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ABSTRACT

In this paper, we present some optimal training designs for maxi-
mum likelihood (ML) and linear minimum mean square error
(LMMSE) channel estimation for multiple-input multiple-output
(MIMO) systems. As optimization criterion, the channel mean
square error (MSE) is chosen. The key idea is not to restrict the
channel estimation to a single transmitted symbol block, but to
possibly exploit multiple symbol blocks, assuming the channel re-
mains constant over these blocks. This leads to some new optimal
training designs.

1. INTRODUCTION

Optimal training for MIMO channel estimation has received a lot
of attention lately. Both multi-carrier [1, 2, 3] and single-carrier
[4, 5, 6] MIMO systems have been investigated, using a wide range
of criteria to optimize the training. In this paper, we focus on
single-carrier MIMO systems and investigate optimal training, in
the sense of the channel MSE, for ML as well as LMMSE channel
estimation. Note that LMMSE optimal training requires feedback
of a few optimal training parameters that depend on the channel
statistics and the noise variance. However, since these system char-
acteristics do not change fast, the amount of feedback information
is relatively low.

In addition, we do not restrict the channel estimation to a sin-
gle transmitted symbol block, but possibly exploit multiple symbol
blocks, assuming the channel remains constant over these blocks.
As a result, we obtain a more general design approach. Simula-
tion results are carried out to investigate the performance of ML
and LMMSE channel estimation under ML and LMMSE optimal
training.

Notation: Matrices and column vectors are written in boldface
uppercase and lowercase, respectively. For a matrix or column
vector, superscript T is the transpose and H is the complex conju-
gate transpose. IN is the N ×N identity matrix and 0M×N is the
M × N all-zero matrix. vec(A) is a stacking of the columns of a
matrix A into a column vector. [A]i,j denotes the (i, j)th element
of the matrix A, whereas [A]i,: and [A]:,i respectively denote the
ith row and column of the matrix A. ‖ · ‖ represents the Frobe-
nius norm and ⊗ is the Kronecker product. Finally, E(·) and tr(·)
respectively denote the expectation and trace operator.

This reasearch work is supported by NWO-STW under the VIDI pro-
gram (DTC.6577) and the VICI program (DTC.5893).

2. DATA MODEL

Let us consider a MIMO system with At transmit antennas and Ar

receive antennas. Suppose x(n) represents the At×1 symbol vec-
tor sequence transmitted at the At transmit antennas. Assuming
symbol rate sampling at each receive antenna, the Ar × 1 sample
vector sequence received at the Ar receive antennas is then given
by

y(n) =

L
∑

l=0

H(l)x(n − l) + e(n), (1)

where e(n) is the Ar ×1 additive noise vector sequence on the Ar

receive antennas, which we assume to be zero-mean white (spa-
tially and temporally) Gaussian with variance σ2

e , and H(l) is the
Ar ×At MIMO channel of order L. Note that we will often make
use of the vectorized form of H(l), which is obtained by stacking
its columns: h(l) = vec{H(l)}.

In this paper, we focus on estimating H(l) (or h(l)) without
assuming any structure on it. Hence, no calibration of the different
transmit/receive antennas is required. We assume a burst of N
symbol vectors is transmitted, in the form of K symbol blocks,
where each symbol block consists of Nt training symbol vectors,
surrounded at each side by Nd/2 unknown data symbol vectors,
i.e., N = K(Nt +Nd). The Nt training symbol vectors in the kth
symbol block can be collected into

xk = [xT (nk), . . . ,xT (nk + Nt − 1)]T ,

where nk = k(Nt +Nd)+Nd/2 indicates the start of the training
symbol vectors in the kth symbol block. Since we only focus on
conventional training-based channel estimation, we will only focus
on the received sample vectors that solely depend on the training
symbol vectors. The Nt − L received sample vectors that solely
depend on the Nt training symbol vectors in the kth symbol block
yield the vector

yk = [yT (nk + L), . . . ,yT (nk + Nt − 1)]T ,

which can be expressed as

yk = Hxk + ek, (2)

where ek is similarly defined as yk and H is the Ar(Nt − L) ×
AtNt block Toeplitz matrix representing the convolution by the
channel:

H =







H(L) · · · H(0)
. . .

. . .
H(L) · · · H(0)






.



Alternatively, we can write the convolution operation (2) as a lin-
ear operation on the channel coefficient vector h = [hT (0), . . . ,
hT (L)]T , which gives

yk = (X k ⊗ IAr )h + ek, (3)

where X k is the (Nt − L) × At(L + 1) block Toeplitz symbol
matrix given by

X k =







xT (nk + L) · · · xT (nk)
...

...
xT (nk + Nt − 1) · · · xT (nk + Nt − L − 1)






.

(4)
Stacking yk for k = 0, 1, . . . , K−1, we obtain y = [yT

0 , . . . ,
yT

K−1]
T , which can be expressed as

y = (X ⊗ IAr )h + e, (5)

where e is similarly defined as y, and X = [X T
0 , . . . , X T

K−1]
T .

Many different channel estimation procedures can be applied
to (5). In this paper, we restrict ourselves to ML and LMMSE
channel estimation. For each of them, we investigate optimal train-
ing designs.

3. ML CHANNEL ESTIMATION

Assuming X has full column rank, which can be guaranteed by
design, it is easy to derive from (5) that the ML channel estimate
is given by

hML = [(X H
X )−1 ⊗ IAr ](X H ⊗ IAr )y. (6)

This ML channel estimate is unbiased, and the channel MSE can
be expressed as

JML = E(‖hML − h‖2)

= σ2
eAr tr[(X H

X )−1]. (7)

Note that the ML channel estimation problem can actually be de-
coupled into the different receive antennas, and is often presented
as such. However, for LMMSE channel estimation, which will be
discussed in the next section, the correlation between the differ-
ent receive antennas will come into the picture, and the problem
cannot be decoupled anymore.

3.1. Optimal Training

We now design X such that JML is minimized under a total train-
ing power constraint. In other words, we consider the following
problem

min
{xk}

tr[(X H
X )−1] s.t.

K−1
∑

k=0

‖xk‖
2 = E. (8)

To solve this, observe that

tr[(X (H
X )−1] ≥

L
∑

l=0

At
∑

i=1

1

‖[X ]:,lAt+i‖2
, (9)

where equality is obtained if X
H

X is diagonal. We proceed by
looking for the minimum of the right hand side of (9) under the
total training power constraint, and we subsequently try to realize

this minimum by a training design for which X
H

X is diagonal,
in order to obtain equality in (9).

We will consider the following two cases: the number of train-
ing symbols Nt ≥ 2L + 1 and Nt = L + 1. For the remaining
case where L + 1 < Nt < 2L + 1, the optimization problem is
hard to solve in analytical form.

3.2. Case Nt ≥ 2L + 1.

It is clear that in order to minimize the right hand side of (9),
we should make sure that no training power is wasted. Hence,
we should take x(nk + l) = x(nk + Nt − 1 − l) = 0At×1, for
l = 0, . . . , L − 1 and k = 0, . . . , K − 1. This means that for a
fixed value of i the columns [X ]:,lAt+i, l = 0, . . . , L, are shifted
versions of each other, whereas for a fixed value of l the columns
[X ]:,lAt+i, i = 1, . . . , At, have no entries in common. Hence,
defining ‖[X ]:,lAt+i‖

2 = λi, we need to solve

min
{λi}

L
∑

l=0

At
∑

i=1

1

λi

s.t.
At
∑

i=1

λi = E and λi ≥ 0.

It is clear that the solution is given by λi = E/At. In order to
force X

H
X to be diagonal, we should thus design X such that

X
H

X =
E

At

IAt(L+1).

As an example, consider Nt = M(L+1)+L with M ≥ 1. An
optimal solution is then given by using dispersed training symbol
vectors separated by L zero vectors (see Figure 1):

xk = [0T
AtL×1, t

T
kM ,0T

AtL×1, t
T
kM+1,0

T
AtL×1, . . .

. . . ,0T
AtL×1, t

T
(k+1)M−1,0

T
AtL×1]

T (10)

where T = [t0, . . . , tKM−1] satisfies TTH = E/AtIAt , which
requires K ≥ At/M .

3.3. Case Nt = L + 1.

We observe from (4) that in this case X k = xT
k , and consequently

X = [x0, . . . ,xK−1]
T . This means that all columns [X ]:,lAt+i,

l = 0, . . . , L and i = 1, . . . , At, have no entries in common.
This means that ‖[X ]:,lAt+i‖

2 is independent for different val-
ues of l and i, and can thus be denoted as λl,i. Hence, defining
‖[X ]:,lAt+i‖

2 = λl,i, we need to solve

min
{λl,i}

L
∑

l=0

At
∑

i=1

1

λl,i

s.t.
L

∑

l=0

At
∑

i=1

λl,i = E and λl,i ≥ 0.

It is clear that the solution is given by λl,i = E/(At(L + 1)).
In order to force X

H
X to be diagonal, we should thus design X

such that

X
H

X =
E

At(L + 1)
IAt(L+1).

This is easy to obtain as long as K ≥ At(L + 1), since there is no
structure in X .
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Fig. 1. Optimal training structure if Nt ≥ 2L + 1.

4. LMMSE CHANNEL ESTIMATION

From (5) and the fact that the additive noise e(n) is zero-mean
white (spatially and temporally) Gaussian with variance σ2

e , it is
easy to derive that the LMMSE channel estimate is given by

hLMMSE = [(X H
X )⊗ IAr +σ2

eR
−1
h ]−1(X H ⊗ IAr )y, (11)

where Rh = E(hhH). This LMMSE channel estimate is biased,
and the channel MSE can be expressed as

JLMMSE = E(‖hLMMSE − h‖2)

= σ2
e tr{[(X H

X ) ⊗ IAr + σ2
eR

−1
h ]−1}. (12)

Note that in contrast to the ML channel estimate, the LMMSE
estimate requires the knowledge of the channel statistics and the
noise variance.

4.1. Optimal Training

We now design X such that JLMMSE is minimized under a total
training power constraint. In other words, we consider the follow-
ing problem

min
{xk}

tr{[(X H
X )⊗ IAr + σ2

eR
−1
h ]−1} s.t.

K−1
∑

k=0

‖xk‖
2 = E.

(13)
To solve this, observe that

tr{[(X H
X ) ⊗ IAr + σ2

eR
−1
h ]−1} ≥

L
∑

l=0

At
∑

i=1

Ar
∑

j=1

1

‖[X ]:,lAt+i‖2 + σ2
e [R−1

h ]nl,i,j ,nl,i,j

, (14)

where nl,i,j = lAtAr + (i − 1)Ar + j, and equality is obtained
if (X H

X ) ⊗ IAr + σ2
eR

−1
h is diagonal. As before, we proceed

by looking for the minimum of the right hand side of (14) un-
der the total training power constraint, and we subsequently try
to realize this minimum by a training design for which (X H

X )⊗
IAr +σ2

eR
−1
h is diagonal, in order to obtain equality in (14). Since

this last diagonalization step is not always possible, we assume for
simplicity that Rh is diagonal. As before, we only consider the
Nt ≥ 2L + 1 case and the Nt = L + 1 case.

4.2. Case Nt ≥ 2L + 1.

As before, it is clear that in order to minimize the right hand side of
(14), we should make sure that no training power is wasted. Hence,
we should take x(nk + l) = x(nk + Nt − 1 − l) = 0At×1, for

l = 0, . . . , L − 1 and k = 0, . . . , K − 1. Hence, as in the ML
case, we can define ‖[X ]:,lAt+i‖

2 = λi, and solve

min
{λi}

L
∑

l=0

At
∑

i=1

Ar
∑

j=1

1

λi + σ2
e [R−1

h ]nl,j,i,nl,j,i

s.t.
At
∑

i=1

λi = E and λi ≥ 0.

The solution can be obtained numerically and will be denoted by
λi,opt. Given this solution, we can finally force (X H

X )⊗ IAr +
σ2

eR
−1
h to be diagonal by designing X such that

X
H

X = IL+1 ⊗ Λ,

where

[Λ]i,i′ =

{

λi,opt if i′ = i
0 otherwise

.

If Nt = M(L + 1) + L with M ≥ 1, we can obtain this
by using the training strategy of (10) (see Figure 1) and designing
T = [t0, . . . , tKM−1] such that TTH = Λ, which again requires
K ≥ At/M .

4.3. Case Nt = L + 1.

As before, we observe from (4) that in this case X k = xT
k , and

consequently X = [x0, . . . ,xK−1]
T . Hence, as in the ML case,

we can define ‖[X ]:,lAt+i‖
2 = λl,i, and solve

min
{λl,i}

L
∑

l=0

At
∑

i=1

Ar
∑

j=1

1

λl,i + σ2
e [R−1

h ]nl,j,i,nl,j,i

s.t.
L

∑

l=0

At
∑

i=1

λl,i = E and λl,i ≥ 0.

The solution can be obtained numerically and will be denoted by
λl,i,opt. Given this solution, we can finally force (X H

X )⊗IAr +
σ2

eR
−1
h to be diagonal by designing X such that

X
H

X = Λ, (15)

where

[Λ](l−1)At+i,(l′−1)At+i′ =

{

λl,i,opt if l′ = l and i′ = i
0 otherwise

.

This is again easy to obtain as long as K ≥ At(L+1), since there
is no structure in X .
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Fig. 2. Performance results for Nt = 2L + 1 and K = 2.

4.4. Remarks

The assumption that Rh is diagonal might not be very realistic.
However, it turns out that this training design procedure also works
well for MIMO channels with correlated channel taps, although it
is suboptimal in that case.

It can be observed that the optimal training parameters λi,opt

and λl,i,opt depend on the channel statistics and the noise variance.
Hence, these optimal training parameters need to be computed at
the receiver and be fed back to the transmitter. Fortunately, the
channel statistics and the noise variance vary slowly and the op-
timal training parameters do not have to be fed back very often,
thereby reducing the relative amount of feedback information.

5. SIMULATIONS

We consider a MIMO system with At = 2 transmit antennas and
Ar = 2 receive antennas. The channel order we simulate is L = 1.
We assume the different channel taps are Rayleigh fading and that
the channel covariance matrix is given by

Rh =

[

50 0
0 1

]

⊗

[

50 0
0 1

]

⊗

[

50 0
0 1

]

.

For each setup, we study four different possibilities: ML channel
estimation with ML optimal training, ML channel estimation with
LMMSE optimal training, LMMSE channel estimation with ML
optimal training, and LMMSE channel estimation with LMMSE
optimal training. As a performance measure, we consider the chan-
nel MSE (see (7) and (12) for the channel MSE of ML and LMMSE
channel estimation, respectively), normalized with the average chan-
nel energy:

NMSE =
E(‖hLMMSE − h‖2)

E(‖h‖2)
.

The signal-to-noise ratio (SNR) per transmit and receive antenna
is defined as

SNR =
E(‖h‖2)

σ2
eAtAr

,

where it is assumed that the average energy of a training symbol is
equal to one.
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Fig. 3. Performance results for Nt = L + 1 and K = 4.

First, we take Nt = 2L + 1 = 7 and K = 2, and implement
the optimal training strategy of Sections 3.2 and 4.2. The simula-
tion results are shown in Figure 2. Next, we take Nt = L + 1 = 4
and K = 4, and implement the optimal training strategy of Sec-
tions 3.3 and 4.3. The simulation results are shown in Figure 3.
As expected, LMMSE optimal training outperforms LS optimal
training if LMMSE channel estimation is considered. On its turn,
LMMSE channel estimation with LS optimal training outperforms
LS channel estimation with LS optimal training. The worst perfor-
mance is obtained by LS channel estimation with LMMSE opti-
mal training. The reason for this is that at low SNR some λi,opt or
λl,i,opt values get close to zero, which means that X becomes
almost singular and JML gets very large. Hence, when using
LMMSE optimal training, one should always incorporate some
kind of regularization in the channel estimation procedure.
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