching is an important concept to reduce
pre-echo effects in MDCT-based audio codecs. The aliasing
error is cancelled (or perfect reconstruction is accom-
plished) by adding outputs of the synthesis MDCT filter
bank of two succeeding data blocks t and t þ 1 in the
overlapped part as follows [71]:

xðtþ1Þ
n ¼ xðtÞ

ðN=2Þþn ¼ x̂
ðtÞ
ðN=2Þþn þ x̂

ðtþ1Þ
n ; n ¼ 0;1; . . . ;

N

2
� 1.

(3)

To ensure TDAC, the windowing functions of two
succeeding data blocks have to satisfy the so-called
perfect-reconstruction conditions in their overlapped
part. A sufficient condition for TDAC is given by

w2
n þw2

ðN=2Þþn ¼ 1,

wn ¼ wN�1�n; or wðN=2Þþn ¼ wðN=2Þ�1�n,

n ¼ 0;1; . . . ;
N

2
� 1. (4)

Note that the perfect-reconstruction conditions given by
(4) do not imply that the windowing functions for two
succeeding overlapped data blocks must be identical [12].
A frequently used windowing function, for example in
MP3 [5,6] and MPEG-2 AAC [8], satisfying perfect-
reconstruction conditions (4) and producing aliasing
cancellation, being symmetrical and identical both for
the analysis and synthesis filter banks is given by
[3,12,13,43]

wn ¼ sin
p

2N
ð2nþ 1Þ

h i
; n ¼ 0;1; . . .N � 1. (5)

A plot of this sine windowing function for N ¼ 2048 is
shown in Fig. 1.

As another example, the Ogg Vorbis audio compression
algorithm (fully open, non-proprietary and patent-roy-
alty-free distributed) uses the windowing function given
by [11,17]

wn ¼ sin
p
2

sin2 p
2N
ð2nþ 1Þ

� �h i
; n ¼ 0;1; . . .N � 1. (6)

A plot of the Ogg Vorbis windowing function for N ¼ 2048
is shown in Fig. 2.
Please cite this article as: V. Britanak, H.J.L. Arriëns, Fast compu
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Note 1. The corresponding complete TDAC analysis/
synthesis MDST filter banks [25,47] can be defined in a
similar way.

2.2. MDCT and MDST as the block transforms

The input data sequence fxng is assumed to be wind-
owed by a windowing function satisfying Eq. (4) before its
transformation. Then, the forward and backward MDCT
block transforms are, respectively, specified in simplified
form as

ck ¼

ffiffiffiffi
4

N

r XN�1

n¼0

xn cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �
,

k ¼ 0;1; . . . ;
N

2
� 1, (7)

x̂
MDCT
n ¼

ffiffiffiffi
4

N

r XðN=2Þ�1

k¼0

ck cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �
,

n ¼ 0;1; . . . ;N � 1. (8)

It is noted that the MDCT is equivalent to the MLT [43].
The original definition of the MLT is obtained by
substituting N ¼ 2M into Eqs. (7) and (8).

Similarly, the corresponding forward and backward
MDST block transforms are, respectively, specified in
tational structures for an efficient implementation of the
ignal Process. (2009), doi:10.1016/j.sigpro.2009.01.014
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simplified form as [25,47]

sk ¼

ffiffiffiffi
4

N

r XN�1

n¼0

xn sin
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �
,

k ¼ 0;1; . . . ;
N

2
� 1, (9)

x̂
MDST
n ¼

ffiffiffiffi
4

N

r XðN=2Þ�1

k¼0

sk sin
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �
,

n ¼ 0;1; . . . ;N � 1. (10)

The MDCT and MDST basis vectors form the MCLT [47],
whose real part corresponds to the MDCT or MLT and
imaginary part is the MDST. In contrast to discrete unitary
transforms, the MDCT and MDST have a special property:
the original input data sequence cannot be perfectly
reconstructed from a single block of MDCT and MDST
coefficients.

MDCT/MDST sequences fckg=fskg possess even anti-
symmetry/symmetry properties given by [18,33]

cN�k�1 ¼ �ck; sN�k�1 ¼ sk; k ¼ 0;1; . . . ;
N

2
� 1, (11)

while the time domain aliased data sequences
fx̂

MDCT
n g=fx̂

MDST
n g recovered by the backward MDCT/MDST

possess the following symmetries [18,33]:

x̂
MDCT
n ¼ �x̂

MDCT
ðN=2Þ�1�n; x̂

MDCT
ðN=2Þþn ¼ x̂

MDCT
N�1�n,

x̂
MDST
n ¼ x̂

MDST
ðN=2Þ�1�n; x̂

MDST
ðN=2Þþn ¼ �x̂

MDST
N�1�n,

n ¼ 0;1; . . . ;
N

4
� 1. (12)

The symmetry properties (11) and (12) can be simply
verified by the proper substitution into Eqs. (7)–(10). We
note that the symmetry properties (11) and (12) also hold
if the input data sequence fxng is windowed. From (11) it
follows that only N=2 coefficients are unique in the MDCT
and MDST sequences. Further, it can be easily seen that
the time domain aliased data sequences fx̂

MDCT
n g=fx̂

MDST
n g

exhibit two local symmetries (odd/even symmetry in the
first half and even/odd symmetry in the second half).
From an algorithmic point of view this means that it is
sufficient to compute only the time domain aliased
samples x̂

MDCT
n and x̂

MDCT
ðN=2Þþn for n ¼ 0;1; . . . ; ðN=4Þ � 1 by

the backward MDCT.

2.2.1. Periodicity and anti-periodicity of MDCT/MDST

transform kernels

Special kinds of data sequences, the periodic and anti-
periodic sequences, are fundamental notions in harmonic
analysis, convolution and correlation of signals. Now we
recall the definitions of periodic and anti-periodic
sequences [19].

Definition 1. A data sequence fyng is called a periodic
sequence if ynþM ¼ yn, where M40 is called the period of
periodic sequence fyng.

Definition 2. A data sequence fyng is called an anti-
periodic sequence if ynþM ¼ �yn, where M40 is the period
of anti-periodic sequence fyng.
Please cite this article as: V. Britanak, H.J.L. Arriëns, Fast compu
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An anti-periodic sequence fyng may be treated as a
periodic sequence with period 2M because ynþ2M ¼

�ynþM ¼ yn. However, the properties of fyng depend only
upon its values in one period M. The periodicity and anti-
periodicity of sequences are closely related to their
symmetry and anti-symmetry properties, respectively.
Properties (sums and products) of periodic and anti-
periodic sequences with a common period can be found in
[19].

Denoting the MDCT and MDST transform kernels,
respectively, as

tðcÞk;n ¼ cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �
,

tðsÞk;n ¼ sin
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �
, (13)

and substituting nþ N, and then nþ 2N for n into (13) we
obtain

tðcÞk;n ¼ �tðcÞk;nþN ; tðcÞk;n ¼ tðcÞk;nþ2N ,

tðsÞk;n ¼ �tðsÞk;nþN ; tðsÞk;n ¼ tðsÞk;nþ2N ; 8k. (14)

Eq. (14) implies that the MDCT and MDST transform
kernels are anti-periodic sequences with period N, and
periodic sequences with period 2N.
2.2.2. Symmetry properties of MDCT/MDST basis vectors

For a given N, consider the MDCT and MDST transform
kernels given by (13). One can observe that the MDCT and
MDST basis vectors exhibit the following local symme-
tries:

tðcÞk;ðN=2Þ�1�n ¼ �tðcÞk;n; tðcÞk;ðN=2Þþn ¼ tðcÞk;N�1�n,

tðsÞk;ðN=2Þ�1�n ¼ tðsÞk;n; tðsÞk;ðN=2Þþn ¼ �tðsÞk;N�1�n; 8k,

n ¼ 0;1; . . . ;
N

4
� 1. (15)

The symmetry properties of the MDCT and MDST basis
vectors (15) can be simply verified by a proper substitu-
tion into Eq. (13). Note that they are quite similar to those
of the time domain aliased data sequences fx̂

MDCT
n g=fx̂

MDST
n g

given by (12).
2.2.3. Relation between MDCT and MDST

There exists a simple relation between the MDCT and
MDST given in [25]

cðN=2Þ�k�1 ¼ ð�1ÞN=4
XN�1

n¼0

ð�1Þnxn sin
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �
,

k ¼ 0;1; . . . ;
N

2
� 1. (16)

Also

sðN=2Þ�k�1 ¼ ð�1ÞN=4
XN�1

n¼0

ð�1Þnxn cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �
,

k ¼ 0;1; . . . ;
N

2
� 1, (17)

and this fact results in a simple method to compute the
MDST using a fast MDCT computational structure.
tational structures for an efficient implementation of the
ignal Process. (2009), doi:10.1016/j.sigpro.2009.01.014
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Note 2. The simple relation between the MDCT and the
MDST allows us to concentrate on the investigation of a
fast MDCT computational structure only.

2.3. Matrix representations of the MDCT/MDST

Consider the forward and backward MDCT/MDST defined
by Eqs. (7), (8)/(9), (10), respectively. Based on symmetry
properties of the MDCT and MDST coefficients, only N=2 rows
of the MDCT and MDST matrices are linearly independent.
Therefore, let CðN=2Þ�N and SðN=2Þ�N be the ðN=2Þ � N MDCT
and MDST matrices, respectively. Then ½CðN=2Þ�N�

T ¼ CN�ðN=2Þ

and ½SðN=2Þ�N�
T ¼ SN�ðN=2Þ, where T denotes transposition.

Next, let x ¼ ½x0; x1; . . . ; xN�1�, c ¼ ½c0; c1; . . . ; cðN=2Þ�1� and s ¼
½s0; s1; . . . ; sðN=2Þ�1� be row vectors and xT , cT and sT their
corresponding column representations. Then Eqs. (7) and (9)
for the forward MDCT and MDST can be, respectively, written
in the equivalent matrix–vector form as [33]

cT ¼ CðN=2Þ�NxT ; sT ¼ SðN=2Þ�NxT , (18)

while Eqs. (8) and (10) for the backward MDCT and MDST can
be, respectively, written as

½x̂
MDCT
�T ¼ CN�ðN=2Þc

T ¼ ½CðN=2Þ�N�
T cT ,

½x̂
MDST
�T ¼ SN�ðN=2Þs

T ¼ ½SðN=2Þ�N�
T sT . (19)

Based on the matrix representation of the MDCT and MDST
it was shown in [18,33] that the transposed MDCT and
MDST matrices are pseudoinverses of their corresponding
forward transform matrices. Hence, the forward and
backward MDCT/MDST are actually pseudoinverse pairs.

The pseudoinverse matrix [76,77] and its properties
provide an elegant mathematical tool to characterize the
MDCT/MDST in a matrix representation. If we consider the
forward MDCT/MDST given by (18) to be overdetermined
systems of linear equations, then the time domain aliased

data sequences fx̂
MDCT
n g=fx̂

MDST
n g in (19) for given MDCT/

MDST coefficients can be interpreted as least squares
solutions, i.e., solutions with minimum norm. For the
MDCT/MDST matrices CðN=2Þ�N=SðN=2Þ�N and their trans-
posed versions CN�ðN=2Þ=SN�ðN=2Þ or their pseudoinverses,
the following relations hold [18]:

CðN=2Þ�N ½CðN=2Þ�N�
T ¼ CðN=2Þ�NCN�ðN=2Þ ¼ SðN=2Þ�N ½SðN=2Þ�N�

T

¼ SðN=2Þ�NSN�ðN=2Þ ¼ 2IðN=2Þ, (20)

where IN=2 is the identity matrix of order N=2, and

½CðN=2Þ�N�
T CðN=2Þ�N ¼ CN�ðN=2ÞCðN=2Þ�N

¼

IN=4 �JN=4 0 0

�JN=4 IN=4 0 0

0 0 IN=4 JN=4

0 0 JN=4 IN=4

0
BBBBB@

1
CCCCCA, (21)

½SðN=2Þ�N�
T SðN=2Þ�N ¼ SN�ðN=2ÞSðN=2Þ�N

¼

IN=4 JN=4 0 0

JN=4 IN=4 0 0

0 0 IN=4 �JN=4

0 0 �JN=4 IN=4

0
BBBBB@

1
CCCCCA, (22)
Please cite this article as: V. Britanak, H.J.L. Arriëns, Fast compu
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where IN=4 is the identity matrix, and JN=4 is the reverse
ordered identity matrix, both of order N=4.

Substituting Eqs. (18) into (19) (i.e., performing the
forward and backward MDCT/MDST) and using relations
(21), (22) we have

½x̂
MDCT
�T ¼ CN�ðN=2Þc

T ¼ CN�ðN=2ÞCðN=2Þ�NxT

¼

IN=4 �JN=4 0 0

�JN=4 IN=4 0 0

0 0 IN=4 JN=4

0 0 JN=4 IN=4

0
BBBBB@

1
CCCCCAxT , (23)

½x̂
MDST
�T ¼ SN�ðN=2Þs

T ¼ SN�ðN=2ÞSðN=2Þ�NxT

¼

IN=4 JN=4 0 0

JN=4 IN=4 0 0

0 0 IN=4 �JN=4

0 0 �JN=4 IN=4

0
BBBBB@

1
CCCCCAxT . (24)

From Eqs. (23) and (24) it follows that the time domain

aliased data samples fx̂
MDCT
n g can be derived explicitly in

terms of the original data samples fxng as

x̂
MDCT
n ¼ xn � xðN=2Þ�1�n; x̂

MDCT
ðN=2Þ�1�n ¼ �x̂

MDCT
n ,

x̂
MDCT
ðN=2Þþn ¼ xðN=2Þþn þ xN�1�n; x̂

MDCT
N�1�n ¼ x̂

MDCT
ðN=2Þþn,

n ¼ 0;1; . . . ;
N

4
� 1, (25)

while the time domain aliased data sequence fx̂
MDST
n g can

be found as

x̂
MDST
n ¼ xn þ xðN=2Þ�1�n; x̂

MDST
ðN=2Þ�1�n ¼ x̂

MDST
n ,

x̂
MDST
ðN=2Þþn ¼ xðN=2Þþn � xN�1�n; x̂

MDST
N�1�n ¼ �x̂

MDST
ðN=2Þþn,

n ¼ 0;1; . . . ;
N

4
� 1. (26)

In Eqs. (25) and (26) we can clearly observe the recovered
time domain aliased data sequences including their forms
both in terms of original data samples and their symmetry
properties given by (12). With Eqs. (25) and (26) in mind
we can compute exactly the results of applying the
forward and backward MDCT and MDST.

2.3.1. Perfect-reconstruction conditions and windowing

operation

Let fxðtÞn g and fxðtþ1Þ
n g be two adjacent overlapped data

blocks. Transform these data blocks by the forward MDCT
followed by the backward MDCT. Assuming that no
changes are made in data blocks during the transforma-
tion, we find that the original signal in the overlapped part
is perfectly reconstructed even without windowing.
Indeed, according to the overlap and add procedure given
by (3) and using Eq. (25), whereby in the overlapped
part the following relations hold: xðtþ1Þ

n ¼ xðtÞ
ðN=2Þþn and

xðtþ1Þ
ðN=2Þ�1�n ¼ xðtÞN�1�n, we have

x̂
ðtÞ
ðN=2Þþn þ x̂

ðtþ1Þ
n ¼ ðxðtÞ

ðN=2Þþn þ xðtÞN�1�nÞ þ ðx
ðtþ1Þ
n � xðtþ1Þ

ðN=2Þ�1�nÞ

¼ 2xðtÞ
ðN=2Þþn; n ¼ 0;1; . . . ;

N

4
� 1, (27)
tational structures for an efficient implementation of the
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and the second half of the original data sequence
f2xðtÞN�1�ng in the overlapped part can be obtained from
the symmetry properties of fx̂

ðtÞ
ðN=2Þþng and fx̂

ðtþ1Þ
n g.

The main objective in audio compression applications
is to represent the transformed audio signal by fewer bits,
while keeping the audio quality at an acceptable level. In
modern encoders, signal parts that are not audible are
removed resulting in a loss of information. Consequently,
after coding and decoding the transformed signal is
changed slightly and we can no longer expect a perfect
reconstruction compared with the original audio signal. Of
course, the remaining information that is passed should
be analyzed and synthesized without errors. A serious
problem here is that when data blocks are obtained using
rectangular windows, sudden signal changes (‘‘disconti-
nuities’’) at the block boundaries are to be expected, that
will affect the coded data in an unrecoverable way. To
eliminate these so-called ‘‘blocking artifacts’’, each data
block is multiplied by a windowing function such that the
data block ends smoothly at both boundaries, while
keeping overall gain constant during the block transition.
In order to accomplish this while keeping the perfect-
reconstruction property for the analysis/synthesis process,
the windowing functions are applied to both the input and
output of the transform procedure as follows.

Let wð0Þn and wð1Þn be the windowing functions applied to
the input data blocks t and t þ 1, respectively. Assume the
windowed data blocks fwð0Þn xðtÞn g, fwð1Þn xðtþ1Þ

n g, n ¼

0;1; . . . ;N � 1 are transformed by the forward MDCT. Let
hð0Þn and hð1Þn be the windowing functions applied to the
outputs after performing the backward MDCT. Then, from
Eq. (27) we have

hð0Þ
ðN=2Þþnðw

ð0Þ
ðN=2ÞþnxðtÞ

ðN=2Þþn þwð0ÞN�1�nxðtÞN�1�nÞ

þ hð1Þn ðw
ð1Þ
n xðtÞ
ðN=2Þþn �wð1Þ

ðN=2Þ�1�nxðtÞN�1�nÞ

¼ ðhð0Þ
ðN=2Þþnwð0Þ

ðN=2Þþn þ hð1Þn wð1Þn Þx
ðtÞ
ðN=2Þþn

þ ðhð0Þ
ðN=2Þþnwð0ÞN�1�n � hð1Þn wð1Þ

ðN=2Þ�1�nÞx
ðtÞ
N�1�n.

In order to recover the original data sequence fxðtÞnþðN=2Þg,

n ¼ 0;1; . . . ; ðN=2Þ � 1, we need the coefficient of xðtÞ
ðN=2Þþn

to be one and the coefficient of xðtÞN�1�n to be zero. In other
words, the perfect-reconstruction conditions for window-
ing functions have to be satisfied as follows:

hð0Þ
ðN=2Þþnwð0Þ

ðN=2Þþn þ hð1Þn wð1Þn ¼ 1,

hð0Þ
ðN=2Þþnwð0ÞN�1�n � hð1Þn wð1Þ

ðN=2Þ�1�n ¼ 0,

n ¼ 0;1; . . . ;
N

2
� 1. (28)

Usually, the same windowing functions are used for all
data blocks, so we can drop the superscripts, i.e., wn ¼

wð0Þn ¼ wð1Þn and hn ¼ hð0Þn ¼ hð1Þn . If wn ¼ hn is identical both
for the analysis and synthesis MDCT filter banks, then we
obtain the perfect-reconstruction conditions given by (4).
The reader is referred to a draft document [17] where
mathematical properties of the MDCT are proved using
basic trigonometry only.
Please cite this article as: V. Britanak, H.J.L. Arriëns, Fast compu
complete TDAC analysis/synthesis MDCT/MDST filter banks, S
2.3.2. Special properties of the MDCT/MDST

Studies of the MDCT and its implications to audio
coding and error concealment are presented in [15,16]. In
these, characteristics of the MDCT of a single data block
both in time and frequency domains are analyzed
(symmetry and non-orthogonal properties, energy-com-
paction capability and the concept of TDAC), and their
impact on audio coding performance is discussed. In
particular, based on Fourier frequency analysis the authors
formulate conditions in which MDCT coefficients become
zero even with non-zero time domain samples in the
single data block. Also, conditions are derived in which the
original time domain samples can be perfectly recon-
structed by performing a forward and backward MDCT
without even an applying an overlap and add procedure.
These conditions constitute special or the so-called
peculiar properties of the MDCT. In this paper, they are
presented and verified based on the matrix representation
compared to [15,16], where a relationship between the
MDCT and a generalized DFT is exploited.

Claim 1. If the input data sequence fxng exhibits a local
symmetry such that

xn ¼ xðN=2Þ�1�n; xðN=2Þþn ¼ �xN�1�n; n ¼ 0;1; . . . ;
N

4
� 1,

(29)

then the MDCT coefficients are degenerated to zero, i.e.,
ck ¼ 0 for k ¼ 0;1; . . . ; ðN=2Þ � 1.

In order to prove this property, let us split the forward
N-point MDCT given by (7) into two sums as

ck ¼
XðN=2Þ�1

n¼0

xn cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �

þ
XN�1

n¼ðN=2Þ

xn cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �

¼
XðN=2Þ�1

n¼0

xn cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �

þ
XðN=2Þ�1

n¼0

xðN=2Þþn cos
p

2N
2nþ 1þ 3

N

2

� �
ð2kþ 1Þ

� �
,

and substituting ðN=2Þ � 1� n for n into both sums we get

ck ¼
XðN=4Þ�1

n¼0

ðxn � xðN=2Þ�1�nÞ cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �

þ
XðN=4Þ�1

n¼0

ðxðN=2Þþn þ xN�1�nÞ

� cos
p

2N
2nþ 1þ 3

N

2

� �
ð2kþ 1Þ

� �

¼
XðN=4Þ�1

n¼0

ðxn � xðN=2Þ�1�nÞ cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �

þ
XðN=4Þ�1

n¼0

�ðxðN=2Þþn þ xN�1�nÞ

� cos
p

2N
2nþ 1�

N

2

� �
ð2kþ 1Þ

� �
. (30)

Now, the special property stated by Claim 1 immediately
follows from Eq. (30). The property also illustrates that the
tational structures for an efficient implementation of the
ignal Process. (2009), doi:10.1016/j.sigpro.2009.01.014
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MDCT does not fulfill Parseval’s theorem [15]. Note that
the N-point MDCT has been decomposed into two N=4-
point MDCT transforms.

Claim 2. If the input data sequence fxng exhibits a local
symmetry such that

xn ¼ �xðN=2Þ�1�n; xðN=2Þþn ¼ xN�1�n; n ¼ 0;1; . . . ;
N

4
� 1,

(31)

then, by the forward and backward MDCT, the original
input data sequence will be perfectly reconstructed
without the need for an overlap and add procedure, i.e.,
x̂n ¼ xn for n ¼ 0;1; . . . ;N � 1.

This property immediately follows from Eqs. (25) and
(30). The properties stated by Claims 1 and 2 are very
special theoretical cases which are rarely occurring in real
audio coding applications, especially after the proper
windowing operation. Nevertheless, in both cases the
time domain aliased samples can still be perfectly
reconstructed by the overlap and add procedure. However,
based on Claim 1 if the input signal is close to (29) then
the MDCT spectrum will show an unwanted and unreco-
verable behavior. For completeness, additional properties
are presented in the following text as partial cases of
Claim 2.

Claim 2.1. If the input data sequence fxng exhibits a local
symmetry such that

xn ¼ xðN=2Þ�1�n; xðN=2Þþn ¼ xN�1�n; n ¼ 0;1; . . . ;
N

4
� 1,

(32)

then, after applying the forward and backward MDCT, the
first half of the recovered data sequence will be equal to
zero, i.e., x̂n ¼ 0, n ¼ 0;1; . . . ; ðN=2Þ � 1, and the second
half of the original data sequence fxðN=2Þþng will be
perfectly reconstructed without an overlap and add
procedure, i.e., xðN=2Þþn ¼ x̂ðN=2Þþn, n ¼ 0;1; . . . ; ðN=2Þ � 1.

Claim 2.2. If the input data sequence fxng exhibits a local
symmetry such that

xn ¼ �xðN=2Þ�1�n; xðN=2Þþn ¼ �xN�1�n; n ¼ 0;1; . . . ;
N

4
� 1,

(33)

then, after applying the forward and backward MDCT, the
first half of the original input data sequence fxng will be
perfectly reconstructed without the need for an overlap
and add procedure, i.e., xn ¼ x̂n, n ¼ 0;1; . . . ; ðN=2Þ � 1, and
the second half of the recovered data sequence will be
equal to zero, i.e., x̂ðN=2Þþn ¼ 0, n ¼ 0;1; . . . ; ðN=2Þ � 1.

Properties stated by Claims 2.1 and 2.2 also follow from
Eqs. (25) and (30).

Note 3. The special properties of the MDST can be derived
in a similar way.

2.3.3. Consequences of MDCT/MDST matrix representations

From a viewpoint of terminology used in the literature
the matrix representations of the MDCT and MDST
Please cite this article as: V. Britanak, H.J.L. Arriëns, Fast compu
complete TDAC analysis/synthesis MDCT/MDST filter banks, S
considered as the block transforms imply two very
important facts:
1.
tat
ign
In contrary to the discrete trigonometric transforms
[75] which are represented by square invertible
orthogonal/orthonormal matrices of order N (there-
fore, forward and inverse transform), the MDCT and
MDST are represented by nonsquare ðN=2Þ � N ma-
trices for which matrix inversions are not defined
(actually, there exist their pseudoinverses [18,76]).
Consequently, the notion of ‘‘inverse MDCT/MDST’’,
frequently used in the literature, is vague from a
standpoint of matrix theory. The more comprehensive
notion to be used is ‘‘backward MDCT/MDST’’ (pre-
ferred) or ‘‘reverse MDCT/MDST’’. The second argu-
ment supporting such a conclusion is that compared to
discrete unitary transforms, the MDCT/MDST do not
fulfill Parseval’s theorem, i.e., its time domain energy is
not equal to its frequency domain energy. There exist
several published papers pointing out and discussing
this topic [14–17].
2.
 Further, the discrete trigonometric transforms [75] for
input data sequences of length N generate N unique
frequency coefficients (therefore, N-point forward and
inverse transform). Hence, the notion of ‘‘N-point’’ is
naturally associated with the length of a input data
sequence. In the case of the MDCT/MDST, the forward
MDCT/MDST for input time domain sequences of
lengths N generate N=2 unique frequency coefficients
while the backward MDCT/MDST for N=2 input
frequency domain coefficients generate N time domain
aliased samples. Therefore, we would use the notions
N-point forward MDCT/MDST and N=2-point backward
MDCT/MDST.

3. Fast TDAC analysis/synthesis MDCT filter banks

For a given N the complete TDAC analysis/synthesis
MDCT filter bank given by (1)/(2) using the direct
approach requires totally N=2ðN þ 2Þ multiplications and
N=2ðN � 1Þ additions. In the following sections we show
that the total computational complexity can be signifi-
cantly reduced [43,44].

3.1. Fast analysis MDCT filter bank

Consider the TDAC analysis MDCT filter bank given by
(1). Following the same procedure which leads to Eq. (30)
but with the windowing operation included, by splitting
the analysis MDCT filter bank into two sums we have

cðtÞk ¼
XðN=4Þ�1

n¼0

ðwnxðtÞn �wðN=2Þ�1�nxðtÞ
ðN=2Þ�1�nÞ

� cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �

þ
XðN=4Þ�1

n¼0

�ðwðN=2ÞþnxðtÞ
ðN=2Þþn þwN�1�nxðtÞN�1�nÞ

� cos
p

2N
2nþ 1�

N

2

� �
ð2kþ 1Þ

� �
,
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or

cðtÞk ¼
XðN=4Þ�1

n¼0

y0ðtÞn cos
p

2N
2nþ 1þ

N

2

� �
ð2kþ 1Þ

� �

þ
XðN=4Þ�1

n¼0

y00ðtÞn cos
p

2N
2nþ 1�

N

2

� �
ð2kþ 1Þ

� �
,

where

y0ðtÞn ¼ wnxðtÞn �wðN=2Þ�1�nxðtÞ
ðN=2Þ�1�n,

y00ðtÞn ¼ �wðN=2ÞþnxðtÞ
ðN=2Þþn �wN�1�nxðtÞN�1�n,

n ¼ 0;1; . . . ;
N

4
� 1.

To eliminate the terms �N=2 in the cosine transform
kernels of the first and second sum we substitute n�

ðN=4Þ and ðN=4Þ � 1� n for n, respectively, and we get

cðtÞk ¼
XðN=2Þ�1

n¼N=4

y0ðtÞn�ðN=4Þ cos
p

2N
ð2nþ 1Þð2kþ 1Þ

h i

þ
X0

n¼ðN=4Þ�1

y00ðtÞ
ðN=4Þ�1�n cos

p
2N
ð2nþ 1Þð2kþ 1Þ

h i
.

fy0ðtÞn g and fy00ðtÞn g are two independent N=4-point time
domain aliased subsequences and concatenating them
into one sum, the analysis MDCT filter bank is reduced to
N=2-point DCT of type IV (DCT-IV) of fyðtÞn g as

cðtÞk ¼
XðN=2Þ�1

n¼0

yðtÞn cos
p

4ðN=2Þ
ð2nþ 1Þð2kþ 1Þ

� �
,

k ¼ 0;1; . . . ;
N

2
� 1, (34)

where

yðtÞ
ðN=4Þþn ¼ wnxðtÞn �wðN=2Þ�1�nxðtÞ

ðN=2Þ�1�n,

yðtÞ
ðN=4Þ�1�n ¼ �wðN=2ÞþnxðtÞ

ðN=2Þþn �wN�1�nxðtÞN�1�n,

n ¼ 0;1; . . . ;
N

4
� 1. (35)

Eqs. (34) and (35) define the fast analysis MDCT filter bank
or fast MLT algorithm [43,44]. We note that the permuta-
tion (35) without windowing operation can be written in
matrix–vector form as

yT ¼
0 0 �JN=4 �IN=4

IN=4 �JN=4 0 0

 !
xT . (36)

3.2. Fast synthesis MDCT filter bank

Since the DCT-IV matrix is symmetric and involutory,
i.e., being self-inverse, the synthesis MDCT filter bank is
realized by the inverse N=2-point DCT-IV of fcðtÞk g as

yðtÞn ¼
XðN=2Þ�1

k¼0

cðtÞk cos
p

4ðN=2Þ
ð2nþ 1Þð2kþ 1Þ

� �
,

n ¼ 0;1; . . . ;
N

2
� 1. (37)

The time domain aliased data sequence fx̂
ðtÞ
n g is obtained

from fyðtÞn g by applying the inverse permutation to (35)
and using the symmetry of the windowing function
Please cite this article as: V. Britanak, H.J.L. Arriëns, Fast compu
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as follows:

x̂
ðtÞ
n ¼ wnyðtÞ

ðN=4Þþn,

x̂
ðtÞ
ðN=2Þ�1�n ¼ �wðN=2Þ�1�nyðtÞ

ðN=4Þþn,

x̂
ðtÞ
ðN=2Þþn ¼ �wðN=2ÞþnyðtÞ

ðN=4Þ�1�n ¼ �wðN=2Þ�1�nyðtÞ
ðN=4Þ�1�n,

x̂
ðtÞ
N�1�n ¼ �wN�1�nyðtÞ

ðN=4Þ�1�n ¼ �wnyðtÞ
ðN=4Þ�1�n,

n ¼ 0;1; . . . ;
N

4
� 1, (38)

or in matrix–vector form without the windowing opera-
tion as

x̂
T
¼

0 IN=4

0 �JN=4

�JN=4 0

�IN=4 0

0
BBBB@

1
CCCCAyT . (39)

Eqs. (37) and (38) define the fast synthesis MDCT filter
bank. Especially note that the transform kernels in (34)
and (37) are identical and symmetric with respect to
the time and frequency indices n and k, while both n

and k are members of the same set of integer values
0;1; . . . ; ðN=2Þ � 1. This implies that the identical computa-

tional structure can be used both for the computation of
the analysis and the synthesis MDCT filter banks.
Although this conclusion seems rather obvious here, in
the past many papers suggested a different structure for
the synthesis filter bank based on a reversely computed
analysis structure.
Note 4. Specifically, the windowing operation with the
sine function given by (5) in the analysis MDCT filter bank
(see Eq. (35)), can be converted to regular cascades of
Givens–Jacobi rotations. This also holds for the window-
ing, overlapping and add procedure after the backward
transformation of the transform coefficients in the synth-
esis MDCT filter bank (see Eqs. (3) and (38)). It is exactly
the same procedure as employed in the fast MLT [43] and
the efficient implementation of the analysis/synthesis
MDCT filter banks in MPEG-2 AAC [71].
3.3. Comments on related existing fast MDCT (MLT)

algorithms

Without loss of generality it is assumed that the input
data sequence fxðtÞn g is windowed by a windowing function
satisfying Eq. (4). In order to convert the analysis MDCT
filter bank to a DCT-IV of half size, previously described
fast MDCT algorithms [20,21,24,26,28,30–32,35,36] ap-
plied to fxðtÞn g the following permutation:

yðtÞn ¼

�xðtÞ
ð3N=4Þþn; n ¼ 0;1; . . . ; N

4 � 1;

xðtÞn�ðN=4Þ; n ¼ N
4 ;

N
4 þ 1; . . . ;N � 1:

8<
:

It can be easily verified that by substituting ð3N=4Þ þ n

and n� ðN=4Þ for n into (1) the analysis MDCT filter bank
tational structures for an efficient implementation of the
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Table 1
Two-to-one mapping defined by (43).

k=n 2kþ 1=2nþ 1 k0=n0 4k0 � 1=4n0 � 1

0 1 0 4k0 þ 1=4n0 þ 1 1

1 3 1 4k0 � 1=4n0 � 1 3

2 5 1 4k0 þ 1=4n0 þ 1 5

3 7 2 4k0 � 1=4n0 � 1 7

4 9 2 4k0 þ 1=4n0 þ 1 9

5 11 3 4k0 � 1=4n0 � 1 11

6 13 3 4k0 þ 1=4n0 þ 1 13

^ ^ ^ ^ ^
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is reduced to

cðtÞk ¼
XN�1

n¼0

yðtÞn cos
p

2N
ð2nþ 1Þð2kþ 1Þ

h i

¼
XðN=2Þ�1

n¼0

ðyðtÞn � yðtÞN�1�nÞ cos
p

4ðN=2Þ
ð2nþ 1Þð2kþ 1Þ

� �
,

k ¼ 0;1; . . . ;
N

2
� 1.

Finally, by combining the equations above the analysis
MDCT filter bank can be expressed as

cðtÞk ¼
XðN=2Þ�1

n¼0

yðtÞn cos
p

4ðN=2Þ
ð2nþ 1Þð2kþ 1Þ

� �
,

k ¼ 0;1; . . . ;
N

2
� 1, (40)

where

yðtÞn ¼

�xðtÞ
ð3N=4Þþn � xðtÞ

ð3N=4Þ�1�n; n ¼ 0;1; . . . ; N
4 � 1;

xðtÞn�ðN=4Þ � xðtÞ
ð3N=4Þ�1�n; n ¼ N

4 ;
N
4 þ 1; . . . ; N

2 � 1:

8<
:

(41)

Although the permutations (35) and (41) seem to be
different, they generate exactly the same time domain
aliased data sequence fyðtÞn g.

Similarly, since the DCT-IV matrix is self-inverse, it
follows from (40) that the synthesis MDCT filter bank can
be realized by Eq. (37) while the time domain aliased data
sequence fx̂

ðtÞ
n g is obtained from Eq. (38).

Note 5. The symmetry property of time domain aliased
data sequence fx̂

ðtÞ
n g given by (12) can be written in an

alternative, equivalent form as

x̂
ðtÞ
ðN=4Þ�1�n ¼ � x̂

ðtÞ
ðN=4Þþn; x̂

ðtÞ
ð3N=4Þ�1�n ¼ x̂

ðtÞ
ð3N=4Þþn,

n ¼ 0;1; . . . ;
N

4
� 1.

Compared to (12), now the points of symmetry are
explicitly taken at N=4 and 3N=4.

4. Fast MDCT computational structure

At this point, the fast analysis/synthesis MDCT filter bank
is reduced to the windowing/windowing&overlap&add
procedure and an N=2-point DCT-IV. Now it becomes
rewarding to specify a suitable fast DCT-IV algorithm with
a simple and regular computational structure. In the
following we derive a fast regular DCT-IV computational
structure leading to the so-called fast MDCT computational
structure.

Consider Eqs. (34)/(37) which define the fast analysis/
synthesis MDCT filter banks. Since we will consider
transformation of a single data block, we omit the data-
block number t in (34) and (37). At first, we derive a fast
DCT-IV computational structure for the fast analysis
MDCT filter bank given by (34). Because the DCT-IV
transform kernel in (34) and (37) is symmetric with
respect to the time and frequency indices n and k, by
applying the same procedure described below but ex-
changing the role of n and k, we obtain the identical fast
Please cite this article as: V. Britanak, H.J.L. Arriëns, Fast compu
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DCT-IV computational structure for the fast synthesis
MDCT filter bank given by (37). In the first step, if we
substitute ðN=2Þ � 1� n for n into (34), we get

ck ¼
XðN=4Þ�1

n¼0

yn cos
p

2N
ð2nþ 1Þð2kþ 1Þ

h i
þ ð�1ÞkyðN=2Þ�1�n

� sin
p

2N
ð2nþ 1Þð2kþ 1Þ

h i
,

k ¼ 0;1; . . . ;
N

2
� 1. (42)

Now, let us introduce a two-to-one mapping defined as

k0 ¼

k
2 if k ¼ 2k0 is even, k 2 f0;2;4; . . .g;
kþ1

2 if k ¼ 2k0 � 1 is odd, k 2 f1;3;5; . . .g;

(
(43)

where k0 is a new frequency index. Then, we are able
to replace the cosine transform kernel term 2kþ 1 by
4k0 þ 1/4k0 � 1 depending on whether k is even/odd
(see Table 1), and Eq. (42) can be equivalently written
for the new frequency index k0 in the form of two sums

c2k0 ¼
XðN=4Þ�1

n¼0

yn cos
p

2N
ð2nþ 1Þð4k0 þ 1Þ

h i

þ yðN=2Þ�1�n sin
p

2N
ð2nþ 1Þð4k0 þ 1Þ

h i
,

k0 ¼ 0;1; . . . ;
N

4
� 1,

c2k0�1 ¼
XðN=4Þ�1

n¼0

yn cos
p

2N
ð2nþ 1Þð4k0 � 1Þ

h i

� yðN=2Þ�1�n sin
p

2N
ð2nþ 1Þð4k0 � 1Þ

h i
,

k0 ¼ 1;2; . . . ;
N

4
. (44)

In the second step, substituting the following trigono-
metric identities into (44):

cos
p

2N
ð2nþ 1Þð4k0 � 1Þ

h i
¼ cos

pð2nþ 1Þ

2N

� �
cos

pð2nþ 1Þk0

N=2

� �

� sin
pð2nþ 1Þ

2N

� �
sin

pð2nþ 1Þk0

N=2

� �
,

sin
p

2N
ð2nþ 1Þð4k0 � 1Þ

h i
¼ cos

pð2nþ 1Þ

2N

� �
sin

pð2nþ 1Þk0

N=2

� �

� sin
pð2nþ 1Þ

2N

� �
cos

pð2nþ 1Þk0

N=2

� �
,
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V. Britanak, H.J.L. Arriëns / Signal Processing ] (]]]]) ]]]–]]]10
and after some algebraic manipulations the complete
formulas constituting the fast DCT-IV computational
structure for the fast analysis MDCT filter bank are
obtained as

c2k0 ¼
XðN=4Þ�1

n¼0

an cos
pð2nþ 1Þk0

2ðN=4Þ

� �
þ bn sin

pð2nþ 1Þk0

2ðN=4Þ

� �
,

c2k0�1 ¼
XðN=4Þ�1

n¼0

an cos
pð2nþ 1Þk0

2ðN=4Þ

� �
� bn sin

pð2nþ 1Þk0

2ðN=4Þ

� �
,

k0 ¼ 1;2; . . . ;
N

4
� 1, (45)

where

an ¼ yn cos
p

2N
ð2nþ 1Þ þ yðN=2Þ�1�n sin

p
2N
ð2nþ 1Þ,

bn ¼ �yn sin
p

2N
ð2nþ 1Þ þ yðN=2Þ�1�n cos

p
2N
ð2nþ 1Þ,

n ¼ 0;1; . . . ;
N

4
� 1. (46)

For k0 ¼ 0 in the first sum and for k0 ¼ N=4 in the second
sum of (45), we, respectively, get

c0 ¼
XðN=4Þ�1

n¼0

an; cðN=2Þ�1 ¼ �
XðN=4Þ�1

n¼0

ð�1Þnbn. (47)

It can be easily seen that the N=2-point DCT-IV is
decomposed into the block of N=4 Givens–Jacobi rotations
given by (46), an N=4-point DCT-II and a corresponding
N=4-point DST-II. If we denote respectively in Eq. (45) the
N=4-point DCT-II of fang and the N=4-point DST-II of fbng,
y1 (c1)

y2 (c2)

y3 (c3)

y4 (c4)

y5 (c5)

y6 (c6)

y7 (c7)

a0

a1
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a3

b3

b2

b1

b0

b’0

b’1

b’2

b’3

y0 (c0)

4-
po

in
t 

D
C

T
-I

I

cos π/32

cos 3π/32

cos 5π/32

cos 7π/32

sin π/32

cos 7π/32
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cos π/32
sin π/32
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T
-I

I

Fig. 3. The fast DCT-IV computati
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then we have

cII
k0 ¼

XðN=4Þ�1

n¼0

an cos
pð2nþ 1Þk0

2ðN=4Þ

� �
,

sII
k0 ¼

XðN=4Þ�1

n¼0

bn sin
pð2nþ 1Þk0

2ðN=4Þ

� �

¼
XðN=4Þ�1

n¼0

ð�1Þnbn cos
pð2nþ 1Þk0

2ðN=4Þ

� �

¼
XðN=4Þ�1

n¼0

b0n cos
pð2nþ 1Þk0

2ðN=4Þ

� �
,

k0 ¼ 1;2; . . . ;
N

4
� 1,

and the N=4-point DST-II of fbng is converted to an N=4-
point DCT-II of fb0ng. Thus, Eqs. (45) and (47) can be
rewritten in a simplified equivalent form as

c2k0 ¼ cII
k0 þ sII

k0 ; c0 ¼ cII
0,

c2k0�1 ¼ cII
k0 � sII

k0 ; cðN=2Þ�1 ¼ �sII
N=4,

k0 ¼ 1;2; . . . ;
N

4
� 1, (48)

which corresponds to the butterfly stage.
Finally, by applying the above procedure (see the first

and second step) but exchanging the role of n and k, we
obtain the complete formulas constituting the identical
fast DCT-IV computational structure for the fast synthesis
c0
II

c1
II

c2
II

c3
II

s4
II

s3
II

s2
II

s1
II

c0 (y0)

c2 (y2)

c4 (y4)

c6 (y6)

c1 (y1)

c3 (y3)

c5 (y5)

c7 (y7)

onal structure for N=2 ¼ 8.
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MDCT filter bank as

y2n0 ¼
XðN=4Þ�1

k¼0

ak cos
pð2kþ 1Þn0

2ðN=4Þ

� �
þ bk sin

pð2kþ 1Þn0

2ðN=4Þ

� �
,

y2n0�1 ¼
XðN=4Þ�1

k¼0

ak cos
pð2kþ 1Þn0

2ðN=4Þ

� �
� bk sin

pð2kþ 1Þn0

2ðN=4Þ

� �
,

n0 ¼ 1;2; . . . ;
N

4
� 1, (49)

or in the equivalent simplified form as

y2n0 ¼ cII
n0 þ sII

n0 ; y0 ¼ cII
0,

y2n0�1 ¼ cII
n0 � sII

n0 ; yðN=2Þ�1 ¼ �sII
N=4,

n0 ¼ 1;2; . . . ;
N

4
� 1, (50)

where

ak ¼ ck cos
p

2N
ð2kþ 1Þ þ cðN=2Þ�1�k sin

p
2N
ð2kþ 1Þ,

bk ¼ �ck sin
p

2N
ð2kþ 1Þ þ cðN=2Þ�1�k cos

p
2N
ð2kþ 1Þ,

k ¼ 0;1; . . . ;
N

4
� 1. (51)

Similarly, for n0 ¼ 0 in the first sum and for n0 ¼ N=4 in the
second sum of (49) we, respectively, get

y0 ¼
XðN=4Þ�1

k¼0

ak; yðN=2Þ�1 ¼ �
XðN=4Þ�1

k¼0

ð�1Þkbk. (52)

The regular fast DCT-IV computational structure for
ðN=2Þ ¼ 8 is shown in Fig. 3. Full lines represent transfer
factors þ1 while broken lines represent transfer factors
�1. Symbol � represents addition.

From the signal flow graph shown in Fig. 3 a new
sparse matrix factorization of the DCT-IV matrix denoted
by CIV

N can be directly extracted as

CIV
N ¼ PN

1 0

IðN=2Þ�1 IðN=2Þ�1

IðN=2Þ�1 �IðN=2Þ�1

0 �1

0
BBBBB@

1
CCCCCA

CII
N=2 0

0 JN=2CII
N=2

0
B@

1
CA

�

IN=2 0

0 DN=2JN=2

0
@

1
AGN , (53)

where PN is a permutation matrix, the matrix product
JN=2CII

N=2 denotes the ðN=2Þ � ðN=2Þ DCT-II matrix with
reverse ordered rows. DðN=2Þ ¼ diagf1;�1; . . . ; ð�1ÞðN=2Þþ1

g

is the diagonal odd-sign changing matrix, and GN is the
rotation matrix (Givens–Jacobi rotations) defined by

GN ¼

cos p
4N 0 sin p

4N

cos 3p
4N sin 3p

4N

: :

cos ðN�1Þp
4N sin ðN�1Þp

4N

0 0

� sin ðN�1Þp
4N cos ðN�1Þp

4N

: :

� sin 3p
4N cos 3p

4N

� sin p
4N 0 cos p

4N

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

.

(54)
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Since the DCT-IV matrix is self-inverse, by transposing
(53) we obtain its alternative sparse matrix factorization.
In [29], a slightly different sparse matrix factorization of
the DCT-IV matrix has been proposed which was extracted
from the fast MDCT algorithm represented by the sparse
matrix factorization of the MDCT matrix [25].

Note 6. Based on a relation between the DCT-IV and DST-
IV matrices given in [75], the fast DST-IV computational
structure can be easily obtained.

The proposed fast DCT-IV computational structure with
the properly appended permutations (35) and (38) results
in the fast MDCT computational structure being identical for
the efficient computing both the analysis and synthesis
MDCT filter banks. For a given value of N, the common
computational complexity of the fast MDCT computa-
tional structure consists of the complexity of the window-
ing operation and the N=2-point fast DCT-IV comp-
utational structure. Additionally, the fast analysis MDCT
filter bank requires N=2 additions for performing the
permutation (35) while the fast synthesis MDCT bank
requires N=2 additions for performing the overlap and add
procedure (3). Because the fast MDCT computational
structure is valid for any N divisible by 4, its computa-
tional complexity depends on a fast DCT-II algorithm to be
adopted. Since N=4 may be even or odd, an efficient even-
length or odd-length DCT-II algorithm is required. Further,
taking into account Eqs. (36), (39), (53) and (54), we can
derive sparse matrix factorizations of the MDCT matrices.
Let CðN=2Þ�N and CN�ðN=2Þ be MDCT matrices representing
the forward and backward MDCT, respectively. Then, they
can be factored as

CðN=2Þ�N ¼ CIV
N=2

0 0 �JN=4 �IN=4

IN=4 �JN=4 0 0

0
@

1
A,

CN�ðN=2Þ ¼

0 IN=4

0 �JN=4

�JN=4 0

�IN=4 0

0
BBBBB@

1
CCCCCACIV

N=2. (55)

Recently, similar fast MDCT computational structures
have been derived [30–32,34] with the aim to improve or
optimize an efficient implementation of the MDCT in MP3
audio coding [22,25]. The last butterfly stage in Fig. 3
corresponds to Eqs. (48) and (50) or equivalently, it is
represented by the product of the leftmost two matrices
on the right-hand side of (53). If we denote the output
coefficients fcII

0 ; c
II
1 ; . . . ; c

II
ðN=4Þ�1; s

II
1 ; s

II
2 ; . . . ; s

II
N=4g of the two

N=4-point unnormalized DCT-II transforms by fzkg, then
the last butterfly stage in Fig. 3 can be reorganized and the
final MDCT coefficients fckg given by (48) are obtained in
natural order in terms of the two-to-one mapping (43) as

ck ¼

zk=2 þ zðN=4Þ�1þðk=2Þ; k ¼ 2;4; . . . ; N
4 � 2 is even,

c0 ¼ z0;

zðkþ1Þ=2 � zðN=4Þ�1þððkþ1Þ=2Þ; k ¼ 1;3; . . . ; N
4 � 1 is odd,

cN=2�1 ¼ �zN=2�1:

8>>>><
>>>>:
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Fig. 4. The fast DCT-IV computational structure for N=2 ¼ 8 with the reorganized last butterfly stage.
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The corresponding fast DCT-IV computational structure
for N=2 ¼ 8 with the reorganized last butterfly stage is
shown in Fig. 4, and it strongly resembles the ones
proposed in [31,32,34] although these were derived using
different procedures. The regular output of Fig. 4 is
preferable to that of Fig. 3. When the N=2-point fast
DCT-IV computational structure in Fig. 4 is built into the
encoder in a TDAC analysis filter bank, the input values
y0; y1; . . . ; yðN=2Þ�1 are derived from the input samples
according to (35) resulting in the MDCT coefficients
c0; c1; . . . ; cðN=2Þ�1 in natural order. When it is built into
the decoder in a TDAC synthesis filter bank, inputs
c0; c1; . . . ; cðN=2Þ�1 are the MDCT coefficients in natural
order, while the output values y0; y1; . . . ; yðN=2Þ�1 result in
the reconstructed data sequence according to (38).
5. Discussion and comparison with existing fast
algorithms

The fast MDCT computational structure relies on the
proposed fast DCT-IV computational structure. An indirect
fast DCT-IV algorithm which maps the DCT-IV into a DFT
of half size and uses a recursive split-radix FFT can be
found in [43]. Direct recursive fast DCT-IV algorithms
based on recursive orthogonal sparse matrix factoriza-
tions of the DCT-IV matrix have been presented in [72–74].
Whereas in [72,73] the DCT-IV matrix is recursively
factored into two DCT-IV matrices of half sizes with pre-
permutation/butterfly and post-rotation stages, the DCT-
IV matrix in [74] is recursively factored into two DCT-II
Please cite this article as: V. Britanak, H.J.L. Arriëns, Fast compu
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matrices of half sizes with pre-rotation and post-butterfly/
permutation stages. Usually, for a recursive algorithm if
N ¼ 2n, n successive regular stages are needed in its
corresponding computational structure. Consequently, for
higher values on N (typically in audio coding schemes
where N ¼ 256, 512, 2048), the structural complexity of
the recursive fast DCT-IV algorithm increases. The main
advantage of the proposed fast DCT-IV computational
structure is its structural simplicity. It has a constant
geometry for any N ¼ 2n, i.e., consists of three regular
stages only. For the N-point DCT-IV computation with
N ¼ 2n, all above mentioned fast algorithms (including the
proposed fast DCT-IV computational structure) require
exactly ðN=2Þðnþ 2Þ multiplications and ð3N=2Þn addi-
tions, i.e., totally 2Nnþ N arithmetic operations, being so
far (see Note below) the lowest achievable arithmetic
complexity for the DCT-IV [43]. For the fast MDCT
computation, the DCT-IV can be alternatively converted
to the DCT-II of the same size at the cost of additional pre-
multiplications and recursive post-additions
[20,24,26,28,35,36,39,40,44].

Note 7. Recently, new recursive algorithms for the 2n-
length DCT-IV/DST-IV and MDCT computation have been
presented [41] requiring fewer total real multiplications
and additions than algorithms published up to now. They
are based on a new improved FFT algorithm being actually
the modified split-radix FFT with fewer arithmetic opera-
tions. For the N-point DCT-IV, N ¼ 2n, n42, thetotal
number of arithmetic operations is asymptotically re-
duced from 2Nnþ N to 17

9 Nnþ 31
27 N. Since the DCT-IV and
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MDCT are closely related, this improved DCT-IV algorithm
immediately implies an improved MDCT algorithm.

The fast MDCT computational structure based on the
proposed fast DCT-IV computational structure possesses
the following important characteristics:
�

Tab
Com

Our

[36

[24

[23

P
c

It is efficient both in terms of the computational
complexity and structural simplicity with identical
regular computational blocks both for the analysis and
synthesis filter banks, i.e., the same computational
structure is used for the encoder and decoder in audio
coding schemes. The computational complexity of the
N=2-point DCT-IV is given by the block of N=4
Givens–Jacobi rotations (requiring 3ðN=4Þ multiplica-
tions and 3ðN=4Þ additions), the complexity of two
ðN=4Þ-point unnormalized DCT-II transforms (for a
specific 2n-length, n42, they require ðN=4Þðn� 2Þ
multiplications plus ðN=4Þð3n� 8Þ þ 2 additions) and
the last butterfly stage requiring ðN=2Þ � 2 additions.
Then, for a 2n-length, provided that we use the most
efficient DCT-II algorithm, the total computational
complexity for the N=2-point DCT-IV computation is
ðN=4Þðnþ 1Þ multiplications and ðN=4Þð3n� 3Þ addi-
tions.

�
 Since the identical fast MDCT computational structure

is valid for any N divisible by 4, it provides an efficient
implementation of the forward and backward MDCT
block transforms in MP3 audio coding. The optimized
3-point DCT-II module (requiring one multiplication,
four additions and one shift) and 9-point DCT-II
module (requiring eight multiplications, 34 additions
and two shifts) can be found in [22,34]. Then, the
forward MDCT computation including the input data
permutation given by (35) for N ¼ 12 requires 11
multiplications, 27 additions and 2 shifts, whereas for
N ¼ 36 it requires 43 multiplications, 129 additions
and four shifts. The backward MDCT computation
without the overlap and add procedure given by (3)
requires exactly N=2 less additions than that of the
forward MDCT. A comparison in terms of arithmetic
complexity of the proposed efficient MDCT implemen-
tation in MP3 codecs with representative important
MDCT implementations [23,24,36] is shown in Table 2.
Table 2 clearly shows that the structure proposed here
compares favorably against previous ones, with the
added advantage of using the same computational
structure in the forward as well as in the backward
le 2
parison of the number of multiplications/additions.

Length N ¼ 12 Length N ¼ 36

Forward Backward Forward Backward

structure 1127 11
21

43
129

43
111

] 11
27

11
23

43
129

43
115

] 11
29

11
23

43
133

43
115

]—refined version of [22] 11
39

11
33

43
165

43
147
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part. Moreover, the algorithms of [24,36] are based on
recursion which makes them less suitable for fast
hardware implementations.
The complete analysis/synthesis MDCT filter bank
given by (1)/(2) using the direct approach requires
totally 84 multiplications plus 66 additions for N ¼ 12,
and 684 multiplications plus 630 additions for N ¼ 36.
An efficient implementation of the complete analysis/
synthesis MDCT filter bank consists of the N=2-point
fast DCT-IV computational structure and windowing/
windowing&overlap&add procedures defined by (35)/
(38) & (3) in the overlapped part of two adjacent data
blocks. The fast DCT-IV computational structure itself,
for N ¼ 12 requires 11 multiplications, 21 additions
and two shifts, whereas for N ¼ 36 it requires 43
multiplications, 111 additions and four shifts. Since the
windowing/windowing&overlap&add procedures (for
the sine windowing function given by (5)) can be
realized by N=4 Givens–Jacobi rotations, the complete
analysis and synthesis MDCT filter banks require
totally 20 multiplications, 30 additions and two shifts
when N ¼ 12, and 70 multiplications, 138 additions
and four shifts when N ¼ 36.

�
 It provides an efficient implementation of two variants

of cosine/sine-modulated filter banks (called the first
and the second short transforms) defined by the Dolby
Labs AC-3 digital audio compression algorithm [7]. Let
fxng;n ¼ 0;1; . . . ;N � 1 be a windowed input data
sequence. Since the short transforms are actually the
DCT-IV and DST-IV of half sizes [25], the first short
transform can be computed by taking yc

n ¼ xn � xN�1�n,
n ¼ 0;1; . . . ; ðN=2Þ � 1, and the second short transform
by taking ys

n ¼ �xðN=2Þþn � xðN=2Þ�1�n,
n ¼ 0;1; . . . ; ðN=2Þ � 1.

�
 The simple relation between the MDCT and the MDST

given by (16) and (17), provides an efficient imple-
mentation of the MCLT. Compared to existing fast
MCLT algorithms [47–51] its computational complexity
is identical to that of [47].

�
 It defines new sparse matrix factorizations of the DCT-

IV and MDCT/MDST matrices.
It is interesting to compare the new fast MDCT
algorithm previously proposed in [25] and the fast MDCT
computational structure derived here. Complete formulas
and some corresponding computational blocks of the new
fast MDCT algorithm [25] (see Eqs. (18) and (20)) and
those of the fast MDCT computational structure here are
quite similar though they have been derived by different
procedures. This fact indicates that the computational
structures are closely related. Indeed, the fast MDCT
computational structure [25] can also be adopted for the
efficient implementation of two short transforms defined
in the AC-3 codec [7]. Consequently, the first and second
butterfly stages in the fast MDCT computational structure
[25] are reduced to permutations only (thus, saving 3N=2
additions), and this observation has led to a new DCT-IV/
DST-IV computational structure [29]. On the other hand,
the fast MDCT computational structure here has been
derived directly from the DCT-IV of half size. Comparing
ional structures for an efficient implementation of the
al Process. (2009), doi:10.1016/j.sigpro.2009.01.014
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both computational structures in detail, the following
essential differences are immediately evident: for the
backward MDCT computation, the fast MDCT computa-
tional structure [25] should be used in reverse direction
performing inverse operations, so increasing its structural
complexity, while the fast MDCT computational structure
derived here is identical both for the forward and
backward MDCT computation. Moreover, the fast MDCT
computational structure [25] includes additional scale
factors

ffiffiffi
2
p

=2 and final sign changes apparently caused by
the existence of two subsequent butterfly stages at the
beginning. Both fast MDCT computational structures
contain Givens–Jacobi rotations which are of opposite
type. Therefore, the fast MDCT computational structure
derived here is generally more efficient in terms of
computational complexity and structural simplicity com-
pared to the one proposed in [25].

6. Conclusions

A new fast identical computational structure both for
the forward and backward MDCT/MDST computation
based on the proposed fast DCT-IV computational struc-
ture has been described. It is the result of a systematic
construction of a fast algorithm for an efficient imple-
mentation of the complete TDAC analysis/synthesis
MDCT/MDST filter banks. Thus, the same computational
structure is to be used both in the encoder and in the
decoder, which obviously will result in strongly reduced
design times and the possibility of resource reduction. The
corresponding generalized signal flow graph is regular and
defines new sparse matrix factorizations of DCT-IV and
MDCT/MDST matrices. In particular, the consequences of
MDCT/MDST matrix representations from the viewpoint
of terminology used in the literature have been empha-
sized. The fast MDCT computational structure is compared
with existing fast algorithms and its important character-
istics are discussed in detail. The identical fast MDCT
computational structure provides an efficient implemen-
tation of the MDCT in MP3 audio coding and AC-3 codecs.
All steps to derive our computational structure are
described in detail, and to put them into perspective a
comprehensive list of references is provided covering new
research results achieved in the time period 1999–2008 in
theoretical and practical developments of TDAC analysis/
synthesis MDCT/MDST filter banks. For clarity, the list of
references is classified into categories.
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complete TDAC analysis/synthesis MDCT/MDST filter banks, S
[48] H.-M. Tai, C.-Y. Jing, Design and efficient implementation of a
modulated complex lapped transform processor using pipeline
technique, IEICE Transactions Fundamentals E84-A (5) (May 2001)
1280–1287.

[49] H.S. Malvar, Fast algorithm for the modulated complex lapped
transform, IEEE Signal Processing Letters 10 (1) (January 2003)
8–10.

[50] Q. Dai, X.-J. Chen, New algorithm for modulated complex lapped
transform with symmetrical window function, IEEE Signal Proces-
sing Letters 12 (12) (December 2004) 925–928.

[51] X.-J. Chen, Q. Dai, A novel DCT-based algorithm for computing the
modulated complex lapped transform, IEEE Transactions on Signal
Processing 54 (11) (November 2006) 4480–4484.
MDCT/MDST algorithms based on recursive filter structures.

[52] C.-H. Chen, C.-B. Wu, B.-D. Liu, J.-F. Yang, Recursive architectures for
the forward and inverse modified discrete cosine transform, in:
Proceedings of the IEEE Workshop on Signal Processing Systems:
Design and Implementation (SiPS’2000), Lafayette, LA, October
2000, pp. 50–59.

[53] V. Nikolajevič, G. Fettweis, New recursive algorithms for the
forward and inverse MDCT, in: Proceedings of the IEEE Workshop
on Signal Processing Systems: Design and Implementation
(SiPS’2001), Antwerp, Belgium, September 2001, pp. 51–57.

[54] C.-H. Chen, B.-D. Liu, J.-F. Yang, Recursive architectures for realizing
modified discrete cosine transform and its inverse, IEEE Transac-
tions on Circuits and Systems-II: Analog and Digital Signal
Processing 50 (1) (January 2003) 38–45.
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