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State-Space Network Topology Identification From
Partial Observations

Mario Coutino , Student Member, IEEE, Elvin Isufi , Member, IEEE, Takanori Maehara,
and Geert Leus , Fellow, IEEE

Abstract—In this article, we explore the state-space formulation
of a network process to recover from partial observations the
network topology that drives its dynamics. To do so, we employ
subspace techniques borrowed from system identification literature
and extend them to the network topology identification problem.
This approach provides a unified view of network control and signal
processing on graphs. In addition, we provide theoretical guaran-
tees for the recovery of the topological structure of a determin-
istic continuous-time linear dynamical system from input-output
observations even when the input and state interaction networks
are different. Our mathematical analysis is accompanied by an
algorithm for identifying from data,a network topology consistent
with the system dynamics and conforms to the prior information
about the underlying structure. The proposed algorithm relies
on alternating projections and is provably convergent. Numerical
results corroborate the theoretical findings and the applicability of
the proposed algorithm.

Index Terms—Inverse eigenvalue problems, graph signal
processing, signal processing over networks, state-space models,
network topology identification.

I. INTRODUCTION

THE TOPOLOGY of networks is fundamental to model in-
teractions between entities and to improve our understand-

ing about the processes evolving over them. We find examples of
such processes in transportation networks [1], brain activity [2],
and epidemic dynamics or gene regulatory networks [3], to
name a few. The coupling between the process and the net-
work topology extended signal processing (SP) techniques to
tools that take into account the network structure for defining
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signal estimators [4]–[6], filters [7]–[9], and optimal detectors
[10]–[12].

While in several scenarios, the network structure is available,
in many others, it is unknown and needs to be estimated. This
is not only for enhancing data processing tasks but also for
data interpretability, i.e., the network topology provides an
abstraction for the underlying data dependencies. Therefore,
retrieving the network structure or the dependencies of the
involved members (variables) has become a research topic of
large interest [13]–[21].

Despite many works focus on the problem of topology iden-
tification [22], [23] or Gaussian graphical modeling [24], [25],
most of these approaches only leverage a model based on the
so-called graph filters [26], graph signal smoothness [27], [28],
or enforce a particular structure by dictonary learning [29] or by
a penalized likelihood approach with sparsity constraints [30],
[31]. Among the works that consider an alternative interaction
model e.g., [17], [21], [32], [33], only a few of them consider
the network data as states of an underlying process. However,
none of the above works study the case where the input, i.e.,
excitation or probing signal of the process, and the process itself
evolve according to different topologies.

In many instances, physical systems can be defined through
a state-space formulation with known dynamics. An example is
the diffusion of molecules in tissue [34]. This process is used
to analyze brain functions by mapping the interaction of the
molecules with obstacles. The area of neural dynamics considers
also the problem of network design in transport theory [35]. In
such applications, the topology that provides a stable desired
response needs to be found, following a differential equation.
Finally, we recall the problem of finding the connections be-
tween reactants in chemical reaction networks [36], [37]. Here,
molecules evolve in a solution according to the interaction
between reactants present in it. Hence, to understand the un-
derlying chemical process, the relation between reactants is
required. Considering these systems, it is clear that a more
general approach, parting from first-principles, to find the under-
lying connections is preferred. So, we focus on the problem of
retrieving the network structure of a process modeled through a
deterministic continuous-time dynamical system whose system
matrices depend on the underlying topology.

Within the system identification literature [38]–[40], sev-
eral methods have been devised to address this problem in-
stance. In particular, methods for inferring the network structure
using response dynamics [41], [42] and linearized network
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dynamics [43] resulted successful in recovering the network
topology. However, these approaches require exact knowledge
of the dynamics, i.e., node driving model, and measurements at
each node.

To relax the assumption of exact nodal dynamic model knowl-
edge, model-free methods [38] have been proposed to infer
network interactions. Most of these methods, e.g., [37], [44]–
[46], assume the coupling (interaction) between two network
elements belongs to a set of candidate functions or that such dy-
namics can be represented with a few candidate basis functions.
Under this assumption, compressive sensing and sparse recovery
techniques are leveraged to retrieve the network structure. Al-
though these methods achieve good performance when the basis
functions are guided by physical principles, they need access to
all system states and consider the system states’ rate of change is
either measured directly or estimated accurately. Hence, when
access to these quantities is not available, i.e., there are hidden
nodes, these methods are not directly applicable as pointed out
in [37], [43].

To address the problem of hidden nodes in a network, e.g.,
partial observation of the true system states, several works have
advocated indirect methods to locate their position with respect
to the visible network structure [47], [48]. For instance, [47]
showed that when a sparse recovery problem has to be solved
to unveil the network structure, anomalously dense regressor
vectors (non-sparse vectors) are correlated with the existence
of a hidden node or with a node-dependent noise source.
This observation lead to a series of attempts to differentiate
the effect of a hidden node and a noise source in the network
data. Most of these approaches rely on pair-wise comparisons
using the so-called cancellation ratio [48]. Although this kind of
approaches can be extended to unveil multiple entangled hidden
nodes, the cancellation-coefficient based technique needs to be
performed on candidate groups of nodes that are believed to be
connected to hidden nodes. In addition, despite these methods
perform well when the basis functions are the true ones, they
are sensitive to basis expansion mismatch. Hence, setting an
anomalous density threshold is not straightforward.

With the resurgence of statistical system identification in
machine learning [49], [50], methods using Hankel-structured
matrices, inspired by the celebrated Kalman-Ho algorithm [51],
estimate system realizations from a single time series; see,
e.g., [52], [53]. Many of these methods are the least-squares
counterparts of the subspace-based system identification meth-
ods [54] which estimate a system realization from a Hankel
embedding. Although these new approaches provide insights
into lowest-order system approximation, they do not leverage
any prior knowledge with respect to the system matrices and
focus on approximate rather than exact system realizations.

In this work, we focus on retrieving a network topology, from
partial observations, that not only captures the interactions of
the network elements but also the dynamics of the underlying
network process. To address this task, we devise a framework,
using well-established tools from system identification [38], to
estimate the network topology from partial observations up to
ambiguities defined through the equivalence class of restricted
cospectral graphs [55]. These ambiguity results extend some of

the observations in [56], where fundamental limits for network
reconstruction from temporal data were derived from a group-
theoretic perspective.

Finally, we remark that another related area to topology
identification is metric learning [57]. These works recover a
metric that preserves distances between similar objects. This
metric is represented by a matrix which can be linked with
a graph [58]. Although [58] considers recovering a network
matrix from partial observations, their assumptions make their
approach unapplicable to our setting since: (i) they assume graph
smoothness [cf. [27]]; and (ii) they consider available feature
vectors per node. In other words, they construct a similarity
graph without considering the dynamics nor the driving process.

A. Overview and Main Contributions

Network topology inference from partial measurements is
generally an ill-posed problem and it is still far from being
completely understood. Therefore, in this work, we present an
approach based on state-space models to leverage first-principles
for model-driven topology estimation. Our contributions broad-
ening the state-of-the-art are the following.

– Using a first-order differential graph model for describing
the dynamics of a deterministic continuous-time linear net-
work process, we put forth a first-principles based network
topology identification framework leveraging subspace-
based system identification techniques. We also provide
conditions to retrieve the network topology from sampled
observations.

– We analyze mathematically the problem of network topol-
ogy identification from partial observations and show it
is ill-posed. Similarly to [56], we describe the ambigui-
ties present when recovering the network topology from
measurements that do not uniquely identify the underlying
structure using cospectral graphs.

– We present an algorithm based on the alternating pro-
jections (AP) approach [59] which is provably globally
convergent to estimate the network structure under the
partial observation setting. We further prove that under mild
conditions the proposed AP method converges locally with
a linear rate to a feasible solution.

– Finally, we extend the topology inference problem from
partial observations to instances where incomplete or in-
accurate process dynamics are present. For these cases,
we provide a mathematical analysis and conditions that
guarantee the convergence of the proposed AP method
when estimating a feasible network topology.

B. Outline and Notation

This paper is organized as follows. Section II formulates
the problem of network topology inference for continuous-time
dynamical systems from sampled observations. Section III intro-
duces a first-order differential graph model and its state-space
description. The system identification framework for the pro-
posed graph-based model is introduced in Section IV. Section V
analyzes the ambiguity of network topology identification from
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partial observations and provides an AP method to find a feasi-
ble network structure. Section VI discusses system consistency
constraints that can be enforced into the AP method to match the
dynamics. Section VII corroborates the theory with numerical
results. Finally, section VIII concludes the paper.

We adopt the following notation. Scalars, vectors, matrices
and sets are denoted by lowercase letters (x), lowercase boldface
letters (x), uppercase boldface letters (X), and calligraphic
letters (X ), respectively. [X]i,j denotes the (i, j)th entry of
the matrix X , whereas [x]i represents the ith entry of the
vector x. XT and X−1 are the transpose and the inverse of X ,
respectively. The Moore-Penrose pseudoinverse ofX is denoted
by X†. vec(·) is the vectorization operation. bdiag(X,Y )
denotes a block diagonal matrix whose blocks are given by
the matrices X and Y . I is the identity matrix of appropriate
size. ‖X‖F and ‖X‖2 denote the Frobenius- and �2-norm of
X , respectively. span(·) and rank(·) are the span and rank of
a matrix, respectively. Finally, we use [K] to denote the set
{1, 2, . . . ,K} and DK to denote the set of K ×K diagonal
matrices.

II. PROBLEM STATEMENT

Consider a set of N nodes V = {v1, . . . , vN} representing
cooperative agents such as sensors, individuals, and biological
structures. On top of these agents, a process P describes the
evolution through time of the agent signals x(t) ∈ RN . Signal
x(t) is such that the ith component xi(t) represents the signal
evolution of agent vi. The agent interactions w.r.t. the evolution
of signalx(t) are captured by a graphGx = (V, Ex), where Ex is
the edge set of this graph. We consider process P is represented
by a first-order differential model

∂tx(t) = h(V, Ex, Eu,x(t),u(t)), (1a)

y(t) = c(V, Ex, Eu,x(t),u(t)), (1b)

where ∂tx(t) := dx(t)/dt and h(·) and c(·) are maps that de-
scribe respectively the dynamics of signal x(t) and observables
y(t). In model (1), u(t) is the (known) system input and Eu
is the edge set of another graph Gu = (V, Eu) that captures
the interactions between the elements of V for input u(t). Put
simply, process (1) describes the evolution of signal x(t) under
the influence of maps h(·) and c(·) and the network topologies
Gx = (V, Ex) and Gu = (V, Eu). For future reference, we will
represent both graphs as G∗ = {V, E∗}, where “∗′′ is a space
holder forx andu. We remark that although (1) leads to a directed
process, i.e., there is a directed field flow, the topology (or metric
of the space) does not necessarily have to be directed, e.g., heat
diffusion. That is, the matrix representation of G∗ can indeed be
a symmetric matrix (undirected graph).

We can compactly define process P through the set

P := {h(·), c(·)}, (2)

which contains the interactions in the system. While process P
describes a continuous-time process, we usually have access to
sampled realizations of it, i.e., the observables y(t) are collected
on a finite set of time instances T := {t1, t2, . . . , tT }. As a

result, we might also want to consider discrete-time approxi-
mations of (2), where we either have a discrete-time realization
of P and/or a finite number of observables Y := {y(t)}t∈T .
Processes belonging to this family of models include, for ex-
ample, linearized dynamics of biochemical reactions, where the
state variables, x(t), represent the concentration of mRNA and
proteins in genes; the inputs, u(t), are external stimuli applied
to the system such as heat or current, and the underlying network
denotes the interactions (dependencies) between the genes. In
addition to this, diffusion processes in networks modeled using
the heat diffusion equation, also are included in this family of
models. Here, the state variables represent nodal quantities that
get diffused through the network by local aggregations. For
further examples where these models are applicable, we refer
the reader to the applications in [60].

With this in place, we ask: how to retrieve the network
topologies Gx and Gu for the agent signal x(t) and input signal
u(t) given the process P [cf. (2)], the input signal u(t), and the
observables in Y?

We answer the above question by employing results from
Hankel matrices [61] and linear algebra whose foundations lie
in system identification theory [62]. We consider subspace tech-
niques that are by definition cost function free. This differs from
the commonly used techniques in network topology identifica-
tion [22] where the learned topology heavily depends on the cost
function (e.g., smoothness or sparsity). If this prior knowledge
is incorrect, it leads to structures not related to the physical
interactions. The adopted techniques provide theoretical insights
when and how the underlying network structures can be iden-
tified. They also have two other benefits: first, they impose no
parameterization on the dynamical model and, therefore, avoid
solving nonlinear optimization problems as in prediction-error
methods [63]; second, they allow identifyingG∗ = {V, E∗} from
sampled data, i.e., by having access only to a subset of the
observables y(t).

Finally, we remark that although more general models can
be considered, e.g., higher-order differential models, we restrict
ourselves to first-order models to ease exposition and provide
a thorough and stand-alone work. Nevertheless, first-order dif-
ferential models are of broad interest as they include diffusion
processes –see [64] and references therein.

III. FIRST ORDER DIFFERENTIAL GRAPH MODEL

The graph G∗ = {V, E∗} is mathematically represented by a
matrix S∗ (sometimes referred to as a graph shift operator [65],
[66]) that has as candidates the graph adjacency matrix, the
graph Laplacian, or any other matrix that captures the relations
of network elements. We then consider process P is described
through the linear continuous-time dynamical system

∂tx(t) = fx(Sx)x(t) + fu(Su)u(t) +w(t) ∈ RN , (3a)

y(t) = Cx(t) +Du(t) + v(t) ∈ RL, (3b)

where C ∈ RL×N and D ∈ RL×N are the system matrices
related to the observables y(t). The variables, w(t) and v(t)
represent perturbations in the states and additive noise in the
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observables, respectively. The matrix function f∗ : RN×N →
RN×N is defined via the Cauchy integral [67]

f∗(S∗) :=
1

2πi

∫
Γf∗

fs,∗(z)R(z,S∗)dz, (4)

where fs,∗(·) is the scalar version of f∗(·) and is analytic on and
over the contourΓf∗ . Here,R(z,S∗) is the resolvent ofS∗ given
by

R(z,S∗) := (S∗ − zI)−1. (5)

From the dynamical system in (1), it can be seen that (3) rep-
resents first-order (linear) differential models, where the system
matrices fx(Sx) and fu(Su) are matrix functions of the matrix
representing the graphs Sx and Su.

Model (3) captures different settings of practical interest such
as diffusion on networks [64], graph filtering operations [9],
[26], random walks [68], and first-order autoregressive graph
processes [69]. The corresponding discrete-time state-space sys-
tem related to (3) is

x(k + 1) = f̃x(Sx)x(k) + f̃u(Su)u(k) +w(k), (6a)

y(k) = Cx(k) +Du(k) + v(k), (6b)

where f̃∗(·) is a matrix function (to be specified in the sequel)
and x(k) ∈ RN , u(k) ∈ RN , and y(k) ∈ RL are the discrete
counterparts ofx(t),u(t), and y(t), respectively. The variables,
w(k) and v(k) represent the discrete counterparts of pertur-
bation w(t) and noise v(t), respectively. By defining then the
matrices A(Sx) := f̃x(Sx) and B(Su) := f̃u(Su), the con-
nection between the continuous-time (3) and the discrete-time
representation (6) is given by

A(Sx) := f̃x(Sx) = efx(Sx)τ (7)

B(Su) := f̃u(Su) =

(∫ τ

0

efx(Sx)tdt

)
fu(Su), (8)

where τ is the sampling period and eX =
∑∞

k=0
1
k!X

k is the
matrix exponential function [67]. Using then (7) and (8), we can
compactly write model (6) as a linear discrete-time state-space
model

x(k + 1) = Ax(k) +Bu(k) +w(k) (9a)

y(k) = Cx(k) +Du(k) + v(k), (9b)

where we dropped the dependency of the system matrices A
and B from Sx and Su to simplify the notation. Throughout
the paper, we assume that the matrices C and D are known,
i.e., we know how the observables are related to the states and
inputs.

Remark 1: Although we consider known C and D, this
assumption can be relaxed asD can be obtained unambiguously
and as long as A is full rank, the order of the system can
be recovered [54]. However, without explicit knowledge of C
disambiguating the involved system matrices requires additional
prior knowledge.

IV. STATE-SPACE IDENTIFICATION

The family of subspace state-space system identification
methods [54] relies on geometrical properties of the dynamical

model (9). By collecting a batch of α different observables over
time, y(t) ∈ RL, into the αL−dimensional vector

yk,α � [y(k)T , . . . , y(k + α− 1)T ]T ,

we get the input-output relationship

yk,α = Oαx(k) + Tαuk,α + nk,α, (10)

where

Oα �

⎡
⎢⎢⎢⎢⎣

C

CA
...

CAα−1

⎤
⎥⎥⎥⎥⎦ , (11)

is the extended observability matrix of the system [70] and

Tα �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 0 0 · · · · · · 0

CB D
. . . · · · 0

...
. . .

. . .
...

... 0

CAα−2B CAα−3B · · · · · · CB D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(12)
is the matrix that relates the batch input vector

uk,α � [u(k)T , . . . , u(k + α− 1)T ]T ,

with the batch observables yk,α. The vector nk,α comprises the
batch noise that depends on the system perturbation {w(k)}
and on the observable noise {v(k)}; the detailed structure of
nk,α is unnecessary for our framework. The size of the batch α
is user-specified but must be larger than the number of states.
Assuming the number of nodes is the number of states, this
implies α > N .

Given then the input-output relation (10) and the structures
for the Oα in (11) and Tα in (12), we proceed by estimating first
the state matrix A using the algebraic properties of (11) and
subsequently the input matrix B from the structure of (12) and
a least squares problem.

Retrieving the state matrix A. A basic requirement for
estimating A is system observability [70]. Observability allows
to infer the system state from the outputs for any initial state
and sequence of input vectors. Put differently, we can estimate
the entire system dynamics from input-output relations. Sys-
tem (9) is observable if the system matrices {A,C} satisfy
rank(ON ) = N .1

Consider now a set of Q � T + α− 1 input-output pairs
{y(k),u(k)}Qk=1. By stacking the discrete batch vectors yk,α

for all observations into the matrix

Y = [y1,α, . . . ,yT,α],

and using expression (10), we can generate the Hankel-
structured data equation [71]

Y = OαX + TαU +N , (13)

1Although this assumption might not hold for all instances in practice, for a
full rank and well-conditioned system matrixA, this holds. This condition is also
required to provide mathematical rigor to the approach and obtain theoretical
guarantees.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2021 at 10:12:47 UTC from IEEE Xplore.  Restrictions apply. 



COUTINO et al.: STATE-SPACE NETWORK TOPOLOGY IDENTIFICATION FROM PARTIAL OBSERVATIONS 215

where X is the matrix that contains the evolution of the states
accross the columns, i.e.,

X = [x(1), . . . , x(T )],

and where the input U and noise N matrices are block Hankel
matrices defined as

U = [u1,α, . . . ,uT,α] and N = [n1,α, . . . ,nT,α].

The structure in (13) is at the core of system identification
methods [62] and this arrangement leads naturally to a subspace-
based approach to find A. To detail this, consider the noise-free
case

Y = OαX + TαU . (14)

To continue, U should allow us to remove the part of the output,
Y , that was not generated from the state signal,X . That is, given
U , right-multiplying Y with the projection matrix Π⊥

UT should
give us

Y Π⊥
UT = OαXΠ⊥

UT , (15)

while ensuring the full row-rankness ofXΠ⊥
UT . Given thatU is

full row-rank, such a projection matrix,Π⊥
UT , can be constructed

as

Π⊥
UT � I −UT (UUT )−1U . (16)

Since UΠ⊥
UT = 0, this leads to (15). The condition of the

inputs guaranteeing the invertibility of UUT and the full row-
rankness of XΠ⊥

UT is known as the persistent excitation con-
dition [71]. This property requieres the inputs to excite all the
modes of the system. Despite that in many scenarios this property
might be difficult to enforce, e.g., there is no total control on the
inputs of the system, we consider the case where full control of
the input signal is guaranteed; hence, as discussed in [71], it is
always possible to meet such condition with high probability.

Being able to project out the contribution of the input from
the output, while ensuring the rank of the projected state signal
matrix, leads to the following property.

span(Y Π⊥
UT ) = span(Oα). (17)

That is, the signal subspace of the projected observablesY Π⊥
UT

coincides with that of the extended observability matrix. There-
fore, span(Oα) can be estimated from Y Π⊥

UT and, subse-
quently, the system matrix A by using the block structure of
Oα in (11). To detail this procedure, consider the economy-size
singular value decomposition (SVD) of Y Π⊥

UT

Y Π⊥
UT = (Y Π⊥

UT )N = W α,NΣNV T
α,N , (18)

where (Y Π⊥
UT )N is the N -rank approximation of Y Π⊥

UT and
equality holds because of the full row-rank assumption of the
projected input XΠ⊥

UT . Then, from condition (17), we have

Oα = W α,NT , (19)

for some invertible similarity transform matrix T ∈ RN×N .
Given C known with full column-rank, we can estimate the

transform matrix T from the structure of Oα [cf. (11)] as

T̂ = (JW α,N )†C, (20)

where (·)† denotes the Moore-Penrose pseudoinverse and
JW α,N denotes the first L rows of W α,N . If C is not full
column-rank, the transform matrix T is not unique. We will
deal with the non-uniqueness of T in Section V.

Finally, to get A, we exploit the shift invariant structure of
Oα w.r.t. A, i.e.,

JuOαA = J lOα ∈ Re(α−1)L×N , (21)

where JuOα and J lOα denote the upper and lower (α− 1)L
blocks of Oα [cf. (11)], respectively. By substituting then the
expression (19) for Oα into (21) and by using the estimate T̂
(20) for the transform matrix T , the least squares estimate for
A is given by

Â = (JuW α,N T̂ )†J lW α,N T̂ . (22)

Retrieving the input matrix B. While the input matrix B can
be obtained with a similar approach as A [72] (yet with a more
involved shift-invariant structure), we compute it together with
the initial state x(0) by solving a least squares problem.

To do so, we expand system (9) to all its terms as

y(k)− (u(k)T ⊗ IL)vec(D) = CAkx(0)

+

( k−1∑
q=0

u(q)T ⊗CAk−q−1

)
vec(B), (23)

where IL is the L× L identity matrix and vec(·) is the vector-
ization operator. We then collect the unknownsx(0) and vec(B)
into vector θ = [x(0)T vec(B)T ]T and define the matrix

Ψ̂ �
[
CÂ

k
,

k−1∑
q=0

u(q)T ⊗CÂ
k−q−1

]
,

where we substituted the state transition matrix A with its
estimate (22) while the other quantities C,D and u(k) are
known. Finally, we get the input matrix B by solving

min
θ

1
Q

Q∑
k=1

‖y(k)− Ψ̂θ‖22. (24)

Given the system matrices {Â, B̂,C,D}, the state inter-
action graph Gx (Sx) and input interaction graph Gu (Su)
can be obtained by enforcing the constraints derived from the
information of the physical process, i.e., the model dynamics.
Hence, the network structure depends heavily on the estimate of
the subspace span of Oα.

A. Noisy Setting

We discuss now a method for estimating A and B with
perturbations in the state evolution x(t) and noise in the observ-
ables y(t). To tackle these challenges, we leverage instrumental
variables.
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Consider the following partition of the observables and input
matrix

Y = [Y T
1 , Y

T
2 ]

T and U = [UT
1 , U

T
2 ]

T ,

where Y 1 (resp. U1) and Y 2 (resp. U2) have respectively β
and γ blocks of size L with γ = α− β. The model for the
observables Y 2 is [cf.(13)]

Y 2 = OγX2 + TγU2 +N2. (25)

Following then the projection-based strategy to remove the de-
pendency fromU2, we can write the projected noisy observables
as [cf. (15)]

Y 2Π
⊥
UT

2
= OγX2Π

⊥
UT

2
+N2Π

⊥
UT

2
, (26)

with X2 and N2 being the respective partitions of the state
evolution and perturbation matrix.

Observe from (26) that the signal subspace is corrupted with
the noise projection term N2Π

⊥
UT

2
. To remove the latter, we

follow the instrumental variable approach. Since the noise is
uncorrelated with the input U1 and since the noise present in
the second block N2 is uncorrelated with the noise in the first
block N1, it holds that

lim
T→∞

1

T
N2[U

T
1 , Y

T
1 ] = [0, 0]. (27)

Subsequently, we define Z1 � [UT
1 , Y

T
1 ] and consider the

matrix

G1 � 1

N
Y 2Π

⊥
UT

2
Z1, (28)

to estimate of the signal subspace. Matrix G1 is asymptotically
“noise free” due to (27). From the economy-size SVD (N -rank
approximation) of G1, we get

G1 ≈ W γ,NΣNV T
γ,N . (29)

Finally, by using W γ,N , the system matrices A and B can be
estimated from expressions (20), (22), and (24).

Note that the estimator for the signal subspace [cf.(29)]
has intrinsic statistical properties. To control the variance and
bias, different works have proposed to left and right weigh the
matrices in (28) before the SVD [73]. As establishing optimal
weighting matrices requires further analysis, we do not detail
them here and refer interested readers to [74].

B. Continuous-Time Model Identification

Given the discrete-time system matrices {Â, B̂,C,D}, we
can estimate the continuous-time transition matrices of (3).
Observe from (7) that estimating f̂x(Sx) from Â requires com-
puting only the matrix logarithm of Â. Nevertheless, as stated by
the following proposition, there are conditions processP should
meet for this matrix logarithm to (i) exist and (ii) be unique.
For clarity, the involved matrices are real since we have matrix
functions that map real matrices onto real matrices.

Proposition 1: Let the analytic function fs,x(·) of fx(Sx) in
(7) satisfy

a) efs,x(z) �∈ R−, ∀ z ∈ eig(Sx)
b) fs,x(z) > −∞, ∀ z ∈ eig(Sx)

where R− is the closed negative real axis. Then, process P
guarantees that (i) and (ii) are met.

If the conditions of Proposition 1 are met for fs,x(·), then
A has no eigenvalues on R−. This implies that the principal
logarithm2 of A, ln(A) = τfx(Sx), exists and is unique. Note
that if A is real, its principal logarithm is also real. Hence, if
fs,x(·) satisfies the conditions of Proposition 1, the continuous-
time transition matrices for nonsingular Â− I are

f̂x(Sx) =
1

τ
ln(Â) (30a)

f̂u(Su) = (Â− I)−1f̂x(Sx)B̂. (30b)

The expression for f̂u(Su) is derived from∫ τ

0

efx(Sx)tdt = fx(Sx)
−1(efx(Sx)τ − I). (31)

Given f̂x(Sx) and f̂u(Su), we are left to estimate of the un-
derlying topologies. Depending on the available prior infor-
mation, the network topology can be estimated with methods
promoting particular properties. As f̂x(Sx) and f̂u(Su) are
matrix functions ofSx andSu, respectively, these matrices share
their eigenvectors with the corresponding network matrices.
Then, when the mappings fs,x(·) and fs,u(·) are known, the
network matrices can be recovered by applying the inverse
maps {f−1

s,x(·), f−1
s,u(·)} (if they exist) or by solving a (possibly)

nonlinear root finding problem. When fs,x(·) and fs,u(·) are
unknown but structural properties such as sparsity are assumed,
methods using the eigenvectors of f̂x(Sx) and f̂u(Su) can be
employed to find the corresponding network matrices, Sx and
Su. Examples of methods that make use of such an eigenbasis
knowledge to recover the network topology can be found in [15],
[75]–[77] and references therein. As the main focus of this work
is not on the full-observability case, e.g., all node signals are
observed, we do not further discuss this, and focus now our
attention on the case of partial observability. Full-observability
network topology identification has been extensively studied in
recent times; see e.g., [22].

For the case of partial observations, the similarity transform
T cannot be uniquely identified making the above methods not
applicable for identifying the network topology due to the am-
biguities in the system matrices. Therefore, in the next section,
we next discuss the existing ambiguities in the solution and
introduce an AP method for estimating the network topology
in this setting.

Remark 2: Although we focus principally on continuous-
time models, all results hold also for purely discrete models
with appropriate minor changes in the functional dependencies
of the system matrices.

V. PARTIALLY OBSERVED NETWORK

So far, we considered the observablesy(t) are available for the
whole network, i.e., C = I or more generally rank(C) = N .

2For two matrices X and Y , X is said to be the matrix logarithm of Y if
eX = Y . If a matrix in invertible and has no-negative real eigenvalues, there is
a unique logarithm which is called principal logarithm [67].
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The latter allows a unique estimate for the similarity matrix
T in (20). We here move to the more involved case where we
cannot observe the process on all nodes, i.e.,C ∈ {0, 1}L×N is a
selection matrix, or the observations are not sufficiently rich, i.e.,
rank(C) < N . This setting appears in biological or chemical
networks [37] where the trajectories of the genes or compounds
are not directly measurable but only a few observables capturing
mixtures of them. Hidden nodes are also present in networks for
which no direct information is available [47]. For example, in
epidemics spreading, the original carrier of a virus may be hid-
den; in ecological networks, measurements cannot be retrieved
from all ecological niches due to budgeted constraints. Finally,
in social network difussions [78], hidden users influencing the
network dynamics have their data (information) hidden from
third-party collectors. Hence, an analysis of the inference limits,
similar to the one presented in [56] for network discovery, in
these scenarios is required.

When matrix C is rank deficient, we cannot find a unique
transform matrix T , hence instead of retrieving the original
system matrices, we estimate a set of equivalent matrices

AT � TAT−1, BT � TB, (32)

which also realize the system in (10). It follows from (32) that
(although AT �= A in general) if A is diagonalizable as A =
QAΛAQA, then

eig(A) = eig(AT), (33)

holds, where eig(A) are the eigenvalues of A. The equality (33)
yields since A and AT are similar matrices.3

In these situations, we cannot remove the ambiguity in the sys-
tem matrices without additional information. In the sequel, we
motivate next why this disambiguation problem is particularly
hard. We further derive a method to estimate an approximately
feasible realization of the network topology related to the signal
subspace and to the knowledge of the (bijective) scalar mappings
{fs,x(·), fs,u(·)}.

Finally, despite we concentrate in recovering the state network
topology Gx, this is not a problem for cases when the input net-
work topologyGu is of interest. For such cases, an additional step
can always be performed to retrieve Su from the transformed
matrix BT . For instance, from the estimate of A based on the
state network topology and AT , we can estimate the transform
matrix T̂ . Subsequently, the inverse operation to BT to get B̂
and, therefore, Gu.

A. The Graph Inverse Eigenvalue Problem

To start, consider the shift operator Sx belongs to a set S
which contains all permissible matrices representing the state
dynamics that lead to AT. Set S describes the properties
of the graph representation matrix, e.g., zero diagonal (ad-
jacency) [Sx]n,n = 0∀n ∈ [N ], unitary diagonal (normalized
Laplacian) [Sx]n,n = 1∀n ∈ [N ], zero eigenvalue related to
the constant eigenvector (combinatorial Laplacian) Sx1 = 0,
symmetry (undirected graphs) Sx = ST

x .

3Two matrices X and Y are said to be similar if there exists an invertible
matrix P such that X = PY P−1.

Fig. 1. Two cospectral trees with the same number of edges. With respect to
the adjacency matrix, almost all trees are non determined by their spectrum.
Both graphs have the same characterisitic polynomial t4(t4 − 7t2 + 9), hence
cospectral.

The ambiguity (33) introduced by the similarity transform
matrix T transforms the problem of finding Sx into

find S

subject to S ∈ S
eig(S) = λx, (34)

where λx = eig(Sx) is the vector containing the eigenvalues of
Sx obtained by applying the inverse map to the eigenvalues of
AT . Problem (34) recasts the network topology identification
problem to that of finding a graph shift operator matrix Sx that
has a fixed spectrum. This problem belongs to the family of
inverse eigenvalue problems [79]. In a way, problem (34) is the
complement of the network spectral template approach [15].
Here, instead of having an eigenbasis and searching for a set
of eigenvalues, we have a set of eigenvalues and search for an
eigenbasis.

Problem (34) is ill-posed since its solution is non-unique in
most cases. Thus, it leads to ambiguities in its solution. In what
follows, we characterize this ambiguity in terms of equivalence
classes between graphs and provide a method able to find a
network topology satisfying the conditions of (34).

B. Ambiguous Graphs: Cospectral Graphs

We find ambiguities in graphs that belong to an equivalence
class [80]. An example of spectrally equivalent graphs are iso-
morphic graphs [55]. Two graphs G and G′ with respective graph
shift operator matrices S and S′ are equivalent if there exists a
permutation matrix P such that

S = PS′P T . (35)

That is, the graph representation matrices are row- and column-
permuted versions of each other. The permutation matrix P
implements the isomorphism. Therefore, if only the graph eigen-
values λ are available, the graphs are always indistinguishable
up to node reordering. This situation is not at all undesirable
as the ordering of the nodes is often not important. However,
isomorphic graphs are not the only ones sharing the spectrum.

Graphs that share the spectrum are called cospectral (or
isospectral) graphs [81]. Note, however, that cospectral graphs
are not necessarily isomorphic. Fig. 1 illustrates an example of
two cospectral graphs. Graph cospectrallity renders the feasible
set of (34) not a singleton and, therefore, we need to settle
with any feasible graph satisfying the constraints. Put is simply,

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2021 at 10:12:47 UTC from IEEE Xplore.  Restrictions apply. 



218 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

the identified topology from (34) will be a graph within the
equivalence class of cospectral graphs regarding λ and S . The
following definition formalizes the latter.

Definition 1: (Equivalent cospectral graphs) Two graphs G
and G′ of N nodes are cospectral equivalents with respect to the
spectrum λ and the graph representation set S , if they belong to
the set

Cλ
S := {G |S ∈ S, eig(S) = λ}.

As a result, the feasibility problem (34) reduces to a graph
construction problem (graph inverse eigenvalue problem). So,
the problem at hand can be rephrased as given a spectrum λ

and a set S , construct a graph shift operator matrix S ∈ S with
spectrum λ. We shall discuss next a method that addresses this
construction problem.

C. Graph Construction by Alternating Projections

Before detailing the graph construction method, we introduce
the following assumptions.

A.1) The set S is closed.
A.2) For any S ∈ RN×N , the projection PS(S) of S onto

the set S is unique.
The first assumption is technical and guarantees setS includes

all its limit points. The second assumption is slightly more
restrictive and ensures the problem

PS(S) := minimize
Ŝ

‖S − Ŝ‖F, s.t. Ŝ ∈ S, (36)

has a unique solution. Although this assumption might seem
restrictive, in most cases we only have access to a convex
description of the feasible set S which satisfies A.2 (as the set
is assumed closed) or only to the projection onto the convex
approximation of the feasible set. Thus, it is fair to consider A.2
holds in practice. To ease exposition, we focus on the case of
symmetric matrices, i.e., undirected graphs but remark that a
similar approach can be followed for directed graphs.4 Further,
denote by SN the set of symmetric N ×N matrices and by
SN
+ the set of positive semidefinite matrices. We then recall the

following result from [83, Thm. 5.1].
Theorem 1 (adapted): Given S ∈ SN and let S = QΛQT

be the spectral decomposition of S with non-increasing eigen-
values [Λ]ii ≥ [Λ]jj for i < j. For a fixed Λo ∈ DN with non-
increasing elements [Λo]ii ≥ [Λo]jj for i < j, a best approxi-
mant, in the Frobenius norm sense, of S in the set of matrices
with fixed eigenvalues

M := {M ∈ SN |M = V ΛoV
T ,V ∈ O(N)},

is given by

PM(S) := QΛoQ
T ,

where O(N) denotes the set of the N ×N orthogonal matrices.
Theorem 1 implies the projection of S onto M is not neces-

sarily unique. As an example, consider the graph shift operator

4This could be done by exchanging the spectral decomposition for the Schur
decomposition [82] which decomposes a matrix into unitary matrices and an
upper triangular matrix.

S with repeated eigenvalues. Here, it is not possible to uniquely
define a basis for the directions related to the eigenvalues with
multiplicity larger than one. Hence, infinitely many eigendecom-
positions exist that lead to many projections of S onto M. Since
every element of M is uniquely determined by an element of
O(N), the structure of M is completely defined by the structure
of O(N). Therefore, as O(N) is a smooth manifold, M is one
as well.

Alternating projections method. As it follows from As-
sumptions A.1 and A.2 and Theorem 1, we can project any
graph shift operator matrix S ∈ SN onto S and M. Further,
by noticing that the construction problem (34) is equivalent to
finding a matrix in

S ∩M, (37)

we can consider the alternating projections (AP) [59] to find a
point in (37). The AP method finds a point in the intersection of
two closed convex sets by iteratively projecting a point onto the
two sets. It performs the updates

Sk+1/2 = PS(Sk) (38a)

Sk+1 ∈ PM(Sk+1/2), (38b)

starting from a point S0 ∈ M. The AP method has guaranteed
convergence for convex sets and it does that linearly. However,
for alternating projections on a combination of different types
of sets (we have a set S satisfying A.1 and A.2, and a smooth
manifold M), additional conditions on both sets are necessary
to guarantee convergence.

First, let us formalize the notion of a fixed point for the
iterative procedure (38).

Definition 2 (Fixed point): A matrixS ∈ SN is a fixed point
of the alternating projections procedure in (38) if there exists an
eigendecomposition of PS(S),

PS(S) = QΛQT ∈ S,

with non-increasing elements [Λ]ii ≥ [Λjj ] if i < j such that

S = QΛoQ
T ∈ M.

This definition makes explicit two things. First, it defines S
as a fixed point if and only if

S ∈ PM(PS(S)). (39)

Second, whenS is a fixed point andPS(S) has eigenvalues with
multiplicity larger than one, progress can still be made towards a
feasible solution when PM(PS(S)) �∈ S ∩M. To see the latter,
consider the case where an alternative eigendecomposition

PS(S) = Q̃ΛQ̃
T
, (40)

is available for the fixed point S. Assuming that

S̃ = Q̃ΛoQ̃ �= QΛoQ
T = S, (41)

with Q the eigenbasis that makes S a fixed point, we can see
that the new point S̃ escapes from the fixed point. Further,
since the successive projections between two closed sets is a
nonincreasing function over the iterations [84, Thm. 2.3], we
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can prove that S̃ presents a progress towards a feasible solution
in S ∩M.5

With this in place, the following theorem shows that the AP
method converges in the graph construction problem.

Theorem 2: Let S meet Assumptions A.1–A.2 and consider
the set M defined in Theorem 1. Let also S0,S1,S2, . . . ,
be a sequence generated by the alternating projections method
in (38). Then, there exists a limit point S of this sequence that
is a fixed point of (38) [cf. 2] satisfying

‖S − PS(S)‖ = lim
k→∞

‖Sk − PS(Sk)‖.

If the limit is zero, then S ∈ S ∩M.
Proof: See Appendix IX-A.6 �
The above theorem proves the AP method retrieves a matrix

S ∈ M that realizes the original system, i.e., it preserves the un-
derlying system modes and is an approximately feasible network
representation. Nevertheless, Theorem 2 does not quantify the
rate of convergence of such a method. By particularizing results
for super-regular sets [85, Thm. 5.17], the following theorem
shows that if the problem is feasible, locally, the proposed
method converges linearly to a point in (37).

Theorem 3: Let the set of all permissible matricesS [cf. (34)]
be convex and meet Assumptions A.1–A.2. Let also the set M
be defined as in Theorem 1. Denote by NS(S) the normal cone
of the closed set S at a point S and, similarly, by NM(S) the
normal cone of the set M at S. Further, suppose that M and S
have a strongly regular intersection at S̄, i.e., the constant

c̄ = max{〈u, v〉 : u ∈ NM(S̄) ∩B, v ∈ −NS(S̄) ∩B},

is strictly less than one with B being a closed unit Euclidean
ball. Then, for any initial point S0 ∈ M close to S̄, any se-
quence generated by the alternating projections method in (38)
converges to a point in M∩S with R-linear rate

r ∈ (c̄, 1).

Proof: See Appendix IX-B �
These results guarantee that the AP method converges glob-

ally (at least) to a fixed point in M and locally, i.e., within the
neighborhood of the solution (if it exists), to a fixed point in
M∩S .

D. Inaccurate and Partial Information

We now consider the case where the estimated eigenvalues
are inexact because of noise or are incomplete because the
full eigendecomposition of the system matrices is not feasible.
To deal with such cases, we modify the structure of the set
M (in Theorem 1) to reflect the uncertainty and the partial
eigendecomposition. The modified set has to be compatible with
the structure used in Definition 2 and Theorems 2 and 3 to
guarantee the convergence of the AP method. Thus, in the sequel,

5We considered the notion of fixed point to obtain a feasible set of the system
matrices (matrices that realize the system) since, beyond their structure, the most
important characteristic is their spectrum (set of eigenvalues).

6The appendix is the supplemental material accessible at [Online]. Avail-
able: http://cas.et.tudelft.nl/ mariocoutino/pdfFiles/mcoutino_TSINP2020_
appendix.pdfthis_link

we focus on proving compactness for the modified versions of
M, which suffices to guarantee convergence of the AP method
by the result of Theorem 2.

Uncertainty in the system matrices. The following propo-
sition shows that the set Mε, which allows the estimated eigen-
values to lie within an ε−uncertainty ball, is compact.

Proposition 2: Let Λo ∈ DN with [Λo]ii ≥ [Λo]jj for i < j
be fixed. If 0 ≤ ε < ∞ is a fixed scalar accounting for uncer-
tainties on the elements of Λo, then the set

Mε := {M ∈ SN |M = V (Λo +Λε)V
T , V ∈ O(N),

Λε ∈ DN , ‖Λε‖2 ≤ ε} (42)

is compact.
Proof: See Appendix IX-C �
The following result provides a best approximant of a matrix

S in the set Mε in the Frobenius norm.
Theorem 4: Given S ∈ SN with eigendecomposition S =

QΛQT and non-increasing eigenvalues [Λ]ii ≥ [Λ]jj for i < j.
For a fixed Λo ∈ DN with [Λo]ii ≥ [Λo]jj for i < j, a best
approximant of S in Mε, in the Frobenius norm sense, is given
by

PMε
(S) := Q(Λo +Λ∗

ε)Q
T ,

where

Λ∗
ε := argmin

Λε∈DN

‖Λ−Λo −Λε‖F, s.t ‖Λε‖2 ≤ ε.

Proof: See Appendix IX-D �
Corollary 1: The nonzero entries of Λ∗

ε are

[Λ∗
ε]ii = sign(γi) ·min{ε, |γi|},

with γi := [Λ]ii − [Λo]ii.
Partial eigendecomposition. In physical systems, a discrete

model of N degrees of freedom provides accurate information
of about N/3 of the system natural frequencies [79, Ch. 5]. In
other cases, the full eigendecomposition of the system matrix is
not always possible. We, therefore, provide a projection onto a
set that only considers a noisy part of the system matrix spectrum
is available.

The following theorem provides the main result.
Theorem 5: Let Λm ∈ Dm with [Λm]ii ≥ [Λm]jj for i < j

be fixed. If 0 ≤ ε < ∞ is a fixed scalar accounting for uncer-
tainties on the elements of Λm and ρ := maxS∈S ‖S‖2, then
a best approximant, in the Frobenius norm sense, of S ∈ SN ,
with ‖S‖2 ≤ ρ, in the set

Mm
ε := {M ∈ SN |M = V bdiag(Λm +Λε, Λ̄)V T ,

V ∈ O(N), Λε ∈ Dm, ‖Λε‖2 ≤ ε, Λ̄ ∈ DN−m, ‖Λ̄‖2 ≤ ρ}
(43)

is given by

PMm
ε
(S) := Qbdiag(Λm +Λ∗

ε,Λσ̄)Q
T .

Here, σ denotes the permutation of the subset of [N ] that solves
the combinatorics problem

min
1≤[σ]1<...<[σ]m≤N

m∑
i=1

([Λ][σ]i[σ]i − [Λm]ii)
2, (44)
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where Λ is the diagonal matrix of eigenvalues of S, and σ̄ is
the complementary set of σ. Matrix Q is given by the (sorted)
eigendecomposition of S, i.e.,

S = Qbdiag(Λσ,Λσ̄)Q
T ,

where Λσ is the permuted version of Λ and

Λ∗
ε := argmin

Λε∈Dm

‖Λσ −Λm −Λε‖F, s.t.‖Λε‖2 ≤ ε.

Furthermore, the set Mm
ε is compact.

Proof: See Appendix IX-F �
Corollary 2: The optimal permutation σ of the indices [N ]

that solves (44) can be found by solving a minimum-weight
bipartite perfect matching problem.

Put simply, Theorems 4 and 5 show the sets Mε and Mm
ε are

compact and provide a best Frobenius-norm approximant for S
in each case. Therefore, we can apply the AP method in (38)
to these scenarios using the appropriate modifications. Finally,
since sets Mε and Mm

ε meet the conditions of Theorem 2,
the convergence results for the AP method extend also to these
scenarios.

VI. SYSTEM CONSISTENCY CONSTRAINTS

The set S [cf. (34)] plays an important role in the system
topology that the AP method identifies. As such, it should
be constrained such that the AP method yields a consistent
system, i.e., the AP estimated state network should define an
equivalent system to the original one. We briefly discuss here two
constraints that can be added toS to enforce system consistency.

By considering the system matrix [cf. (7)] is a bijective matrix
function and by using the same construction as for the shift
invariance property in (21), we can build the linear system[

CT

CT f
−1
x (AT )

]
T =

[
C

CSx

]
. (45)

Here, we leverage the invariance of the matrix function to
nonsingular transforms, i.e.,

f(AT ) = T f(A)T−1, (46)

where f(·) is a matrix function, hence, can be applied to AT . In
this way, we get a linear system that depends onSx and enforces
the shift invariance condition. Nevertheless, the shift invariance
condition does not change the optimality nor the uniqueness of
the projection onto S . This is because T is a free optimization
variable and does not affect the projection distance [cf. (36)].

If other constraints for the transform matrix T are known,
they can be included when solving for the projection (36). These
additional constraints will not impact the projection optimality
because they do not change the cost function for PS . For in-
stance, consider the constraint that requires symmetry in the
input matrix B. Then, since BT = TB, B is symmetric, and
BTT = TBT T , we have

BTT
T = TBT

T . (47)

Again, such an additional constraint does not change the projec-
tion distance as it only modifies the description of the convex
set in which the matrix must be projected.

We can introduce other constraints to the set S to further
restrict the family of feasible network representations. However,
these constraints are case-specifc and go beyond the main goal
of this work. Next, we corroborate the above theoretical findings
with numerical results.

VII. NUMERICAL RESULTS

In this section, we present a series of numerical results to
illustrate the performance of the proposed methods for differ-
ent scenarios. We first illustrate how the model and the noise
coloring influence the estimation performance of commonly
used topology identification methods. Then, we corroborate our
theoretical results. Finally, we present results for the topology
identification from partially-observed networks.7

A. Discrete Model Validation

In this section, we corroborate the discrete model (6) in finding
a graph from continuous-time data generated following the
model (3). The underlying graphs are two fixed random regular
graphs of N = 50 nodes with node degree d = 3. The data are
generated by a continuous-time solver with system evolution
matrix fx(Sx) = −Sx and input matrix fu(Su) = −(Su + I).
The observable matrix C is set to identity and D is the zero
matrix. The input signal is drawn from a standard normal distri-
bution and we set the number of samples to N3 with a sampling
time of τ = 10−3.

We compare the proposed method with the spectral templates
techniques in [15]. For the latter, the system matrices A and
B are first obtained from the continuously sampled data (cf.
Section III). Then, the eigenvectors of these matrices are used
as spectral templates. These results are shown in Fig. 2.

Fig. 2 (a) shows the estimated network topologies for a
particular input signal realization, while Fig. 2 (b) compares
the respective spectra.The spectral templates overestimates the
number of edges and underestimate the graph eigenvalues. How-
ever, the graph obtained with spectral templates is a matrix
function of the original graph, i.e., there is a function (poly-
nomial) that maps the estimated graph to the original one. This
is because Sx has all eigenvalues with multiplicity one. The
proposed technique relying on the discrete model (6) retrieves
the eigenvalues and the graph structure perfectly. This result is
not surprising since subspace-based system identification is a
consistent estimator for the transition matrix and the proposed
method use the knowledge of fs,x(·)while the spectral templates
does not. For this scenario, we also considered building the graph
from the data covariance matrix, but this technique did not lead
to satisfactory results. We attribute this misbehavior to the fact
that the covariance matrix is not diagonalizable by the graph
modes (i.e., eigenvectors of Sx) due to the presence of an input
signal.

B. Instrumental Variables Approach on Social Graph

We now evaluate the instrumental variable approach of
Section IV-A on the Karate club graph [86]. The graph represents

7The code to generate these numerical results can be found in [Online].
Available: https://gitlab.com/fruzti/systemid_codes
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Fig. 2. Comparison of the spectral template method within the system identification framework and the model-aware method. (a) Reconstructed state graph.
(b) Comparison of eigenvalues of the estimated graphs.

Fig. 3. Comparison of several methods using and not using the instrumental variable approach. (a) Comparison of alignment of the eigenbasis of the estimated
graphs with the ones of the true graph. (b) Comparison of eigenvalues of estimated graphs. (c) Comparison of estimated topologies.

the connections of N = 34 members through 78 undirected
edges. We consider the discrete model (6) with A described by
a continuous-time diffusion process A = e−τLx . The diffusion
rate (or sampling time) is fixed to τ = 10−3. The input signal is
randomly generated from a standard normal distribution and the
power of both the state and the observation noise is σ2 = 10−3.
We aim to recover the structure of the underlying graph by
collecting the continuous-time diffused signals in the network
at discrete times. The input to the network represents exogenous
stimuli applied to the nodes. In social settings, this input can
be interpreted as modifications to the ratings/preferences of
the users which are being diffused in the network by local

aggregations. The states represent the current values of the
ratings/preference of the nodes at the different sampled times.

We consider three different approaches to estimate the under-
lying network topology: i) a covariance-based approach, where
the covariance matrix is estimated from the observables; ii)
the instrumental variable approach combined with the spectral
template method from [15]; and iii) the proposed instrumental
variable approach by enforcing the dynamics of the continuous
system. These results are reported in Fig. 3.

Fig. 3 (a) shows the fitting accuracy of the subspaces, while
Fig. 3 (b) illustrates the fitting of the eigenvalues. In Fig. 3 (c),
we show the obtained graphs where the edges with absolute
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Fig. 4. Convergence plots for the alternating projections method with Mm
ε and LCVX. (a) Error with respect to the projection, i.e., ‖Sk − PLCVX

(Sk)‖F.
(b) Iterate error, i.e., ‖Sk − Sk+1‖F.

weight less than 10−3 are omitted. We observe that the system
identification flow allows a better graph reconstruction and the
proposed method offer the best alignment of the eigenbasis. Fur-
ther, by levering the underlying physical model of the diffusion,
we can reconstruct the graph spectrum with high fidelity. We also
remark that despite both the basis and the spectrum are aligned,
the retrieved graph looks different from the true one. This is
because of the ambiguities discussed in Section V-B. However,
the obtained graph has the same eigenvalues as the original one
and its basis diagonalizes the original network matrix. Notice
that from the three methods, only the one leveraging the model
information retrieves a connected graph after thresholding.

Finally, we remark that the task of estimating this topology
based purely on a spectral decomposition is hard. This is be-
cause the combinatorial Laplacian of the Karate club graph has
eigenvalues with a multiplicity larger than one. Thus, there is no
unique basis for its eigendecomposition leading to difficulties in
reconstructing the underlying topology.

C. Convergence of the Alternating Projections Method

We analyze here the convergence behavior of the alternating
projections method (38). We present results using the sets Mm

ε

andS = LCVX. The latter is the convex relaxation of the combi-
natorial Laplacian set; see [15]. These sets are chosen to illustrate
the convergence results as LCVX encompasses the problem of
finding Laplacian matrices with given eigenvalues and Mm

ε is
the most general set proposed in this work. Additional results for
the other sets are provided in the supplementary material. For
this scenario, we select a regular graph8 with N = 30 and node
degree d = 3 and consider only half of its eigenvalues known,
i.e, m = N/2. The AP method is analyzed for five different
initial points.

These results are shown in Fig. 4. Here, each solid line repre-
sents a different starting point. The (blue) dashed line shows the
convergence behavior when the starting point is the (diagonal)
eigenvalue matrix. These results show two main things. First,
the predicted monotone behavior of the error ‖Sk − PS(Sk)‖F
holds and stagnates when a limit point is reached by the iterative
sequence. Second, the error ‖Sk − Sk+1‖F converges to the
desired accuracy (order 10−6), although not monotonically; the

8See supplemental material

error convergence rate is generally linear and the starting point
influences the slope. Finally, we emphasize that even when the
set of known eigenvalues lies within an ε-ball of uncertainty, the
alternating projections method convergences. The convergence
is guaranteed by the compactness of the set Mm

ε .

D. Partial Observations

In this section, we consider the task of retrieving a graph that
realizes a given system from partial observations. We consider
two regular random graphs of N = 14 nodes and three edges
per node. The data are generated from a continuous diffusion on
the network and the input matrix is B = Lu + I . The matrix
C is a Boolean matrix that selects half of the nodes (the odd
labeled nodes from arbitrary labeling). Note that none of the
previous methods can be employed to retrieve the network
topology since B �= I and the network is not fully observed.
Even if the covariance matrix is estimated from sampled data,
its eigenstructure does not represent the eigenstructure of the
state network topology.

We first estimate the system matrices using the system identi-
fication framework and then employ the AP method initialized
with a random symmetric matrix that has as eigenvalues the
estimated state network eigenvalues. The constraint set in (34)
is the convex relaxation of the combinatorial Laplacian set [15].
We enrich this set with the system identification constraints to
enforce the feasibility of the realization. Fig. 5 reports the results
after 30 iterations of the AP method.

From Fig. 5 (a), we observe that the estimated state graph
does not exactly share the eigenbasis with the original one,
i.e., the graph mode projections do not form a diagonal matrix.
However, we could perfectly match the input graph. This
behavior is further seen in the eigenvalues, where those of the
input graph are matched by the estimated eigenvalues. For the
state graph, a perfect eigenvalue match is possible if a final
projection onto M is performed. These results are also reflected
in the estimated topologies in Fig. 5. Perfect reconstruction
of the input graph support is achieved, while the state graph
presents a different arrangement in the nodes and it is not
regular.

Despite the differences in the state graphs, the estimated triple
{Ŝx, Ŝu,C} realizes (approximately) the same system as the
true triple {Sx,Su,C}. This is because the product of the
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Fig. 5. Results for the reconstruction of a graph from a dynamical system using partial observations and the alternating projections method. (a) Projection results

on the modes of the estimated graphs, i.e., |Q̂T
∗ S∗Q̂∗| with Q∗ being the eigenvectors of the estimated graph. (b) Comparison of the estimated graph eigenvalues.

(c) Reconstructed graphs.

involved system matrices is preserved, i.e., although the structure
of the state graph is different, the observations can be reproduced
with high confidence using the estimated system matrices. With
the estimated graphs, we can predict the system output with
an NRMSE fitness of ≈95%. In the supplementary material, we
compare the response of the true system to an arbitrary excitation
with the obtained system response that uses the estimated graphs.

VIII. CONCLUSION

This paper introduced a general framework for graph topology
identification through state-space models and subspace tech-
niques. We showed that it is possible to retrieve the matrix
representation of the involved graphs from the system matrices
by exploiting the geometric structure of the input and output
data. In particular, we discussed the challenges of retrieving
the network topology under partial observations and proposed
an alternating projections method to recover a set of matrices
that realizes the system. The proposed theoretical analysis is
corroborated with numerical results. Future research is needed in
three main directions. First, the focus should be on improving the
scalability of the proposed techniques to larger graphs. Second,
research is needed in employing subspace models to learn a
coarser graph that drives the system dynamics in large data sets.
Third, extensions of the current approach to nonlinear systems,
such as the ones in chemical reaction networks [37], could bridge
the gap between the GSP community and the complex network
literature; see, e.g., [45], [46] by exploiting sparsity in basis
functions modeling nonlinear dynamics.

REFERENCES

[1] J. A. Deri and J. M. Moura, “New York City Taxi analysis with graph
signal processing,” in Proc. IEEE Conf. Sig. Inf. Process. (GLOBALSIP),
2016, pp. 1275–1279.

[2] O. Sporns, Networks of the Brain. Cambridge, MA, USA: MIT Press,
2010.

[3] F. Mittler et al., “Reactive oxygen gene network of plants,” Trends Plant
Sci., vol. 9, no. 10, pp. 490–498, 2004.

[4] S. K. Narang, A. Gadde, and A. Ortega, “Signal processing techniques for
interpolation in graph structured data,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2013, pp. 5445–5449.

[5] P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus, “Adaptive
graph signal processing: Algorithms and optimal sampling strategies,”
IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3584–3598, 2018.

[6] S. Chen, R. Varma, A. Singh, and J. Kovačević, “Signal recovery on graphs:
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